xref: /dflybsd-src/sys/kern/kern_exit.c (revision dae741e33c840b92a8a53bf9f01157ede145e256)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
39  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
40  * $DragonFly: src/sys/kern/kern_exit.c,v 1.91 2008/05/18 20:02:02 nth Exp $
41  */
42 
43 #include "opt_compat.h"
44 #include "opt_ktrace.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/sysproto.h>
49 #include <sys/kernel.h>
50 #include <sys/malloc.h>
51 #include <sys/proc.h>
52 #include <sys/ktrace.h>
53 #include <sys/pioctl.h>
54 #include <sys/tty.h>
55 #include <sys/wait.h>
56 #include <sys/vnode.h>
57 #include <sys/resourcevar.h>
58 #include <sys/signalvar.h>
59 #include <sys/taskqueue.h>
60 #include <sys/ptrace.h>
61 #include <sys/acct.h>		/* for acct_process() function prototype */
62 #include <sys/filedesc.h>
63 #include <sys/shm.h>
64 #include <sys/sem.h>
65 #include <sys/jail.h>
66 #include <sys/kern_syscall.h>
67 #include <sys/upcall.h>
68 #include <sys/caps.h>
69 #include <sys/unistd.h>
70 #include <sys/eventhandler.h>
71 #include <sys/dsched.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <sys/lock.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_extern.h>
79 #include <sys/user.h>
80 
81 #include <sys/refcount.h>
82 #include <sys/thread2.h>
83 #include <sys/sysref2.h>
84 #include <sys/mplock2.h>
85 
86 static void reaplwps(void *context, int dummy);
87 static void reaplwp(struct lwp *lp);
88 static void killlwps(struct lwp *lp);
89 
90 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
91 static MALLOC_DEFINE(M_ZOMBIE, "zombie", "zombie proc status");
92 
93 static struct lwkt_token deadlwp_token = LWKT_TOKEN_INITIALIZER(deadlwp_token);
94 
95 /*
96  * callout list for things to do at exit time
97  */
98 struct exitlist {
99 	exitlist_fn function;
100 	TAILQ_ENTRY(exitlist) next;
101 };
102 
103 TAILQ_HEAD(exit_list_head, exitlist);
104 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
105 
106 /*
107  * LWP reaper data
108  */
109 struct task *deadlwp_task[MAXCPU];
110 struct lwplist deadlwp_list[MAXCPU];
111 
112 /*
113  * exit --
114  *	Death of process.
115  *
116  * SYS_EXIT_ARGS(int rval)
117  */
118 int
119 sys_exit(struct exit_args *uap)
120 {
121 	exit1(W_EXITCODE(uap->rval, 0));
122 	/* NOTREACHED */
123 }
124 
125 /*
126  * Extended exit --
127  *	Death of a lwp or process with optional bells and whistles.
128  *
129  * MPALMOSTSAFE
130  */
131 int
132 sys_extexit(struct extexit_args *uap)
133 {
134 	struct proc *p = curproc;
135 	int action, who;
136 	int error;
137 
138 	action = EXTEXIT_ACTION(uap->how);
139 	who = EXTEXIT_WHO(uap->how);
140 
141 	/* Check parameters before we might perform some action */
142 	switch (who) {
143 	case EXTEXIT_PROC:
144 	case EXTEXIT_LWP:
145 		break;
146 	default:
147 		return (EINVAL);
148 	}
149 
150 	switch (action) {
151 	case EXTEXIT_SIMPLE:
152 		break;
153 	case EXTEXIT_SETINT:
154 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
155 		if (error)
156 			return (error);
157 		break;
158 	default:
159 		return (EINVAL);
160 	}
161 
162 	lwkt_gettoken(&p->p_token);
163 
164 	switch (who) {
165 	case EXTEXIT_LWP:
166 		/*
167 		 * Be sure only to perform a simple lwp exit if there is at
168 		 * least one more lwp in the proc, which will call exit1()
169 		 * later, otherwise the proc will be an UNDEAD and not even a
170 		 * SZOMB!
171 		 */
172 		if (p->p_nthreads > 1) {
173 			lwp_exit(0);	/* called w/ p_token held */
174 			/* NOT REACHED */
175 		}
176 		/* else last lwp in proc:  do the real thing */
177 		/* FALLTHROUGH */
178 	default:	/* to help gcc */
179 	case EXTEXIT_PROC:
180 		lwkt_reltoken(&p->p_token);
181 		exit1(W_EXITCODE(uap->status, 0));
182 		/* NOTREACHED */
183 	}
184 
185 	/* NOTREACHED */
186 	lwkt_reltoken(&p->p_token);	/* safety */
187 }
188 
189 /*
190  * Kill all lwps associated with the current process except the
191  * current lwp.   Return an error if we race another thread trying to
192  * do the same thing and lose the race.
