xref: /dflybsd-src/sys/kern/kern_exec.c (revision dae741e33c840b92a8a53bf9f01157ede145e256)
1 /*
2  * Copyright (c) 1993, David Greenman
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysproto.h>
32 #include <sys/kernel.h>
33 #include <sys/mount.h>
34 #include <sys/filedesc.h>
35 #include <sys/fcntl.h>
36 #include <sys/acct.h>
37 #include <sys/exec.h>
38 #include <sys/imgact.h>
39 #include <sys/imgact_elf.h>
40 #include <sys/kern_syscall.h>
41 #include <sys/wait.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/ktrace.h>
46 #include <sys/signalvar.h>
47 #include <sys/pioctl.h>
48 #include <sys/nlookup.h>
49 #include <sys/sysent.h>
50 #include <sys/shm.h>
51 #include <sys/sysctl.h>
52 #include <sys/vnode.h>
53 #include <sys/vmmeter.h>
54 #include <sys/libkern.h>
55 
56 #include <cpu/lwbuf.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vnode_pager.h>
68 #include <vm/vm_pager.h>
69 
70 #include <sys/user.h>
71 #include <sys/reg.h>
72 
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <sys/mplock2.h>
76 
77 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
78 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
79 
80 static register_t *exec_copyout_strings (struct image_params *);
81 
82 /* XXX This should be vm_size_t. */
83 static u_long ps_strings = PS_STRINGS;
84 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
85 
86 /* XXX This should be vm_size_t. */
87 static u_long usrstack = USRSTACK;
88 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
89 
90 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
91 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
92     &ps_arg_cache_limit, 0, "");
93 
94 int ps_argsopen = 1;
95 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
96 
97 static int ktrace_suid = 0;
98 SYSCTL_INT(_kern, OID_AUTO, ktrace_suid, CTLFLAG_RW, &ktrace_suid, 0, "");
99 
100 void print_execve_args(struct image_args *args);
101 int debug_execve_args = 0;
102 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
103     0, "");
104 
105 /*
106  * Exec arguments object cache
107  */
108 static struct objcache *exec_objcache;
109 
110 static
111 void
112 exec_objcache_init(void *arg __unused)
113 {
114 	int cluster_limit;
115 	size_t limsize;
116 
117 	/*
118 	 * Maximum number of concurrent execs.  This can be limiting on
119 	 * systems with a lot of cpu cores but it also eats a significant
120 	 * amount of memory.
121 	 */
122 	cluster_limit = 16;
123 	limsize = kmem_lim_size();
124 	if (limsize > 7 * 1024)
125 		cluster_limit *= 2;
126 	if (limsize > 15 * 1024)
127 		cluster_limit *= 2;
128 
129 	exec_objcache = objcache_create_mbacked(
130 					M_EXECARGS, PATH_MAX + ARG_MAX,
131 					&cluster_limit, 8,
132 					NULL, NULL, NULL);
133 }
134 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
135 
136 /*
137  * stackgap_random specifies if the stackgap should have a random size added
138  * to it.  It must be a power of 2.  If non-zero, the stack gap will be
139  * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
140  */
141 static int stackgap_random = 1024;
142 static int
143 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
144 {
145 	int error, new_val;
146 	new_val = stackgap_random;
147 	error = sysctl_handle_int(oidp, &new_val, 0, req);
148 	if (error != 0 || req->newptr == NULL)
149 		return (error);
150 	if ((new_val < 0) || (new_val > 16 * PAGE_SIZE) || ! powerof2(new_val))
151 		return (EINVAL);
152 	stackgap_random = new_val;
153 
154 	return(0);
155 }
156 
157 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_UINT,
158 	0, 0, sysctl_kern_stackgap, "IU", "Max random stack gap (power of 2)");
159 
160 void
161 print_execve_args(struct image_args *args)
162 {
163 	char *cp;
164 	int ndx;
165 
166 	cp = args->begin_argv;
167 	for (ndx = 0; ndx < args->argc; ndx++) {
168 		kprintf("\targv[%d]: %s\n", ndx, cp);
169 		while (*cp++ != '\0');
170 	}
171 	for (ndx = 0; ndx < args->envc; ndx++) {
172 		kprintf("\tenvv[%d]: %s\n", ndx, cp);
173 		while (*cp++ != '\0');
174 	}
175 }
176 
177 /*
178  * Each of the items is a pointer to a `const struct execsw', hence the
179  * double pointer here.
180  */
181 static const struct execsw **execsw;
182 
183 /*
184  * Replace current vmspace with a new binary.
185  * Returns 0 on success, > 0 on recoverable error (use as errno).
186  * Returns -1 on lethal error which demands killing of the current
187  * process!
