1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 39 * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $ 40 * $DragonFly: src/sys/kern/kern_exit.c,v 1.91 2008/05/18 20:02:02 nth Exp $ 41 */ 42 43 #include "opt_compat.h" 44 #include "opt_ktrace.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/sysproto.h> 49 #include <sys/kernel.h> 50 #include <sys/malloc.h> 51 #include <sys/proc.h> 52 #include <sys/ktrace.h> 53 #include <sys/pioctl.h> 54 #include <sys/tty.h> 55 #include <sys/wait.h> 56 #include <sys/vnode.h> 57 #include <sys/resourcevar.h> 58 #include <sys/signalvar.h> 59 #include <sys/taskqueue.h> 60 #include <sys/ptrace.h> 61 #include <sys/acct.h> /* for acct_process() function prototype */ 62 #include <sys/filedesc.h> 63 #include <sys/shm.h> 64 #include <sys/sem.h> 65 #include <sys/jail.h> 66 #include <sys/kern_syscall.h> 67 #include <sys/upcall.h> 68 #include <sys/caps.h> 69 #include <sys/unistd.h> 70 #include <sys/eventhandler.h> 71 #include <sys/dsched.h> 72 73 #include <vm/vm.h> 74 #include <vm/vm_param.h> 75 #include <sys/lock.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_extern.h> 79 #include <sys/user.h> 80 81 #include <sys/refcount.h> 82 #include <sys/thread2.h> 83 #include <sys/sysref2.h> 84 #include <sys/mplock2.h> 85 86 static void reaplwps(void *context, int dummy); 87 static void reaplwp(struct lwp *lp); 88 static void killlwps(struct lwp *lp); 89 90 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback"); 91 static MALLOC_DEFINE(M_ZOMBIE, "zombie", "zombie proc status"); 92 93 static struct lwkt_token deadlwp_token = LWKT_TOKEN_INITIALIZER(deadlwp_token); 94 95 /* 96 * callout list for things to do at exit time 97 */ 98 struct exitlist { 99 exitlist_fn function; 100 TAILQ_ENTRY(exitlist) next; 101 }; 102 103 TAILQ_HEAD(exit_list_head, exitlist); 104 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list); 105 106 /* 107 * LWP reaper data 108 */ 109 struct task *deadlwp_task[MAXCPU]; 110 struct lwplist deadlwp_list[MAXCPU]; 111 112 /* 113 * exit -- 114 * Death of process. 115 * 116 * SYS_EXIT_ARGS(int rval) 117 */ 118 int 119 sys_exit(struct exit_args *uap) 120 { 121 exit1(W_EXITCODE(uap->rval, 0)); 122 /* NOTREACHED */ 123 } 124 125 /* 126 * Extended exit -- 127 * Death of a lwp or process with optional bells and whistles. 128 * 129 * MPALMOSTSAFE 130 */ 131 int 132 sys_extexit(struct extexit_args *uap) 133 { 134 struct proc *p = curproc; 135 int action, who; 136 int error; 137 138 action = EXTEXIT_ACTION(uap->how); 139 who = EXTEXIT_WHO(uap->how); 140 141 /* Check parameters before we might perform some action */ 142 switch (who) { 143 case EXTEXIT_PROC: 144 case EXTEXIT_LWP: 145 break; 146 default: 147 return (EINVAL); 148 } 149 150 switch (action) { 151 case EXTEXIT_SIMPLE: 152 break; 153 case EXTEXIT_SETINT: 154 error = copyout(&uap->status, uap->addr, sizeof(uap->status)); 155 if (error) 156 return (error); 157 break; 158 default: 159 return (EINVAL); 160 } 161 162 lwkt_gettoken(&p->p_token); 163 164 switch (who) { 165 case EXTEXIT_LWP: 166 /* 167 * Be sure only to perform a simple lwp exit if there is at 168 * least one more lwp in the proc, which will call exit1() 169 * later, otherwise the proc will be an UNDEAD and not even a 170 * SZOMB! 171 */ 172 if (p->p_nthreads > 1) { 173 lwp_exit(0); /* called w/ p_token held */ 174 /* NOT REACHED */ 175 } 176 /* else last lwp in proc: do the real thing */ 177 /* FALLTHROUGH */ 178 default: /* to help gcc */ 179 case EXTEXIT_PROC: 180 lwkt_reltoken(&p->p_token); 181 exit1(W_EXITCODE(uap->status, 0)); 182 /* NOTREACHED */ 183 } 184 185 /* NOTREACHED */ 186 lwkt_reltoken(&p->p_token); /* safety */ 187 } 188 189 /* 190 * Kill all lwps associated with the current process except the 191 * current lwp. Return an error if we race another thread trying to 192 * do the same thing and lose the race. 193 * 194 * If forexec is non-zero the current thread and process flags are 195 * cleaned up so they can be reused. 