xref: /dflybsd-src/sys/kern/kern_exit.c (revision cf6a53ca558fa4bbc637ee3949e2436254bcf4c2)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
36  */
37 
38 #include "opt_compat.h"
39 #include "opt_ktrace.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sysproto.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/proc.h>
47 #include <sys/ktrace.h>
48 #include <sys/pioctl.h>
49 #include <sys/tty.h>
50 #include <sys/wait.h>
51 #include <sys/vnode.h>
52 #include <sys/resourcevar.h>
53 #include <sys/signalvar.h>
54 #include <sys/taskqueue.h>
55 #include <sys/ptrace.h>
56 #include <sys/acct.h>		/* for acct_process() function prototype */
57 #include <sys/filedesc.h>
58 #include <sys/shm.h>
59 #include <sys/sem.h>
60 #include <sys/jail.h>
61 #include <sys/kern_syscall.h>
62 #include <sys/unistd.h>
63 #include <sys/eventhandler.h>
64 #include <sys/dsched.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_param.h>
68 #include <sys/lock.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_extern.h>
72 #include <sys/user.h>
73 
74 #include <sys/refcount.h>
75 #include <sys/thread2.h>
76 #include <sys/sysref2.h>
77 #include <sys/mplock2.h>
78 
79 #include <machine/vmm.h>
80 
81 static void reaplwps(void *context, int dummy);
82 static void reaplwp(struct lwp *lp);
83 static void killlwps(struct lwp *lp);
84 
85 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
86 
87 /*
88  * callout list for things to do at exit time
89  */
90 struct exitlist {
91 	exitlist_fn function;
92 	TAILQ_ENTRY(exitlist) next;
93 };
94 
95 TAILQ_HEAD(exit_list_head, exitlist);
96 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
97 
98 /*
99  * LWP reaper data
100  */
101 static struct task *deadlwp_task[MAXCPU];
102 static struct lwplist deadlwp_list[MAXCPU];
103 static struct lwkt_token deadlwp_token[MAXCPU];
104 
105 /*
106  * exit --
107  *	Death of process.
108  *
109  * SYS_EXIT_ARGS(int rval)
110  */
111 int
112 sys_exit(struct exit_args *uap)
113 {
114 	exit1(W_EXITCODE(uap->rval, 0));
115 	/* NOTREACHED */
116 }
117 
118 /*
119  * Extended exit --
120  *	Death of a lwp or process with optional bells and whistles.
121  *
122  * MPALMOSTSAFE
123  */
124 int
125 sys_extexit(struct extexit_args *uap)
126 {
127 	struct proc *p = curproc;
128 	int action, who;
129 	int error;
130 
131 	action = EXTEXIT_ACTION(uap->how);
132 	who = EXTEXIT_WHO(uap->how);
133 
134 	/* Check parameters before we might perform some action */
135 	switch (who) {
136 	case EXTEXIT_PROC:
137 	case EXTEXIT_LWP:
138 		break;
139 	default:
140 		return (EINVAL);
141 	}
142 
143 	switch (action) {
144 	case EXTEXIT_SIMPLE:
145 		break;
146 	case EXTEXIT_SETINT:
147 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
148 		if (error)
149 			return (error);
150 		break;
151 	default:
152 		return (EINVAL);
153 	}
154 
155 	lwkt_gettoken(&p->p_token);
156 
157 	switch (who) {
158 	case EXTEXIT_LWP:
159 		/*
160 		 * Be sure only to perform a simple lwp exit if there is at
161 		 * least one more lwp in the proc, which will call exit1()
162 		 * later, otherwise the proc will be an UNDEAD and not even a
163 		 * SZOMB!
164 		 */
165 		if (p->p_nthreads > 1) {
166 			lwp_exit(0);	/* called w/ p_token held */
167 			/* NOT REACHED */
168 		}
169 		/* else last lwp in proc:  do the real thing */
170 		/* FALLTHROUGH */
171 	default:	/* to help gcc */
172 	case EXTEXIT_PROC:
173 		lwkt_reltoken(&p->p_token);
174 		exit1(W_EXITCODE(uap->status, 0));
175 		/* NOTREACHED */
176 	}
177 
178 	/* NOTREACHED */
179 	lwkt_reltoken(&p->p_token);	/* safety */
180 }
181 
182 /*
183  * Kill all lwps associated with the current process except the
184  * current lwp.   Return an error if we race another thread trying to
185  * do the same thing and lose the race.
186  *
187  * If forexec is non-zero the current thread and process flags are
188  * cleaned up so they can be reused.
189  *
190  * Caller must hold curproc->p_token
191  */
192 int
193 killalllwps(int forexec)
194 {
195 	struct lwp *lp = curthread->td_lwp;
196 	struct proc *p = lp->lwp_proc;
197 
198 	/*
199 	 * Interlock against P_WEXIT.  Only one of the process's thread
200 	 * is allowed to do the master exit.
