xref: /dflybsd-src/sys/kern/kern_exit.c (revision f6fe5a3ad2c512e6756036ad7c76389047b91f16)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
39  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
40  * $DragonFly: src/sys/kern/kern_exit.c,v 1.91 2008/05/18 20:02:02 nth Exp $
41  */
42 
43 #include "opt_compat.h"
44 #include "opt_ktrace.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/sysproto.h>
49 #include <sys/kernel.h>
50 #include <sys/malloc.h>
51 #include <sys/proc.h>
52 #include <sys/ktrace.h>
53 #include <sys/pioctl.h>
54 #include <sys/tty.h>
55 #include <sys/wait.h>
56 #include <sys/vnode.h>
57 #include <sys/resourcevar.h>
58 #include <sys/signalvar.h>
59 #include <sys/taskqueue.h>
60 #include <sys/ptrace.h>
61 #include <sys/acct.h>		/* for acct_process() function prototype */
62 #include <sys/filedesc.h>
63 #include <sys/shm.h>
64 #include <sys/sem.h>
65 #include <sys/jail.h>
66 #include <sys/kern_syscall.h>
67 #include <sys/upcall.h>
68 #include <sys/caps.h>
69 #include <sys/unistd.h>
70 #include <sys/eventhandler.h>
71 #include <sys/dsched.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <sys/lock.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_extern.h>
79 #include <sys/user.h>
80 
81 #include <sys/refcount.h>
82 #include <sys/thread2.h>
83 #include <sys/sysref2.h>
84 #include <sys/mplock2.h>
85 
86 static void reaplwps(void *context, int dummy);
87 static void reaplwp(struct lwp *lp);
88 static void killlwps(struct lwp *lp);
89 
90 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
91 static MALLOC_DEFINE(M_ZOMBIE, "zombie", "zombie proc status");
92 
93 static struct lwkt_token deadlwp_token = LWKT_TOKEN_INITIALIZER(deadlwp_token);
94 
95 /*
96  * callout list for things to do at exit time
97  */
98 struct exitlist {
99 	exitlist_fn function;
100 	TAILQ_ENTRY(exitlist) next;
101 };
102 
103 TAILQ_HEAD(exit_list_head, exitlist);
104 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
105 
106 /*
107  * LWP reaper data
108  */
109 struct task *deadlwp_task[MAXCPU];
110 struct lwplist deadlwp_list[MAXCPU];
111 
112 /*
113  * exit --
114  *	Death of process.
115  *
116  * SYS_EXIT_ARGS(int rval)
117  */
118 int
119 sys_exit(struct exit_args *uap)
120 {
121 	exit1(W_EXITCODE(uap->rval, 0));
122 	/* NOTREACHED */
123 }
124 
125 /*
126  * Extended exit --
127  *	Death of a lwp or process with optional bells and whistles.
128  *
129  * MPALMOSTSAFE
130  */
131 int
132 sys_extexit(struct extexit_args *uap)
133 {
134 	struct proc *p = curproc;
135 	int action, who;
136 	int error;
137 
138 	action = EXTEXIT_ACTION(uap->how);
139 	who = EXTEXIT_WHO(uap->how);
140 
141 	/* Check parameters before we might perform some action */
142 	switch (who) {
143 	case EXTEXIT_PROC:
144 	case EXTEXIT_LWP:
145 		break;
146 	default:
147 		return (EINVAL);
148 	}
149 
150 	switch (action) {
151 	case EXTEXIT_SIMPLE:
152 		break;
153 	case EXTEXIT_SETINT:
154 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
155 		if (error)
156 			return (error);
157 		break;
158 	default:
159 		return (EINVAL);
160 	}
161 
162 	lwkt_gettoken(&p->p_token);
163 
164 	switch (who) {
165 	case EXTEXIT_LWP:
166 		/*
167 		 * Be sure only to perform a simple lwp exit if there is at
168 		 * least one more lwp in the proc, which will call exit1()
169 		 * later, otherwise the proc will be an UNDEAD and not even a
170 		 * SZOMB!
171 		 */
172 		if (p->p_nthreads > 1) {
173 			lwp_exit(0);	/* called w/ p_token held */
174 			/* NOT REACHED */
175 		}
176 		/* else last lwp in proc:  do the real thing */
177 		/* FALLTHROUGH */
178 	default:	/* to help gcc */
179 	case EXTEXIT_PROC:
180 		lwkt_reltoken(&p->p_token);
181 		exit1(W_EXITCODE(uap->status, 0));
182 		/* NOTREACHED */
183 	}
184 
185 	/* NOTREACHED */
186 	lwkt_reltoken(&p->p_token);	/* safety */
187 }
188 
189 /*
190  * Kill all lwps associated with the current process except the
191  * current lwp.   Return an error if we race another thread trying to
192  * do the same thing and lose the race.