188  */
189 int
190 kern_execve(struct nlookupdata *nd, struct image_args *args)
191 {
192 	struct thread *td = curthread;
193 	struct lwp *lp = td->td_lwp;
194 	struct proc *p = td->td_proc;
195 	register_t *stack_base;
196 	struct pargs *pa;
197 	struct sigacts *ops;
198 	struct sigacts *nps;
199 	int error, len, i;
200 	struct image_params image_params, *imgp;
201 	struct vattr attr;
202 	int (*img_first) (struct image_params *);
203 
204 	if (debug_execve_args) {
205 		kprintf("%s()\n", __func__);
206 		print_execve_args(args);
207 	}
208 
209 	KKASSERT(p);
210 	lwkt_gettoken(&p->p_token);
211 	imgp = &image_params;
212 
213 	/*
214 	 * NOTE: P_INEXEC is handled by exec_new_vmspace() now.  We make
215 	 * no modifications to the process at all until we get there.
216 	 *
217 	 * Note that multiple threads may be trying to exec at the same
218 	 * time.  exec_new_vmspace() handles that too.
219 	 */
220 
221 	/*
222 	 * Initialize part of the common data
223 	 */
224 	imgp->proc = p;
225 	imgp->args = args;
226 	imgp->attr = &attr;
227 	imgp->entry_addr = 0;
228 	imgp->resident = 0;
229 	imgp->vmspace_destroyed = 0;
230 	imgp->interpreted = 0;
231 	imgp->interpreter_name[0] = 0;
232 	imgp->auxargs = NULL;
233 	imgp->vp = NULL;
234 	imgp->firstpage = NULL;
235 	imgp->ps_strings = 0;
236 	imgp->execpath = imgp->freepath = NULL;
237 	imgp->execpathp = 0;
238 	imgp->image_header = NULL;
239 
240 interpret:
241 
242 	/*
243 	 * Translate the file name to a vnode.  Unlock the cache entry to
244 	 * improve parallelism for programs exec'd in parallel.
245 	 */
246 	if ((error = nlookup(nd)) != 0)
247 		goto exec_fail;
248 	error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_EXCLUSIVE, &imgp->vp);
249 	KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
250 	nd->nl_flags &= ~NLC_NCPISLOCKED;
251 	cache_unlock(&nd->nl_nch);
252 	if (error)
253 		goto exec_fail;
254 
255 	/*
256 	 * Check file permissions (also 'opens' file).
257 	 * Include also the top level mount in the check.
258 	 */
259 	error = exec_check_permissions(imgp, nd->nl_nch.mount);
260 	if (error) {
261 		vn_unlock(imgp->vp);
262 		goto exec_fail_dealloc;
263 	}
264 
265 	error = exec_map_first_page(imgp);
266 	vn_unlock(imgp->vp);
267 	if (error)
268 		goto exec_fail_dealloc;
269 
270 	imgp->proc->p_osrel = 0;
271 
272 	if (debug_execve_args && imgp->interpreted) {
273 		kprintf("    target is interpreted -- recursive pass\n");
274 		kprintf("    interpreter: %s\n", imgp->interpreter_name);
275 		print_execve_args(args);
276 	}
277 
278 	/*
279 	 *	If the current process has a special image activator it
280 	 *	wants to try first, call it.   For example, emulating shell
281 	 *	scripts differently.
282 	 */
283 	error = -1;
284 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
285 		error = img_first(imgp);
286 
287 	/*
288 	 *	If the vnode has a registered vmspace, exec the vmspace
289 	 */
290 	if (error == -1 && imgp->vp->v_resident) {
291 		error = exec_resident_imgact(imgp);
292 	}
293 
294 	/*
295 	 *	Loop through the list of image activators, calling each one.
296 	 *	An activator returns -1 if there is no match, 0 on success,
297 	 *	and an error otherwise.
298 	 */
299 	for (i = 0; error == -1 && execsw[i]; ++i) {
300 		if (execsw[i]->ex_imgact == NULL ||
301 		    execsw[i]->ex_imgact == img_first) {
302 			continue;
303 		}
304 		error = (*execsw[i]->ex_imgact)(imgp);
305 	}
306 
307 	if (error) {
308 		if (error == -1)
309 			error = ENOEXEC;
310 		goto exec_fail_dealloc;
311 	}
312 
313 	/*
314 	 * Special interpreter operation, cleanup and loop up to try to
315 	 * activate the interpreter.
