xref: /dflybsd-src/sys/kern/kern_exit.c (revision 7622fe528e67b227ddf51c26bf9c25a47405c8ad)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35  * $FreeBSD: src/sys/kern/kern_exit.c,v 1.92.2.11 2003/01/13 22:51:16 dillon Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/proc.h>
46 #include <sys/ktrace.h>
47 #include <sys/pioctl.h>
48 #include <sys/tty.h>
49 #include <sys/wait.h>
50 #include <sys/vnode.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <sys/taskqueue.h>
54 #include <sys/ptrace.h>
55 #include <sys/acct.h>		/* for acct_process() function prototype */
56 #include <sys/filedesc.h>
57 #include <sys/shm.h>
58 #include <sys/sem.h>
59 #include <sys/jail.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/unistd.h>
62 #include <sys/eventhandler.h>
63 #include <sys/dsched.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <sys/lock.h>
68 #include <vm/pmap.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_extern.h>
71 
72 #include <sys/refcount.h>
73 #include <sys/spinlock2.h>
74 #include <sys/mplock2.h>
75 
76 #include <machine/vmm.h>
77 
78 static void reaplwps(void *context, int dummy);
79 static void reaplwp(struct lwp *lp);
80 static void killlwps(struct lwp *lp);
81 
82 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
83 
84 /*
85  * callout list for things to do at exit time
86  */
87 struct exitlist {
88 	exitlist_fn function;
89 	TAILQ_ENTRY(exitlist) next;
90 };
91 
92 TAILQ_HEAD(exit_list_head, exitlist);
93 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
94 
95 /*
96  * LWP reaper data
97  */
98 static struct task *deadlwp_task[MAXCPU];
99 static struct lwplist deadlwp_list[MAXCPU];
100 static struct lwkt_token deadlwp_token[MAXCPU];
101 
102 /*
103  * exit --
104  *	Death of process.
105  *
106  * SYS_EXIT_ARGS(int rval)
107  */
108 int
109 sys_exit(struct exit_args *uap)
110 {
111 	exit1(W_EXITCODE(uap->rval, 0));
112 	/* NOTREACHED */
113 }
114 
115 /*
116  * Extended exit --
117  *	Death of a lwp or process with optional bells and whistles.
118  */
119 int
120 sys_extexit(struct extexit_args *uap)
121 {
122 	struct proc *p = curproc;
123 	int action, who;
124 	int error;
125 
126 	action = EXTEXIT_ACTION(uap->how);
127 	who = EXTEXIT_WHO(uap->how);
128 
129 	/* Check parameters before we might perform some action */
130 	switch (who) {
131 	case EXTEXIT_PROC:
132 	case EXTEXIT_LWP:
133 		break;
134 	default:
135 		return (EINVAL);
136 	}
137 
138 	switch (action) {
139 	case EXTEXIT_SIMPLE:
140 		break;
141 	case EXTEXIT_SETINT:
142 		error = copyout(&uap->status, uap->addr, sizeof(uap->status));
143 		if (error)
144 			return (error);
145 		break;
146 	default:
147 		return (EINVAL);
148 	}
149 
150 	lwkt_gettoken(&p->p_token);
151 
152 	switch (who) {
153 	case EXTEXIT_LWP:
154 		/*
155 		 * Be sure only to perform a simple lwp exit if there is at
156 		 * least one more lwp in the proc, which will call exit1()
157 		 * later, otherwise the proc will be an UNDEAD and not even a
158 		 * SZOMB!
159 		 */
160 		if (p->p_nthreads > 1) {
161 			lwp_exit(0, NULL);	/* called w/ p_token held */
162 			/* NOT REACHED */
163 		}
164 		/* else last lwp in proc:  do the real thing */
165 		/* FALLTHROUGH */
166 	default:	/* to help gcc */
167 	case EXTEXIT_PROC:
168 		lwkt_reltoken(&p->p_token);
169 		exit1(W_EXITCODE(uap->status, 0));
170 		/* NOTREACHED */
171 	}
172 
173 	/* NOTREACHED */
174 	lwkt_reltoken(&p->p_token);	/* safety */
175 }
176 
177 /*
178  * Kill all lwps associated with the current process except the
179  * current lwp.   Return an error if we race another thread trying to
180  * do the same thing and lose the race.
181  *
182  * If forexec is non-zero the current thread and process flags are
183  * cleaned up so they can be reused.
184  */
185 int
186 killalllwps(int forexec)
187 {
188 	struct lwp *lp = curthread->td_lwp;
189 	struct proc *p = lp->lwp_proc;
190 	int fakestop;
191 
192 	/*
193 	 * Interlock against P_WEXIT.  Only one of the process's thread
194 	 * is allowed to do the master exit.
195 	 */
196 	lwkt_gettoken(&p->p_token);
197 	if (p->p_flags & P_WEXIT) {
198 		lwkt_reltoken(&p->p_token);
199 		return (EALREADY);
200 	}
201 	p->p_flags |= P_WEXIT;
202 	lwkt_gettoken(&lp->lwp_token);
203 
204 	/*
205 	 * Set temporary stopped state in case we are racing a coredump.
206 	 * Otherwise the coredump may hang forever.
207 	 */
208 	if (lp->lwp_mpflags & LWP_MP_WSTOP) {
209 		fakestop = 0;
210 	} else {
211 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
212 		++p->p_nstopped;
213 		fakestop = 1;
214 		wakeup(&p->p_nstopped);
215 	}
216 
217 	/*
218 	 * Interlock with LWP_MP_WEXIT and kill any remaining LWPs
219 	 */
220 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
221 	if (p->p_nthreads > 1)
222 		killlwps(lp);
223 
224 	/*
225 	 * Undo temporary stopped state
226 	 */
227 	if (fakestop && (lp->lwp_mpflags & LWP_MP_WSTOP)) {
228 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
229 		--p->p_nstopped;
230 	}
231 
232 	/*
233 	 * If doing this for an exec, clean up the remaining thread
234 	 * (us) for continuing operation after all the other threads
235 	 * have been killed.
236 	 */
237 	if (forexec) {
238 		atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
239 		p->p_flags &= ~P_WEXIT;
240 	}
241 	lwkt_reltoken(&lp->lwp_token);
242 	lwkt_reltoken(&p->p_token);
243 
244 	return(0);
245 }
246 
247 /*
248  * Kill all LWPs except the current one.  Do not try to signal
249  * LWPs which have exited on their own or have already been
250  * signaled.
