1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 39 * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $ 40 * $DragonFly: src/sys/kern/kern_exit.c,v 1.91 2008/05/18 20:02:02 nth Exp $ 41 */ 42 43 #include "opt_compat.h" 44 #include "opt_ktrace.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/sysproto.h> 49 #include <sys/kernel.h> 50 #include <sys/malloc.h> 51 #include <sys/proc.h> 52 #include <sys/ktrace.h> 53 #include <sys/pioctl.h> 54 #include <sys/tty.h> 55 #include <sys/wait.h> 56 #include <sys/vnode.h> 57 #include <sys/resourcevar.h> 58 #include <sys/signalvar.h> 59 #include <sys/taskqueue.h> 60 #include <sys/ptrace.h> 61 #include <sys/acct.h> /* for acct_process() function prototype */ 62 #include <sys/filedesc.h> 63 #include <sys/shm.h> 64 #include <sys/sem.h> 65 #include <sys/jail.h> 66 #include <sys/kern_syscall.h> 67 #include <sys/upcall.h> 68 #include <sys/caps.h> 69 #include <sys/unistd.h> 70 #include <sys/eventhandler.h> 71 #include <sys/dsched.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_param.h> 75 #include <sys/lock.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_extern.h> 79 #include <sys/user.h> 80 81 #include <sys/refcount.h> 82 #include <sys/thread2.h> 83 #include <sys/sysref2.h> 84 #include <sys/mplock2.h> 85 86 static void reaplwps(void *context, int dummy); 87 static void reaplwp(struct lwp *lp); 88 static void killlwps(struct lwp *lp); 89 90 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback"); 91 static MALLOC_DEFINE(M_ZOMBIE, "zombie", "zombie proc status"); 92 93 static struct lwkt_token deadlwp_token = LWKT_TOKEN_INITIALIZER(deadlwp_token); 94 95 /* 96 * callout list for things to do at exit time 97 */ 98 struct exitlist { 99 exitlist_fn function; 100 TAILQ_ENTRY(exitlist) next; 101 }; 102 103 TAILQ_HEAD(exit_list_head, exitlist); 104 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list); 105 106 /* 107 * LWP reaper data 108 */ 109 struct task *deadlwp_task[MAXCPU]; 110 struct lwplist deadlwp_list[MAXCPU]; 111 112 /* 113 * exit -- 114 * Death of process. 115 * 116 * SYS_EXIT_ARGS(int rval) 117 */ 118 int 119 sys_exit(struct exit_args *uap) 120 { 121 exit1(W_EXITCODE(uap->rval, 0)); 122 /* NOTREACHED */ 123 } 124 125 /* 126 * Extended exit -- 127 * Death of a lwp or process with optional bells and whistles. 128 * 129 * MPALMOSTSAFE 130 */ 131 int 132 sys_extexit(struct extexit_args *uap) 133 { 134 struct proc *p = curproc; 135 int action, who; 136 int error; 137 138 action = EXTEXIT_ACTION(uap->how); 139 who = EXTEXIT_WHO(uap->how); 140 141 /* Check parameters before we might perform some action */ 142 switch (who) { 143 case EXTEXIT_PROC: 144 case EXTEXIT_LWP: 145 break; 146 default: 147 return (EINVAL); 148 } 149 150 switch (action) { 151 case EXTEXIT_SIMPLE: 152 break; 153 case EXTEXIT_SETINT: 154 error = copyout(&uap->status, uap->addr, sizeof(uap->status)); 155 if (error) 156 return (error); 157 break; 158 default: 159 return (EINVAL); 160 } 161 162 lwkt_gettoken(&p->p_token); 163 164 switch (who) { 165 case EXTEXIT_LWP: 166 /* 167 * Be sure only to perform a simple lwp exit if there is at 168 * least one more lwp in the proc, which will call exit1() 169 * later, otherwise the proc will be an UNDEAD and not even a 170 * SZOMB! 171 */ 172 if (p->p_nthreads > 1) { 173 lwp_exit(0); /* called w/ p_token held */ 174 /* NOT REACHED */ 175 } 176 /* else last lwp in proc: do the real thing */ 177 /* FALLTHROUGH */ 178 default: /* to help gcc */ 179 case EXTEXIT_PROC: 180 lwkt_reltoken(&p->p_token); 181 exit1(W_EXITCODE(uap->status, 0)); 182 /* NOTREACHED */ 183 } 184 185 /* NOTREACHED */ 186 lwkt_reltoken(&p->p_token); /* safety */ 187 } 188 189 /* 190 * Kill all lwps associated with the current process except the 191 * current lwp. Return an error if we race another thread trying to 192 * do the same thing and lose the race. 193 * 194 * If forexec is non-zero the current thread and process flags are 195 * cleaned up so they can be reused. 