193  *
194  * If forexec is non-zero the current thread and process flags are
195  * cleaned up so they can be reused.
196  *
197  * Caller must hold curproc->p_token
198  */
199 int
200 killalllwps(int forexec)
201 {
202 	struct lwp *lp = curthread->td_lwp;
203 	struct proc *p = lp->lwp_proc;
204 
205 	/*
206 	 * Interlock against P_WEXIT.  Only one of the process's thread
207 	 * is allowed to do the master exit.
208 	 */
209 	if (p->p_flag & P_WEXIT)
210 		return (EALREADY);
211 	p->p_flag |= P_WEXIT;
212 
213 	/*
214 	 * Interlock with LWP_WEXIT and kill any remaining LWPs
215 	 */
216 	lp->lwp_flag |= LWP_WEXIT;
217 	if (p->p_nthreads > 1)
218 		killlwps(lp);
219 
220 	/*
221 	 * If doing this for an exec, clean up the remaining thread
222 	 * (us) for continuing operation after all the other threads
223 	 * have been killed.
224 	 */
225 	if (forexec) {
226 		lp->lwp_flag &= ~LWP_WEXIT;
227 		p->p_flag &= ~P_WEXIT;
228 	}
229 	return(0);
230 }
231 
232 /*
233  * Kill all LWPs except the current one.  Do not try to signal
234  * LWPs which have exited on their own or have already been
235  * signaled.
236  */
237 static void
238 killlwps(struct lwp *lp)
239 {
240 	struct proc *p = lp->lwp_proc;
241 	struct lwp *tlp;
242 
243 	/*
244 	 * Kill the remaining LWPs.  We must send the signal before setting
245 	 * LWP_WEXIT.  The setting of WEXIT is optional but helps reduce
246 	 * races.  tlp must be held across the call as it might block and
247 	 * allow the target lwp to rip itself out from under our loop.
248 	 */
249 	FOREACH_LWP_IN_PROC(tlp, p) {
250 		LWPHOLD(tlp);
251 		lwkt_gettoken(&tlp->lwp_token);
252 		if ((tlp->lwp_flag & LWP_WEXIT) == 0) {
253 			lwpsignal(p, tlp, SIGKILL);
254 			tlp->lwp_flag |= LWP_WEXIT;
255 		}
256 		lwkt_reltoken(&tlp->lwp_token);
257 		LWPRELE(tlp);
258 	}
259 
260 	/*
261 	 * Wait for everything to clear out.
262 	 */
263 	while (p->p_nthreads > 1) {
264 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
265 	}
266 }
267 
268 /*
269  * Exit: deallocate address space and other resources, change proc state
270  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
271  * status and rusage for wait().  Check for child processes and orphan them.
272  */
273 void
274 exit1(int rv)
275 {
276 	struct thread *td = curthread;
277 	struct proc *p = td->td_proc;
278 	struct lwp *lp = td->td_lwp;
279 	struct proc *q, *nq;
280 	struct vmspace *vm;
281 	struct vnode *vtmp;
282 	struct exitlist *ep;
283 	int error;
284 
285 	lwkt_gettoken(&p->p_token);
286 
287 	if (p->p_pid == 1) {
288 		kprintf("init died (signal %d, exit %d)\n",
289 		    WTERMSIG(rv), WEXITSTATUS(rv));
290 		panic("Going nowhere without my init!");
291 	}
292 	varsymset_clean(&p->p_varsymset);
293 	lockuninit(&p->p_varsymset.vx_lock);
294 	/*
295 	 * Kill all lwps associated with the current process, return an
296 	 * error if we race another thread trying to do the same thing
297 	 * and lose the race.
298 	 */
299 	error = killalllwps(0);
300 	if (error) {
301 		lwp_exit(0);
302 		/* NOT REACHED */
303 	}
304 
305 	caps_exit(lp->lwp_thread);
306 
307 	/* are we a task leader? */
308 	if (p == p->p_leader) {
309         	struct kill_args killArgs;
310 		killArgs.signum = SIGKILL;
311 		q = p->p_peers;
312 		while(q) {
313 			killArgs.pid = q->p_pid;
314 			/*
315 		         * The interface for kill is better
316 			 * than the internal signal
317 			 */
318 			sys_kill(&killArgs);
319 			nq = q;
320 			q = q->p_peers;
321 		}
322 		while (p->p_peers)
323 			tsleep((caddr_t)p, 0, "exit1", 0);
324 	}
325 
326 #ifdef PGINPROF
327 	vmsizmon();
328 #endif
329 	STOPEVENT(p, S_EXIT, rv);
330 	wakeup(&p->p_stype);	/* Wakeup anyone in procfs' PIOCWAIT */
331 
332 	/*
333 	 * Check if any loadable modules need anything done at process exit.