193  *
194  * If forexec is non-zero the current thread and process flags are
195  * cleaned up so they can be reused.
196  */
197 int
198 killalllwps(int forexec)
199 {
200 	struct lwp *lp = curthread->td_lwp;
201 	struct proc *p = lp->lwp_proc;
202 
203 	/*
204 	 * Interlock against P_WEXIT.  Only one of the process's thread
205 	 * is allowed to do the master exit.
206 	 */
207 	if (p->p_flag & P_WEXIT)
208 		return (EALREADY);
209 	p->p_flag |= P_WEXIT;
210 
211 	/*
212 	 * Interlock with LWP_WEXIT and kill any remaining LWPs
213 	 */
214 	lp->lwp_flag |= LWP_WEXIT;
215 	if (p->p_nthreads > 1)
216 		killlwps(lp);
217 
218 	/*
219 	 * If doing this for an exec, clean up the remaining thread
220 	 * (us) for continuing operation after all the other threads
221 	 * have been killed.
222 	 */
223 	if (forexec) {
224 		lp->lwp_flag &= ~LWP_WEXIT;
225 		p->p_flag &= ~P_WEXIT;
226 	}
227 	return(0);
228 }
229 
230 /*
231  * Kill all LWPs except the current one.  Do not try to signal
232  * LWPs which have exited on their own or have already been
233  * signaled.
234  */
235 static void
236 killlwps(struct lwp *lp)
237 {
238 	struct proc *p = lp->lwp_proc;
239 	struct lwp *tlp;
240 
241 	/*
242 	 * Kill the remaining LWPs.  We must send the signal before setting
243 	 * LWP_WEXIT.  The setting of WEXIT is optional but helps reduce
244 	 * races.  tlp must be held across the call as it might block and
245 	 * allow the target lwp to rip itself out from under our loop.
246 	 */
247 	FOREACH_LWP_IN_PROC(tlp, p) {
248 		LWPHOLD(tlp);
249 		if ((tlp->lwp_flag & LWP_WEXIT) == 0) {
250 			lwpsignal(p, tlp, SIGKILL);
251 			tlp->lwp_flag |= LWP_WEXIT;
252 		}
253 		LWPRELE(tlp);
254 	}
255 
256 	/*
257 	 * Wait for everything to clear out.
258 	 */
259 	while (p->p_nthreads > 1) {
260 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
261 	}
262 }
263 
264 /*
265  * Exit: deallocate address space and other resources, change proc state
266  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
267  * status and rusage for wait().  Check for child processes and orphan them.
268  */
269 void
270 exit1(int rv)
271 {
272 	struct thread *td = curthread;
273 	struct proc *p = td->td_proc;
274 	struct lwp *lp = td->td_lwp;
275 	struct proc *q, *nq;
276 	struct vmspace *vm;
277 	struct vnode *vtmp;
278 	struct exitlist *ep;
279 	int error;
280 
281 	lwkt_gettoken(&p->p_token);
282 
283 	if (p->p_pid == 1) {
284 		kprintf("init died (signal %d, exit %d)\n",
285 		    WTERMSIG(rv), WEXITSTATUS(rv));
286 		panic("Going nowhere without my init!");
287 	}
288 	varsymset_clean(&p->p_varsymset);
289 	lockuninit(&p->p_varsymset.vx_lock);
290 	/*
291 	 * Kill all lwps associated with the current process, return an
292 	 * error if we race another thread trying to do the same thing
293 	 * and lose the race.
294 	 */
295 	error = killalllwps(0);
296 	if (error) {
297 		lwp_exit(0);
298 		/* NOT REACHED */
299 	}
300 
301 	caps_exit(lp->lwp_thread);
302 
303 	/* are we a task leader? */
304 	if (p == p->p_leader) {
305         	struct kill_args killArgs;
306 		killArgs.signum = SIGKILL;
307 		q = p->p_peers;
308 		while(q) {
309 			killArgs.pid = q->p_pid;
310 			/*
311 		         * The interface for kill is better
312 			 * than the internal signal
313 			 */
314 			sys_kill(&killArgs);
315 			nq = q;
316 			q = q->p_peers;
317 		}
318 		while (p->p_peers)
319 			tsleep((caddr_t)p, 0, "exit1", 0);
320 	}
321 
322 #ifdef PGINPROF
323 	vmsizmon();
324 #endif
325 	STOPEVENT(p, S_EXIT, rv);
326 	wakeup(&p->p_stype);	/* Wakeup anyone in procfs' PIOCWAIT */
327 
328 	/*
329 	 * Check if any loadable modules need anything done at process exit.