196 */ 197 int 198 killalllwps(int forexec) 199 { 200 struct lwp *lp = curthread->td_lwp; 201 struct proc *p = lp->lwp_proc; 202 203 /* 204 * Interlock against P_WEXIT. Only one of the process's thread 205 * is allowed to do the master exit. 206 */ 207 if (p->p_flag & P_WEXIT) 208 return (EALREADY); 209 p->p_flag |= P_WEXIT; 210 211 /* 212 * Interlock with LWP_WEXIT and kill any remaining LWPs 213 */ 214 lp->lwp_flag |= LWP_WEXIT; 215 if (p->p_nthreads > 1) 216 killlwps(lp); 217 218 /* 219 * If doing this for an exec, clean up the remaining thread 220 * (us) for continuing operation after all the other threads 221 * have been killed. 222 */ 223 if (forexec) { 224 lp->lwp_flag &= ~LWP_WEXIT; 225 p->p_flag &= ~P_WEXIT; 226 } 227 return(0); 228 } 229 230 /* 231 * Kill all LWPs except the current one. Do not try to signal 232 * LWPs which have exited on their own or have already been 233 * signaled. 234 */ 235 static void 236 killlwps(struct lwp *lp) 237 { 238 struct proc *p = lp->lwp_proc; 239 struct lwp *tlp; 240 241 /* 242 * Kill the remaining LWPs. We must send the signal before setting 243 * LWP_WEXIT. The setting of WEXIT is optional but helps reduce 244 * races. tlp must be held across the call as it might block and 245 * allow the target lwp to rip itself out from under our loop. 246 */ 247 FOREACH_LWP_IN_PROC(tlp, p) { 248 LWPHOLD(tlp); 249 if ((tlp->lwp_flag & LWP_WEXIT) == 0) { 250 lwpsignal(p, tlp, SIGKILL); 251 tlp->lwp_flag |= LWP_WEXIT; 252 } 253 LWPRELE(tlp); 254 } 255 256 /* 257 * Wait for everything to clear out. 258 */ 259 while (p->p_nthreads > 1) { 260 tsleep(&p->p_nthreads, 0, "killlwps", 0); 261 } 262 } 263 264 /* 265 * Exit: deallocate address space and other resources, change proc state 266 * to zombie, and unlink proc from allproc and parent's lists. Save exit 267 * status and rusage for wait(). Check for child processes and orphan them. 268 */ 269 void 270 exit1(int rv) 271 { 272 struct thread *td = curthread; 273 struct proc *p = td->td_proc; 274 struct lwp *lp = td->td_lwp; 275 struct proc *q, *nq; 276 struct vmspace *vm; 277 struct vnode *vtmp; 278 struct exitlist *ep; 279 int error; 280 281 lwkt_gettoken(&p->p_token); 282 283 if (p->p_pid == 1) { 284 kprintf("init died (signal %d, exit %d)\n", 285 WTERMSIG(rv), WEXITSTATUS(rv)); 286 panic("Going nowhere without my init!"); 287 } 288 varsymset_clean(&p->p_varsymset); 289 lockuninit(&p->p_varsymset.vx_lock); 290 /* 291 * Kill all lwps associated with the current process, return an 292 * error if we race another thread trying to do the same thing 293 * and lose the race. 294 */ 295 error = killalllwps(0); 296 if (error) { 297 lwp_exit(0); 298 /* NOT REACHED */ 299 } 300 301 caps_exit(lp->lwp_thread); 302 303 /* are we a task leader? */ 304 if (p == p->p_leader) { 305 struct kill_args killArgs; 306 killArgs.signum = SIGKILL; 307 q = p->p_peers; 308 while(q) { 309 killArgs.pid = q->p_pid; 310 /* 311 * The interface for kill is better 312 * than the internal signal 313 */ 314 sys_kill(&killArgs); 315 nq = q; 316 q = q->p_peers; 317 } 318 while (p->p_peers) 319 tsleep((caddr_t)p, 0, "exit1", 0); 320 } 321 322 #ifdef PGINPROF 323 vmsizmon(); 324 #endif 325 STOPEVENT(p, S_EXIT, rv); 326 wakeup(&p->p_stype); /* Wakeup anyone in procfs' PIOCWAIT */ 327 328 /* 329 * Check if any loadable modules need anything done at process exit. 330 * e.g. SYSV IPC stuff 331 * XXX what if one of these generates an error? 