316 	 */
317 	if (imgp->interpreted) {
318 		exec_unmap_first_page(imgp);
319 		nlookup_done(nd);
320 		vrele(imgp->vp);
321 		imgp->vp = NULL;
322 		error = nlookup_init(nd, imgp->interpreter_name, UIO_SYSSPACE,
323 					NLC_FOLLOW);
324 		if (error)
325 			goto exec_fail;
326 		goto interpret;
327 	}
328 
329 	/*
330 	 * Do the best to calculate the full path to the image file
331 	 */
332 	if (imgp->auxargs != NULL &&
333 	   ((args->fname != NULL && args->fname[0] == '/') ||
334 	    vn_fullpath(imgp->proc,
335 			imgp->vp,
336 			&imgp->execpath,
337 			&imgp->freepath,
338 			0) != 0))
339 		imgp->execpath = args->fname;
340 
341 	/*
342 	 * Copy out strings (args and env) and initialize stack base
343 	 */
344 	stack_base = exec_copyout_strings(imgp);
345 	p->p_vmspace->vm_minsaddr = (char *)stack_base;
346 
347 	/*
348 	 * If custom stack fixup routine present for this process
349 	 * let it do the stack setup.  If we are running a resident
350 	 * image there is no auxinfo or other image activator context
351 	 * so don't try to add fixups to the stack.
352 	 *
353 	 * Else stuff argument count as first item on stack
354 	 */
355 	if (p->p_sysent->sv_fixup && imgp->resident == 0)
356 		(*p->p_sysent->sv_fixup)(&stack_base, imgp);
357 	else
358 		suword(--stack_base, imgp->args->argc);
359 
360 	/*
361 	 * For security and other reasons, the file descriptor table cannot
362 	 * be shared after an exec.
363 	 */
364 	if (p->p_fd->fd_refcnt > 1) {
365 		struct filedesc *tmp;
366 
367 		error = fdcopy(p, &tmp);
368 		if (error != 0)
369 			goto exec_fail;
370 		fdfree(p, tmp);
371 	}
372 
373 	/*
374 	 * For security and other reasons, signal handlers cannot
375 	 * be shared after an exec. The new proces gets a copy of the old
376 	 * handlers. In execsigs(), the new process will have its signals
377 	 * reset.
378 	 */
379 	ops = p->p_sigacts;
380 	if (ops->ps_refcnt > 1) {
381 		nps = kmalloc(sizeof(*nps), M_SUBPROC, M_WAITOK);
382 		bcopy(ops, nps, sizeof(*nps));
383 		refcount_init(&nps->ps_refcnt, 1);
384 		p->p_sigacts = nps;
385 		if (refcount_release(&ops->ps_refcnt)) {
386 			kfree(ops, M_SUBPROC);
387 			ops = NULL;
388 		}
389 	}
390 
391 	/*
392 	 * For security and other reasons virtual kernels cannot be
393 	 * inherited by an exec.  This also allows a virtual kernel
394 	 * to fork/exec unrelated applications.
395 	 */
396 	if (p->p_vkernel)
397 		vkernel_exit(p);
398 
399 	/* Stop profiling */
400 	stopprofclock(p);
401 
402 	/* close files on exec */
403 	fdcloseexec(p);
404 
405 	/* reset caught signals */
406 	execsigs(p);
407 
408 	/* name this process - nameiexec(p, ndp) */
409 	len = min(nd->nl_nch.ncp->nc_nlen, MAXCOMLEN);
410 	bcopy(nd->nl_nch.ncp->nc_name, p->p_comm, len);
411 	p->p_comm[len] = 0;
412 	bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
413 
414 	/*
415 	 * mark as execed, wakeup the process that vforked (if any) and tell
416 	 * it that it now has its own resources back
417 	 */
418 	p->p_flag |= P_EXEC;
419 	if (p->p_pptr && (p->p_flag & P_PPWAIT)) {
420 		p->p_flag &= ~P_PPWAIT;
421 		wakeup((caddr_t)p->p_pptr);
422 	}
423 
424 	/*
425 	 * Implement image setuid/setgid.
426 	 *
427 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
428 	 * the process is being traced.
429 	 */
430 	if ((((attr.va_mode & VSUID) && p->p_ucred->cr_uid != attr.va_uid) ||
431 	     ((attr.va_mode & VSGID) && p->p_ucred->cr_gid != attr.va_gid)) &&
432 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
433 	    (p->p_flag & P_TRACED) == 0) {
434 		/*
435 		 * Turn off syscall tracing for set-id programs, except for
436 		 * root.  Record any set-id flags first to make sure that
437 		 * we do not regain any tracing during a possible block.
438 		 */
439 		setsugid();
440 		if (p->p_tracenode && ktrace_suid == 0 &&
441 		    priv_check(td, PRIV_ROOT) != 0) {
442 			ktrdestroy(&p->p_tracenode);
443 			p->p_traceflag = 0;
444 		}
445 		/* Close any file descriptors 0..2 that reference procfs */
446 		setugidsafety(p);
447 		/* Make sure file descriptors 0..2 are in use. */
448 		error = fdcheckstd(lp);
449 		if (error != 0)
450 			goto exec_fail_dealloc;
451 		/*
452 		 * Set the new credentials.