330 	 * e.g. SYSV IPC stuff
331 	 * XXX what if one of these generates an error?
332 	 */
333 	p->p_xstat = rv;
334 	EVENTHANDLER_INVOKE(process_exit, p);
335 
336 	/*
337 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
338 	 *	Maybe we should move everything to use eventhandler.
339 	 */
340 	TAILQ_FOREACH(ep, &exit_list, next)
341 		(*ep->function)(td);
342 
343 	if (p->p_flag & P_PROFIL)
344 		stopprofclock(p);
345 	/*
346 	 * If parent is waiting for us to exit or exec,
347 	 * P_PPWAIT is set; we will wakeup the parent below.
348 	 */
349 	p->p_flag &= ~(P_TRACED | P_PPWAIT);
350 	SIGEMPTYSET(p->p_siglist);
351 	SIGEMPTYSET(lp->lwp_siglist);
352 	if (timevalisset(&p->p_realtimer.it_value))
353 		callout_stop(&p->p_ithandle);
354 
355 	/*
356 	 * Reset any sigio structures pointing to us as a result of
357 	 * F_SETOWN with our pid.
358 	 */
359 	funsetownlst(&p->p_sigiolst);
360 
361 	/*
362 	 * Close open files and release open-file table.
363 	 * This may block!
364 	 */
365 	fdfree(p, NULL);
366 
367 	if(p->p_leader->p_peers) {
368 		q = p->p_leader;
369 		while(q->p_peers != p)
370 			q = q->p_peers;
371 		q->p_peers = p->p_peers;
372 		wakeup((caddr_t)p->p_leader);
373 	}
374 
375 	/*
376 	 * XXX Shutdown SYSV semaphores
377 	 */
378 	semexit(p);
379 
380 	KKASSERT(p->p_numposixlocks == 0);
381 
382 	/* The next two chunks should probably be moved to vmspace_exit. */
383 	vm = p->p_vmspace;
384 
385 	/*
386 	 * Release upcalls associated with this process
387 	 */
388 	if (vm->vm_upcalls)
389 		upc_release(vm, lp);
390 
391 	/*
392 	 * Clean up data related to virtual kernel operation.  Clean up
393 	 * any vkernel context related to the current lwp now so we can
394 	 * destroy p_vkernel.
395 	 */
396 	if (p->p_vkernel) {
397 		vkernel_lwp_exit(lp);
398 		vkernel_exit(p);
399 	}
400 
401 	/*
402 	 * Release user portion of address space.
403 	 * This releases references to vnodes,
404 	 * which could cause I/O if the file has been unlinked.
405 	 * Need to do this early enough that we can still sleep.
406 	 * Can't free the entire vmspace as the kernel stack
407 	 * may be mapped within that space also.
408 	 *
409 	 * Processes sharing the same vmspace may exit in one order, and
410 	 * get cleaned up by vmspace_exit() in a different order.  The
411 	 * last exiting process to reach this point releases as much of
412 	 * the environment as it can, and the last process cleaned up
413 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
414 	 * remainder.
415 	 */
416 	vmspace_exitbump(vm);
417 	sysref_put(&vm->vm_sysref);
418 
419 	if (SESS_LEADER(p)) {
420 		struct session *sp = p->p_session;
421 
422 		if (sp->s_ttyvp) {
423 			/*
424 			 * We are the controlling process.  Signal the
425 			 * foreground process group, drain the controlling
426 			 * terminal, and revoke access to the controlling
427 			 * terminal.
428 			 *
429 			 * NOTE: while waiting for the process group to exit
430 			 * it is possible that one of the processes in the
431 			 * group will revoke the tty, so the ttyclosesession()
432 			 * function will re-check sp->s_ttyvp.
433 			 */
434 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
435 				if (sp->s_ttyp->t_pgrp)
436 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
437 				ttywait(sp->s_ttyp);
438 				ttyclosesession(sp, 1); /* also revoke */
439 			}
440 			/*
441 			 * Release the tty.  If someone has it open via
442 			 * /dev/tty then close it (since they no longer can
443 			 * once we've NULL'd it out).
444 			 */
445 			ttyclosesession(sp, 0);
446 
447 			/*
448 			 * s_ttyp is not zero'd; we use this to indicate
449 			 * that the session once had a controlling terminal.