334 	 * e.g. SYSV IPC stuff
335 	 * XXX what if one of these generates an error?
336 	 */
337 	p->p_xstat = rv;
338 	EVENTHANDLER_INVOKE(process_exit, p);
339 
340 	/*
341 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
342 	 *	Maybe we should move everything to use eventhandler.
343 	 */
344 	TAILQ_FOREACH(ep, &exit_list, next)
345 		(*ep->function)(td);
346 
347 	if (p->p_flag & P_PROFIL)
348 		stopprofclock(p);
349 	/*
350 	 * If parent is waiting for us to exit or exec,
351 	 * P_PPWAIT is set; we will wakeup the parent below.
352 	 */
353 	p->p_flag &= ~(P_TRACED | P_PPWAIT);
354 	SIGEMPTYSET(p->p_siglist);
355 	SIGEMPTYSET(lp->lwp_siglist);
356 	if (timevalisset(&p->p_realtimer.it_value))
357 		callout_stop(&p->p_ithandle);
358 
359 	/*
360 	 * Reset any sigio structures pointing to us as a result of
361 	 * F_SETOWN with our pid.
362 	 */
363 	funsetownlst(&p->p_sigiolst);
364 
365 	/*
366 	 * Close open files and release open-file table.
367 	 * This may block!
368 	 */
369 	fdfree(p, NULL);
370 
371 	if(p->p_leader->p_peers) {
372 		q = p->p_leader;
373 		while(q->p_peers != p)
374 			q = q->p_peers;
375 		q->p_peers = p->p_peers;
376 		wakeup((caddr_t)p->p_leader);
377 	}
378 
379 	/*
380 	 * XXX Shutdown SYSV semaphores
381 	 */
382 	semexit(p);
383 
384 	KKASSERT(p->p_numposixlocks == 0);
385 
386 	/* The next two chunks should probably be moved to vmspace_exit. */
387 	vm = p->p_vmspace;
388 
389 	/*
390 	 * Release upcalls associated with this process
391 	 */
392 	if (vm->vm_upcalls)
393 		upc_release(vm, lp);
394 
395 	/*
396 	 * Clean up data related to virtual kernel operation.  Clean up
397 	 * any vkernel context related to the current lwp now so we can
398 	 * destroy p_vkernel.
399 	 */
400 	if (p->p_vkernel) {
401 		vkernel_lwp_exit(lp);
402 		vkernel_exit(p);
403 	}
404 
405 	/*
406 	 * Release user portion of address space.
407 	 * This releases references to vnodes,
408 	 * which could cause I/O if the file has been unlinked.
409 	 * Need to do this early enough that we can still sleep.
410 	 * Can't free the entire vmspace as the kernel stack
411 	 * may be mapped within that space also.
412 	 *
413 	 * Processes sharing the same vmspace may exit in one order, and
414 	 * get cleaned up by vmspace_exit() in a different order.  The
415 	 * last exiting process to reach this point releases as much of
416 	 * the environment as it can, and the last process cleaned up
417 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
418 	 * remainder.
419 	 */
420 	vmspace_exitbump(vm);
421 	sysref_put(&vm->vm_sysref);
422 
423 	if (SESS_LEADER(p)) {
424 		struct session *sp = p->p_session;
425 
426 		if (sp->s_ttyvp) {
427 			/*
428 			 * We are the controlling process.  Signal the
429 			 * foreground process group, drain the controlling
430 			 * terminal, and revoke access to the controlling
431 			 * terminal.
432 			 *
433 			 * NOTE: while waiting for the process group to exit
434 			 * it is possible that one of the processes in the
435 			 * group will revoke the tty, so the ttyclosesession()
436 			 * function will re-check sp->s_ttyvp.
437 			 */
438 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
439 				if (sp->s_ttyp->t_pgrp)
440 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
441 				ttywait(sp->s_ttyp);
442 				ttyclosesession(sp, 1); /* also revoke */
443 			}
444 			/*
445 			 * Release the tty.  If someone has it open via
446 			 * /dev/tty then close it (since they no longer can
447 			 * once we've NULL'd it out).