453 		 */
454 		cratom(&p->p_ucred);
455 		if (attr.va_mode & VSUID)
456 			change_euid(attr.va_uid);
457 		if (attr.va_mode & VSGID)
458 			p->p_ucred->cr_gid = attr.va_gid;
459 
460 		/*
461 		 * Clear local varsym variables
462 		 */
463 		varsymset_clean(&p->p_varsymset);
464 	} else {
465 		if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
466 		    p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
467 			p->p_flag &= ~P_SUGID;
468 	}
469 
470 	/*
471 	 * Implement correct POSIX saved-id behavior.
472 	 */
473 	if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
474 	    p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
475 		cratom(&p->p_ucred);
476 		p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
477 		p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
478 	}
479 
480 	/*
481 	 * Store the vp for use in procfs
482 	 */
483 	if (p->p_textvp)		/* release old reference */
484 		vrele(p->p_textvp);
485 	p->p_textvp = imgp->vp;
486 	vref(p->p_textvp);
487 
488 	/* Release old namecache handle to text file */
489 	if (p->p_textnch.ncp)
490 		cache_drop(&p->p_textnch);
491 
492 	if (nd->nl_nch.mount)
493 		cache_copy(&nd->nl_nch, &p->p_textnch);
494 
495         /*
496          * Notify others that we exec'd, and clear the P_INEXEC flag
497          * as we're now a bona fide freshly-execed process.
498          */
499 	KNOTE(&p->p_klist, NOTE_EXEC);
500 	p->p_flag &= ~P_INEXEC;
501 
502 	/*
503 	 * If tracing the process, trap to debugger so breakpoints
504 	 * 	can be set before the program executes.
505 	 */
506 	STOPEVENT(p, S_EXEC, 0);
507 
508 	if (p->p_flag & P_TRACED)
509 		ksignal(p, SIGTRAP);
510 
511 	/* clear "fork but no exec" flag, as we _are_ execing */
512 	p->p_acflag &= ~AFORK;
513 
514 	/* Set values passed into the program in registers. */
515 	exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
516 	    imgp->ps_strings);
517 
518 	/* Set the access time on the vnode */
519 	vn_mark_atime(imgp->vp, td);
520 
521 	/*
522 	 * Free any previous argument cache
523 	 */
524 	pa = p->p_args;
525 	p->p_args = NULL;
526 	if (pa && refcount_release(&pa->ar_ref)) {
527 		kfree(pa, M_PARGS);
528 		pa = NULL;
529 	}
530 
531 	/*
532 	 * Cache arguments if they fit inside our allowance
533 	 */
534 	i = imgp->args->begin_envv - imgp->args->begin_argv;
535 	if (sizeof(struct pargs) + i <= ps_arg_cache_limit) {
536 		pa = kmalloc(sizeof(struct pargs) + i, M_PARGS, M_WAITOK);
537 		refcount_init(&pa->ar_ref, 1);
538 		pa->ar_length = i;
539 		bcopy(imgp->args->begin_argv, pa->ar_args, i);
540 		KKASSERT(p->p_args == NULL);
541 		p->p_args = pa;
542 	}
543 
544 exec_fail_dealloc:
545 
546 	/*
547 	 * free various allocated resources
548 	 */
549 	if (imgp->firstpage)
550 		exec_unmap_first_page(imgp);
551 
552 	if (imgp->vp) {
553 		vrele(imgp->vp);
554 		imgp->vp = NULL;
555 	}
556 
557 	if (imgp->freepath)
558 		kfree(imgp->freepath, M_TEMP);
559 
560 	if (error == 0) {
561 		++mycpu->gd_cnt.v_exec;
562 		lwkt_reltoken(&p->p_token);
563 		return (0);
564 	}
565 
566 exec_fail:
567 	/*
568 	 * we're done here, clear P_INEXEC if we were the ones that
569 	 * set it.  Otherwise if vmspace_destroyed is still set we
570 	 * raced another thread and that thread is responsible for
571 	 * clearing it.
572 	 */
573 	if (imgp->vmspace_destroyed & 2)
574 		p->p_flag &= ~P_INEXEC;
575 	lwkt_reltoken(&p->p_token);
576 	if (imgp->vmspace_destroyed) {
577 		/*
578 		 * Sorry, no more process anymore. exit gracefully.
579 		 * However we can't die right here, because our
580 		 * caller might have to clean up, so indicate a
581 		 * lethal error by returning -1.
582 		 */
583 		return(-1);
584 	} else {
585 		return(error);
586 	}
587 }
588 
589 /*
590  * execve() system call.