251  */
252 static void
253 killlwps(struct lwp *lp)
254 {
255 	struct proc *p = lp->lwp_proc;
256 	struct lwp *tlp;
257 
258 	/*
259 	 * Kill the remaining LWPs.  We must send the signal before setting
260 	 * LWP_MP_WEXIT.  The setting of WEXIT is optional but helps reduce
261 	 * races.  tlp must be held across the call as it might block and
262 	 * allow the target lwp to rip itself out from under our loop.
263 	 */
264 	FOREACH_LWP_IN_PROC(tlp, p) {
265 		LWPHOLD(tlp);
266 		lwkt_gettoken(&tlp->lwp_token);
267 		if ((tlp->lwp_mpflags & LWP_MP_WEXIT) == 0) {
268 			atomic_set_int(&tlp->lwp_mpflags, LWP_MP_WEXIT);
269 			lwpsignal(p, tlp, SIGKILL);
270 		}
271 		lwkt_reltoken(&tlp->lwp_token);
272 		LWPRELE(tlp);
273 	}
274 
275 	/*
276 	 * Wait for everything to clear out.  Also make sure any tstop()s
277 	 * are signalled (we are holding p_token for the interlock).
278 	 */
279 	wakeup(p);
280 	while (p->p_nthreads > 1)
281 		tsleep(&p->p_nthreads, 0, "killlwps", 0);
282 }
283 
284 /*
285  * Exit: deallocate address space and other resources, change proc state
286  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
287  * status and rusage for wait().  Check for child processes and orphan them.
288  */
289 void
290 exit1(int rv)
291 {
292 	struct thread *td = curthread;
293 	struct proc *p = td->td_proc;
294 	struct lwp *lp = td->td_lwp;
295 	struct proc *q;
296 	struct proc *pp;
297 	struct proc *reproc;
298 	struct sysreaper *reap;
299 	struct vmspace *vm;
300 	struct vnode *vtmp;
301 	struct exitlist *ep;
302 	int error;
303 
304 	lwkt_gettoken(&p->p_token);
305 
306 	if (p->p_pid == 1) {
307 		kprintf("init died (signal %d, exit %d)\n",
308 		    WTERMSIG(rv), WEXITSTATUS(rv));
309 		panic("Going nowhere without my init!");
310 	}
311 	varsymset_clean(&p->p_varsymset);
312 	lockuninit(&p->p_varsymset.vx_lock);
313 
314 	/*
315 	 * Kill all lwps associated with the current process, return an
316 	 * error if we race another thread trying to do the same thing
317 	 * and lose the race.
318 	 */
319 	error = killalllwps(0);
320 	if (error) {
321 		lwp_exit(0, NULL);
322 		/* NOT REACHED */
323 	}
324 
325 	/* are we a task leader? */
326 	if (p == p->p_leader) {
327         	struct kill_args killArgs;
328 		killArgs.signum = SIGKILL;
329 		q = p->p_peers;
330 		while(q) {
331 			killArgs.pid = q->p_pid;
332 			/*
333 		         * The interface for kill is better
334 			 * than the internal signal
335 			 */
336 			sys_kill(&killArgs);
337 			q = q->p_peers;
338 		}
339 		while (p->p_peers)
340 			tsleep((caddr_t)p, 0, "exit1", 0);
341 	}
342 
343 #ifdef PGINPROF
344 	vmsizmon();
345 #endif
346 	STOPEVENT(p, S_EXIT, rv);
347 	p->p_flags |= P_POSTEXIT;	/* stop procfs stepping */
348 
349 	/*
350 	 * Check if any loadable modules need anything done at process exit.
351 	 * e.g. SYSV IPC stuff
352 	 * XXX what if one of these generates an error?
353 	 */
354 	p->p_xstat = rv;
355 
356 	/*
357 	 * XXX: imho, the eventhandler stuff is much cleaner than this.
358 	 *	Maybe we should move everything to use eventhandler.
359 	 */
360 	TAILQ_FOREACH(ep, &exit_list, next)
361 		(*ep->function)(td);
362 
363 	if (p->p_flags & P_PROFIL)
364 		stopprofclock(p);
365 
366 	SIGEMPTYSET(p->p_siglist);
367 	SIGEMPTYSET(lp->lwp_siglist);
368 	if (timevalisset(&p->p_realtimer.it_value))
369 		callout_terminate(&p->p_ithandle);
370 
371 	/*
372 	 * Reset any sigio structures pointing to us as a result of
373 	 * F_SETOWN with our pid.
374 	 */
375 	funsetownlst(&p->p_sigiolst);
376 
377 	/*
378 	 * Close open files and release open-file table.
379 	 * This may block!
380 	 */
381 	fdfree(p, NULL);
382 
383 	if (p->p_leader->p_peers) {
384 		q = p->p_leader;
385 		while(q->p_peers != p)
386 			q = q->p_peers;
387 		q->p_peers = p->p_peers;
388 		wakeup((caddr_t)p->p_leader);
389 	}
390 
391 	/*
392 	 * XXX Shutdown SYSV semaphores
393 	 */
394 	semexit(p);
395 
396 	/* The next two chunks should probably be moved to vmspace_exit. */
397 	vm = p->p_vmspace;
398 
399 	/*
400 	 * Clean up data related to virtual kernel operation.  Clean up
401 	 * any vkernel context related to the current lwp now so we can
402 	 * destroy p_vkernel.
403 	 */
404 	if (p->p_vkernel) {
405 		vkernel_lwp_exit(lp);
406 		vkernel_exit(p);
407 	}
408 
409 	/*
410 	 * Release the user portion of address space.  The exitbump prevents
411 	 * the vmspace from being completely eradicated (using holdcnt).
412 	 * This releases references to vnodes, which could cause I/O if the
413 	 * file has been unlinked.  We need to do this early enough that
414 	 * we can still sleep.
415 	 *
416 	 * We can't free the entire vmspace as the kernel stack may be mapped
417 	 * within that space also.
418 	 *
419 	 * Processes sharing the same vmspace may exit in one order, and
420 	 * get cleaned up by vmspace_exit() in a different order.  The
421 	 * last exiting process to reach this point releases as much of
422 	 * the environment as it can, and the last process cleaned up
423 	 * by vmspace_exit() (which decrements exitingcnt) cleans up the
424 	 * remainder.
425 	 *
426 	 * NOTE: Releasing p_token around this call is helpful if the
427 	 *	 vmspace had a huge RSS.  Otherwise some other process
428 	 *	 trying to do an allproc or other scan (like 'ps') may
429 	 *	 stall for a long time.
430 	 */
431 	lwkt_reltoken(&p->p_token);
432 	vmspace_relexit(vm);
433 	lwkt_gettoken(&p->p_token);
434 
435 	if (SESS_LEADER(p)) {
436 		struct session *sp = p->p_session;
437 
438 		if (sp->s_ttyvp) {
439 			/*
440 			 * We are the controlling process.  Signal the
441 			 * foreground process group, drain the controlling
442 			 * terminal, and revoke access to the controlling
443 			 * terminal.