196 * 197 * Caller must hold curproc->p_token 198 */ 199 int 200 killalllwps(int forexec) 201 { 202 struct lwp *lp = curthread->td_lwp; 203 struct proc *p = lp->lwp_proc; 204 205 /* 206 * Interlock against P_WEXIT. Only one of the process's thread 207 * is allowed to do the master exit. 208 */ 209 if (p->p_flag & P_WEXIT) 210 return (EALREADY); 211 p->p_flag |= P_WEXIT; 212 213 /* 214 * Interlock with LWP_WEXIT and kill any remaining LWPs 215 */ 216 lp->lwp_flag |= LWP_WEXIT; 217 if (p->p_nthreads > 1) 218 killlwps(lp); 219 220 /* 221 * If doing this for an exec, clean up the remaining thread 222 * (us) for continuing operation after all the other threads 223 * have been killed. 224 */ 225 if (forexec) { 226 lp->lwp_flag &= ~LWP_WEXIT; 227 p->p_flag &= ~P_WEXIT; 228 } 229 return(0); 230 } 231 232 /* 233 * Kill all LWPs except the current one. Do not try to signal 234 * LWPs which have exited on their own or have already been 235 * signaled. 236 */ 237 static void 238 killlwps(struct lwp *lp) 239 { 240 struct proc *p = lp->lwp_proc; 241 struct lwp *tlp; 242 243 /* 244 * Kill the remaining LWPs. We must send the signal before setting 245 * LWP_WEXIT. The setting of WEXIT is optional but helps reduce 246 * races. tlp must be held across the call as it might block and 247 * allow the target lwp to rip itself out from under our loop. 248 */ 249 FOREACH_LWP_IN_PROC(tlp, p) { 250 LWPHOLD(tlp); 251 lwkt_gettoken(&tlp->lwp_token); 252 if ((tlp->lwp_flag & LWP_WEXIT) == 0) { 253 lwpsignal(p, tlp, SIGKILL); 254 tlp->lwp_flag |= LWP_WEXIT; 255 } 256 lwkt_reltoken(&tlp->lwp_token); 257 LWPRELE(tlp); 258 } 259 260 /* 261 * Wait for everything to clear out. 262 */ 263 while (p->p_nthreads > 1) { 264 tsleep(&p->p_nthreads, 0, "killlwps", 0); 265 } 266 } 267 268 /* 269 * Exit: deallocate address space and other resources, change proc state 270 * to zombie, and unlink proc from allproc and parent's lists. Save exit 271 * status and rusage for wait(). Check for child processes and orphan them. 272 */ 273 void 274 exit1(int rv) 275 { 276 struct thread *td = curthread; 277 struct proc *p = td->td_proc; 278 struct lwp *lp = td->td_lwp; 279 struct proc *q, *nq; 280 struct vmspace *vm; 281 struct vnode *vtmp; 282 struct exitlist *ep; 283 int error; 284 285 lwkt_gettoken(&p->p_token); 286 287 if (p->p_pid == 1) { 288 kprintf("init died (signal %d, exit %d)\n", 289 WTERMSIG(rv), WEXITSTATUS(rv)); 290 panic("Going nowhere without my init!"); 291 } 292 varsymset_clean(&p->p_varsymset); 293 lockuninit(&p->p_varsymset.vx_lock); 294 /* 295 * Kill all lwps associated with the current process, return an 296 * error if we race another thread trying to do the same thing 297 * and lose the race. 298 */ 299 error = killalllwps(0); 300 if (error) { 301 lwp_exit(0); 302 /* NOT REACHED */ 303 } 304 305 caps_exit(lp->lwp_thread); 306 307 /* are we a task leader? */ 308 if (p == p->p_leader) { 309 struct kill_args killArgs; 310 killArgs.signum = SIGKILL; 311 q = p->p_peers; 312 while(q) { 313 killArgs.pid = q->p_pid; 314 /* 315 * The interface for kill is better 316 * than the internal signal 317 */ 318 sys_kill(&killArgs); 319 nq = q; 320 q = q->p_peers; 321 } 322 while (p->p_peers) 323 tsleep((caddr_t)p, 0, "exit1", 0); 324 } 325 326 #ifdef PGINPROF 327 vmsizmon(); 328 #endif 329 STOPEVENT(p, S_EXIT, rv); 330 wakeup(&p->p_stype); /* Wakeup anyone in procfs' PIOCWAIT */ 331 332 /* 333 * Check if any loadable modules need anything done at process exit. 334 * e.g. SYSV IPC stuff 335 * XXX what if one of these generates an error? 