201 	 */
202 	if (p->p_flags & P_WEXIT)
203 		return (EALREADY);
204 	p->p_flags |= P_WEXIT;
205 
206 	/*
207 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
208 	 */
209 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
210 	if (p->p_nthreads > 1)
211 		killlwps(lp);
212 
213 	/*
214 	 * If doing this for an exec, clean up the remaining thread
215 	 * (us) for continuing operation after all the other threads
216 	 * have been killed.
217 	 */
218 	if (forexec) {
219 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
220 		p->p_flags &= ~P_WEXIT;
221 	}
222 	return(0);
223 }
224 
225 /*
226  * Kill all LWPs except the current one.  Do not try to signal
227  * LWPs which have exited on their own or have already been
228  * signaled.
229  */
230 static void
231 killlwps(struct lwp *lp)
232 {
233 	struct proc *p = lp->lwp_proc;
234 	struct lwp *tlp;
235 
236 	/*
237 	 * Kill the remaining LWPs.  We must send the signal before setting
238 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
239 	 * races.  tlp must be held across the call as it might block and
240 	 * allow the target lwp to rip itself out from under our loop.
241 	 */
242 	FOREACH_LWP_IN_PROC(tlp, p) {
243 		LWPHOLD(tlp);
244 		lwkt_gettoken(&tlp->lwp_token);
245 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
246 			lwpsignal(p, tlp, SIGKILL);
247 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
248 		}
249 		lwkt_reltoken(&tlp->lwp_token);
250 		LWPRELE(tlp);
251 	}
252 
253 	/*
254 	 * Wait for everything to clear out.
255 	 */
256 	while (p->p_nthreads > 1) {
257 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
258 	}
259 }
260 
261 /*
262  * Exit: deallocate address space and other resources, change proc state
263  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
264  * status and rusage for wait().  Check for child processes and orphan them.
265  */
266 void
267 exit1(int rv)
268 {
269 	struct thread *td = curthread;
270 	struct proc *p = td->td_proc;
271 	struct lwp *lp = td->td_lwp;
272 	struct proc *q;
273 	struct vmspace *vm;
274 	struct vnode *vtmp;
275 	struct exitlist *ep;
276 	int error;
277 
278 	lwkt_gettoken(&p->p_token);
279 
280 	if (p->p_pid == 1) {
281 		kprintf("init died (signal %d, exit %d)\n",
282 		    WTERMSIG(rv), WEXITSTATUS(rv));
283 		panic("Going nowhere without my init!");
284 	}
285 	varsymset_clean(&p->p_varsymset);
286 	lockuninit(&p->p_varsymset.vx_lock);
287 
288 	/*
289 	 * Kill all lwps associated with the current process, return an
290 	 * error if we race another thread trying to do the same thing
291 	 * and lose the race.
292 	 */
293 	error = killalllwps(0);
294 	if (error) {
295 		lwp_exit(0);
296 		/* NOT REACHED */
297 	}
298 
299 	/* are we a task leader? */
300 	if (p == p->p_leader) {
301         	struct kill_args killArgs;
302 		killArgs.signum = SIGKILL;
303 		q = p->p_peers;
304 		while(q) {
305 			killArgs.pid = q->p_pid;
306 			/*
307 		         * The interface for kill is better
308 			 * than the internal signal
309 			 */
310 			sys_kill(&killArgs);
311 			q = q->p_peers;
312 		}
313 		while (p->p_peers)
314 			tsleep((caddr_t)p, 0, "exit1", 0);
315 	}
316 
317 #ifdef PGINPROF
318 	vmsizmon();
319 #endif
320 	STOPEVENT(p, S_EXIT, rv);
321 	p->p_flags |= P_POSTEXIT;	/* stop procfs stepping */
322 
323 	/*
324 	 * Check if any loadable modules need anything done at process exit.
325 	 * e.g. SYSV IPC stuff
326 	 * XXX what if one of these generates an error?
327 	 */
328 	p->p_xstat = rv;
329 	EVENTHANDLER_INVOKE(process_exit, p);
330 
331 	/*
332 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
333 	 *	Maybe we should move everything to use eventhandler.
334 	 */
335 	TAILQ_FOREACH(ep, &exit_list, next)
336 		(*ep->function)(td);
337 
338 	if (p->p_flags & P_PROFIL)
339 		stopprofclock(p);
340 
341 	SIGEMPTYSET(p->p_siglist);
342 	SIGEMPTYSET(lp->lwp_siglist);
343 	if (timevalisset(&p->p_realtimer.it_value))
344 		callout_stop_sync(&p->p_ithandle);
345 
346 	/*
347 	 * Reset any sigio structures pointing to us as a result of
348 	 * F_SETOWN with our pid.
349 	 */
350 	funsetownlst(&p->p_sigiolst);
351 
352 	/*
353 	 * Close open files and release open-file table.
354 	 * This may block!