444 			 *
445 			 * NOTE: while waiting for the process group to exit
446 			 * it is possible that one of the processes in the
447 			 * group will revoke the tty, so the ttyclosesession()
448 			 * function will re-check sp->s_ttyvp.
449 			 */
450 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
451 				if (sp->s_ttyp->t_pgrp)
452 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
453 				ttywait(sp->s_ttyp);
454 				ttyclosesession(sp, 1); /* also revoke */
455 			}
456 			/*
457 			 * Release the tty.  If someone has it open via
458 			 * /dev/tty then close it (since they no longer can
459 			 * once we've NULL'd it out).
460 			 */
461 			ttyclosesession(sp, 0);
462 
463 			/*
464 			 * s_ttyp is not zero'd; we use this to indicate
465 			 * that the session once had a controlling terminal.
466 			 * (for logging and informational purposes)
467 			 */
468 		}
469 		sp->s_leader = NULL;
470 	}
471 	fixjobc(p, p->p_pgrp, 0);
472 	(void)acct_process(p);
473 #ifdef KTRACE
474 	/*
475 	 * release trace file
476 	 */
477 	if (p->p_tracenode)
478 		ktrdestroy(&p->p_tracenode);
479 	p->p_traceflag = 0;
480 #endif
481 	/*
482 	 * Release reference to text vnode
483 	 */
484 	if ((vtmp = p->p_textvp) != NULL) {
485 		p->p_textvp = NULL;
486 		vrele(vtmp);
487 	}
488 
489 	/* Release namecache handle to text file */
490 	if (p->p_textnch.ncp)
491 		cache_drop(&p->p_textnch);
492 
493 	/*
494 	 * We have to handle PPWAIT here or proc_move_allproc_zombie()
495 	 * will block on the PHOLD() the parent is doing.
496 	 *
497 	 * We are using the flag as an interlock so an atomic op is
498 	 * necessary to synchronize with the parent's cpu.
499 	 */
500 	if (p->p_flags & P_PPWAIT) {
501 		if (p->p_pptr && p->p_pptr->p_upmap)
502 			atomic_add_int(&p->p_pptr->p_upmap->invfork, -1);
503 		atomic_clear_int(&p->p_flags, P_PPWAIT);
504 		wakeup(p->p_pptr);
505 	}
506 
507 	/*
508 	 * Move the process to the zombie list.  This will block
509 	 * until the process p_lock count reaches 0.  The process will
510 	 * not be reaped until TDF_EXITING is set by cpu_thread_exit(),
511 	 * which is called from cpu_proc_exit().
512 	 *
513 	 * Interlock against waiters using p_waitgen.  We increment
514 	 * p_waitgen after completing the move of our process to the
515 	 * zombie list.
516 	 *
517 	 * WARNING: pp becomes stale when we block, clear it now as a
518 	 *	    reminder.
519 	 */
520 	proc_move_allproc_zombie(p);
521 	pp = p->p_pptr;
522 	atomic_add_long(&pp->p_waitgen, 1);
523 	pp = NULL;
524 
525 	/*
526 	 * release controlled reaper for exit if we own it and return the
527 	 * remaining reaper (the one for us), which we will drop after we
528 	 * are done.
529 	 */
530 	reap = reaper_exit(p);
531 
532 	/*
533 	 * Reparent all of this process's children to the init process or
534 	 * to the designated reaper.  We must hold the reaper's p_token in
535 	 * order to safely mess with p_children.
536 	 *
537 	 * We already hold p->p_token (to remove the children from our list).
538 	 */
539 	reproc = NULL;
540 	q = LIST_FIRST(&p->p_children);
541 	if (q) {
542 		reproc = reaper_get(reap);
543 		lwkt_gettoken(&reproc->p_token);
544 		while ((q = LIST_FIRST(&p->p_children)) != NULL) {
545 			PHOLD(q);
546 			lwkt_gettoken(&q->p_token);
547 			if (q != LIST_FIRST(&p->p_children)) {
548 				lwkt_reltoken(&q->p_token);
549 				PRELE(q);
550 				continue;
551 			}
552 			LIST_REMOVE(q, p_sibling);
553 			LIST_INSERT_HEAD(&reproc->p_children, q, p_sibling);
554 			q->p_pptr = reproc;
555 			q->p_ppid = reproc->p_pid;
556 			q->p_sigparent = SIGCHLD;
557 
558 			/*
559 			 * Traced processes are killed
560 			 * since their existence means someone is screwing up.
561 			 */
562 			if (q->p_flags & P_TRACED) {
563 				q->p_flags &= ~P_TRACED;
564 				ksignal(q, SIGKILL);
565 			}
566 			lwkt_reltoken(&q->p_token);
567 			PRELE(q);
568 		}
569 		lwkt_reltoken(&reproc->p_token);
570 		wakeup(reproc);
571 	}
572 
573 	/*
574 	 * Save exit status and final rusage info.  We no longer add
575 	 * child rusage info into self times, wait4() and kern_wait()
576 	 * handles it in order to properly support wait6().
577 	 */
578 	calcru_proc(p, &p->p_ru);
579 	/*ruadd(&p->p_ru, &p->p_cru); REMOVED */
580 
581 	/*
582 	 * notify interested parties of our demise.
583 	 */
584 	KNOTE(&p->p_klist, NOTE_EXIT);
585 
586 	/*
587 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
588 	 * flag set, or if the handler is set to SIG_IGN, notify the reaper
589 	 * instead (it will handle this situation).
590 	 *
591 	 * NOTE: The reaper can still be the parent process.
592 	 *
593 	 * (must reload pp)
594 	 */
595 	if (p->p_pptr->p_sigacts->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
596 		if (reproc == NULL)
597 			reproc = reaper_get(reap);
598 		proc_reparent(p, reproc);
599 	}
600 	if (reproc)
601 		PRELE(reproc);
602 	if (reap)
603 		reaper_drop(reap);
604 
605 	/*
606 	 * Signal (possibly new) parent.
607 	 */
608 	pp = p->p_pptr;
609 	PHOLD(pp);
610 	if (p->p_sigparent && pp != initproc) {
611 		int sig = p->p_sigparent;
612 
613 		if (sig != SIGUSR1 && sig != SIGCHLD)
614 			sig = SIGCHLD;
615 	        ksignal(pp, sig);
616 	} else {
617 	        ksignal(pp, SIGCHLD);
618 	}
619 	p->p_flags &= ~P_TRACED;
620 	PRELE(pp);
621 
622 	/*
623 	 * cpu_exit is responsible for clearing curproc, since
624 	 * it is heavily integrated with the thread/switching sequence.