336 */ 337 p->p_xstat = rv; 338 EVENTHANDLER_INVOKE(process_exit, p); 339 340 /* 341 * XXX: imho, the eventhandler stuff is much cleaner than this. 342 * Maybe we should move everything to use eventhandler. 343 */ 344 TAILQ_FOREACH(ep, &exit_list, next) 345 (*ep->function)(td); 346 347 if (p->p_flag & P_PROFIL) 348 stopprofclock(p); 349 /* 350 * If parent is waiting for us to exit or exec, 351 * P_PPWAIT is set; we will wakeup the parent below. 352 */ 353 p->p_flag &= ~(P_TRACED | P_PPWAIT); 354 SIGEMPTYSET(p->p_siglist); 355 SIGEMPTYSET(lp->lwp_siglist); 356 if (timevalisset(&p->p_realtimer.it_value)) 357 callout_stop(&p->p_ithandle); 358 359 /* 360 * Reset any sigio structures pointing to us as a result of 361 * F_SETOWN with our pid. 362 */ 363 funsetownlst(&p->p_sigiolst); 364 365 /* 366 * Close open files and release open-file table. 367 * This may block! 368 */ 369 fdfree(p, NULL); 370 371 if(p->p_leader->p_peers) { 372 q = p->p_leader; 373 while(q->p_peers != p) 374 q = q->p_peers; 375 q->p_peers = p->p_peers; 376 wakeup((caddr_t)p->p_leader); 377 } 378 379 /* 380 * XXX Shutdown SYSV semaphores 381 */ 382 semexit(p); 383 384 KKASSERT(p->p_numposixlocks == 0); 385 386 /* The next two chunks should probably be moved to vmspace_exit. */ 387 vm = p->p_vmspace; 388 389 /* 390 * Release upcalls associated with this process 391 */ 392 if (vm->vm_upcalls) 393 upc_release(vm, lp); 394 395 /* 396 * Clean up data related to virtual kernel operation. Clean up 397 * any vkernel context related to the current lwp now so we can 398 * destroy p_vkernel. 399 */ 400 if (p->p_vkernel) { 401 vkernel_lwp_exit(lp); 402 vkernel_exit(p); 403 } 404 405 /* 406 * Release user portion of address space. 407 * This releases references to vnodes, 408 * which could cause I/O if the file has been unlinked. 409 * Need to do this early enough that we can still sleep. 410 * Can't free the entire vmspace as the kernel stack 411 * may be mapped within that space also. 412 * 413 * Processes sharing the same vmspace may exit in one order, and 414 * get cleaned up by vmspace_exit() in a different order. The 415 * last exiting process to reach this point releases as much of 416 * the environment as it can, and the last process cleaned up 417 * by vmspace_exit() (which decrements exitingcnt) cleans up the 418 * remainder. 419 */ 420 vmspace_exitbump(vm); 421 sysref_put(&vm->vm_sysref); 422 423 if (SESS_LEADER(p)) { 424 struct session *sp = p->p_session; 425 426 if (sp->s_ttyvp) { 427 /* 428 * We are the controlling process. Signal the 429 * foreground process group, drain the controlling 430 * terminal, and revoke access to the controlling 431 * terminal. 432 * 433 * NOTE: while waiting for the process group to exit 434 * it is possible that one of the processes in the 435 * group will revoke the tty, so the ttyclosesession() 436 * function will re-check sp->s_ttyvp. 437 */ 438 if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) { 439 if (sp->s_ttyp->t_pgrp) 440 pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1); 441 ttywait(sp->s_ttyp); 442 ttyclosesession(sp, 1); /* also revoke */ 443 } 444 /* 445 * Release the tty. If someone has it open via 446 * /dev/tty then close it (since they no longer can 447 * once we've NULL'd it out). 448 */ 449 ttyclosesession(sp, 0); 450 451 /* 452 * s_ttyp is not zero'd; we use this to indicate 453 * that the session once had a controlling terminal. 