591  */
592 int
593 sys_execve(struct execve_args *uap)
594 {
595 	struct nlookupdata nd;
596 	struct image_args args;
597 	int error;
598 
599 	bzero(&args, sizeof(args));
600 
601 	error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
602 	if (error == 0) {
603 		error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
604 					uap->argv, uap->envv);
605 	}
606 	if (error == 0)
607 		error = kern_execve(&nd, &args);
608 	nlookup_done(&nd);
609 	exec_free_args(&args);
610 
611 	if (error < 0) {
612 		/* We hit a lethal error condition.  Let's die now. */
613 		exit1(W_EXITCODE(0, SIGABRT));
614 		/* NOTREACHED */
615 	}
616 
617 	/*
618 	 * The syscall result is returned in registers to the new program.
619 	 * Linux will register %edx as an atexit function and we must be
620 	 * sure to set it to 0.  XXX
621 	 */
622 	if (error == 0)
623 		uap->sysmsg_result64 = 0;
624 
625 	return (error);
626 }
627 
628 int
629 exec_map_page(struct image_params *imgp, vm_pindex_t pageno,
630 	      struct lwbuf **plwb, const char **pdata)
631 {
632 	int rv;
633 	vm_page_t ma;
634 	vm_page_t m;
635 	vm_object_t object;
636 
637 	/*
638 	 * The file has to be mappable.
639 	 */
640 	if ((object = imgp->vp->v_object) == NULL)
641 		return (EIO);
642 
643 	if (pageno >= object->size)
644 		return (EIO);
645 
646 	vm_object_hold(object);
647 	m = vm_page_grab(object, pageno, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
648 	while ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
649 		ma = m;
650 
651 		/*
652 		 * get_pages unbusies all the requested pages except the
653 		 * primary page (at index 0 in this case).  The primary
654 		 * page may have been wired during the pagein (e.g. by
655 		 * the buffer cache) so vnode_pager_freepage() must be
656 		 * used to properly release it.
657 		 */
658 		rv = vm_pager_get_page(object, &ma, 1);
659 		m = vm_page_lookup(object, pageno);
660 
661 		if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
662 			if (m) {
663 				vm_page_protect(m, VM_PROT_NONE);
664 				vnode_pager_freepage(m);
665 			}
666 			return EIO;
667 		}
668 	}
669 	vm_page_hold(m);
670 	vm_page_wakeup(m);	/* unbusy the page */
671 	vm_object_drop(object);
672 
673 	*plwb = lwbuf_alloc(m, *plwb);
674 	*pdata = (void *)lwbuf_kva(*plwb);
675 
676 	return (0);
677 }
678 
679 /*
680  * Map the first page of an executable image.
681  *
682  * NOTE: If the mapping fails we have to NULL-out firstpage which may
683  *	 still be pointing to our supplied lwp structure.
684  */
685 int
686 exec_map_first_page(struct image_params *imgp)
687 {
688 	int err;
689 
690 	if (imgp->firstpage)
691 		exec_unmap_first_page(imgp);
692 
693 	imgp->firstpage = &imgp->firstpage_cache;
694 	err = exec_map_page(imgp, 0, &imgp->firstpage, &imgp->image_header);
695 
696 	if (err) {
697 		imgp->firstpage = NULL;
698 		return err;
699 	}
700 
701 	return 0;
702 }
703 
704 void
705 exec_unmap_page(struct lwbuf *lwb)
706 {
707 	vm_page_t m;
708 
709 	crit_enter();
710 	if (lwb != NULL) {
711 		m = lwbuf_page(lwb);
712 		lwbuf_free(lwb);
713 		vm_page_unhold(m);
714 	}
715 	crit_exit();
716 }
717 
718 void
719 exec_unmap_first_page(struct image_params *imgp)
720 {
721 	exec_unmap_page(imgp->firstpage);
722 	imgp->firstpage = NULL;
723 	imgp->image_header = NULL;
724 }
725 
726 /*
727  * Destroy old address space, and allocate a new stack
728  *	The new stack is only SGROWSIZ large because it is grown
729  *	automatically in trap.c.
730  *
731  * This is the point of no return.
732  */
733 int
734 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
735 {
736 	struct vmspace *vmspace = imgp->proc->p_vmspace;
737 	vm_offset_t stack_addr = USRSTACK - maxssiz;
738 	struct proc *p;
739 	vm_map_t map;
740 	int error;
741 
742 	/*
743 	 * Indicate that we cannot gracefully error out any more, kill
744 	 * any other threads present, and set P_INEXEC to indicate that
745 	 * we are now messing with the process structure proper.