355 	 */
356 	fdfree(p, NULL);
357 
358 	if(p->p_leader->p_peers) {
359 		q = p->p_leader;
360 		while(q->p_peers != p)
361 			q = q->p_peers;
362 		q->p_peers = p->p_peers;
363 		wakeup((caddr_t)p->p_leader);
364 	}
365 
366 	/*
367 	 * XXX Shutdown SYSV semaphores
368 	 */
369 	semexit(p);
370 
371 	KKASSERT(p->p_numposixlocks == 0);
372 
373 	/* The next two chunks should probably be moved to vmspace_exit. */
374 	vm = p->p_vmspace;
375 
376 	/*
377 	 * Clean up data related to virtual kernel operation.  Clean up
378 	 * any vkernel context related to the current lwp now so we can
379 	 * destroy p_vkernel.
380 	 */
381 	if (p->p_vkernel) {
382 		vkernel_lwp_exit(lp);
383 		vkernel_exit(p);
384 	}
385 
386 	/*
387 	 * Release user portion of address space.
388 	 * This releases references to vnodes,
389 	 * which could cause I/O if the file has been unlinked.
390 	 * Need to do this early enough that we can still sleep.
391 	 * Can't free the entire vmspace as the kernel stack
392 	 * may be mapped within that space also.
393 	 *
394 	 * Processes sharing the same vmspace may exit in one order, and
395 	 * get cleaned up by vmspace_exit() in a different order.  The
396 	 * last exiting process to reach this point releases as much of
397 	 * the environment as it can, and the last process cleaned up
398 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
399 	 * remainder.
400 	 */
401 	vmspace_exitbump(vm);
402 	sysref_put(&vm->vm_sysref);
403 
404 	if (SESS_LEADER(p)) {
405 		struct session *sp = p->p_session;
406 
407 		if (sp->s_ttyvp) {
408 			/*
409 			 * We are the controlling process.  Signal the
410 			 * foreground process group, drain the controlling
411 			 * terminal, and revoke access to the controlling
412 			 * terminal.
413 			 *
414 			 * NOTE: while waiting for the process group to exit
415 			 * it is possible that one of the processes in the
416 			 * group will revoke the tty, so the ttyclosesession()
417 			 * function will re-check sp->s_ttyvp.
418 			 */
419 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
420 				if (sp->s_ttyp->t_pgrp)
421 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
422 				ttywait(sp->s_ttyp);
423 				ttyclosesession(sp, 1); /* also revoke */
424 			}
425 			/*
426 			 * Release the tty.  If someone has it open via
427 			 * /dev/tty then close it (since they no longer can
428 			 * once we've NULL'd it out).
429 			 */
430 			ttyclosesession(sp, 0);
431 
432 			/*
433 			 * s_ttyp is not zero'd; we use this to indicate
434 			 * that the session once had a controlling terminal.
435 			 * (for logging and informational purposes)
436 			 */
437 		}
438 		sp->s_leader = NULL;
439 	}
440 	fixjobc(p, p->p_pgrp, 0);
441 	(void)acct_process(p);
442 #ifdef KTRACE
443 	/*
444 	 * release trace file
445 	 */
446 	if (p->p_tracenode)
447 		ktrdestroy(&p->p_tracenode);
448 	p->p_traceflag = 0;
449 #endif
450 	/*
451 	 * Release reference to text vnode
452 	 */
453 	if ((vtmp = p->p_textvp) != NULL) {
454 		p->p_textvp = NULL;
455 		vrele(vtmp);
456 	}
457 
458 	/* Release namecache handle to text file */
459 	if (p->p_textnch.ncp)
460 		cache_drop(&p->p_textnch);
461 
462 	/*
463 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
464 	 * will block on the PHOLD() the parent is doing.
465 	 */
466 	if (p->p_flags & P_PPWAIT) {
467 		p->p_flags &= ~P_PPWAIT;
468 		wakeup(p->p_pptr);
469 	}
470 
471 	/*
472 	 * Move the process to the zombie list.  This will block
473 	 * until the process p_lock count reaches 0.  The process will
474 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
475 	 * which is called from cpu_proc_exit().
476 	 */
477 	proc_move_allproc_zombie(p);
478 
479 	/*
480 	 * Reparent all of this process's children to the init process.
481 	 * We must hold initproc->p_token in order to mess with
482 	 * initproc->p_children.  We already hold p->p_token (to remove
483 	 * the children from our list).
484 	 */
485 	q = LIST_FIRST(&p->p_children);
486 	if (q) {
487 		lwkt_gettoken(&initproc->p_token);
488 		while ((q = LIST_FIRST(&p->p_children)) != NULL) {
489 			PHOLD(q);
490 			lwkt_gettoken(&q->p_token);
491 			if (q != LIST_FIRST(&p->p_children)) {
492 				lwkt_reltoken(&q->p_token);
493 				PRELE(q);
494 				continue;
495 			}
496 			LIST_REMOVE(q, p_sibling);
497 			LIST_INSERT_HEAD(&initproc->p_children, q, p_sibling);
498 			q->p_pptr = initproc;
499 			q->p_sigparent = SIGCHLD;
500 
501 			/*
502 			 * Traced processes are killed
503 			 * since their existence means someone is screwing up.