625 	 *
626 	 * Other substructures are freed from wait().
627 	 */
628 	if (p->p_limit) {
629 		struct plimit *rlimit;
630 
631 		rlimit = p->p_limit;
632 		p->p_limit = NULL;
633 		plimit_free(rlimit);
634 	}
635 
636 	/*
637 	 * Finally, call machine-dependent code to release as many of the
638 	 * lwp's resources as we can and halt execution of this thread.
639 	 *
640 	 * pp is a wild pointer now but still the correct wakeup() target.
641 	 * lwp_exit() only uses it to send the wakeup() signal to the likely
642 	 * parent.  Any reparenting race that occurs will get a signal
643 	 * automatically and not be an issue.
644 	 */
645 	lwp_exit(1, pp);
646 }
647 
648 /*
649  * Eventually called by every exiting LWP
650  *
651  * p->p_token must be held.  mplock may be held and will be released.
652  */
653 void
654 lwp_exit(int masterexit, void *waddr)
655 {
656 	struct thread *td = curthread;
657 	struct lwp *lp = td->td_lwp;
658 	struct proc *p = lp->lwp_proc;
659 	int dowake = 0;
660 
661 	/*
662 	 * Release the current user process designation on the process so
663 	 * the userland scheduler can work in someone else.
664 	 */
665 	p->p_usched->release_curproc(lp);
666 
667 	/*
668 	 * lwp_exit() may be called without setting LWP_MP_WEXIT, so
669 	 * make sure it is set here.
670 	 */
671 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
672 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
673 
674 	/*
675 	 * Clean up any virtualization
676 	 */
677 	if (lp->lwp_vkernel)
678 		vkernel_lwp_exit(lp);
679 
680 	if (td->td_vmm)
681 		vmm_vmdestroy();
682 
683 	/*
684 	 * Clean up select/poll support
685 	 */
686 	kqueue_terminate(&lp->lwp_kqueue);
687 
688 	/*
689 	 * Clean up any syscall-cached ucred or rlimit.
690 	 */
691 	if (td->td_ucred) {
692 		crfree(td->td_ucred);
693 		td->td_ucred = NULL;
694 	}
695 	if (td->td_limit) {
696 		struct plimit *rlimit;
697 
698 		rlimit = td->td_limit;
699 		td->td_limit = NULL;
700 		plimit_free(rlimit);
701         }
702 
703 	/*
704 	 * Cleanup any cached descriptors for this thread
705 	 */
706 	if (p->p_fd)
707 		fexitcache(td);
708 
709 	/*
710 	 * Nobody actually wakes us when the lock
711 	 * count reaches zero, so just wait one tick.
712 	 */
713 	while (lp->lwp_lock > 0)
714 		tsleep(lp, 0, "lwpexit", 1);
715 
716 	/* Hand down resource usage to our proc */
717 	ruadd(&p->p_ru, &lp->lwp_ru);
718 
719 	/*
720 	 * If we don't hold the process until the LWP is reaped wait*()
721 	 * may try to dispose of its vmspace before all the LWPs have
722 	 * actually terminated.
723 	 */
724 	PHOLD(p);
725 
726 	/*
727 	 * Do any remaining work that might block on us.  We should be
728 	 * coded such that further blocking is ok after decrementing
729 	 * p_nthreads but don't take the chance.
730 	 */
731 	dsched_exit_thread(td);
732 	biosched_done(curthread);
733 
734 	/*
735 	 * We have to use the reaper for all the LWPs except the one doing
736 	 * the master exit.  The LWP doing the master exit can just be
737 	 * left on p_lwps and the process reaper will deal with it
738 	 * synchronously, which is much faster.
739 	 *
740 	 * Wakeup anyone waiting on p_nthreads to drop to 1 or 0.
741 	 *
742 	 * The process is left held until the reaper calls lwp_dispose() on
743 	 * the lp (after calling lwp_wait()).
744 	 */
745 	if (masterexit == 0) {
746 		int cpu = mycpuid;
747 
748 		lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
749 		--p->p_nthreads;
750 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
751 			dowake = 1;
752 		lwkt_gettoken(&deadlwp_token[cpu]);
753 		LIST_INSERT_HEAD(&deadlwp_list[cpu], lp, u.lwp_reap_entry);
754 		taskqueue_enqueue(taskqueue_thread[cpu], deadlwp_task[cpu]);
755 		lwkt_reltoken(&deadlwp_token[cpu]);
756 	} else {
757 		--p->p_nthreads;
758 		if ((p->p_flags & P_MAYBETHREADED) && p->p_nthreads <= 1)
759 			dowake = 1;
760 	}
761 
762 	/*
763 	 * We no longer need p_token.
764 	 *
765 	 * Tell the userland scheduler that we are going away
766 	 */
767 	lwkt_reltoken(&p->p_token);
768 	p->p_usched->heuristic_exiting(lp, p);
769 
770 	/*
771 	 * Issue late wakeups after releasing our token to give us a chance
772 	 * to deschedule and switch away before another cpu in a wait*()
773 	 * reaps us.  This is done as late as possible to reduce contention.
774 	 */
775 	if (dowake)
776 		wakeup(&p->p_nthreads);
777 	if (waddr)
778 		wakeup(waddr);
779 
780 	cpu_lwp_exit();
781 }
782 
783 /*
784  * Wait until a lwp is completely dead.  The final interlock in this drama
785  * is when TDF_EXITING is set in cpu_thread_exit() just before the final
786  * switchout.
787  *
788  * At the point TDF_EXITING is set a complete exit is accomplished when
789  * TDF_RUNNING and TDF_PREEMPT_LOCK are both clear.  td_mpflags has two
790  * post-switch interlock flags that can be used to wait for the TDF_
791  * flags to clear.
792  *
793  * Returns non-zero on success, and zero if the caller needs to retry
794  * the lwp_wait().
795  */
796 static int
797 lwp_wait(struct lwp *lp)
798 {
799 	struct thread *td = lp->lwp_thread;
800 	u_int mpflags;
801 
802 	KKASSERT(lwkt_preempted_proc() != lp);
803 
804 	/*
805 	 * This bit of code uses the thread destruction interlock
806 	 * managed by lwkt_switch_return() to wait for the lwp's
807 	 * thread to completely disengage.
808 	 *
809 	 * It is possible for us to race another cpu core so we
810 	 * have to do this correctly.