450 			 * (for logging and informational purposes)
451 			 */
452 		}
453 		sp->s_leader = NULL;
454 	}
455 	fixjobc(p, p->p_pgrp, 0);
456 	(void)acct_process(p);
457 #ifdef KTRACE
458 	/*
459 	 * release trace file
460 	 */
461 	if (p->p_tracenode)
462 		ktrdestroy(&p->p_tracenode);
463 	p->p_traceflag = 0;
464 #endif
465 	/*
466 	 * Release reference to text vnode
467 	 */
468 	if ((vtmp = p->p_textvp) != NULL) {
469 		p->p_textvp = NULL;
470 		vrele(vtmp);
471 	}
472 
473 	/* Release namecache handle to text file */
474 	if (p->p_textnch.ncp)
475 		cache_drop(&p->p_textnch);
476 
477 	/*
478 	 * Move the process to the zombie list.  This will block
479 	 * until the process p_lock count reaches 0.  The process will
480 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
481 	 * which is called from cpu_proc_exit().
482 	 */
483 	proc_move_allproc_zombie(p);
484 
485 	/*
486 	 * Reparent all of this process's children to the init process.
487 	 * We must hold initproc->p_token in order to mess with
488 	 * initproc->p_children.  We already hold p->p_token (to remove
489 	 * the children from our list).
490 	 */
491 	q = LIST_FIRST(&p->p_children);
492 	if (q) {
493 		lwkt_gettoken(&initproc->p_token);
494 		while (q) {
495 			nq = LIST_NEXT(q, p_sibling);
496 			LIST_REMOVE(q, p_sibling);
497 			LIST_INSERT_HEAD(&initproc->p_children, q, p_sibling);
498 			q->p_pptr = initproc;
499 			q->p_sigparent = SIGCHLD;
500 			/*
501 			 * Traced processes are killed
502 			 * since their existence means someone is screwing up.
503 			 */
504 			if (q->p_flag & P_TRACED) {
505 				q->p_flag &= ~P_TRACED;
506 				ksignal(q, SIGKILL);
507 			}
508 			q = nq;
509 		}
510 		lwkt_reltoken(&initproc->p_token);
511 		wakeup(initproc);
512 	}
513 
514 	/*
515 	 * Save exit status and final rusage info, adding in child rusage
516 	 * info and self times.
517 	 */
518 	calcru_proc(p, &p->p_ru);
519 	ruadd(&p->p_ru, &p->p_cru);
520 
521 	/*
522 	 * notify interested parties of our demise.
523 	 */
524 	KNOTE(&p->p_klist, NOTE_EXIT);
525 
526 	/*
527 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
528 	 * flag set, notify process 1 instead (and hope it will handle
529 	 * this situation).
530 	 */
531 	if (p->p_pptr->p_sigacts->ps_flag & PS_NOCLDWAIT) {
532 		struct proc *pp = p->p_pptr;
533 
534 		PHOLD(pp);
535 		proc_reparent(p, initproc);
536 
537 		/*
538 		 * If this was the last child of our parent, notify
539 		 * parent, so in case he was wait(2)ing, he will
540 		 * continue.  This function interlocks with pptr->p_token.
541 		 */
542 		if (LIST_EMPTY(&pp->p_children))
543 			wakeup((caddr_t)pp);
544 		PRELE(pp);
545 	}
546 
547 	/* lwkt_gettoken(&proc_token); */
548 	q = p->p_pptr;
549 	PHOLD(q);
550 	if (p->p_sigparent && q != initproc) {
551 	        ksignal(q, p->p_sigparent);
552 	} else {
553 	        ksignal(q, SIGCHLD);
554 	}
555 	wakeup(p->p_pptr);
556 	PRELE(q);
557 	/* lwkt_reltoken(&proc_token); */
558 	/* NOTE: p->p_pptr can get ripped out */
559 	/*
560 	 * cpu_exit is responsible for clearing curproc, since
561 	 * it is heavily integrated with the thread/switching sequence.
562 	 *
563 	 * Other substructures are freed from wait().
564 	 */
565 	plimit_free(p);
566 
567 	/*
568 	 * Release the current user process designation on the process so
569 	 * the userland scheduler can work in someone else.
570 	 */
571 	p->p_usched->release_curproc(lp);
572 
573 	/*
574 	 * Finally, call machine-dependent code to release as many of the
575 	 * lwp's resources as we can and halt execution of this thread.