448 			 */
449 			ttyclosesession(sp, 0);
450 
451 			/*
452 			 * s_ttyp is not zero'd; we use this to indicate
453 			 * that the session once had a controlling terminal.
454 			 * (for logging and informational purposes)
455 			 */
456 		}
457 		sp->s_leader = NULL;
458 	}
459 	fixjobc(p, p->p_pgrp, 0);
460 	(void)acct_process(p);
461 #ifdef KTRACE
462 	/*
463 	 * release trace file
464 	 */
465 	if (p->p_tracenode)
466 		ktrdestroy(&p->p_tracenode);
467 	p->p_traceflag = 0;
468 #endif
469 	/*
470 	 * Release reference to text vnode
471 	 */
472 	if ((vtmp = p->p_textvp) != NULL) {
473 		p->p_textvp = NULL;
474 		vrele(vtmp);
475 	}
476 
477 	/* Release namecache handle to text file */
478 	if (p->p_textnch.ncp)
479 		cache_drop(&p->p_textnch);
480 
481 	/*
482 	 * Move the process to the zombie list.  This will block
483 	 * until the process p_lock count reaches 0.  The process will
484 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
485 	 * which is called from cpu_proc_exit().
486 	 */
487 	proc_move_allproc_zombie(p);
488 
489 	/*
490 	 * Reparent all of this process's children to the init process.
491 	 * We must hold initproc->p_token in order to mess with
492 	 * initproc->p_children.  We already hold p->p_token (to remove
493 	 * the children from our list).
494 	 */
495 	q = LIST_FIRST(&p->p_children);
496 	if (q) {
497 		lwkt_gettoken(&initproc->p_token);
498 		while (q) {
499 			nq = LIST_NEXT(q, p_sibling);
500 			LIST_REMOVE(q, p_sibling);
501 			LIST_INSERT_HEAD(&initproc->p_children, q, p_sibling);
502 			q->p_pptr = initproc;
503 			q->p_sigparent = SIGCHLD;
504 			/*
505 			 * Traced processes are killed
506 			 * since their existence means someone is screwing up.
507 			 */
508 			if (q->p_flag & P_TRACED) {
509 				q->p_flag &= ~P_TRACED;
510 				ksignal(q, SIGKILL);
511 			}
512 			q = nq;
513 		}
514 		lwkt_reltoken(&initproc->p_token);
515 		wakeup(initproc);
516 	}
517 
518 	/*
519 	 * Save exit status and final rusage info, adding in child rusage
520 	 * info and self times.
521 	 */
522 	calcru_proc(p, &p->p_ru);
523 	ruadd(&p->p_ru, &p->p_cru);
524 
525 	/*
526 	 * notify interested parties of our demise.
527 	 */
528 	KNOTE(&p->p_klist, NOTE_EXIT);
529 
530 	/*
531 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
532 	 * flag set, notify process 1 instead (and hope it will handle
533 	 * this situation).
534 	 */
535 	if (p->p_pptr->p_sigacts->ps_flag & PS_NOCLDWAIT) {
536 		struct proc *pp = p->p_pptr;
537 
538 		PHOLD(pp);
539 		proc_reparent(p, initproc);
540 
541 		/*
542 		 * If this was the last child of our parent, notify
543 		 * parent, so in case he was wait(2)ing, he will
544 		 * continue.  This function interlocks with pptr->p_token.
545 		 */
546 		if (LIST_EMPTY(&pp->p_children))
547 			wakeup((caddr_t)pp);
548 		PRELE(pp);
549 	}
550 
551 	/* lwkt_gettoken(&proc_token); */
552 	q = p->p_pptr;
553 	PHOLD(q);
554 	if (p->p_sigparent && q != initproc) {
555 	        ksignal(q, p->p_sigparent);
556 	} else {
557 	        ksignal(q, SIGCHLD);
558 	}
559 	wakeup(p->p_pptr);
560 	PRELE(q);
561 	/* lwkt_reltoken(&proc_token); */
562 	/* NOTE: p->p_pptr can get ripped out */
563 	/*
564 	 * cpu_exit is responsible for clearing curproc, since
565 	 * it is heavily integrated with the thread/switching sequence.
566 	 *
567 	 * Other substructures are freed from wait().
568 	 */
569 	plimit_free(p);
570 
571 	/*
572 	 * Release the current user process designation on the process so
573 	 * the userland scheduler can work in someone else.
574 	 */
575 	p->p_usched->release_curproc(lp);
576 
577 	/*
578 	 * Finally, call machine-dependent code to release as many of the
579 	 * lwp's resources as we can and halt execution of this thread.