504 			 */
505 			if (q->p_flags & P_TRACED) {
506 				q->p_flags &= ~P_TRACED;
507 				ksignal(q, SIGKILL);
508 			}
509 			lwkt_reltoken(&q->p_token);
510 			PRELE(q);
511 		}
512 		lwkt_reltoken(&initproc->p_token);
513 		wakeup(initproc);
514 	}
515 
516 	/*
517 	 * Save exit status and final rusage info, adding in child rusage
518 	 * info and self times.
519 	 */
520 	calcru_proc(p, &p->p_ru);
521 	ruadd(&p->p_ru, &p->p_cru);
522 
523 	/*
524 	 * notify interested parties of our demise.
525 	 */
526 	KNOTE(&p->p_klist, NOTE_EXIT);
527 
528 	/*
529 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
530 	 * flag set, or if the handler is set to SIG_IGN, notify process 1
531 	 * instead (and hope it will handle this situation).
532 	 */
533 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
534 		proc_reparent(p, initproc);
535 	}
536 
537 	/* lwkt_gettoken(&proc_token); */
538 	q = p->p_pptr;
539 	PHOLD(q);
540 	if (p->p_sigparent && q != initproc) {
541 	        ksignal(q, p->p_sigparent);
542 	} else {
543 	        ksignal(q, SIGCHLD);
544 	}
545 
546 	p->p_flags &= ~P_TRACED;
547 	wakeup(p->p_pptr);
548 
549 	PRELE(q);
550 	/* lwkt_reltoken(&proc_token); */
551 	/* NOTE: p->p_pptr can get ripped out */
552 	/*
553 	 * cpu_exit is responsible for clearing curproc, since
554 	 * it is heavily integrated with the thread/switching sequence.
555 	 *
556 	 * Other substructures are freed from wait().
557 	 */
558 	plimit_free(p);
559 
560 	/*
561 	 * Finally, call machine-dependent code to release as many of the
562 	 * lwp's resources as we can and halt execution of this thread.
563 	 */
564 	lwp_exit(1);
565 }
566 
567 /*
568  * Eventually called by every exiting LWP
569  *
570  * p->p_token must be held.  mplock may be held and will be released.
571  */
572 void
573 lwp_exit(int masterexit)
574 {
575 	struct thread *td = curthread;
576 	struct lwp *lp = td->td_lwp;
577 	struct proc *p = lp->lwp_proc;
578 	int dowake = 0;
579 
580 	/*
581 	 * Release the current user process designation on the process so
582 	 * the userland scheduler can work in someone else.
583 	 */
584 	p->p_usched->release_curproc(lp);
585 
586 	/*
587 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
588 	 * make sure it is set here.
589 	 */
590 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
591 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
592 
593 	/*
594 	 * Clean up any virtualization
595 	 */
596 	if (lp->lwp_vkernel)
597 		vkernel_lwp_exit(lp);
598 
599 	if (td->td_vmm)
600 		vmm_vmdestroy();
601 
602 	/*
603 	 * Clean up select/poll support
604 	 */
605 	kqueue_terminate(&lp->lwp_kqueue);
606 
607 	/*
608 	 * Clean up any syscall-cached ucred
609 	 */
610 	if (td->td_ucred) {
611 		crfree(td->td_ucred);
612 		td->td_ucred = NULL;
613 	}
614 
615 	/*
616 	 * Nobody actually wakes us when the lock
617 	 * count reaches zero, so just wait one tick.
618 	 */
619 	while (lp->lwp_lock > 0)
620 		tsleep(lp, 0, "lwpexit", 1);
621 
622 	/* Hand down resource usage to our proc */
623 	ruadd(&p->p_ru, &lp->lwp_ru);
624 
625 	/*
626 	 * If we don't hold the process until the LWP is reaped wait*()
627 	 * may try to dispose of its vmspace before all the LWPs have
628 	 * actually terminated.
629 	 */
630 	PHOLD(p);
631 
632 	/*
633 	 * Do any remaining work that might block on us.  We should be
634 	 * coded such that further blocking is ok after decrementing
635 	 * p_nthreads but don't take the chance.
636 	 */
637 	dsched_exit_thread(td);
638 	biosched_done(curthread);
639 
640 	/*
641 	 * We have to use the reaper for all the LWPs except the one doing
642 	 * the master exit.  The LWP doing the master exit can just be
643 	 * left on p_lwps and the process reaper will deal with it
644 	 * synchronously, which is much faster.
645 	 *
646 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
647 	 *
648 	 * The process is left held until the reaper calls lwp_dispose() on
649 	 * the lp (after calling lwp_wait()).