811 	 */
812 	for (;;) {
813 		mpflags = td->td_mpflags;
814 		cpu_ccfence();
815 		if (mpflags & TDF_MP_EXITSIG)
816 			break;
817 		tsleep_interlock(td, 0);
818 		if (atomic_cmpset_int(&td->td_mpflags, mpflags,
819 				      mpflags | TDF_MP_EXITWAIT)) {
820 			tsleep(td, PINTERLOCKED, "lwpxt", 0);
821 		}
822 	}
823 
824 	/*
825 	 * We've already waited for the core exit but there can still
826 	 * be other refs from e.g. process scans and such.
827 	 */
828 	if (lp->lwp_lock > 0) {
829 		tsleep(lp, 0, "lwpwait1", 1);
830 		return(0);
831 	}
832 	if (td->td_refs) {
833 		tsleep(td, 0, "lwpwait2", 1);
834 		return(0);
835 	}
836 
837 	/*
838 	 * Now that we have the thread destruction interlock these flags
839 	 * really should already be cleaned up, keep a check for safety.
840 	 *
841 	 * We can't rip its stack out from under it until TDF_EXITING is
842 	 * set and both TDF_RUNNING and TDF_PREEMPT_LOCK are clear.
843 	 * TDF_PREEMPT_LOCK must be checked because TDF_RUNNING
844 	 * will be cleared temporarily if a thread gets preempted.
845 	 */
846 	while ((td->td_flags & (TDF_RUNNING |
847 				TDF_RUNQ |
848 			        TDF_PREEMPT_LOCK |
849 			        TDF_EXITING)) != TDF_EXITING) {
850 		tsleep(lp, 0, "lwpwait3", 1);
851 		return (0);
852 	}
853 
854 	KASSERT((td->td_flags & (TDF_RUNQ|TDF_TSLEEPQ)) == 0,
855 		("lwp_wait: td %p (%s) still on run or sleep queue",
856 		td, td->td_comm));
857 	return (1);
858 }
859 
860 /*
861  * Release the resources associated with a lwp.
862  * The lwp must be completely dead.
863  */
864 void
865 lwp_dispose(struct lwp *lp)
866 {
867 	struct thread *td = lp->lwp_thread;
868 
869 	KKASSERT(lwkt_preempted_proc() != lp);
870 	KKASSERT(lp->lwp_lock == 0);
871 	KKASSERT(td->td_refs == 0);
872 	KKASSERT((td->td_flags & (TDF_RUNNING |
873 				  TDF_RUNQ |
874 				  TDF_PREEMPT_LOCK |
875 				  TDF_EXITING)) == TDF_EXITING);
876 
877 	PRELE(lp->lwp_proc);
878 	lp->lwp_proc = NULL;
879 	if (td != NULL) {
880 		td->td_proc = NULL;
881 		td->td_lwp = NULL;
882 		lp->lwp_thread = NULL;
883 		lwkt_free_thread(td);
884 	}
885 	kfree(lp, M_LWP);
886 }
887 
888 int
889 sys_wait4(struct wait_args *uap)
890 {
891 	struct __wrusage wrusage;
892 	int error;
893 	int status;
894 	int options;
895 	id_t id;
896 	idtype_t idtype;
897 
898 	options = uap->options | WEXITED | WTRAPPED;
899 	id = uap->pid;
900 
901 	if (id == WAIT_ANY) {
902 		idtype = P_ALL;
903 	} else if (id == WAIT_MYPGRP) {
904 		idtype = P_PGID;
905 		id = curproc->p_pgid;
906 	} else if (id < 0) {
907 		idtype = P_PGID;
908 		id = -id;
909 	} else {
910 		idtype = P_PID;
911 	}
912 
913 	error = kern_wait(idtype, id, &status, options, &wrusage,
914 			  NULL, &uap->sysmsg_result);
915 
916 	if (error == 0 && uap->status)
917 		error = copyout(&status, uap->status, sizeof(*uap->status));
918 	if (error == 0 && uap->rusage) {
919 		ruadd(&wrusage.wru_self, &wrusage.wru_children);
920 		error = copyout(&wrusage.wru_self, uap->rusage, sizeof(*uap->rusage));
921 	}
922 	return (error);
923 }
924 
925 int
926 sys_wait6(struct wait6_args *uap)
927 {
928 	struct __wrusage wrusage;
929 	siginfo_t info;
930 	siginfo_t *infop;
931 	int error;
932 	int status;
933 	int options;
934 	id_t id;
935 	idtype_t idtype;
936 
937 	/*
938 	 * NOTE: wait6() requires WEXITED and WTRAPPED to be specified if
939 	 *	 desired.
940 	 */
941 	options = uap->options;
942 	idtype = uap->idtype;
943 	id = uap->id;
944 	infop = uap->info ? &info : NULL;
945 
946 	switch(idtype) {
947 	case P_PID:
948 	case P_PGID:
949 		if (id == WAIT_MYPGRP) {
950 			idtype = P_PGID;
951 			id = curproc->p_pgid;
952 		}
953 		break;
954 	default:
955 		/* let kern_wait deal with the remainder */
956 		break;
957 	}
958 
959 	error = kern_wait(idtype, id, &status, options,
960 			  &wrusage, infop, &uap->sysmsg_result);
961 
962 	if (error == 0 && uap->status)
963 		error = copyout(&status, uap->status, sizeof(*uap->status));
964 	if (error == 0 && uap->wrusage)
965 		error = copyout(&wrusage, uap->wrusage, sizeof(*uap->wrusage));
966 	if (error == 0 && uap->info)
967 		error = copyout(&info, uap->info, sizeof(*uap->info));
968 	return (error);
969 }
970 
971 /*
972  * kernel wait*() system call support
973  */
974 int
975 kern_wait(idtype_t idtype, id_t id, int *status, int options,
976 	  struct __wrusage *wrusage, siginfo_t *info, int *res)
977 {
978 	struct thread *td = curthread;
979 	struct lwp *lp;
980 	struct proc *q = td->td_proc;
981 	struct proc *p, *t;
982 	struct ucred *cr;
983 	struct pargs *pa;
984 	struct sigacts *ps;
985 	int nfound, error;
986 	long waitgen;
987 
988 	/*
989 	 * Must not have extraneous options.  Must have at least one
990 	 * matchable option.
991 	 */
992 	if (options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE|WSTOPPED|
993 			WEXITED|WTRAPPED|WNOWAIT)) {
994 		return (EINVAL);
995 	}
996 	if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) {
997 		return (EINVAL);
998 	}
999 
1000 	/*
1001 	 * Protect the q->p_children list
1002 	 */
1003 	lwkt_gettoken(&q->p_token);
1004 loop:
1005 	/*
1006 	 * All sorts of things can change due to blocking so we have to loop
1007 	 * all the way back up here.