332 */ 333 p->p_xstat = rv; 334 EVENTHANDLER_INVOKE(process_exit, p); 335 336 /* 337 * XXX: imho, the eventhandler stuff is much cleaner than this. 338 * Maybe we should move everything to use eventhandler. 339 */ 340 TAILQ_FOREACH(ep, &exit_list, next) 341 (*ep->function)(td); 342 343 if (p->p_flag & P_PROFIL) 344 stopprofclock(p); 345 /* 346 * If parent is waiting for us to exit or exec, 347 * P_PPWAIT is set; we will wakeup the parent below. 348 */ 349 p->p_flag &= ~(P_TRACED | P_PPWAIT); 350 SIGEMPTYSET(p->p_siglist); 351 SIGEMPTYSET(lp->lwp_siglist); 352 if (timevalisset(&p->p_realtimer.it_value)) 353 callout_stop(&p->p_ithandle); 354 355 /* 356 * Reset any sigio structures pointing to us as a result of 357 * F_SETOWN with our pid. 358 */ 359 funsetownlst(&p->p_sigiolst); 360 361 /* 362 * Close open files and release open-file table. 363 * This may block! 364 */ 365 fdfree(p, NULL); 366 367 if(p->p_leader->p_peers) { 368 q = p->p_leader; 369 while(q->p_peers != p) 370 q = q->p_peers; 371 q->p_peers = p->p_peers; 372 wakeup((caddr_t)p->p_leader); 373 } 374 375 /* 376 * XXX Shutdown SYSV semaphores 377 */ 378 semexit(p); 379 380 KKASSERT(p->p_numposixlocks == 0); 381 382 /* The next two chunks should probably be moved to vmspace_exit. */ 383 vm = p->p_vmspace; 384 385 /* 386 * Release upcalls associated with this process 387 */ 388 if (vm->vm_upcalls) 389 upc_release(vm, lp); 390 391 /* 392 * Clean up data related to virtual kernel operation. Clean up 393 * any vkernel context related to the current lwp now so we can 394 * destroy p_vkernel. 395 */ 396 if (p->p_vkernel) { 397 vkernel_lwp_exit(lp); 398 vkernel_exit(p); 399 } 400 401 /* 402 * Release user portion of address space. 403 * This releases references to vnodes, 404 * which could cause I/O if the file has been unlinked. 405 * Need to do this early enough that we can still sleep. 406 * Can't free the entire vmspace as the kernel stack 407 * may be mapped within that space also. 408 * 409 * Processes sharing the same vmspace may exit in one order, and 410 * get cleaned up by vmspace_exit() in a different order. The 411 * last exiting process to reach this point releases as much of 412 * the environment as it can, and the last process cleaned up 413 * by vmspace_exit() (which decrements exitingcnt) cleans up the 414 * remainder. 415 */ 416 vmspace_exitbump(vm); 417 sysref_put(&vm->vm_sysref); 418 419 if (SESS_LEADER(p)) { 420 struct session *sp = p->p_session; 421 422 if (sp->s_ttyvp) { 423 /* 424 * We are the controlling process. Signal the 425 * foreground process group, drain the controlling 426 * terminal, and revoke access to the controlling 427 * terminal. 428 * 429 * NOTE: while waiting for the process group to exit 430 * it is possible that one of the processes in the 431 * group will revoke the tty, so the ttyclosesession() 432 * function will re-check sp->s_ttyvp. 433 */ 434 if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) { 435 if (sp->s_ttyp->t_pgrp) 436 pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1); 437 ttywait(sp->s_ttyp); 438 ttyclosesession(sp, 1); /* also revoke */ 439 } 440 /* 441 * Release the tty. If someone has it open via 442 * /dev/tty then close it (since they no longer can 443 * once we've NULL'd it out). 444 */ 445 ttyclosesession(sp, 0); 446 447 /* 448 * s_ttyp is not zero'd; we use this to indicate 449 * that the session once had a controlling terminal. 