454 * (for logging and informational purposes) 455 */ 456 } 457 sp->s_leader = NULL; 458 } 459 fixjobc(p, p->p_pgrp, 0); 460 (void)acct_process(p); 461 #ifdef KTRACE 462 /* 463 * release trace file 464 */ 465 if (p->p_tracenode) 466 ktrdestroy(&p->p_tracenode); 467 p->p_traceflag = 0; 468 #endif 469 /* 470 * Release reference to text vnode 471 */ 472 if ((vtmp = p->p_textvp) != NULL) { 473 p->p_textvp = NULL; 474 vrele(vtmp); 475 } 476 477 /* Release namecache handle to text file */ 478 if (p->p_textnch.ncp) 479 cache_drop(&p->p_textnch); 480 481 /* 482 * Move the process to the zombie list. This will block 483 * until the process p_lock count reaches 0. The process will 484 * not be reaped until TDF_EXITING is set by cpu_thread_exit(), 485 * which is called from cpu_proc_exit(). 486 */ 487 proc_move_allproc_zombie(p); 488 489 /* 490 * Reparent all of this process's children to the init process. 491 * We must hold initproc->p_token in order to mess with 492 * initproc->p_children. We already hold p->p_token (to remove 493 * the children from our list). 494 */ 495 q = LIST_FIRST(&p->p_children); 496 if (q) { 497 lwkt_gettoken(&initproc->p_token); 498 while (q) { 499 nq = LIST_NEXT(q, p_sibling); 500 LIST_REMOVE(q, p_sibling); 501 LIST_INSERT_HEAD(&initproc->p_children, q, p_sibling); 502 q->p_pptr = initproc; 503 q->p_sigparent = SIGCHLD; 504 /* 505 * Traced processes are killed 506 * since their existence means someone is screwing up. 507 */ 508 if (q->p_flag & P_TRACED) { 509 q->p_flag &= ~P_TRACED; 510 ksignal(q, SIGKILL); 511 } 512 q = nq; 513 } 514 lwkt_reltoken(&initproc->p_token); 515 wakeup(initproc); 516 } 517 518 /* 519 * Save exit status and final rusage info, adding in child rusage 520 * info and self times. 521 */ 522 calcru_proc(p, &p->p_ru); 523 ruadd(&p->p_ru, &p->p_cru); 524 525 /* 526 * notify interested parties of our demise. 527 */ 528 KNOTE(&p->p_klist, NOTE_EXIT); 529 530 /* 531 * Notify parent that we're gone. If parent has the PS_NOCLDWAIT 532 * flag set, notify process 1 instead (and hope it will handle 533 * this situation). 534 */ 535 if (p->p_pptr->p_sigacts->ps_flag & PS_NOCLDWAIT) { 536 struct proc *pp = p->p_pptr; 537 538 PHOLD(pp); 539 proc_reparent(p, initproc); 540 541 /* 542 * If this was the last child of our parent, notify 543 * parent, so in case he was wait(2)ing, he will 544 * continue. This function interlocks with pptr->p_token. 545 */ 546 if (LIST_EMPTY(&pp->p_children)) 547 wakeup((caddr_t)pp); 548 PRELE(pp); 549 } 550 551 /* lwkt_gettoken(&proc_token); */ 552 q = p->p_pptr; 553 PHOLD(q); 554 if (p->p_sigparent && q != initproc) { 555 ksignal(q, p->p_sigparent); 556 } else { 557 ksignal(q, SIGCHLD); 558 } 559 wakeup(p->p_pptr); 560 PRELE(q); 561 /* lwkt_reltoken(&proc_token); */ 562 /* NOTE: p->p_pptr can get ripped out */ 563 /* 564 * cpu_exit is responsible for clearing curproc, since 565 * it is heavily integrated with the thread/switching sequence. 566 * 567 * Other substructures are freed from wait(). 568 */ 569 plimit_free(p); 570 571 /* 572 * Release the current user process designation on the process so 573 * the userland scheduler can work in someone else. 574 */ 575 p->p_usched->release_curproc(lp); 576 577 /* 578 * Finally, call machine-dependent code to release as many of the 579 * lwp's resources as we can and halt execution of this thread. 580 */ 581 lwp_exit(1); 582 } 583 584 /* 585 * Eventually called by every exiting LWP 586 * 587 * p->p_token must be held. mplock may be held and will be released. 