650 	 */
651 	if (masterexit == 0) {
652 		int cpu = mycpuid;
653 
654 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
655 		--p->p_nthreads;
656 		if (p->p_nthreads <= 1)
657 			dowake = 1;
658 		lwkt_gettoken(&deadlwp_token[cpu]);
659 		LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
660 		taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
661 		lwkt_reltoken(&deadlwp_token[cpu]);
662 	} else {
663 		--p->p_nthreads;
664 		if (p->p_nthreads <= 1)
665 			dowake = 1;
666 	}
667 
668 	/*
669 	 * Release p_token.  Issue the wakeup() on p_nthreads if necessary,
670 	 * as late as possible to give us a chance to actually deschedule and
671 	 * switch away before another cpu core hits reaplwp().
672 	 */
673 	lwkt_reltoken(&p->p_token);
674 	if (dowake)
675 		wakeup(&p->p_nthreads);
676 
677 	/*
678 	 * Tell the userland scheduler that we are going away
679 	 */
680 	p->p_usched->heuristic_exiting(lp, p);
681 
682 	cpu_lwp_exit();
683 }
684 
685 /*
686  * Wait until a lwp is completely dead.  The final interlock in this drama
687  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
688  * switchout.
689  *
690  * At the point TDF_EXITING is set a complete exit is accomplished when
691  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.  td_mpflags has two
692  * post-switch interlock flags that can be used to wait for the TDF_
693  * flags to clear.
694  *
695  * Returns non-zero on success, and zero if the caller needs to retry
696  * the lwp_wait().
697  */
698 static int
699 lwp_wait(struct lwp *lp)
700 {
701 	struct thread *td = lp->lwp_thread;
702 	u_int mpflags;
703 
704 	KKASSERT(lwkt_preempted_proc() != lp);
705 
706 	/*
707 	 * This bit of code uses the thread destruction interlock
708 	 * managed by lwkt_switch_return() to wait for the lwp's
709 	 * thread to completely disengage.
710 	 *
711 	 * It is possible for us to race another cpu core so we
712 	 * have to do this correctly.
713 	 */
714 	for (;;) {
715 		mpflags = td->td_mpflags;
716 		cpu_ccfence();
717 		if (mpflags & TDF_MP_EXITSIG)
718 			break;
719 		tsleep_interlock(td, 0);
720 		if (atomic_cmpset_int(&td->td_mpflags, mpflags,
721 				      mpflags | TDF_MP_EXITWAIT)) {
722 			tsleep(td, PINTERLOCKED, "lwpxt", 0);
723 		}
724 	}
725 
726 	/*
727 	 * We've already waited for the core exit but there can still
728 	 * be other refs from e.g. process scans and such.
729 	 */
730 	if (lp->lwp_lock > 0) {
731 		tsleep(lp, 0, "lwpwait1", 1);
732 		return(0);
733 	}
734 	if (td->td_refs) {
735 		tsleep(td, 0, "lwpwait2", 1);
736 		return(0);
737 	}
738 
739 	/*
740 	 * Now that we have the thread destruction interlock these flags
741 	 * really should already be cleaned up, keep a check for safety.
742 	 *
743 	 * We can't rip its stack out from under it until TDF_EXITING is
744 	 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
745 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
746 	 * will be cleared temporarily if a thread gets preempted.
747 	 */
748 	while ((td->td_flags & (TDF_RUNNING |
749 			        TDF_PREEMPT_LOCK |
750 			        TDF_EXITING)) != TDF_EXITING) {
751 		tsleep(lp, 0, "lwpwait3", 1);
752 		return (0);
753 	}
754 
755 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
756 		("lwp_wait: td %p (%s) still on run or sleep queue",
757 		td, td->td_comm));
758 	return (1);
759 }
760 
761 /*
762  * Release the resources associated with a lwp.
763  * The lwp must be completely dead.
764  */
765 void
766 lwp_dispose(struct lwp *lp)
767 {
768 	struct thread *td = lp->lwp_thread;
769 
770 	KKASSERT(lwkt_preempted_proc() != lp);
771 	KKASSERT(td->td_refs == 0);
772 	KKASSERT((td->td_flags & (TDF_RUNNING |
773 				  TDF_PREEMPT_LOCK |
774 				  TDF_EXITING)) == TDF_EXITING);
775 
776 	PRELE(lp->lwp_proc);
777 	lp->lwp_proc = NULL;
778 	if (td != NULL) {
779 		td->td_proc = NULL;
780 		td->td_lwp = NULL;
781 		lp->lwp_thread = NULL;
782 		lwkt_free_thread(td);
783 	}
784 	kfree(lp, M_LWP);
785 }
786 
787 /*
788  * MPSAFE
789  */
790 int
791 sys_wait4(struct wait_args *uap)
792 {
793 	struct rusage rusage;
794 	int error, status;
795 
796 	error = kern_wait(uap->pid, (uap->status ? &status : NULL),
797 			  uap->options, (uap->rusage ? &rusage : NULL),
798 			  &uap->sysmsg_result);
799 
800 	if (error == 0 && uap->status)
801 		error = copyout(&status, uap->status, sizeof(*uap->status));
802 	if (error == 0 && uap->rusage)
803 		error = copyout(&rusage, uap->rusage, sizeof(*uap->rusage));
804 	return (error);
805 }
806 
807 /*
808  * wait1()
809  *
810  * wait_args(int pid, int *status, int options, struct rusage *rusage)
811  *
812  * MPALMOSTSAFE
813  */
814 int
815 kern_wait(pid_t pid, int *status, int options, struct rusage *rusage, int *res)
816 {
817 	struct thread *td = curthread;
818 	struct lwp *lp;
819 	struct proc *q = td->td_proc;
820 	struct proc *p, *t;
821 	struct pargs *pa;
822 	struct sigacts *ps;
823 	int nfound, error;
824 
825 	if (pid == 0)
826 		pid = -q->p_pgid;
827 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
828 		return (EINVAL);
829 
830 	lwkt_gettoken(&q->p_token);
831 loop:
832 	/*
833 	 * All sorts of things can change due to blocking so we have to loop
834 	 * all the way back up here.