450 * (for logging and informational purposes) 451 */ 452 } 453 sp->s_leader = NULL; 454 } 455 fixjobc(p, p->p_pgrp, 0); 456 (void)acct_process(p); 457 #ifdef KTRACE 458 /* 459 * release trace file 460 */ 461 if (p->p_tracenode) 462 ktrdestroy(&p->p_tracenode); 463 p->p_traceflag = 0; 464 #endif 465 /* 466 * Release reference to text vnode 467 */ 468 if ((vtmp = p->p_textvp) != NULL) { 469 p->p_textvp = NULL; 470 vrele(vtmp); 471 } 472 473 /* Release namecache handle to text file */ 474 if (p->p_textnch.ncp) 475 cache_drop(&p->p_textnch); 476 477 /* 478 * Move the process to the zombie list. This will block 479 * until the process p_lock count reaches 0. The process will 480 * not be reaped until TDF_EXITING is set by cpu_thread_exit(), 481 * which is called from cpu_proc_exit(). 482 */ 483 proc_move_allproc_zombie(p); 484 485 /* 486 * Reparent all of this process's children to the init process. 487 * We must hold initproc->p_token in order to mess with 488 * initproc->p_children. We already hold p->p_token (to remove 489 * the children from our list). 490 */ 491 q = LIST_FIRST(&p->p_children); 492 if (q) { 493 lwkt_gettoken(&initproc->p_token); 494 while (q) { 495 nq = LIST_NEXT(q, p_sibling); 496 LIST_REMOVE(q, p_sibling); 497 LIST_INSERT_HEAD(&initproc->p_children, q, p_sibling); 498 q->p_pptr = initproc; 499 q->p_sigparent = SIGCHLD; 500 /* 501 * Traced processes are killed 502 * since their existence means someone is screwing up. 503 */ 504 if (q->p_flag & P_TRACED) { 505 q->p_flag &= ~P_TRACED; 506 ksignal(q, SIGKILL); 507 } 508 q = nq; 509 } 510 lwkt_reltoken(&initproc->p_token); 511 wakeup(initproc); 512 } 513 514 /* 515 * Save exit status and final rusage info, adding in child rusage 516 * info and self times. 517 */ 518 calcru_proc(p, &p->p_ru); 519 ruadd(&p->p_ru, &p->p_cru); 520 521 /* 522 * notify interested parties of our demise. 523 */ 524 KNOTE(&p->p_klist, NOTE_EXIT); 525 526 /* 527 * Notify parent that we're gone. If parent has the PS_NOCLDWAIT 528 * flag set, notify process 1 instead (and hope it will handle 529 * this situation). 530 */ 531 if (p->p_pptr->p_sigacts->ps_flag & PS_NOCLDWAIT) { 532 struct proc *pp = p->p_pptr; 533 534 PHOLD(pp); 535 proc_reparent(p, initproc); 536 537 /* 538 * If this was the last child of our parent, notify 539 * parent, so in case he was wait(2)ing, he will 540 * continue. This function interlocks with pptr->p_token. 541 */ 542 if (LIST_EMPTY(&pp->p_children)) 543 wakeup((caddr_t)pp); 544 PRELE(pp); 545 } 546 547 /* lwkt_gettoken(&proc_token); */ 548 q = p->p_pptr; 549 PHOLD(q); 550 if (p->p_sigparent && q != initproc) { 551 ksignal(q, p->p_sigparent); 552 } else { 553 ksignal(q, SIGCHLD); 554 } 555 wakeup(p->p_pptr); 556 PRELE(q); 557 /* lwkt_reltoken(&proc_token); */ 558 /* NOTE: p->p_pptr can get ripped out */ 559 /* 560 * cpu_exit is responsible for clearing curproc, since 561 * it is heavily integrated with the thread/switching sequence. 562 * 563 * Other substructures are freed from wait(). 564 */ 565 plimit_free(p); 566 567 /* 568 * Release the current user process designation on the process so 569 * the userland scheduler can work in someone else. 570 */ 571 p->p_usched->release_curproc(lp); 572 573 /* 574 * Finally, call machine-dependent code to release as many of the 575 * lwp's resources as we can and halt execution of this thread. 576 */ 577 lwp_exit(1); 578 } 579 580 /* 581 * Eventually called by every exiting LWP 582 * 583 * p->p_token must be held. mplock may be held and will be released. 