576 	 */
577 	lwp_exit(1);
578 }
579 
580 /*
581  * Eventually called by every exiting LWP
582  *
583  * p->p_token must be held.  mplock may be held and will be released.
584  */
585 void
586 lwp_exit(int masterexit)
587 {
588 	struct thread *td = curthread;
589 	struct lwp *lp = td->td_lwp;
590 	struct proc *p = lp->lwp_proc;
591 	int dowake = 0;
592 
593 	/*
594 	 * lwp_exit() may be called without setting LWP_WEXIT, so
595 	 * make sure it is set here.
596 	 */
597 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
598 	lp->lwp_flag |= LWP_WEXIT;
599 
600 	/*
601 	 * Clean up any virtualization
602 	 */
603 	if (lp->lwp_vkernel)
604 		vkernel_lwp_exit(lp);
605 
606 	/*
607 	 * Clean up select/poll support
608 	 */
609 	kqueue_terminate(&lp->lwp_kqueue);
610 
611 	/*
612 	 * Clean up any syscall-cached ucred
613 	 */
614 	if (td->td_ucred) {
615 		crfree(td->td_ucred);
616 		td->td_ucred = NULL;
617 	}
618 
619 	/*
620 	 * Nobody actually wakes us when the lock
621 	 * count reaches zero, so just wait one tick.
622 	 */
623 	while (lp->lwp_lock > 0)
624 		tsleep(lp, 0, "lwpexit", 1);
625 
626 	/* Hand down resource usage to our proc */
627 	ruadd(&p->p_ru, &lp->lwp_ru);
628 
629 	/*
630 	 * If we don't hold the process until the LWP is reaped wait*()
631 	 * may try to dispose of its vmspace before all the LWPs have
632 	 * actually terminated.
633 	 */
634 	PHOLD(p);
635 
636 	/*
637 	 * Do any remaining work that might block on us.  We should be
638 	 * coded such that further blocking is ok after decrementing
639 	 * p_nthreads but don't take the chance.
640 	 */
641 	dsched_exit_thread(td);
642 	biosched_done(curthread);
643 
644 	/*
645 	 * We have to use the reaper for all the LWPs except the one doing
646 	 * the master exit.  The LWP doing the master exit can just be
647 	 * left on p_lwps and the process reaper will deal with it
648 	 * synchronously, which is much faster.
649 	 *
650 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
651 	 */
652 	if (masterexit == 0) {
653 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
654 		--p->p_nthreads;
655 		if (p->p_nthreads <= 1)
656 			dowake = 1;
657 		lwkt_gettoken(&deadlwp_token);
658 		LIST_INSERT_HEAD(&deadlwp_list[mycpuid], lp, u.lwp_reap_entry);
659 		taskqueue_enqueue(taskqueue_thread[mycpuid],
660 				  deadlwp_task[mycpuid]);
661 		lwkt_reltoken(&deadlwp_token);
662 	} else {
663 		--p->p_nthreads;
664 		if (p->p_nthreads <= 1)
665 			dowake = 1;
666 	}
667 
668 	/*
669 	 * Release p_token.  Issue the wakeup() on p_nthreads if necessary,
670 	 * as late as possible to give us a chance to actually deschedule and
671 	 * switch away before another cpu core hits reaplwp().
672 	 */
673 	lwkt_reltoken(&p->p_token);
674 	if (dowake)
675 		wakeup(&p->p_nthreads);
676 	cpu_lwp_exit();
677 }
678 
679 /*
680  * Wait until a lwp is completely dead.
681  *
682  * If the thread is still executing, which can't be waited upon,
683  * return failure.  The caller is responsible of waiting a little
684  * bit and checking again.
685  *
686  * Suggested use:
687  * while (!lwp_wait(lp))
688  *	tsleep(lp, 0, "lwpwait", 1);
689  */
690 static int
691 lwp_wait(struct lwp *lp)
692 {
693 	struct thread *td = lp->lwp_thread;;
694 
695 	KKASSERT(lwkt_preempted_proc() != lp);
696 
697 	while (lp->lwp_lock > 0)
698 		tsleep(lp, 0, "lwpwait1", 1);
699 
700 	lwkt_wait_free(td);
701 
702 	/*
703 	 * The lwp's thread may still be in the middle
704 	 * of switching away, we can't rip its stack out from
705 	 * under it until TDF_EXITING is set and both
706 	 * TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
707 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
708 	 * will be cleared temporarily if a thread gets
709 	 * preempted.
710 	 *
711 	 * YYY no wakeup occurs, so we simply return failure
712 	 * and let the caller deal with sleeping and calling
713 	 * us again.