1008 	 *
1009 	 * The problem is that if a process group is stopped and the parent
1010 	 * is doing a wait*(..., WUNTRACED, ...), it will see the STOP
1011 	 * of the child and then stop itself when it tries to return from the
1012 	 * system call.  When the process group is resumed the parent will
1013 	 * then get the STOP status even though the child has now resumed
1014 	 * (a followup wait*() will get the CONT status).
1015 	 *
1016 	 * Previously the CONT would overwrite the STOP because the tstop
1017 	 * was handled within tsleep(), and the parent would only see
1018 	 * the CONT when both are stopped and continued together.  This little
1019 	 * two-line hack restores this effect.
1020 	 *
1021 	 * No locks are held so we can safely block the process here.
1022 	 */
1023 	if (STOPLWP(q, td->td_lwp))
1024             tstop();
1025 
1026 	nfound = 0;
1027 
1028 	/*
1029 	 * Loop on children.
1030 	 *
1031 	 * NOTE: We don't want to break q's p_token in the loop for the
1032 	 *	 case where no children are found or we risk breaking the
1033 	 *	 interlock between child and parent.
1034 	 */
1035 	waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1036 	LIST_FOREACH(p, &q->p_children, p_sibling) {
1037 		/*
1038 		 * Filter, (p) will be held on fall-through.  Try to optimize
1039 		 * this to avoid the atomic op until we are pretty sure we
1040 		 * want this process.
1041 		 */
1042 		switch(idtype) {
1043 		case P_ALL:
1044 			PHOLD(p);
1045 			break;
1046 		case P_PID:
1047 			if (p->p_pid != (pid_t)id)
1048 				continue;
1049 			PHOLD(p);
1050 			break;
1051 		case P_PGID:
1052 			if (p->p_pgid != (pid_t)id)
1053 				continue;
1054 			PHOLD(p);
1055 			break;
1056 		case P_SID:
1057 			PHOLD(p);
1058 			if (p->p_session && p->p_session->s_sid != (pid_t)id) {
1059 				PRELE(p);
1060 				continue;
1061 			}
1062 			break;
1063 		case P_UID:
1064 			PHOLD(p);
1065 			if (p->p_ucred->cr_uid != (uid_t)id) {
1066 				PRELE(p);
1067 				continue;
1068 			}
1069 			break;
1070 		case P_GID:
1071 			PHOLD(p);
1072 			if (p->p_ucred->cr_gid != (gid_t)id) {
1073 				PRELE(p);
1074 				continue;
1075 			}
1076 			break;
1077 		case P_JAILID:
1078 			PHOLD(p);
1079 			if (p->p_ucred->cr_prison &&
1080 			    p->p_ucred->cr_prison->pr_id != (int)id) {
1081 				PRELE(p);
1082 				continue;
1083 			}
1084 			break;
1085 		default:
1086 			/* unsupported filter */
1087 			continue;
1088 		}
1089 		/* (p) is held at this point */
1090 
1091 		/*
1092 		 * This special case handles a kthread spawned by linux_clone
1093 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
1094 		 * functions need to be able to distinguish between waiting
1095 		 * on a process and waiting on a thread.  It is a thread if
1096 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
1097 		 * signifies we want to wait for threads and not processes.
1098 		 */
1099 		if ((p->p_sigparent != SIGCHLD) ^
1100 		    ((options & WLINUXCLONE) != 0)) {
1101 			PRELE(p);
1102 			continue;
1103 		}
1104 
1105 		nfound++;
1106 		if (p->p_stat == SZOMB && (options & WEXITED)) {
1107 			/*
1108 			 * We may go into SZOMB with threads still present.
1109 			 * We must wait for them to exit before we can reap
1110 			 * the master thread, otherwise we may race reaping
1111 			 * non-master threads.
1112 			 *
1113 			 * Only this routine can remove a process from
1114 			 * the zombie list and destroy it.
1115 			 */
1116 			if (PHOLDZOMB(p)) {
1117 				PRELE(p);
1118 				goto loop;
1119 			}
1120 			lwkt_gettoken(&p->p_token);
1121 			if (p->p_pptr != q) {
1122 				lwkt_reltoken(&p->p_token);
1123 				PRELE(p);
1124 				PRELEZOMB(p);
1125 				goto loop;
1126 			}
1127 			while (p->p_nthreads > 0) {
1128 				tsleep(&p->p_nthreads, 0, "lwpzomb", hz);
1129 			}
1130 
1131 			/*
1132 			 * Reap any LWPs left in p->p_lwps.  This is usually
1133 			 * just the last LWP.  This must be done before
1134 			 * we loop on p_lock since the lwps hold a ref on
1135 			 * it as a vmspace interlock.
1136 			 *
1137 			 * Once that is accomplished p_nthreads had better
1138 			 * be zero.
1139 			 */
1140 			while ((lp = RB_ROOT(&p->p_lwp_tree)) != NULL) {
1141 				/*
1142 				 * Make sure no one is using this lwp, before
1143 				 * it is removed from the tree.  If we didn't
1144 				 * wait it here, lwp tree iteration with
1145 				 * blocking operation would be broken.
1146 				 */
1147 				while (lp->lwp_lock > 0)
1148 					tsleep(lp, 0, "zomblwp", 1);
1149 				lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
1150 				reaplwp(lp);
1151 			}
1152 			KKASSERT(p->p_nthreads == 0);
1153 
1154 			/*
1155 			 * Don't do anything really bad until all references
1156 			 * to the process go away.  This may include other
1157 			 * LWPs which are still in the process of being
1158 			 * reaped.  We can't just pull the rug out from under
1159 			 * them because they may still be using the VM space.
1160 			 *
1161 			 * Certain kernel facilities such as /proc will also
1162 			 * put a hold on the process for short periods of
1163 			 * time.
1164 			 */
1165 			PRELE(p);		/* from top of loop */
1166 			PSTALL(p, "reap3", 1);	/* 1 ref (for PZOMBHOLD) */
1167 
1168 			/* Take care of our return values. */
1169 			*res = p->p_pid;
1170 
1171 			*status = p->p_xstat;
1172 			wrusage->wru_self = p->p_ru;
1173 			wrusage->wru_children = p->p_cru;
1174 
1175 			if (info) {
1176 				bzero(info, sizeof(*info));
1177 				info->si_errno = 0;
1178 				info->si_signo = SIGCHLD;
1179 				if (WIFEXITED(p->p_xstat)) {
1180 					info->si_code = CLD_EXITED;
1181 					info->si_status =
1182 						WEXITSTATUS(p->p_xstat);
1183 				} else {
1184 					info->si_code = CLD_KILLED;
1185 					info->si_status = WTERMSIG(p->p_xstat);
1186 				}
1187 				info->si_pid = p->p_pid;
1188 				info->si_uid = p->p_ucred->cr_uid;
1189 			}
1190 
1191 			/*
1192 			 * WNOWAIT shortcuts to done here, leaving the
1193 			 * child on the zombie list.