588 */ 589 void 590 lwp_exit(int masterexit) 591 { 592 struct thread *td = curthread; 593 struct lwp *lp = td->td_lwp; 594 struct proc *p = lp->lwp_proc; 595 int dowake = 0; 596 597 /* 598 * lwp_exit() may be called without setting LWP_WEXIT, so 599 * make sure it is set here. 600 */ 601 ASSERT_LWKT_TOKEN_HELD(&p->p_token); 602 lp->lwp_flag |= LWP_WEXIT; 603 604 /* 605 * Clean up any virtualization 606 */ 607 if (lp->lwp_vkernel) 608 vkernel_lwp_exit(lp); 609 610 /* 611 * Clean up select/poll support 612 */ 613 kqueue_terminate(&lp->lwp_kqueue); 614 615 /* 616 * Clean up any syscall-cached ucred 617 */ 618 if (td->td_ucred) { 619 crfree(td->td_ucred); 620 td->td_ucred = NULL; 621 } 622 623 /* 624 * Nobody actually wakes us when the lock 625 * count reaches zero, so just wait one tick. 626 */ 627 while (lp->lwp_lock > 0) 628 tsleep(lp, 0, "lwpexit", 1); 629 630 /* Hand down resource usage to our proc */ 631 ruadd(&p->p_ru, &lp->lwp_ru); 632 633 /* 634 * If we don't hold the process until the LWP is reaped wait*() 635 * may try to dispose of its vmspace before all the LWPs have 636 * actually terminated. 637 */ 638 PHOLD(p); 639 640 /* 641 * Do any remaining work that might block on us. We should be 642 * coded such that further blocking is ok after decrementing 643 * p_nthreads but don't take the chance. 644 */ 645 dsched_exit_thread(td); 646 biosched_done(curthread); 647 648 /* 649 * We have to use the reaper for all the LWPs except the one doing 650 * the master exit. The LWP doing the master exit can just be 651 * left on p_lwps and the process reaper will deal with it 652 * synchronously, which is much faster. 653 * 654 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0. 655 */ 656 if (masterexit == 0) { 657 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp); 658 --p->p_nthreads; 659 if (p->p_nthreads <= 1) 660 dowake = 1; 661 lwkt_gettoken(&deadlwp_token); 662 LIST_INSERT_HEAD(&deadlwp_list[mycpuid], lp, u.lwp_reap_entry); 663 taskqueue_enqueue(taskqueue_thread[mycpuid], 664 deadlwp_task[mycpuid]); 665 lwkt_reltoken(&deadlwp_token); 666 } else { 667 --p->p_nthreads; 668 if (p->p_nthreads <= 1) 669 dowake = 1; 670 } 671 672 /* 673 * Release p_token. Issue the wakeup() on p_nthreads if necessary, 674 * as late as possible to give us a chance to actually deschedule and 675 * switch away before another cpu core hits reaplwp(). 676 */ 677 lwkt_reltoken(&p->p_token); 678 if (dowake) 679 wakeup(&p->p_nthreads); 680 cpu_lwp_exit(); 681 } 682 683 /* 684 * Wait until a lwp is completely dead. 685 * 686 * If the thread is still executing, which can't be waited upon, 687 * return failure. The caller is responsible of waiting a little 688 * bit and checking again. 689 * 690 * Suggested use: 691 * while (!lwp_wait(lp)) 692 * tsleep(lp, 0, "lwpwait", 1); 693 */ 694 static int 695 lwp_wait(struct lwp *lp) 696 { 697 struct thread *td = lp->lwp_thread;; 698 699 KKASSERT(lwkt_preempted_proc() != lp); 700 701 while (lp->lwp_lock > 0) 702 tsleep(lp, 0, "lwpwait1", 1); 703 704 lwkt_wait_free(td); 705 706 /* 707 * The lwp's thread may still be in the middle 708 * of switching away, we can't rip its stack out from 709 * under it until TDF_EXITING is set and both 710 * TDF_RUNNING and TDF_PREEMPT_LOCK are clear. 711 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING 712 * will be cleared temporarily if a thread gets 713 * preempted. 714 * 715 * YYY no wakeup occurs, so we simply return failure 716 * and let the caller deal with sleeping and calling 717 * us again. 