584 */ 585 void 586 lwp_exit(int masterexit) 587 { 588 struct thread *td = curthread; 589 struct lwp *lp = td->td_lwp; 590 struct proc *p = lp->lwp_proc; 591 int dowake = 0; 592 593 /* 594 * lwp_exit() may be called without setting LWP_WEXIT, so 595 * make sure it is set here. 596 */ 597 ASSERT_LWKT_TOKEN_HELD(&p->p_token); 598 lp->lwp_flag |= LWP_WEXIT; 599 600 /* 601 * Clean up any virtualization 602 */ 603 if (lp->lwp_vkernel) 604 vkernel_lwp_exit(lp); 605 606 /* 607 * Clean up select/poll support 608 */ 609 kqueue_terminate(&lp->lwp_kqueue); 610 611 /* 612 * Clean up any syscall-cached ucred 613 */ 614 if (td->td_ucred) { 615 crfree(td->td_ucred); 616 td->td_ucred = NULL; 617 } 618 619 /* 620 * Nobody actually wakes us when the lock 621 * count reaches zero, so just wait one tick. 622 */ 623 while (lp->lwp_lock > 0) 624 tsleep(lp, 0, "lwpexit", 1); 625 626 /* Hand down resource usage to our proc */ 627 ruadd(&p->p_ru, &lp->lwp_ru); 628 629 /* 630 * If we don't hold the process until the LWP is reaped wait*() 631 * may try to dispose of its vmspace before all the LWPs have 632 * actually terminated. 633 */ 634 PHOLD(p); 635 636 /* 637 * Do any remaining work that might block on us. We should be 638 * coded such that further blocking is ok after decrementing 639 * p_nthreads but don't take the chance. 640 */ 641 dsched_exit_thread(td); 642 biosched_done(curthread); 643 644 /* 645 * We have to use the reaper for all the LWPs except the one doing 646 * the master exit. The LWP doing the master exit can just be 647 * left on p_lwps and the process reaper will deal with it 648 * synchronously, which is much faster. 649 * 650 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0. 651 */ 652 if (masterexit == 0) { 653 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp); 654 --p->p_nthreads; 655 if (p->p_nthreads <= 1) 656 dowake = 1; 657 lwkt_gettoken(&deadlwp_token); 658 LIST_INSERT_HEAD(&deadlwp_list[mycpuid], lp, u.lwp_reap_entry); 659 taskqueue_enqueue(taskqueue_thread[mycpuid], 660 deadlwp_task[mycpuid]); 661 lwkt_reltoken(&deadlwp_token); 662 } else { 663 --p->p_nthreads; 664 if (p->p_nthreads <= 1) 665 dowake = 1; 666 } 667 668 /* 669 * Release p_token. Issue the wakeup() on p_nthreads if necessary, 670 * as late as possible to give us a chance to actually deschedule and 671 * switch away before another cpu core hits reaplwp(). 672 */ 673 lwkt_reltoken(&p->p_token); 674 if (dowake) 675 wakeup(&p->p_nthreads); 676 cpu_lwp_exit(); 677 } 678 679 /* 680 * Wait until a lwp is completely dead. 681 * 682 * If the thread is still executing, which can't be waited upon, 683 * return failure. The caller is responsible of waiting a little 684 * bit and checking again. 685 * 686 * Suggested use: 687 * while (!lwp_wait(lp)) 688 * tsleep(lp, 0, "lwpwait", 1); 689 */ 690 static int 691 lwp_wait(struct lwp *lp) 692 { 693 struct thread *td = lp->lwp_thread;; 694 695 KKASSERT(lwkt_preempted_proc() != lp); 696 697 while (lp->lwp_lock > 0) 698 tsleep(lp, 0, "lwpwait1", 1); 699 700 lwkt_wait_free(td); 701 702 /* 703 * The lwp's thread may still be in the middle 704 * of switching away, we can't rip its stack out from 705 * under it until TDF_EXITING is set and both 706 * TDF_RUNNING and TDF_PREEMPT_LOCK are clear. 707 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING 708 * will be cleared temporarily if a thread gets 709 * preempted. 710 * 711 * YYY no wakeup occurs, so we simply return failure 712 * and let the caller deal with sleeping and calling 713 * us again. 