835 	 *
836 	 * The problem is that if a process group is stopped and the parent
837 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
838 	 * of the child and then stop itself when it tries to return from the
839 	 * system call.  When the process group is resumed the parent will
840 	 * then get the STOP status even though the child has now resumed
841 	 * (a followup wait*() will get the CONT status).
842 	 *
843 	 * Previously the CONT would overwrite the STOP because the tstop
844 	 * was handled within tsleep(), and the parent would only see
845 	 * the CONT when both are stopped and continued together.  This little
846 	 * two-line hack restores this effect.
847 	 */
848 	while (q->p_stat == SSTOP)
849             tstop();
850 
851 	nfound = 0;
852 
853 	/*
854 	 * Loop on children.
855 	 *
856 	 * NOTE: We don't want to break q's p_token in the loop for the
857 	 *	 case where no children are found or we risk breaking the
858 	 *	 interlock between child and parent.
859 	 */
860 	LIST_FOREACH(p, &q->p_children, p_sibling) {
861 		if (pid != WAIT_ANY &&
862 		    p->p_pid != pid && p->p_pgid != -pid) {
863 			continue;
864 		}
865 
866 		/*
867 		 * This special case handles a kthread spawned by linux_clone
868 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
869 		 * functions need to be able to distinguish between waiting
870 		 * on a process and waiting on a thread.  It is a thread if
871 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
872 		 * signifies we want to wait for threads and not processes.
873 		 */
874 		if ((p->p_sigparent != SIGCHLD) ^
875 		    ((options & WLINUXCLONE) != 0)) {
876 			continue;
877 		}
878 
879 		nfound++;
880 		if (p->p_stat == SZOMB) {
881 			/*
882 			 * We may go into SZOMB with threads still present.
883 			 * We must wait for them to exit before we can reap
884 			 * the master thread, otherwise we may race reaping
885 			 * non-master threads.
886 			 *
887 			 * Only this routine can remove a process from
888 			 * the zombie list and destroy it, use PACQUIREZOMB()
889 			 * to serialize us and loop if it blocks (interlocked
890 			 * by the parent's q->p_token).
891 			 *
892 			 * WARNING!  (p) can be invalid when PHOLDZOMB(p)
893 			 *	     returns non-zero.  Be sure not to
894 			 *	     mess with it.
895 			 */
896 			if (PHOLDZOMB(p))
897 				goto loop;
898 			lwkt_gettoken(&p->p_token);
899 			if (p->p_pptr != q) {
900 				lwkt_reltoken(&p->p_token);
901 				PRELEZOMB(p);
902 				goto loop;
903 			}
904 			while (p->p_nthreads > 0) {
905 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
906 			}
907 
908 			/*
909 			 * Reap any LWPs left in p->p_lwps.  This is usually
910 			 * just the last LWP.  This must be done before
911 			 * we loop on p_lock since the lwps hold a ref on
912 			 * it as a vmspace interlock.
913 			 *
914 			 * Once that is accomplished p_nthreads had better
915 			 * be zero.
916 			 */
917 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
918 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
919 				reaplwp(lp);
920 			}
921 			KKASSERT(p->p_nthreads == 0);
922 
923 			/*
924 			 * Don't do anything really bad until all references
925 			 * to the process go away.  This may include other
926 			 * LWPs which are still in the process of being
927 			 * reaped.  We can't just pull the rug out from under
928 			 * them because they may still be using the VM space.
929 			 *
930 			 * Certain kernel facilities such as /proc will also
931 			 * put a hold on the process for short periods of
932 			 * time.
933 			 */
934 			PRELE(p);
935 			PSTALL(p, "reap3", 0);
936 
937 			/* Take care of our return values. */
938 			*res = p->p_pid;
939 
940 			if (status)
941 				*status = p->p_xstat;
942 			if (rusage)
943 				*rusage = p->p_ru;
944 			/*
945 			 * If we got the child via a ptrace 'attach',
946 			 * we need to give it back to the old parent.