718 */ 719 if ((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK| 720 TDF_EXITING|TDF_RUNQ)) != TDF_EXITING) { 721 return (0); 722 } 723 KASSERT((td->td_flags & TDF_TSLEEPQ) == 0, 724 ("lwp_wait: td %p (%s) still on sleep queue", td, td->td_comm)); 725 return (1); 726 } 727 728 /* 729 * Release the resources associated with a lwp. 730 * The lwp must be completely dead. 731 */ 732 void 733 lwp_dispose(struct lwp *lp) 734 { 735 struct thread *td = lp->lwp_thread;; 736 737 KKASSERT(lwkt_preempted_proc() != lp); 738 KKASSERT(td->td_refs == 0); 739 KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|TDF_EXITING)) == 740 TDF_EXITING); 741 742 PRELE(lp->lwp_proc); 743 lp->lwp_proc = NULL; 744 if (td != NULL) { 745 td->td_proc = NULL; 746 td->td_lwp = NULL; 747 lp->lwp_thread = NULL; 748 lwkt_free_thread(td); 749 } 750 kfree(lp, M_LWP); 751 } 752 753 /* 754 * MPSAFE 755 */ 756 int 757 sys_wait4(struct wait_args *uap) 758 { 759 struct rusage rusage; 760 int error, status; 761 762 error = kern_wait(uap->pid, (uap->status ? &status : NULL), 763 uap->options, (uap->rusage ? &rusage : NULL), 764 &uap->sysmsg_result); 765 766 if (error == 0 && uap->status) 767 error = copyout(&status, uap->status, sizeof(*uap->status)); 768 if (error == 0 && uap->rusage) 769 error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage)); 770 return (error); 771 } 772 773 /* 774 * wait1() 775 * 776 * wait_args(int pid, int *status, int options, struct rusage *rusage) 777 * 778 * MPALMOSTSAFE 779 */ 780 int 781 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res) 782 { 783 struct thread *td = curthread; 784 struct lwp *lp; 785 struct proc *q = td->td_proc; 786 struct proc *p, *t; 787 struct pargs *pa; 788 struct sigacts *ps; 789 int nfound, error; 790 791 if (pid == 0) 792 pid = -q->p_pgid; 793 if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE)) 794 return (EINVAL); 795 796 lwkt_gettoken(&q->p_token); 797 loop: 798 /* 799 * All sorts of things can change due to blocking so we have to loop 800 * all the way back up here. 801 * 802 * The problem is that if a process group is stopped and the parent 803 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP 804 * of the child and then stop itself when it tries to return from the 805 * system call. When the process group is resumed the parent will 806 * then get the STOP status even though the child has now resumed 807 * (a followup wait*() will get the CONT status). 808 * 809 * Previously the CONT would overwrite the STOP because the tstop 810 * was handled within tsleep(), and the parent would only see 811 * the CONT when both are stopped and continued together. This little 812 * two-line hack restores this effect. 813 */ 814 while (q->p_stat == SSTOP) 815 tstop(); 816 817 nfound = 0; 818 819 /* 820 * Loop on children. 821 * 822 * NOTE: We don't want to break q's p_token in the loop for the 823 * case where no children are found or we risk breaking the 824 * interlock between child and parent. 825 */ 826 LIST_FOREACH(p, &q->p_children, p_sibling) { 827 if (pid != WAIT_ANY && 828 p->p_pid != pid && p->p_pgid != -pid) { 829 continue; 830 } 831 832 /* 833 * This special case handles a kthread spawned by linux_clone 834 * (see linux_misc.c). The linux_wait4 and linux_waitpid 835 * functions need to be able to distinguish between waiting 836 * on a process and waiting on a thread. It is a thread if 837 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option 838 * signifies we want to wait for threads and not processes. 839 */ 840 if ((p->p_sigparent != SIGCHLD) ^ 841 ((options & WLINUXCLONE) != 0)) { 842 continue; 843 } 844 845 nfound++; 846 if (p->p_stat == SZOMB) { 847 /* 848 * We may go into SZOMB with threads still present. 849 * We must wait for them to exit before we can reap 850 * the master thread, otherwise we may race reaping 851 * non-master threads. 