580 	 */
581 	lwp_exit(1);
582 }
583 
584 /*
585  * Eventually called by every exiting LWP
586  *
587  * p->p_token must be held.  mplock may be held and will be released.
588  */
589 void
590 lwp_exit(int masterexit)
591 {
592 	struct thread *td = curthread;
593 	struct lwp *lp = td->td_lwp;
594 	struct proc *p = lp->lwp_proc;
595 	int dowake = 0;
596 
597 	/*
598 	 * lwp_exit() may be called without setting LWP_WEXIT, so
599 	 * make sure it is set here.
600 	 */
601 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
602 	lp->lwp_flag |= LWP_WEXIT;
603 
604 	/*
605 	 * Clean up any virtualization
606 	 */
607 	if (lp->lwp_vkernel)
608 		vkernel_lwp_exit(lp);
609 
610 	/*
611 	 * Clean up select/poll support
612 	 */
613 	kqueue_terminate(&lp->lwp_kqueue);
614 
615 	/*
616 	 * Clean up any syscall-cached ucred
617 	 */
618 	if (td->td_ucred) {
619 		crfree(td->td_ucred);
620 		td->td_ucred = NULL;
621 	}
622 
623 	/*
624 	 * Nobody actually wakes us when the lock
625 	 * count reaches zero, so just wait one tick.
626 	 */
627 	while (lp->lwp_lock > 0)
628 		tsleep(lp, 0, "lwpexit", 1);
629 
630 	/* Hand down resource usage to our proc */
631 	ruadd(&p->p_ru, &lp->lwp_ru);
632 
633 	/*
634 	 * If we don't hold the process until the LWP is reaped wait*()
635 	 * may try to dispose of its vmspace before all the LWPs have
636 	 * actually terminated.
637 	 */
638 	PHOLD(p);
639 
640 	/*
641 	 * Do any remaining work that might block on us.  We should be
642 	 * coded such that further blocking is ok after decrementing
643 	 * p_nthreads but don't take the chance.
644 	 */
645 	dsched_exit_thread(td);
646 	biosched_done(curthread);
647 
648 	/*
649 	 * We have to use the reaper for all the LWPs except the one doing
650 	 * the master exit.  The LWP doing the master exit can just be
651 	 * left on p_lwps and the process reaper will deal with it
652 	 * synchronously, which is much faster.
653 	 *
654 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
655 	 */
656 	if (masterexit == 0) {
657 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
658 		--p->p_nthreads;
659 		if (p->p_nthreads <= 1)
660 			dowake = 1;
661 		lwkt_gettoken(&deadlwp_token);
662 		LIST_INSERT_HEAD(&deadlwp_list[mycpuid], lp, u.lwp_reap_entry);
663 		taskqueue_enqueue(taskqueue_thread[mycpuid],
664 				  deadlwp_task[mycpuid]);
665 		lwkt_reltoken(&deadlwp_token);
666 	} else {
667 		--p->p_nthreads;
668 		if (p->p_nthreads <= 1)
669 			dowake = 1;
670 	}
671 
672 	/*
673 	 * Release p_token.  Issue the wakeup() on p_nthreads if necessary,
674 	 * as late as possible to give us a chance to actually deschedule and
675 	 * switch away before another cpu core hits reaplwp().
676 	 */
677 	lwkt_reltoken(&p->p_token);
678 	if (dowake)
679 		wakeup(&p->p_nthreads);
680 	cpu_lwp_exit();
681 }
682 
683 /*
684  * Wait until a lwp is completely dead.
685  *
686  * If the thread is still executing, which can't be waited upon,
687  * return failure.  The caller is responsible of waiting a little
688  * bit and checking again.
689  *
690  * Suggested use:
691  * while (!lwp_wait(lp))
692  *	tsleep(lp, 0, "lwpwait", 1);
693  */
694 static int
695 lwp_wait(struct lwp *lp)
696 {
697 	struct thread *td = lp->lwp_thread;;
698 
699 	KKASSERT(lwkt_preempted_proc() != lp);
700 
701 	while (lp->lwp_lock > 0)
702 		tsleep(lp, 0, "lwpwait1", 1);
703 
704 	lwkt_wait_free(td);
705 
706 	/*
707 	 * The lwp's thread may still be in the middle
708 	 * of switching away, we can't rip its stack out from
709 	 * under it until TDF_EXITING is set and both
710 	 * TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
711 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
712 	 * will be cleared temporarily if a thread gets
713 	 * preempted.
714 	 *
715 	 * YYY no wakeup occurs, so we simply return failure
716 	 * and let the caller deal with sleeping and calling
717 	 * us again.