746 	 *
747 	 * If killalllwps() races return an error which coupled with
748 	 * vmspace_destroyed will cause us to exit.  This is what we
749 	 * want since another thread is patiently waiting for us to exit
750 	 * in that case.
751 	 */
752 	p = curproc;
753 	imgp->vmspace_destroyed = 1;
754 
755 	if (curthread->td_proc->p_nthreads > 1) {
756 		error = killalllwps(1);
757 		if (error)
758 			return (error);
759 	}
760 	imgp->vmspace_destroyed |= 2;	/* we are responsible for P_INEXEC */
761 	p->p_flag |= P_INEXEC;
762 
763 	/*
764 	 * Blow away entire process VM, if address space not shared,
765 	 * otherwise, create a new VM space so that other threads are
766 	 * not disrupted.  If we are execing a resident vmspace we
767 	 * create a duplicate of it and remap the stack.
768 	 *
769 	 * The exitingcnt test is not strictly necessary but has been
770 	 * included for code sanity (to make the code more deterministic).
771 	 */
772 	map = &vmspace->vm_map;
773 	if (vmcopy) {
774 		vmspace_exec(imgp->proc, vmcopy);
775 		vmspace = imgp->proc->p_vmspace;
776 		pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
777 		map = &vmspace->vm_map;
778 	} else if (vmspace->vm_sysref.refcnt == 1 &&
779 		   vmspace->vm_exitingcnt == 0) {
780 		shmexit(vmspace);
781 		if (vmspace->vm_upcalls)
782 			upc_release(vmspace, ONLY_LWP_IN_PROC(imgp->proc));
783 		pmap_remove_pages(vmspace_pmap(vmspace),
784 			0, VM_MAX_USER_ADDRESS);
785 		vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
786 	} else {
787 		vmspace_exec(imgp->proc, NULL);
788 		vmspace = imgp->proc->p_vmspace;
789 		map = &vmspace->vm_map;
790 	}
791 
792 	/* Allocate a new stack */
793 	error = vm_map_stack(&vmspace->vm_map, stack_addr, (vm_size_t)maxssiz,
794 			     0, VM_PROT_ALL, VM_PROT_ALL, 0);
795 	if (error)
796 		return (error);
797 
798 	/* vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
799 	 * VM_STACK case, but they are still used to monitor the size of the
800 	 * process stack so we can check the stack rlimit.
801 	 */
802 	vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
803 	vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
804 
805 	return(0);
806 }
807 
808 /*
809  * Copy out argument and environment strings from the old process
810  *	address space into the temporary string buffer.
811  */
812 int
813 exec_copyin_args(struct image_args *args, char *fname,
814 		enum exec_path_segflg segflg, char **argv, char **envv)
815 {
816 	char	*argp, *envp;
817 	int	error = 0;
818 	size_t	length;
819 
820 	args->buf = objcache_get(exec_objcache, M_WAITOK);
821 	if (args->buf == NULL)
822 		return (ENOMEM);
823 	args->begin_argv = args->buf;
824 	args->endp = args->begin_argv;
825 	args->space = ARG_MAX;
826 
827 	args->fname = args->buf + ARG_MAX;
828 
829 	/*
830 	 * Copy the file name.
831 	 */
832 	if (segflg == PATH_SYSSPACE) {
833 		error = copystr(fname, args->fname, PATH_MAX, &length);
834 	} else if (segflg == PATH_USERSPACE) {
835 		error = copyinstr(fname, args->fname, PATH_MAX, &length);
836 	}
837 
838 	/*
839 	 * Extract argument strings.  argv may not be NULL.  The argv
840 	 * array is terminated by a NULL entry.  We special-case the
841 	 * situation where argv[0] is NULL by passing { filename, NULL }
842 	 * to the new program to guarentee that the interpreter knows what
843 	 * file to open in case we exec an interpreted file.   Note that
844 	 * a NULL argv[0] terminates the argv[] array.
845 	 *
846 	 * XXX the special-casing of argv[0] is historical and needs to be
847 	 * revisited.
848 	 */
849 	if (argv == NULL)
850 		error = EFAULT;
851 	if (error == 0) {
852 		while ((argp = (caddr_t)(intptr_t)fuword(argv++)) != NULL) {
853 			if (argp == (caddr_t)-1) {
854 				error = EFAULT;
855 				break;
856 			}
857 			error = copyinstr(argp, args->endp,
858 					    args->space, &length);
859 			if (error) {
860 				if (error == ENAMETOOLONG)
861 					error = E2BIG;
862 				break;
863 			}
864 			args->space -= length;
865 			args->endp += length;
866 			args->argc++;
867 		}
868 		if (args->argc == 0 && error == 0) {
869 			length = strlen(args->fname) + 1;
870 			if (length > args->space) {
871 				error = E2BIG;
872 			} else {
873 				bcopy(args->fname, args->endp, length);
874 				args->space -= length;
875 				args->endp += length;
876 				args->argc++;
877 			}
878 		}
879 	}
880 
881 	args->begin_envv = args->endp;
882 
883 	/*
884 	 * extract environment strings.  envv may be NULL.