852 */ 853 lwkt_gettoken(&p->p_token); 854 while (p->p_nthreads > 0) { 855 tsleep(&p->p_nthreads, 0, "lwpzomb", hz); 856 } 857 858 /* 859 * Reap any LWPs left in p->p_lwps. This is usually 860 * just the last LWP. This must be done before 861 * we loop on p_lock since the lwps hold a ref on 862 * it as a vmspace interlock. 863 * 864 * Once that is accomplished p_nthreads had better 865 * be zero. 866 */ 867 while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) { 868 lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp); 869 reaplwp(lp); 870 } 871 KKASSERT(p->p_nthreads == 0); 872 lwkt_reltoken(&p->p_token); 873 874 /* 875 * Don't do anything really bad until all references 876 * to the process go away. This may include other 877 * LWPs which are still in the process of being 878 * reaped. We can't just pull the rug out from under 879 * them because they may still be using the VM space. 880 * 881 * Certain kernel facilities such as /proc will also 882 * put a hold on the process for short periods of 883 * time. 884 */ 885 while (p->p_lock) 886 tsleep(p, 0, "reap3", hz); 887 888 /* Take care of our return values. */ 889 *res = p->p_pid; 890 p->p_usched->heuristic_exiting(td->td_lwp, p); 891 892 if (status) 893 *status = p->p_xstat; 894 if (rusage) 895 *rusage = p->p_ru; 896 /* 897 * If we got the child via a ptrace 'attach', 898 * we need to give it back to the old parent. 899 */ 900 if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) { 901 p->p_oppid = 0; 902 proc_reparent(p, t); 903 ksignal(t, SIGCHLD); 904 wakeup((caddr_t)t); 905 error = 0; 906 PRELE(t); 907 goto done; 908 } 909 910 /* 911 * Unlink the proc from its process group so that 912 * the following operations won't lead to an 913 * inconsistent state for processes running down 914 * the zombie list. 915 */ 916 proc_remove_zombie(p); 917 leavepgrp(p); 918 919 p->p_xstat = 0; 920 ruadd(&q->p_cru, &p->p_ru); 921 922 /* 923 * Decrement the count of procs running with this uid. 924 */ 925 chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0); 926 927 /* 928 * Free up credentials. 929 */ 930 crfree(p->p_ucred); 931 p->p_ucred = NULL; 932 933 /* 934 * Remove unused arguments 935 */ 936 pa = p->p_args; 937 p->p_args = NULL; 938 if (pa && refcount_release(&pa->ar_ref)) { 939 kfree(pa, M_PARGS); 940 pa = NULL; 941 } 942 943 ps = p->p_sigacts; 944 p->p_sigacts = NULL; 945 if (ps && refcount_release(&ps->ps_refcnt)) { 946 kfree(ps, M_SUBPROC); 947 ps = NULL; 948 } 949 950 vm_waitproc(p); 951 952 /* 953 * Temporary refs may still have been acquired while 954 * we removed the process, make sure they are all 955 * gone before kfree()ing. Now that the process has 956 * been removed from all lists and all references to 957 * it have gone away, no new refs can occur. 958 */ 959 while (p->p_lock) 960 tsleep(p, 0, "reap4", hz); 961 kfree(p, M_PROC); 962 atomic_add_int(&nprocs, -1); 963 error = 0; 964 goto done; 965 } 966 if (p->p_stat == SSTOP && (p->p_flag & P_WAITED) == 0 && 967 ((p->p_flag & P_TRACED) || (options & WUNTRACED))) { 968 lwkt_gettoken(&p->p_token); 969 p->p_flag |= P_WAITED; 970 971 *res = p->p_pid; 972 p->p_usched->heuristic_exiting(td->td_lwp, p); 973 if (status) 974 *status = W_STOPCODE(p->p_xstat); 975 /* Zero rusage so we get something consistent. */ 976 if (rusage) 977 bzero(rusage, sizeof(rusage)); 978 error = 0; 979 lwkt_reltoken(&p->p_token); 980 goto done; 981 } 982 if ((options & WCONTINUED) && (p->p_flag & P_CONTINUED)) { 983 lwkt_gettoken(&p->p_token); 984 *res = p->p_pid; 985 p->p_usched->heuristic_exiting(td->td_lwp, p); 986 p->p_flag &= ~P_CONTINUED; 987 988 if (status) 989 *status = SIGCONT; 990 error = 0; 991 lwkt_reltoken(&p->p_token); 992 goto done; 993 } 994 } 995 if (nfound == 0) { 996 error = ECHILD; 997 goto done; 998 } 999 if (options & WNOHANG) { 1000 *res = 0; 1001 error = 0; 1002 goto done; 1003 } 1004 1005 /* 1006 * Wait for signal - interlocked using q->p_token. 