1194 			 */
1195 			if (options & WNOWAIT) {
1196 				lwkt_reltoken(&p->p_token);
1197 				PRELEZOMB(p);
1198 				error = 0;
1199 				goto done;
1200 			}
1201 
1202 			/*
1203 			 * If we got the child via a ptrace 'attach',
1204 			 * we need to give it back to the old parent.
1205 			 */
1206 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
1207 				p->p_oppid = 0;
1208 				proc_reparent(p, t);
1209 				ksignal(t, SIGCHLD);
1210 				wakeup((caddr_t)t);
1211 				PRELE(t);
1212 				lwkt_reltoken(&p->p_token);
1213 				PRELEZOMB(p);
1214 				error = 0;
1215 				goto done;
1216 			}
1217 
1218 			/*
1219 			 * Unlink the proc from its process group so that
1220 			 * the following operations won't lead to an
1221 			 * inconsistent state for processes running down
1222 			 * the zombie list.
1223 			 */
1224 			proc_remove_zombie(p);
1225 			proc_userunmap(p);
1226 			lwkt_reltoken(&p->p_token);
1227 			leavepgrp(p);
1228 
1229 			p->p_xstat = 0;
1230 			ruadd(&q->p_cru, &p->p_ru);
1231 			ruadd(&q->p_cru, &p->p_cru);
1232 
1233 			/*
1234 			 * Decrement the count of procs running with this uid.
1235 			 */
1236 			chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1237 
1238 			/*
1239 			 * Free up credentials.  p_spin is required to
1240 			 * avoid races against allproc scans.
1241 			 */
1242 			spin_lock(&p->p_spin);
1243 			cr = p->p_ucred;
1244 			p->p_ucred = NULL;
1245 			spin_unlock(&p->p_spin);
1246 			crfree(cr);
1247 
1248 			/*
1249 			 * Remove unused arguments
1250 			 */
1251 			pa = p->p_args;
1252 			p->p_args = NULL;
1253 			if (pa && refcount_release(&pa->ar_ref)) {
1254 				kfree(pa, M_PARGS);
1255 				pa = NULL;
1256 			}
1257 
1258 			ps = p->p_sigacts;
1259 			p->p_sigacts = NULL;
1260 			if (ps && refcount_release(&ps->ps_refcnt)) {
1261 				kfree(ps, M_SUBPROC);
1262 				ps = NULL;
1263 			}
1264 
1265 			/*
1266 			 * Our exitingcount was incremented when the process
1267 			 * became a zombie, now that the process has been
1268 			 * removed from (almost) all lists we should be able
1269 			 * to safely destroy its vmspace.  Wait for any current
1270 			 * holders to go away (so the vmspace remains stable),
1271 			 * then scrap it.
1272 			 *
1273 			 * NOTE: Releasing the parent process (q) p_token
1274 			 *	 across the vmspace_exitfree() call is
1275 			 *	 important here to reduce stalls on
1276 			 *	 interactions with (q) (such as
1277 			 *	 fork/exec/wait or 'ps').
1278 			 */
1279 			PSTALL(p, "reap4", 1);
1280 			lwkt_reltoken(&q->p_token);
1281 			vmspace_exitfree(p);
1282 			lwkt_gettoken(&q->p_token);
1283 			PSTALL(p, "reap5", 1);
1284 
1285 			/*
1286 			 * NOTE: We have to officially release ZOMB in order
1287 			 *	 to ensure that a racing thread in kern_wait()
1288 			 *	 which blocked on ZOMB is woken up.
1289 			 */
1290 			PRELEZOMB(p);
1291 			kfree(p->p_uidpcpu, M_SUBPROC);
1292 			kfree(p, M_PROC);
1293 			atomic_add_int(&nprocs, -1);
1294 			error = 0;
1295 			goto done;
1296 		}
1297 
1298 		/*
1299 		 * Process has not yet exited
1300 		 */
1301 		if ((p->p_stat == SSTOP || p->p_stat == SCORE) &&
1302 		    (p->p_flags & P_WAITED) == 0 &&
1303 		    (((p->p_flags & P_TRACED) && (options & WTRAPPED)) ||
1304 		     (options & WSTOPPED))) {
1305 			lwkt_gettoken(&p->p_token);
1306 			if (p->p_pptr != q) {
1307 				lwkt_reltoken(&p->p_token);
1308 				PRELE(p);
1309 				goto loop;
1310 			}
1311 			if ((p->p_stat != SSTOP && p->p_stat != SCORE) ||
1312 			    (p->p_flags & P_WAITED) != 0 ||
1313 			    ((p->p_flags & P_TRACED) == 0 &&
1314 			     (options & WUNTRACED) == 0)) {
1315 				lwkt_reltoken(&p->p_token);
1316 				PRELE(p);
1317 				goto loop;
1318 			}
1319 
1320 			/*
1321 			 * Don't set P_WAITED if WNOWAIT specified, leaving
1322 			 * the process in a waitable state.
1323 			 */
1324 			if ((options & WNOWAIT) == 0)
1325 				p->p_flags |= P_WAITED;
1326 
1327 			*res = p->p_pid;
1328 			*status = W_STOPCODE(p->p_xstat);
1329 			/* Zero rusage so we get something consistent. */
1330 			bzero(wrusage, sizeof(*wrusage));
1331 			error = 0;
1332 			if (info) {
1333 				bzero(info, sizeof(*info));
1334 				if (p->p_flags & P_TRACED)
1335 					info->si_code = CLD_TRAPPED;
1336 				else
1337 					info->si_code = CLD_STOPPED;
1338 				info->si_status = WSTOPSIG(p->p_xstat);
1339 			}
1340 			lwkt_reltoken(&p->p_token);
1341 			PRELE(p);
1342 			goto done;
1343 		}
1344 		if ((options & WCONTINUED) && (p->p_flags & P_CONTINUED)) {
1345 			lwkt_gettoken(&p->p_token);
1346 			if (p->p_pptr != q) {
1347 				lwkt_reltoken(&p->p_token);
1348 				PRELE(p);
1349 				goto loop;
1350 			}
1351 			if ((p->p_flags & P_CONTINUED) == 0) {
1352 				lwkt_reltoken(&p->p_token);
1353 				PRELE(p);
1354 				goto loop;
1355 			}
1356 
1357 			*res = p->p_pid;
1358 
1359 			/*
1360 			 * Don't set P_WAITED if WNOWAIT specified, leaving
1361 			 * the process in a waitable state.