714 */ 715 if ((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK| 716 TDF_EXITING|TDF_RUNQ)) != TDF_EXITING) { 717 return (0); 718 } 719 KASSERT((td->td_flags & TDF_TSLEEPQ) == 0, 720 ("lwp_wait: td %p (%s) still on sleep queue", td, td->td_comm)); 721 return (1); 722 } 723 724 /* 725 * Release the resources associated with a lwp. 726 * The lwp must be completely dead. 727 */ 728 void 729 lwp_dispose(struct lwp *lp) 730 { 731 struct thread *td = lp->lwp_thread;; 732 733 KKASSERT(lwkt_preempted_proc() != lp); 734 KKASSERT(td->td_refs == 0); 735 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|TDF_EXITING)) == 736 TDF_EXITING); 737 738 PRELE(lp->lwp_proc); 739 lp->lwp_proc = NULL; 740 if (td != NULL) { 741 td->td_proc = NULL; 742 td->td_lwp = NULL; 743 lp->lwp_thread = NULL; 744 lwkt_free_thread(td); 745 } 746 kfree(lp, M_LWP); 747 } 748 749 /* 750 * MPSAFE 751 */ 752 int 753 sys_wait4(struct wait_args *uap) 754 { 755 struct rusage rusage; 756 int error, status; 757 758 error = kern_wait(uap->pid, (uap->status ? &status : NULL), 759 uap->options, (uap->rusage ? &rusage : NULL), 760 &uap->sysmsg_result); 761 762 if (error == 0 && uap->status) 763 error = copyout(&status, uap->status, sizeof(*uap->status)); 764 if (error == 0 && uap->rusage) 765 error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage)); 766 return (error); 767 } 768 769 /* 770 * wait1() 771 * 772 * wait_args(int pid, int *status, int options, struct rusage *rusage) 773 * 774 * MPALMOSTSAFE 775 */ 776 int 777 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res) 778 { 779 struct thread *td = curthread; 780 struct lwp *lp; 781 struct proc *q = td->td_proc; 782 struct proc *p, *t; 783 struct pargs *pa; 784 struct sigacts *ps; 785 int nfound, error; 786 787 if (pid == 0) 788 pid = -q->p_pgid; 789 if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE)) 790 return (EINVAL); 791 792 lwkt_gettoken(&q->p_token); 793 loop: 794 /* 795 * All sorts of things can change due to blocking so we have to loop 796 * all the way back up here. 797 * 798 * The problem is that if a process group is stopped and the parent 799 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP 800 * of the child and then stop itself when it tries to return from the 801 * system call. When the process group is resumed the parent will 802 * then get the STOP status even though the child has now resumed 803 * (a followup wait*() will get the CONT status). 804 * 805 * Previously the CONT would overwrite the STOP because the tstop 806 * was handled within tsleep(), and the parent would only see 807 * the CONT when both are stopped and continued together. This little 808 * two-line hack restores this effect. 809 */ 810 while (q->p_stat == SSTOP) 811 tstop(); 812 813 nfound = 0; 814 815 /* 816 * Loop on children. 817 * 818 * NOTE: We don't want to break q's p_token in the loop for the 819 * case where no children are found or we risk breaking the 820 * interlock between child and parent. 821 */ 822 LIST_FOREACH(p, &q->p_children, p_sibling) { 823 if (pid != WAIT_ANY && 824 p->p_pid != pid && p->p_pgid != -pid) { 825 continue; 826 } 827 828 /* 829 * This special case handles a kthread spawned by linux_clone 830 * (see linux_misc.c). The linux_wait4 and linux_waitpid 831 * functions need to be able to distinguish between waiting 832 * on a process and waiting on a thread. It is a thread if 833 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option 834 * signifies we want to wait for threads and not processes. 835 */ 836 if ((p->p_sigparent != SIGCHLD) ^ 837 ((options & WLINUXCLONE) != 0)) { 838 continue; 839 } 840 841 nfound++; 842 if (p->p_stat == SZOMB) { 843 /* 844 * We may go into SZOMB with threads still present. 845 * We must wait for them to exit before we can reap 846 * the master thread, otherwise we may race reaping 847 * non-master threads. 