714 	 */
715 	if ((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
716 			     TDF_EXITING|TDF_RUNQ)) != TDF_EXITING) {
717 		return (0);
718 	}
719 	KASSERT((td->td_flags & TDF_TSLEEPQ) == 0,
720 		("lwp_wait: td %p (%s) still on sleep queue", td, td->td_comm));
721 	return (1);
722 }
723 
724 /*
725  * Release the resources associated with a lwp.
726  * The lwp must be completely dead.
727  */
728 void
729 lwp_dispose(struct lwp *lp)
730 {
731 	struct thread *td = lp->lwp_thread;;
732 
733 	KKASSERT(lwkt_preempted_proc() != lp);
734 	KKASSERT(td->td_refs == 0);
735 	KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|TDF_EXITING)) ==
736 		 TDF_EXITING);
737 
738 	PRELE(lp->lwp_proc);
739 	lp->lwp_proc = NULL;
740 	if (td != NULL) {
741 		td->td_proc = NULL;
742 		td->td_lwp = NULL;
743 		lp->lwp_thread = NULL;
744 		lwkt_free_thread(td);
745 	}
746 	kfree(lp, M_LWP);
747 }
748 
749 /*
750  * MPSAFE
751  */
752 int
753 sys_wait4(struct wait_args *uap)
754 {
755 	struct rusage rusage;
756 	int error, status;
757 
758 	error = kern_wait(uap->pid, (uap->status ? &status : NULL),
759 			  uap->options, (uap->rusage ? &rusage : NULL),
760 			  &uap->sysmsg_result);
761 
762 	if (error == 0 && uap->status)
763 		error = copyout(&status, uap->status, sizeof(*uap->status));
764 	if (error == 0 && uap->rusage)
765 		error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
766 	return (error);
767 }
768 
769 /*
770  * wait1()
771  *
772  * wait_args(int pid, int *status, int options, struct rusage *rusage)
773  *
774  * MPALMOSTSAFE
775  */
776 int
777 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
778 {
779 	struct thread *td = curthread;
780 	struct lwp *lp;
781 	struct proc *q = td->td_proc;
782 	struct proc *p, *t;
783 	struct pargs *pa;
784 	struct sigacts *ps;
785 	int nfound, error;
786 
787 	if (pid == 0)
788 		pid = -q->p_pgid;
789 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
790 		return (EINVAL);
791 
792 	lwkt_gettoken(&q->p_token);
793 loop:
794 	/*
795 	 * All sorts of things can change due to blocking so we have to loop
796 	 * all the way back up here.
797 	 *
798 	 * The problem is that if a process group is stopped and the parent
799 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
800 	 * of the child and then stop itself when it tries to return from the
801 	 * system call.  When the process group is resumed the parent will
802 	 * then get the STOP status even though the child has now resumed
803 	 * (a followup wait*() will get the CONT status).
804 	 *
805 	 * Previously the CONT would overwrite the STOP because the tstop
806 	 * was handled within tsleep(), and the parent would only see
807 	 * the CONT when both are stopped and continued together.  This little
808 	 * two-line hack restores this effect.
809 	 */
810 	while (q->p_stat == SSTOP)
811             tstop();
812 
813 	nfound = 0;
814 
815 	/*
816 	 * Loop on children.
817 	 *
818 	 * NOTE: We don't want to break q's p_token in the loop for the
819 	 *	 case where no children are found or we risk breaking the
820 	 *	 interlock between child and parent.
821 	 */
822 	LIST_FOREACH(p, &q->p_children, p_sibling) {
823 		if (pid != WAIT_ANY &&
824 		    p->p_pid != pid && p->p_pgid != -pid) {
825 			continue;
826 		}
827 
828 		/*
829 		 * This special case handles a kthread spawned by linux_clone
830 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
831 		 * functions need to be able to distinguish between waiting
832 		 * on a process and waiting on a thread.  It is a thread if
833 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
834 		 * signifies we want to wait for threads and not processes.
835 		 */
836 		if ((p->p_sigparent != SIGCHLD) ^
837 		    ((options & WLINUXCLONE) != 0)) {
838 			continue;
839 		}
840 
841 		nfound++;
842 		if (p->p_stat == SZOMB) {
843 			/*
844 			 * We may go into SZOMB with threads still present.
845 			 * We must wait for them to exit before we can reap
846 			 * the master thread, otherwise we may race reaping
847 			 * non-master threads.