885 	 */
886 	if (envv && error == 0) {
887 		while ((envp = (caddr_t) (intptr_t) fuword(envv++))) {
888 			if (envp == (caddr_t) -1) {
889 				error = EFAULT;
890 				break;
891 			}
892 			error = copyinstr(envp, args->endp, args->space,
893 			    &length);
894 			if (error) {
895 				if (error == ENAMETOOLONG)
896 					error = E2BIG;
897 				break;
898 			}
899 			args->space -= length;
900 			args->endp += length;
901 			args->envc++;
902 		}
903 	}
904 	return (error);
905 }
906 
907 void
908 exec_free_args(struct image_args *args)
909 {
910 	if (args->buf) {
911 		objcache_put(exec_objcache, args->buf);
912 		args->buf = NULL;
913 	}
914 }
915 
916 /*
917  * Copy strings out to the new process address space, constructing
918  *	new arg and env vector tables. Return a pointer to the base
919  *	so that it can be used as the initial stack pointer.
920  */
921 register_t *
922 exec_copyout_strings(struct image_params *imgp)
923 {
924 	int argc, envc, sgap;
925 	char **vectp;
926 	char *stringp, *destp;
927 	register_t *stack_base;
928 	struct ps_strings *arginfo;
929 	size_t execpath_len;
930 	int szsigcode;
931 
932 	/*
933 	 * Calculate string base and vector table pointers.
934 	 * Also deal with signal trampoline code for this exec type.
935 	 */
936 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
937 		execpath_len = strlen(imgp->execpath) + 1;
938 	else
939 		execpath_len = 0;
940 	arginfo = (struct ps_strings *)PS_STRINGS;
941 	szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
942 	if (stackgap_random != 0)
943 		sgap = ALIGN(karc4random() & (stackgap_random - 1));
944 	else
945 		sgap = 0;
946 	destp =	(caddr_t)arginfo - szsigcode - SPARE_USRSPACE - sgap -
947 	    roundup(execpath_len, sizeof(char *)) -
948 	    roundup((ARG_MAX - imgp->args->space), sizeof(char *));
949 
950 	/*
951 	 * install sigcode
952 	 */
953 	if (szsigcode)
954 		copyout(imgp->proc->p_sysent->sv_sigcode,
955 		    ((caddr_t)arginfo - szsigcode), szsigcode);
956 
957 	/*
958 	 * Copy the image path for the rtld
959 	 */
960 	if (execpath_len != 0) {
961 		imgp->execpathp = (uintptr_t)arginfo
962 				  - szsigcode
963 				  - execpath_len;
964 		copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len);
965 	}
966 
967 	/*
968 	 * If we have a valid auxargs ptr, prepare some room
969 	 * on the stack.
970 	 *
971 	 * The '+ 2' is for the null pointers at the end of each of the
972 	 * arg and env vector sets, and 'AT_COUNT*2' is room for the
973 	 * ELF Auxargs data.
974 	 */
975 	if (imgp->auxargs) {
976 		vectp = (char **)(destp - (imgp->args->argc +
977 			imgp->args->envc + 2 + (AT_COUNT * 2) + execpath_len) *
978 			sizeof(char*));
979 	} else {
980 		vectp = (char **)(destp - (imgp->args->argc +
981 			imgp->args->envc + 2) * sizeof(char*));
982 	}
983 
984 	/*
985 	 * NOTE: don't bother aligning the stack here for GCC 2.x, it will
986 	 * be done in crt1.o.  Note that GCC 3.x aligns the stack in main.
987 	 */
988 
989 	/*
990 	 * vectp also becomes our initial stack base
991 	 */
992 	stack_base = (register_t *)vectp;
993 
994 	stringp = imgp->args->begin_argv;
995 	argc = imgp->args->argc;
996 	envc = imgp->args->envc;
997 
998 	/*
999 	 * Copy out strings - arguments and environment.
1000 	 */
1001 	copyout(stringp, destp, ARG_MAX - imgp->args->space);
1002 
1003 	/*
1004 	 * Fill in "ps_strings" struct for ps, w, etc.
1005 	 */
1006 	suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp);
1007 	suword(&arginfo->ps_nargvstr, argc);
1008 
1009 	/*
1010 	 * Fill in argument portion of vector table.