947 			 */
948 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
949 				PHOLD(p);
950 				p->p_oppid = 0;
951 				proc_reparent(p, t);
952 				ksignal(t, SIGCHLD);
953 				wakeup((caddr_t)t);
954 				error = 0;
955 				PRELE(t);
956 				lwkt_reltoken(&p->p_token);
957 				PRELEZOMB(p);
958 				goto done;
959 			}
960 
961 			/*
962 			 * Unlink the proc from its process group so that
963 			 * the following operations won't lead to an
964 			 * inconsistent state for processes running down
965 			 * the zombie list.
966 			 */
967 			proc_remove_zombie(p);
968 			lwkt_reltoken(&p->p_token);
969 			leavepgrp(p);
970 
971 			p->p_xstat = 0;
972 			ruadd(&q->p_cru, &p->p_ru);
973 
974 			/*
975 			 * Decrement the count of procs running with this uid.
976 			 */
977 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
978 
979 			/*
980 			 * Free up credentials.
981 			 */
982 			crfree(p->p_ucred);
983 			p->p_ucred = NULL;
984 
985 			/*
986 			 * Remove unused arguments
987 			 */
988 			pa = p->p_args;
989 			p->p_args = NULL;
990 			if (pa && refcount_release(&pa->ar_ref)) {
991 				kfree(pa, M_PARGS);
992 				pa = NULL;
993 			}
994 
995 			ps = p->p_sigacts;
996 			p->p_sigacts = NULL;
997 			if (ps && refcount_release(&ps->ps_refcnt)) {
998 				kfree(ps, M_SUBPROC);
999 				ps = NULL;
1000 			}
1001 
1002 			/*
1003 			 * Our exitingcount was incremented when the process
1004 			 * became a zombie, now that the process has been
1005 			 * removed from (almost) all lists we should be able
1006 			 * to safely destroy its vmspace.  Wait for any current
1007 			 * holders to go away (so the vmspace remains stable),
1008 			 * then scrap it.
1009 			 */
1010 			PSTALL(p, "reap4", 0);
1011 			vmspace_exitfree(p);
1012 			PSTALL(p, "reap5", 0);
1013 
1014 			/*
1015 			 * NOTE: We have to officially release ZOMB in order
1016 			 *	 to ensure that a racing thread in kern_wait()
1017 			 *	 which blocked on ZOMB is woken up.
1018 			 */
1019 			PHOLD(p);
1020 			PRELEZOMB(p);
1021 			kfree(p, M_PROC);
1022 			atomic_add_int(&nprocs, -1);
1023 			error = 0;
1024 			goto done;
1025 		}
1026 		if (p->p_stat == SSTOP && (p->p_flags & P_WAITED) == 0 &&
1027 		    ((p->p_flags & P_TRACED) || (options & WUNTRACED))) {
1028 			PHOLD(p);
1029 			lwkt_gettoken(&p->p_token);
1030 			if (p->p_pptr != q) {
1031 				lwkt_reltoken(&p->p_token);
1032 				PRELE(p);
1033 				goto loop;
1034 			}
1035 			if (p->p_stat != SSTOP ||
1036 			    (p->p_flags & P_WAITED) != 0 ||
1037 			    ((p->p_flags & P_TRACED) == 0 &&
1038 			     (options & WUNTRACED) == 0)) {
1039 				lwkt_reltoken(&p->p_token);
1040 				PRELE(p);
1041 				goto loop;
1042 			}
1043 
1044 			p->p_flags |= P_WAITED;
1045 
1046 			*res = p->p_pid;
1047 			if (status)
1048 				*status = W_STOPCODE(p->p_xstat);
1049 			/* Zero rusage so we get something consistent. */
1050 			if (rusage)
1051 				bzero(rusage, sizeof(*rusage));
1052 			error = 0;
1053 			lwkt_reltoken(&p->p_token);
1054 			PRELE(p);
1055 			goto done;
1056 		}
1057 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1058 			PHOLD(p);
1059 			lwkt_gettoken(&p->p_token);
1060 			if (p->p_pptr != q) {
1061 				lwkt_reltoken(&p->p_token);
1062 				PRELE(p);
1063 				goto loop;
1064 			}
1065 			if ((p->p_flags & P_CONTINUED) == 0) {
1066 				lwkt_reltoken(&p->p_token);
1067 				PRELE(p);
1068 				goto loop;
1069 			}
1070 
1071 			*res = p->p_pid;
1072 			p->p_flags &= ~P_CONTINUED;
1073 
1074 			if (status)
1075 				*status = SIGCONT;
1076 			error = 0;
1077 			lwkt_reltoken(&p->p_token);
1078 			PRELE(p);
1079 			goto done;
1080 		}
1081 	}
1082 	if (nfound == 0) {
1083 		error = ECHILD;
1084 		goto done;
1085 	}
1086 	if (options & WNOHANG) {
1087 		*res = 0;
1088 		error = 0;
1089 		goto done;
1090 	}
1091 
1092 	/*
1093 	 * Wait for signal - interlocked using q->p_token.