1007 */ 1008 error = tsleep(q, PCATCH, "wait", 0); 1009 if (error) { 1010 done: 1011 lwkt_reltoken(&q->p_token); 1012 return (error); 1013 } 1014 goto loop; 1015 } 1016 1017 /* 1018 * Make process 'parent' the new parent of process 'child'. 1019 * 1020 * p_children/p_sibling requires the parent's token, and 1021 * changing pptr requires the child's token, so we have to 1022 * get three tokens to do this operation. 1023 */ 1024 void 1025 proc_reparent(struct proc *child, struct proc *parent) 1026 { 1027 struct proc *opp = child->p_pptr; 1028 1029 if (opp == parent) 1030 return; 1031 PHOLD(opp); 1032 PHOLD(parent); 1033 lwkt_gettoken(&opp->p_token); 1034 lwkt_gettoken(&child->p_token); 1035 lwkt_gettoken(&parent->p_token); 1036 KKASSERT(child->p_pptr == opp); 1037 LIST_REMOVE(child, p_sibling); 1038 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); 1039 child->p_pptr = parent; 1040 lwkt_reltoken(&parent->p_token); 1041 lwkt_reltoken(&child->p_token); 1042 lwkt_reltoken(&opp->p_token); 1043 PRELE(parent); 1044 PRELE(opp); 1045 } 1046 1047 /* 1048 * The next two functions are to handle adding/deleting items on the 1049 * exit callout list 1050 * 1051 * at_exit(): 1052 * Take the arguments given and put them onto the exit callout list, 1053 * However first make sure that it's not already there. 1054 * returns 0 on success. 1055 */ 1056 1057 int 1058 at_exit(exitlist_fn function) 1059 { 1060 struct exitlist *ep; 1061 1062 #ifdef INVARIANTS 1063 /* Be noisy if the programmer has lost track of things */ 1064 if (rm_at_exit(function)) 1065 kprintf("WARNING: exit callout entry (%p) already present\n", 1066 function); 1067 #endif 1068 ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT); 1069 if (ep == NULL) 1070 return (ENOMEM); 1071 ep->function = function; 1072 TAILQ_INSERT_TAIL(&exit_list, ep, next); 1073 return (0); 1074 } 1075 1076 /* 1077 * Scan the exit callout list for the given item and remove it. 1078 * Returns the number of items removed (0 or 1) 1079 */ 1080 int 1081 rm_at_exit(exitlist_fn function) 1082 { 1083 struct exitlist *ep; 1084 1085 TAILQ_FOREACH(ep, &exit_list, next) { 1086 if (ep->function == function) { 1087 TAILQ_REMOVE(&exit_list, ep, next); 1088 kfree(ep, M_ATEXIT); 1089 return(1); 1090 } 1091 } 1092 return (0); 1093 } 1094 1095 /* 1096 * LWP reaper related code. 1097 */ 1098 static void 1099 reaplwps(void *context, int dummy) 1100 { 1101 struct lwplist *lwplist = context; 1102 struct lwp *lp; 1103 1104 lwkt_gettoken(&deadlwp_token); 1105 while ((lp = LIST_FIRST(lwplist))) { 1106 LIST_REMOVE(lp, u.lwp_reap_entry); 1107 reaplwp(lp); 1108 } 1109 lwkt_reltoken(&deadlwp_token); 1110 } 1111 1112 static void 1113 reaplwp(struct lwp *lp) 1114 { 1115 if (lwp_wait(lp) == 0) { 1116 tsleep_interlock(lp, 0); 1117 while (lwp_wait(lp) == 0) 1118 tsleep(lp, PINTERLOCKED, "lwpreap", 1); 1119 } 1120 lwp_dispose(lp); 1121 } 1122 1123 static void 1124 deadlwp_init(void) 1125 { 1126 int cpu; 1127 1128 for (cpu = 0; cpu < ncpus; cpu++) { 1129 LIST_INIT(&deadlwp_list[cpu]); 1130 deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]), M_DEVBUF, M_WAITOK); 1131 TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]); 1132 } 1133 } 1134 1135 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL); 1136