848 */ 849 lwkt_gettoken(&p->p_token); 850 while (p->p_nthreads > 0) { 851 tsleep(&p->p_nthreads, 0, "lwpzomb", hz); 852 } 853 854 /* 855 * Reap any LWPs left in p->p_lwps. This is usually 856 * just the last LWP. This must be done before 857 * we loop on p_lock since the lwps hold a ref on 858 * it as a vmspace interlock. 859 * 860 * Once that is accomplished p_nthreads had better 861 * be zero. 862 */ 863 while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) { 864 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp); 865 reaplwp(lp); 866 } 867 KKASSERT(p->p_nthreads == 0); 868 lwkt_reltoken(&p->p_token); 869 870 /* 871 * Don't do anything really bad until all references 872 * to the process go away. This may include other 873 * LWPs which are still in the process of being 874 * reaped. We can't just pull the rug out from under 875 * them because they may still be using the VM space. 876 * 877 * Certain kernel facilities such as /proc will also 878 * put a hold on the process for short periods of 879 * time. 880 */ 881 while (p->p_lock) 882 tsleep(p, 0, "reap3", hz); 883 884 /* Take care of our return values. */ 885 *res = p->p_pid; 886 p->p_usched->heuristic_exiting(td->td_lwp, p); 887 888 if (status) 889 *status = p->p_xstat; 890 if (rusage) 891 *rusage = p->p_ru; 892 /* 893 * If we got the child via a ptrace 'attach', 894 * we need to give it back to the old parent. 895 */ 896 if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) { 897 p->p_oppid = 0; 898 proc_reparent(p, t); 899 ksignal(t, SIGCHLD); 900 wakeup((caddr_t)t); 901 error = 0; 902 PRELE(t); 903 goto done; 904 } 905 906 /* 907 * Unlink the proc from its process group so that 908 * the following operations won't lead to an 909 * inconsistent state for processes running down 910 * the zombie list. 911 */ 912 proc_remove_zombie(p); 913 leavepgrp(p); 914 915 p->p_xstat = 0; 916 ruadd(&q->p_cru, &p->p_ru); 917 918 /* 919 * Decrement the count of procs running with this uid. 920 */ 921 chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0); 922 923 /* 924 * Free up credentials. 925 */ 926 crfree(p->p_ucred); 927 p->p_ucred = NULL; 928 929 /* 930 * Remove unused arguments 931 */ 932 pa = p->p_args; 933 p->p_args = NULL; 934 if (pa && refcount_release(&pa->ar_ref)) { 935 kfree(pa, M_PARGS); 936 pa = NULL; 937 } 938 939 ps = p->p_sigacts; 940 p->p_sigacts = NULL; 941 if (ps && refcount_release(&ps->ps_refcnt)) { 942 kfree(ps, M_SUBPROC); 943 ps = NULL; 944 } 945 946 vm_waitproc(p); 947 948 /* 949 * Temporary refs may still have been acquired while 950 * we removed the process, make sure they are all 951 * gone before kfree()ing. Now that the process has 952 * been removed from all lists and all references to 953 * it have gone away, no new refs can occur. 954 */ 955 while (p->p_lock) 956 tsleep(p, 0, "reap4", hz); 957 kfree(p, M_PROC); 958 atomic_add_int(&nprocs, -1); 959 error = 0; 960 goto done; 961 } 962 if (p->p_stat == SSTOP && (p->p_flag & P_WAITED) == 0 && 963 ((p->p_flag & P_TRACED) || (options & WUNTRACED))) { 964 lwkt_gettoken(&p->p_token); 965 p->p_flag |= P_WAITED; 966 967 *res = p->p_pid; 968 p->p_usched->heuristic_exiting(td->td_lwp, p); 969 if (status) 970 *status = W_STOPCODE(p->p_xstat); 971 /* Zero rusage so we get something consistent. */ 972 if (rusage) 973 bzero(rusage, sizeof(rusage)); 974 error = 0; 975 lwkt_reltoken(&p->p_token); 976 goto done; 977 } 978 if ((options & WCONTINUED) && (p->p_flag & P_CONTINUED)) { 979 lwkt_gettoken(&p->p_token); 980 *res = p->p_pid; 981 p->p_usched->heuristic_exiting(td->td_lwp, p); 982 p->p_flag &= ~P_CONTINUED; 983 984 if (status) 985 *status = SIGCONT; 986 error = 0; 987 lwkt_reltoken(&p->p_token); 988 goto done; 989 } 990 } 991 if (nfound == 0) { 992 error = ECHILD; 993 goto done; 994 } 995 if (options & WNOHANG) { 996 *res = 0; 997 error = 0; 998 goto done; 999 } 1000 1001 /* 1002 * Wait for signal - interlocked using q->p_token. 