848 			 */
849 			lwkt_gettoken(&p->p_token);
850 			while (p->p_nthreads > 0) {
851 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
852 			}
853 
854 			/*
855 			 * Reap any LWPs left in p->p_lwps.  This is usually
856 			 * just the last LWP.  This must be done before
857 			 * we loop on p_lock since the lwps hold a ref on
858 			 * it as a vmspace interlock.
859 			 *
860 			 * Once that is accomplished p_nthreads had better
861 			 * be zero.
862 			 */
863 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
864 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
865 				reaplwp(lp);
866 			}
867 			KKASSERT(p->p_nthreads == 0);
868 			lwkt_reltoken(&p->p_token);
869 
870 			/*
871 			 * Don't do anything really bad until all references
872 			 * to the process go away.  This may include other
873 			 * LWPs which are still in the process of being
874 			 * reaped.  We can't just pull the rug out from under
875 			 * them because they may still be using the VM space.
876 			 *
877 			 * Certain kernel facilities such as /proc will also
878 			 * put a hold on the process for short periods of
879 			 * time.
880 			 */
881 			while (p->p_lock)
882 				tsleep(p, 0, "reap3", hz);
883 
884 			/* Take care of our return values. */
885 			*res = p->p_pid;
886 			p->p_usched->heuristic_exiting(td->td_lwp, p);
887 
888 			if (status)
889 				*status = p->p_xstat;
890 			if (rusage)
891 				*rusage = p->p_ru;
892 			/*
893 			 * If we got the child via a ptrace 'attach',
894 			 * we need to give it back to the old parent.
895 			 */
896 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
897 				p->p_oppid = 0;
898 				proc_reparent(p, t);
899 				ksignal(t, SIGCHLD);
900 				wakeup((caddr_t)t);
901 				error = 0;
902 				PRELE(t);
903 				goto done;
904 			}
905 
906 			/*
907 			 * Unlink the proc from its process group so that
908 			 * the following operations won't lead to an
909 			 * inconsistent state for processes running down
910 			 * the zombie list.
911 			 */
912 			proc_remove_zombie(p);
913 			leavepgrp(p);
914 
915 			p->p_xstat = 0;
916 			ruadd(&q->p_cru, &p->p_ru);
917 
918 			/*
919 			 * Decrement the count of procs running with this uid.
920 			 */
921 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
922 
923 			/*
924 			 * Free up credentials.
925 			 */
926 			crfree(p->p_ucred);
927 			p->p_ucred = NULL;
928 
929 			/*
930 			 * Remove unused arguments
931 			 */
932 			pa = p->p_args;
933 			p->p_args = NULL;
934 			if (pa && refcount_release(&pa->ar_ref)) {
935 				kfree(pa, M_PARGS);
936 				pa = NULL;
937 			}
938 
939 			ps = p->p_sigacts;
940 			p->p_sigacts = NULL;
941 			if (ps && refcount_release(&ps->ps_refcnt)) {
942 				kfree(ps, M_SUBPROC);
943 				ps = NULL;
944 			}
945 
946 			vm_waitproc(p);
947 
948 			/*
949 			 * Temporary refs may still have been acquired while
950 			 * we removed the process, make sure they are all
951 			 * gone before kfree()ing.  Now that the process has
952 			 * been removed from all lists and all references to
953 			 * it have gone away, no new refs can occur.
954 			 */
955 			while (p->p_lock)
956 				tsleep(p, 0, "reap4", hz);
957 			kfree(p, M_PROC);
958 			atomic_add_int(&nprocs, -1);
959 			error = 0;
960 			goto done;
961 		}
962 		if (p->p_stat == SSTOP && (p->p_flag & P_WAITED) == 0 &&
963 		    ((p->p_flag & P_TRACED) || (options & WUNTRACED))) {
964 			lwkt_gettoken(&p->p_token);
965 			p->p_flag |= P_WAITED;
966 
967 			*res = p->p_pid;
968 			p->p_usched->heuristic_exiting(td->td_lwp, p);
969 			if (status)
970 				*status = W_STOPCODE(p->p_xstat);
971 			/* Zero rusage so we get something consistent. */
972 			if (rusage)
973 				bzero(rusage, sizeof(rusage));
974 			error = 0;
975 			lwkt_reltoken(&p->p_token);
976 			goto done;
977 		}
978 		if ((options & WCONTINUED) && (p->p_flag & P_CONTINUED)) {
979 			lwkt_gettoken(&p->p_token);
980 			*res = p->p_pid;
981 			p->p_usched->heuristic_exiting(td->td_lwp, p);
982 			p->p_flag &= ~P_CONTINUED;
983 
984 			if (status)
985 				*status = SIGCONT;
986 			error = 0;
987 			lwkt_reltoken(&p->p_token);
988 			goto done;
989 		}
990 	}
991 	if (nfound == 0) {
992 		error = ECHILD;
993 		goto done;
994 	}
995 	if (options & WNOHANG) {
996 		*res = 0;
997 		error = 0;
998 		goto done;
999 	}
1000 
1001 	/*
1002 	 * Wait for signal - interlocked using q->p_token.