1362 			 */
1363 			if ((options & WNOWAIT) == 0)
1364 				p->p_flags &= ~P_CONTINUED;
1365 
1366 			*status = SIGCONT;
1367 			error = 0;
1368 			if (info) {
1369 				bzero(info, sizeof(*info));
1370 				info->si_code = CLD_CONTINUED;
1371 				info->si_status = WSTOPSIG(p->p_xstat);
1372 			}
1373 			lwkt_reltoken(&p->p_token);
1374 			PRELE(p);
1375 			goto done;
1376 		}
1377 		PRELE(p);
1378 	}
1379 	if (nfound == 0) {
1380 		error = ECHILD;
1381 		goto done;
1382 	}
1383 	if (options & WNOHANG) {
1384 		*res = 0;
1385 		error = 0;
1386 		goto done;
1387 	}
1388 
1389 	/*
1390 	 * Wait for signal - interlocked using q->p_waitgen.
1391 	 */
1392 	error = 0;
1393 	while ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1394 		tsleep_interlock(q, PCATCH);
1395 		waitgen = atomic_fetchadd_long(&q->p_waitgen, 0x80000000);
1396 		if ((waitgen & 0x7FFFFFFF) == (q->p_waitgen & 0x7FFFFFFF)) {
1397 			error = tsleep(q, PCATCH | PINTERLOCKED, "wait", 0);
1398 			break;
1399 		}
1400 	}
1401 	if (error) {
1402 done:
1403 		lwkt_reltoken(&q->p_token);
1404 		return (error);
1405 	}
1406 	goto loop;
1407 }
1408 
1409 /*
1410  * Change child's parent process to parent.
1411  *
1412  * p_children/p_sibling requires the parent's token, and
1413  * changing pptr requires the child's token, so we have to
1414  * get three tokens to do this operation.  We also need to
1415  * hold pointers that might get ripped out from under us to
1416  * preserve structural integrity.
1417  *
1418  * It is possible to race another reparent or disconnect or other
1419  * similar operation.  We must retry when this situation occurs.
1420  * Once we successfully reparent the process we no longer care
1421  * about any races.
1422  */
1423 void
1424 proc_reparent(struct proc *child, struct proc *parent)
1425 {
1426 	struct proc *opp;
1427 
1428 	PHOLD(parent);
1429 	while ((opp = child->p_pptr) != parent) {
1430 		PHOLD(opp);
1431 		lwkt_gettoken(&opp->p_token);
1432 		lwkt_gettoken(&child->p_token);
1433 		lwkt_gettoken(&parent->p_token);
1434 		if (child->p_pptr != opp) {
1435 			lwkt_reltoken(&parent->p_token);
1436 			lwkt_reltoken(&child->p_token);
1437 			lwkt_reltoken(&opp->p_token);
1438 			PRELE(opp);
1439 			continue;
1440 		}
1441 		LIST_REMOVE(child, p_sibling);
1442 		LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1443 		child->p_pptr = parent;
1444 		child->p_ppid = parent->p_pid;
1445 		lwkt_reltoken(&parent->p_token);
1446 		lwkt_reltoken(&child->p_token);
1447 		lwkt_reltoken(&opp->p_token);
1448 		if (LIST_EMPTY(&opp->p_children))
1449 			wakeup(opp);
1450 		PRELE(opp);
1451 		break;
1452 	}
1453 	PRELE(parent);
1454 }
1455 
1456 /*
1457  * The next two functions are to handle adding/deleting items on the
1458  * exit callout list
1459  *
1460  * at_exit():
1461  * Take the arguments given and put them onto the exit callout list,
1462  * However first make sure that it's not already there.
1463  * returns 0 on success.
1464  */
1465 
1466 int
1467 at_exit(exitlist_fn function)
1468 {
1469 	struct exitlist *ep;
1470 
1471 #ifdef INVARIANTS
1472 	/* Be noisy if the programmer has lost track of things */
1473 	if (rm_at_exit(function))
1474 		kprintf("WARNING: exit callout entry (%p) already present\n",
1475 		    function);
1476 #endif
1477 	ep = kmalloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
1478 	if (ep == NULL)
1479 		return (ENOMEM);
1480 	ep->function = function;
1481 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
1482 	return (0);
1483 }
1484 
1485 /*
1486  * Scan the exit callout list for the given item and remove it.
1487  * Returns the number of items removed (0 or 1)
1488  */
1489 int
1490 rm_at_exit(exitlist_fn function)
1491 {
1492 	struct exitlist *ep;
1493 
1494 	TAILQ_FOREACH(ep, &exit_list, next) {
1495 		if (ep->function == function) {
1496 			TAILQ_REMOVE(&exit_list, ep, next);
1497 			kfree(ep, M_ATEXIT);
1498 			return(1);
1499 		}
1500 	}
1501 	return (0);
1502 }
1503 
1504 /*
1505  * LWP reaper related code.
1506  */
1507 static void
1508 reaplwps(void *context, int dummy)
1509 {
1510 	struct lwplist *lwplist = context;
1511 	struct lwp *lp;
1512 	int cpu = mycpuid;
1513 
1514 	lwkt_gettoken(&deadlwp_token[cpu]);
1515 	while ((lp = LIST_FIRST(lwplist))) {
1516 		LIST_REMOVE(lp, u.lwp_reap_entry);
1517 		reaplwp(lp);
1518 	}
1519 	lwkt_reltoken(&deadlwp_token[cpu]);
1520 }
1521 
1522 static void
1523 reaplwp(struct lwp *lp)
1524 {
1525 	while (lwp_wait(lp) == 0)
1526 		;
1527 	lwp_dispose(lp);
1528 }
1529 
1530 static void
1531 deadlwp_init(void)
1532 {
1533 	int cpu;
1534 
1535 	for (cpu = 0; cpu < ncpus; cpu++) {
1536 		lwkt_token_init(&deadlwp_token[cpu], "deadlwpl");
1537 		LIST_INIT(&deadlwp_list[cpu]);
1538 		deadlwp_task[cpu] = kmalloc(sizeof(*deadlwp_task[cpu]),
1539 					    M_DEVBUF, M_WAITOK);
1540 		TASK_INIT(deadlwp_task[cpu], 0, reaplwps, &deadlwp_list[cpu]);
1541 	}
1542 }
1543 
1544 SYSINIT(deadlwpinit, SI_SUB_CONFIGURE, SI_ORDER_ANY, deadlwp_init, NULL);
1545