1003 */ 1004 error = tsleep(q, PCATCH, "wait", 0); 1005 if (error) { 1006 done: 1007 lwkt_reltoken(&q->p_token); 1008 return (error); 1009 } 1010 goto loop; 1011 } 1012 1013 /* 1014 * Make process 'parent' the new parent of process 'child'. 1015 * 1016 * p_children/p_sibling requires the parent's token, and 1017 * changing pptr requires the child's token, so we have to 1018 * get three tokens to do this operation. 1019 */ 1020 void 1021 proc_reparent(struct proc *child, struct proc *parent) 1022 { 1023 struct proc *opp = child->p_pptr; 1024 1025 if (opp == parent) 1026 return; 1027 PHOLD(opp); 1028 PHOLD(parent); 1029 lwkt_gettoken(&opp->p_token); 1030 lwkt_gettoken(&child->p_token); 1031 lwkt_gettoken(&parent->p_token); 1032 KKASSERT(child->p_pptr == opp); 1033 LIST_REMOVE(child, p_sibling); 1034 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); 1035 child->p_pptr = parent; 1036 lwkt_reltoken(&parent->p_token); 1037 lwkt_reltoken(&child->p_token); 1038 lwkt_reltoken(&opp->p_token); 1039 PRELE(parent); 1040 PRELE(opp); 1041 } 1042 1043 /* 1044 * The next two functions are to handle adding/deleting items on the 1045 * exit callout list 1046 * 1047 * at_exit(): 1048 * Take the arguments given and put them onto the exit callout list, 1049 * However first make sure that it's not already there. 1050 * returns 0 on success. 1051 */ 1052 1053 int 1054 at_exit(exitlist_fn function) 1055 { 1056 struct exitlist *ep; 1057 1058 #ifdef INVARIANTS 1059 /* Be noisy if the programmer has lost track of things */ 1060 if (rm_at_exit(function)) 1061 kprintf("WARNING: exit callout entry (%p) already present\n", 1062 function); 1063 #endif 1064 ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT); 1065 if (ep == NULL) 1066 return (ENOMEM); 1067 ep->function = function; 1068 TAILQ_INSERT_TAIL(&exit_list, ep, next); 1069 return (0); 1070 } 1071 1072 /* 1073 * Scan the exit callout list for the given item and remove it. 1074 * Returns the number of items removed (0 or 1) 1075 */ 1076 int 1077 rm_at_exit(exitlist_fn function) 1078 { 1079 struct exitlist *ep; 1080 1081 TAILQ_FOREACH(ep, &exit_list, next) { 1082 if (ep->function == function) { 1083 TAILQ_REMOVE(&exit_list, ep, next); 1084 kfree(ep, M_ATEXIT); 1085 return(1); 1086 } 1087 } 1088 return (0); 1089 } 1090 1091 /* 1092 * LWP reaper related code. 1093 */ 1094 static void 1095 reaplwps(void *context, int dummy) 1096 { 1097 struct lwplist *lwplist = context; 1098 struct lwp *lp; 1099 1100 lwkt_gettoken(&deadlwp_token); 1101 while ((lp = LIST_FIRST(lwplist))) { 1102 LIST_REMOVE(lp, u.lwp_reap_entry); 1103 reaplwp(lp); 1104 } 1105 lwkt_reltoken(&deadlwp_token); 1106 } 1107 1108 static void 1109 reaplwp(struct lwp *lp) 1110 { 1111 if (lwp_wait(lp) == 0) { 1112 tsleep_interlock(lp, 0); 1113 while (lwp_wait(lp) == 0) 1114 tsleep(lp, PINTERLOCKED, "lwpreap", 1); 1115 } 1116 lwp_dispose(lp); 1117 } 1118 1119 static void 1120 deadlwp_init(void) 1121 { 1122 int cpu; 1123 1124 for (cpu = 0; cpu < ncpus; cpu++) { 1125 LIST_INIT(&deadlwp_list[cpu]); 1126 deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]), M_DEVBUF, M_WAITOK); 1127 TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]); 1128 } 1129 } 1130 1131 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL); 1132