718 	 */
719 	if ((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|
720 			     TDF_EXITING|TDF_RUNQ)) != TDF_EXITING) {
721 		return (0);
722 	}
723 	KASSERT((td->td_flags & TDF_TSLEEPQ) == 0,
724 		("lwp_wait: td %p (%s) still on sleep queue", td, td->td_comm));
725 	return (1);
726 }
727 
728 /*
729  * Release the resources associated with a lwp.
730  * The lwp must be completely dead.
731  */
732 void
733 lwp_dispose(struct lwp *lp)
734 {
735 	struct thread *td = lp->lwp_thread;;
736 
737 	KKASSERT(lwkt_preempted_proc() != lp);
738 	KKASSERT(td->td_refs == 0);
739 	KKASSERT((td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK|TDF_EXITING)) ==
740 		 TDF_EXITING);
741 
742 	PRELE(lp->lwp_proc);
743 	lp->lwp_proc = NULL;
744 	if (td != NULL) {
745 		td->td_proc = NULL;
746 		td->td_lwp = NULL;
747 		lp->lwp_thread = NULL;
748 		lwkt_free_thread(td);
749 	}
750 	kfree(lp, M_LWP);
751 }
752 
753 /*
754  * MPSAFE
755  */
756 int
757 sys_wait4(struct wait_args *uap)
758 {
759 	struct rusage rusage;
760 	int error, status;
761 
762 	error = kern_wait(uap->pid, (uap->status ? &status : NULL),
763 			  uap->options, (uap->rusage ? &rusage : NULL),
764 			  &uap->sysmsg_result);
765 
766 	if (error == 0 && uap->status)
767 		error = copyout(&status, uap->status, sizeof(*uap->status));
768 	if (error == 0 && uap->rusage)
769 		error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
770 	return (error);
771 }
772 
773 /*
774  * wait1()
775  *
776  * wait_args(int pid, int *status, int options, struct rusage *rusage)
777  *
778  * MPALMOSTSAFE
779  */
780 int
781 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
782 {
783 	struct thread *td = curthread;
784 	struct lwp *lp;
785 	struct proc *q = td->td_proc;
786 	struct proc *p, *t;
787 	struct pargs *pa;
788 	struct sigacts *ps;
789 	int nfound, error;
790 
791 	if (pid == 0)
792 		pid = -q->p_pgid;
793 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
794 		return (EINVAL);
795 
796 	lwkt_gettoken(&q->p_token);
797 loop:
798 	/*
799 	 * All sorts of things can change due to blocking so we have to loop
800 	 * all the way back up here.
801 	 *
802 	 * The problem is that if a process group is stopped and the parent
803 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
804 	 * of the child and then stop itself when it tries to return from the
805 	 * system call.  When the process group is resumed the parent will
806 	 * then get the STOP status even though the child has now resumed
807 	 * (a followup wait*() will get the CONT status).
808 	 *
809 	 * Previously the CONT would overwrite the STOP because the tstop
810 	 * was handled within tsleep(), and the parent would only see
811 	 * the CONT when both are stopped and continued together.  This little
812 	 * two-line hack restores this effect.
813 	 */
814 	while (q->p_stat == SSTOP)
815             tstop();
816 
817 	nfound = 0;
818 
819 	/*
820 	 * Loop on children.
821 	 *
822 	 * NOTE: We don't want to break q's p_token in the loop for the
823 	 *	 case where no children are found or we risk breaking the
824 	 *	 interlock between child and parent.
825 	 */
826 	LIST_FOREACH(p, &q->p_children, p_sibling) {
827 		if (pid != WAIT_ANY &&
828 		    p->p_pid != pid && p->p_pgid != -pid) {
829 			continue;
830 		}
831 
832 		/*
833 		 * This special case handles a kthread spawned by linux_clone
834 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
835 		 * functions need to be able to distinguish between waiting
836 		 * on a process and waiting on a thread.  It is a thread if
837 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
838 		 * signifies we want to wait for threads and not processes.
839 		 */
840 		if ((p->p_sigparent != SIGCHLD) ^
841 		    ((options & WLINUXCLONE) != 0)) {
842 			continue;
843 		}
844 
845 		nfound++;
846 		if (p->p_stat == SZOMB) {
847 			/*
848 			 * We may go into SZOMB with threads still present.
849 			 * We must wait for them to exit before we can reap
850 			 * the master thread, otherwise we may race reaping
851 			 * non-master threads.