1011 	 */
1012 	for (; argc > 0; --argc) {
1013 		suword(vectp++, (long)(intptr_t)destp);
1014 		while (*stringp++ != 0)
1015 			destp++;
1016 		destp++;
1017 	}
1018 
1019 	/* a null vector table pointer separates the argp's from the envp's */
1020 	suword(vectp++, 0);
1021 
1022 	suword(&arginfo->ps_envstr, (long)(intptr_t)vectp);
1023 	suword(&arginfo->ps_nenvstr, envc);
1024 
1025 	/*
1026 	 * Fill in environment portion of vector table.
1027 	 */
1028 	for (; envc > 0; --envc) {
1029 		suword(vectp++, (long)(intptr_t)destp);
1030 		while (*stringp++ != 0)
1031 			destp++;
1032 		destp++;
1033 	}
1034 
1035 	/* end of vector table is a null pointer */
1036 	suword(vectp, 0);
1037 
1038 	return (stack_base);
1039 }
1040 
1041 /*
1042  * Check permissions of file to execute.
1043  *	Return 0 for success or error code on failure.
1044  */
1045 int
1046 exec_check_permissions(struct image_params *imgp, struct mount *topmnt)
1047 {
1048 	struct proc *p = imgp->proc;
1049 	struct vnode *vp = imgp->vp;
1050 	struct vattr *attr = imgp->attr;
1051 	int error;
1052 
1053 	/* Get file attributes */
1054 	error = VOP_GETATTR(vp, attr);
1055 	if (error)
1056 		return (error);
1057 
1058 	/*
1059 	 * 1) Check if file execution is disabled for the filesystem that this
1060 	 *	file resides on.
1061 	 * 2) Insure that at least one execute bit is on - otherwise root
1062 	 *	will always succeed, and we don't want to happen unless the
1063 	 *	file really is executable.
1064 	 * 3) Insure that the file is a regular file.
1065 	 */
1066 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1067 	    ((topmnt != NULL) && (topmnt->mnt_flag & MNT_NOEXEC)) ||
1068 	    ((attr->va_mode & 0111) == 0) ||
1069 	    (attr->va_type != VREG)) {
1070 		return (EACCES);
1071 	}
1072 
1073 	/*
1074 	 * Zero length files can't be exec'd
1075 	 */
1076 	if (attr->va_size == 0)
1077 		return (ENOEXEC);
1078 
1079 	/*
1080 	 *  Check for execute permission to file based on current credentials.
1081 	 */
1082 	error = VOP_EACCESS(vp, VEXEC, p->p_ucred);
1083 	if (error)
1084 		return (error);
1085 
1086 	/*
1087 	 * Check number of open-for-writes on the file and deny execution
1088 	 * if there are any.
1089 	 */
1090 	if (vp->v_writecount)
1091 		return (ETXTBSY);
1092 
1093 	/*
1094 	 * Call filesystem specific open routine, which allows us to read,
1095 	 * write, and mmap the file.  Without the VOP_OPEN we can only
1096 	 * stat the file.
1097 	 */
1098 	error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1099 	if (error)
1100 		return (error);
1101 
1102 	return (0);
1103 }
1104 
1105 /*
1106  * Exec handler registration
1107  */
1108 int
1109 exec_register(const struct execsw *execsw_arg)
1110 {
1111 	const struct execsw **es, **xs, **newexecsw;
1112 	int count = 2;	/* New slot and trailing NULL */
1113 
1114 	if (execsw)
1115 		for (es = execsw; *es; es++)
1116 			count++;
1117 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1118 	xs = newexecsw;
1119 	if (execsw)
1120 		for (es = execsw; *es; es++)
1121 			*xs++ = *es;
1122 	*xs++ = execsw_arg;
1123 	*xs = NULL;
1124 	if (execsw)
1125 		kfree(execsw, M_TEMP);
1126 	execsw = newexecsw;
1127 	return 0;
1128 }
1129 
1130 int
1131 exec_unregister(const struct execsw *execsw_arg)
1132 {
1133 	const struct execsw **es, **xs, **newexecsw;
1134 	int count = 1;
1135 
1136 	if (execsw == NULL)
1137 		panic("unregister with no handlers left?");
1138 
1139 	for (es = execsw; *es; es++) {
1140 		if (*es == execsw_arg)
1141 			break;
1142 	}
1143 	if (*es == NULL)
1144 		return ENOENT;
1145 	for (es = execsw; *es; es++)
1146 		if (*es != execsw_arg)
1147 			count++;
1148 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1149 	xs = newexecsw;
1150 	for (es = execsw; *es; es++)
1151 		if (*es != execsw_arg)
1152 			*xs++ = *es;
1153 	*xs = NULL;
1154 	if (execsw)
1155 		kfree(execsw, M_TEMP);
1156 	execsw = newexecsw;
1157 	return 0;
1158 }
1159