1094 	 */
1095 	error = tsleep(q, PCATCH, "wait", 0);
1096 	if (error) {
1097 done:
1098 		lwkt_reltoken(&q->p_token);
1099 		return (error);
1100 	}
1101 	goto loop;
1102 }
1103 
1104 /*
1105  * Change child's parent process to parent.
1106  *
1107  * p_children/p_sibling requires the parent's token, and
1108  * changing pptr requires the child's token, so we have to
1109  * get three tokens to do this operation.  We also need to
1110  * hold pointers that might get ripped out from under us to
1111  * preserve structural integrity.
1112  *
1113  * It is possible to race another reparent or disconnect or other
1114  * similar operation.  We must retry when this situation occurs.
1115  * Once we successfully reparent the process we no longer care
1116  * about any races.
1117  */
1118 void
1119 proc_reparent(struct proc *child, struct proc *parent)
1120 {
1121 	struct proc *opp;
1122 
1123 	PHOLD(parent);
1124 	while ((opp = child->p_pptr) != parent) {
1125 		PHOLD(opp);
1126 		lwkt_gettoken(&opp->p_token);
1127 		lwkt_gettoken(&child->p_token);
1128 		lwkt_gettoken(&parent->p_token);
1129 		if (child->p_pptr != opp) {
1130 			lwkt_reltoken(&parent->p_token);
1131 			lwkt_reltoken(&child->p_token);
1132 			lwkt_reltoken(&opp->p_token);
1133 			PRELE(opp);
1134 			continue;
1135 		}
1136 		LIST_REMOVE(child, p_sibling);
1137 		LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1138 		child->p_pptr = parent;
1139 		lwkt_reltoken(&parent->p_token);
1140 		lwkt_reltoken(&child->p_token);
1141 		lwkt_reltoken(&opp->p_token);
1142 		if (LIST_EMPTY(&opp->p_children))
1143 			wakeup(opp);
1144 		PRELE(opp);
1145 		break;
1146 	}
1147 	PRELE(parent);
1148 }
1149 
1150 /*
1151  * The next two functions are to handle adding/deleting items on the
1152  * exit callout list
1153  *
1154  * at_exit():
1155  * Take the arguments given and put them onto the exit callout list,
1156  * However first make sure that it's not already there.
1157  * returns 0 on success.
1158  */
1159 
1160 int
1161 at_exit(exitlist_fn function)
1162 {
1163 	struct exitlist *ep;
1164 
1165 #ifdef INVARIANTS
1166 	/* Be noisy if the programmer has lost track of things */
1167 	if (rm_at_exit(function))
1168 		kprintf("WARNING: exit callout entry (%p) already present\n",
1169 		    function);
1170 #endif
1171 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1172 	if (ep == NULL)
1173 		return (ENOMEM);
1174 	ep->function = function;
1175 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1176 	return (0);
1177 }
1178 
1179 /*
1180  * Scan the exit callout list for the given item and remove it.
1181  * Returns the number of items removed (0 or 1)
1182  */
1183 int
1184 rm_at_exit(exitlist_fn function)
1185 {
1186 	struct exitlist *ep;
1187 
1188 	TAILQ_FOREACH(ep, &exit_list, next) {
1189 		if (ep->function == function) {
1190 			TAILQ_REMOVE(&exit_list, ep, next);
1191 			kfree(ep, M_ATEXIT);
1192 			return(1);
1193 		}
1194 	}
1195 	return (0);
1196 }
1197 
1198 /*
1199  * LWP reaper related code.
1200  */
1201 static void
1202 reaplwps(void *context, int dummy)
1203 {
1204 	struct lwplist *lwplist = context;
1205 	struct lwp *lp;
1206 	int cpu = mycpuid;
1207 
1208 	lwkt_gettoken(&deadlwp_token[cpu]);
1209 	while ((lp = LIST_FIRST(lwplist))) {
1210 		LIST_REMOVE(lp, u.lwp_reap_entry);
1211 		reaplwp(lp);
1212 	}
1213 	lwkt_reltoken(&deadlwp_token[cpu]);
1214 }
1215 
1216 static void
1217 reaplwp(struct lwp *lp)
1218 {
1219 	while (lwp_wait(lp) == 0)
1220 		;
1221 	lwp_dispose(lp);
1222 }
1223 
1224 static void
1225 deadlwp_init(void)
1226 {
1227 	int cpu;
1228 
1229 	for (cpu = 0; cpu < ncpus; cpu++) {
1230 		lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1231 		LIST_INIT(&deadlwp_list[cpu]);
1232 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1233 					    M_DEVBUF, M_WAITOK);
1234 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1235 	}
1236 }
1237 
1238 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1239