852 			 */
853 			lwkt_gettoken(&p->p_token);
854 			while (p->p_nthreads > 0) {
855 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
856 			}
857 
858 			/*
859 			 * Reap any LWPs left in p->p_lwps.  This is usually
860 			 * just the last LWP.  This must be done before
861 			 * we loop on p_lock since the lwps hold a ref on
862 			 * it as a vmspace interlock.
863 			 *
864 			 * Once that is accomplished p_nthreads had better
865 			 * be zero.
866 			 */
867 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
868 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
869 				reaplwp(lp);
870 			}
871 			KKASSERT(p->p_nthreads == 0);
872 			lwkt_reltoken(&p->p_token);
873 
874 			/*
875 			 * Don't do anything really bad until all references
876 			 * to the process go away.  This may include other
877 			 * LWPs which are still in the process of being
878 			 * reaped.  We can't just pull the rug out from under
879 			 * them because they may still be using the VM space.
880 			 *
881 			 * Certain kernel facilities such as /proc will also
882 			 * put a hold on the process for short periods of
883 			 * time.
884 			 */
885 			while (p->p_lock)
886 				tsleep(p, 0, "reap3", hz);
887 
888 			/* Take care of our return values. */
889 			*res = p->p_pid;
890 			p->p_usched->heuristic_exiting(td->td_lwp, p);
891 
892 			if (status)
893 				*status = p->p_xstat;
894 			if (rusage)
895 				*rusage = p->p_ru;
896 			/*
897 			 * If we got the child via a ptrace 'attach',
898 			 * we need to give it back to the old parent.
899 			 */
900 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
901 				p->p_oppid = 0;
902 				proc_reparent(p, t);
903 				ksignal(t, SIGCHLD);
904 				wakeup((caddr_t)t);
905 				error = 0;
906 				PRELE(t);
907 				goto done;
908 			}
909 
910 			/*
911 			 * Unlink the proc from its process group so that
912 			 * the following operations won't lead to an
913 			 * inconsistent state for processes running down
914 			 * the zombie list.
915 			 */
916 			proc_remove_zombie(p);
917 			leavepgrp(p);
918 
919 			p->p_xstat = 0;
920 			ruadd(&q->p_cru, &p->p_ru);
921 
922 			/*
923 			 * Decrement the count of procs running with this uid.
924 			 */
925 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
926 
927 			/*
928 			 * Free up credentials.
929 			 */
930 			crfree(p->p_ucred);
931 			p->p_ucred = NULL;
932 
933 			/*
934 			 * Remove unused arguments
935 			 */
936 			pa = p->p_args;
937 			p->p_args = NULL;
938 			if (pa && refcount_release(&pa->ar_ref)) {
939 				kfree(pa, M_PARGS);
940 				pa = NULL;
941 			}
942 
943 			ps = p->p_sigacts;
944 			p->p_sigacts = NULL;
945 			if (ps && refcount_release(&ps->ps_refcnt)) {
946 				kfree(ps, M_SUBPROC);
947 				ps = NULL;
948 			}
949 
950 			vm_waitproc(p);
951 
952 			/*
953 			 * Temporary refs may still have been acquired while
954 			 * we removed the process, make sure they are all
955 			 * gone before kfree()ing.  Now that the process has
956 			 * been removed from all lists and all references to
957 			 * it have gone away, no new refs can occur.
958 			 */
959 			while (p->p_lock)
960 				tsleep(p, 0, "reap4", hz);
961 			kfree(p, M_PROC);
962 			atomic_add_int(&nprocs, -1);
963 			error = 0;
964 			goto done;
965 		}
966 		if (p->p_stat == SSTOP && (p->p_flag & P_WAITED) == 0 &&
967 		    ((p->p_flag & P_TRACED) || (options & WUNTRACED))) {
968 			lwkt_gettoken(&p->p_token);
969 			p->p_flag |= P_WAITED;
970 
971 			*res = p->p_pid;
972 			p->p_usched->heuristic_exiting(td->td_lwp, p);
973 			if (status)
974 				*status = W_STOPCODE(p->p_xstat);
975 			/* Zero rusage so we get something consistent. */
976 			if (rusage)
977 				bzero(rusage, sizeof(rusage));
978 			error = 0;
979 			lwkt_reltoken(&p->p_token);
980 			goto done;
981 		}
982 		if ((options & WCONTINUED) && (p->p_flag & P_CONTINUED)) {
983 			lwkt_gettoken(&p->p_token);
984 			*res = p->p_pid;
985 			p->p_usched->heuristic_exiting(td->td_lwp, p);
986 			p->p_flag &= ~P_CONTINUED;
987 
988 			if (status)
989 				*status = SIGCONT;
990 			error = 0;
991 			lwkt_reltoken(&p->p_token);
992 			goto done;
993 		}
994 	}
995 	if (nfound == 0) {
996 		error = ECHILD;
997 		goto done;
998 	}
999 	if (options & WNOHANG) {
1000 		*res = 0;
1001 		error = 0;
1002 		goto done;
1003 	}
1004 
1005 	/*
1006 	 * Wait for signal - interlocked using q->p_token.