1003 	 */
1004 	error = tsleep(q, PCATCH, "wait", 0);
1005 	if (error) {
1006 done:
1007 		lwkt_reltoken(&q->p_token);
1008 		return (error);
1009 	}
1010 	goto loop;
1011 }
1012 
1013 /*
1014  * Make process 'parent' the new parent of process 'child'.
1015  *
1016  * p_children/p_sibling requires the parent's token, and
1017  * changing pptr requires the child's token, so we have to
1018  * get three tokens to do this operation.
1019  */
1020 void
1021 proc_reparent(struct proc *child, struct proc *parent)
1022 {
1023 	struct proc *opp = child->p_pptr;
1024 
1025 	if (opp == parent)
1026 		return;
1027 	PHOLD(opp);
1028 	PHOLD(parent);
1029 	lwkt_gettoken(&opp->p_token);
1030 	lwkt_gettoken(&child->p_token);
1031 	lwkt_gettoken(&parent->p_token);
1032 	KKASSERT(child->p_pptr == opp);
1033 	LIST_REMOVE(child, p_sibling);
1034 	LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1035 	child->p_pptr = parent;
1036 	lwkt_reltoken(&parent->p_token);
1037 	lwkt_reltoken(&child->p_token);
1038 	lwkt_reltoken(&opp->p_token);
1039 	PRELE(parent);
1040 	PRELE(opp);
1041 }
1042 
1043 /*
1044  * The next two functions are to handle adding/deleting items on the
1045  * exit callout list
1046  *
1047  * at_exit():
1048  * Take the arguments given and put them onto the exit callout list,
1049  * However first make sure that it's not already there.
1050  * returns 0 on success.
1051  */
1052 
1053 int
1054 at_exit(exitlist_fn function)
1055 {
1056 	struct exitlist *ep;
1057 
1058 #ifdef INVARIANTS
1059 	/* Be noisy if the programmer has lost track of things */
1060 	if (rm_at_exit(function))
1061 		kprintf("WARNING: exit callout entry (%p) already present\n",
1062 		    function);
1063 #endif
1064 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1065 	if (ep == NULL)
1066 		return (ENOMEM);
1067 	ep->function = function;
1068 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1069 	return (0);
1070 }
1071 
1072 /*
1073  * Scan the exit callout list for the given item and remove it.
1074  * Returns the number of items removed (0 or 1)
1075  */
1076 int
1077 rm_at_exit(exitlist_fn function)
1078 {
1079 	struct exitlist *ep;
1080 
1081 	TAILQ_FOREACH(ep, &exit_list, next) {
1082 		if (ep->function == function) {
1083 			TAILQ_REMOVE(&exit_list, ep, next);
1084 			kfree(ep, M_ATEXIT);
1085 			return(1);
1086 		}
1087 	}
1088 	return (0);
1089 }
1090 
1091 /*
1092  * LWP reaper related code.
1093  */
1094 static void
1095 reaplwps(void *context, int dummy)
1096 {
1097 	struct lwplist *lwplist = context;
1098 	struct lwp *lp;
1099 
1100 	lwkt_gettoken(&deadlwp_token);
1101 	while ((lp = LIST_FIRST(lwplist))) {
1102 		LIST_REMOVE(lp, u.lwp_reap_entry);
1103 		reaplwp(lp);
1104 	}
1105 	lwkt_reltoken(&deadlwp_token);
1106 }
1107 
1108 static void
1109 reaplwp(struct lwp *lp)
1110 {
1111 	if (lwp_wait(lp) == 0) {
1112 		tsleep_interlock(lp, 0);
1113 		while (lwp_wait(lp) == 0)
1114 			tsleep(lp, PINTERLOCKED, "lwpreap", 1);
1115 	}
1116 	lwp_dispose(lp);
1117 }
1118 
1119 static void
1120 deadlwp_init(void)
1121 {
1122 	int cpu;
1123 
1124 	for (cpu = 0; cpu < ncpus; cpu++) {
1125 		LIST_INIT(&deadlwp_list[cpu]);
1126 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]), M_DEVBUF, M_WAITOK);
1127 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1128 	}
1129 }
1130 
1131 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1132