1007 	 */
1008 	error = tsleep(q, PCATCH, "wait", 0);
1009 	if (error) {
1010 done:
1011 		lwkt_reltoken(&q->p_token);
1012 		return (error);
1013 	}
1014 	goto loop;
1015 }
1016 
1017 /*
1018  * Make process 'parent' the new parent of process 'child'.
1019  *
1020  * p_children/p_sibling requires the parent's token, and
1021  * changing pptr requires the child's token, so we have to
1022  * get three tokens to do this operation.
1023  */
1024 void
1025 proc_reparent(struct proc *child, struct proc *parent)
1026 {
1027 	struct proc *opp = child->p_pptr;
1028 
1029 	if (opp == parent)
1030 		return;
1031 	PHOLD(opp);
1032 	PHOLD(parent);
1033 	lwkt_gettoken(&opp->p_token);
1034 	lwkt_gettoken(&child->p_token);
1035 	lwkt_gettoken(&parent->p_token);
1036 	KKASSERT(child->p_pptr == opp);
1037 	LIST_REMOVE(child, p_sibling);
1038 	LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1039 	child->p_pptr = parent;
1040 	lwkt_reltoken(&parent->p_token);
1041 	lwkt_reltoken(&child->p_token);
1042 	lwkt_reltoken(&opp->p_token);
1043 	PRELE(parent);
1044 	PRELE(opp);
1045 }
1046 
1047 /*
1048  * The next two functions are to handle adding/deleting items on the
1049  * exit callout list
1050  *
1051  * at_exit():
1052  * Take the arguments given and put them onto the exit callout list,
1053  * However first make sure that it's not already there.
1054  * returns 0 on success.
1055  */
1056 
1057 int
1058 at_exit(exitlist_fn function)
1059 {
1060 	struct exitlist *ep;
1061 
1062 #ifdef INVARIANTS
1063 	/* Be noisy if the programmer has lost track of things */
1064 	if (rm_at_exit(function))
1065 		kprintf("WARNING: exit callout entry (%p) already present\n",
1066 		    function);
1067 #endif
1068 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1069 	if (ep == NULL)
1070 		return (ENOMEM);
1071 	ep->function = function;
1072 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1073 	return (0);
1074 }
1075 
1076 /*
1077  * Scan the exit callout list for the given item and remove it.
1078  * Returns the number of items removed (0 or 1)
1079  */
1080 int
1081 rm_at_exit(exitlist_fn function)
1082 {
1083 	struct exitlist *ep;
1084 
1085 	TAILQ_FOREACH(ep, &exit_list, next) {
1086 		if (ep->function == function) {
1087 			TAILQ_REMOVE(&exit_list, ep, next);
1088 			kfree(ep, M_ATEXIT);
1089 			return(1);
1090 		}
1091 	}
1092 	return (0);
1093 }
1094 
1095 /*
1096  * LWP reaper related code.
1097  */
1098 static void
1099 reaplwps(void *context, int dummy)
1100 {
1101 	struct lwplist *lwplist = context;
1102 	struct lwp *lp;
1103 
1104 	lwkt_gettoken(&deadlwp_token);
1105 	while ((lp = LIST_FIRST(lwplist))) {
1106 		LIST_REMOVE(lp, u.lwp_reap_entry);
1107 		reaplwp(lp);
1108 	}
1109 	lwkt_reltoken(&deadlwp_token);
1110 }
1111 
1112 static void
1113 reaplwp(struct lwp *lp)
1114 {
1115 	if (lwp_wait(lp) == 0) {
1116 		tsleep_interlock(lp, 0);
1117 		while (lwp_wait(lp) == 0)
1118 			tsleep(lp, PINTERLOCKED, "lwpreap", 1);
1119 	}
1120 	lwp_dispose(lp);
1121 }
1122 
1123 static void
1124 deadlwp_init(void)
1125 {
1126 	int cpu;
1127 
1128 	for (cpu = 0; cpu < ncpus; cpu++) {
1129 		LIST_INIT(&deadlwp_list[cpu]);
1130 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]), M_DEVBUF, M_WAITOK);
1131 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1132 	}
1133 }
1134 
1135 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1136