xref: /dflybsd-src/sys/kern/kern_exec.c (revision 127a3eb4035f914ee311e89500f4d77abda51b3f)
1 /*
2  * Copyright (c) 1993, David Greenman
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
27  * $DragonFly: src/sys/kern/kern_exec.c,v 1.64 2008/10/26 04:29:19 sephe Exp $
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/sysproto.h>
33 #include <sys/kernel.h>
34 #include <sys/mount.h>
35 #include <sys/filedesc.h>
36 #include <sys/fcntl.h>
37 #include <sys/acct.h>
38 #include <sys/exec.h>
39 #include <sys/imgact.h>
40 #include <sys/imgact_elf.h>
41 #include <sys/kern_syscall.h>
42 #include <sys/wait.h>
43 #include <sys/malloc.h>
44 #include <sys/proc.h>
45 #include <sys/priv.h>
46 #include <sys/ktrace.h>
47 #include <sys/signalvar.h>
48 #include <sys/pioctl.h>
49 #include <sys/nlookup.h>
50 #include <sys/sysent.h>
51 #include <sys/shm.h>
52 #include <sys/sysctl.h>
53 #include <sys/vnode.h>
54 #include <sys/vmmeter.h>
55 #include <sys/libkern.h>
56 
57 #include <cpu/lwbuf.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_param.h>
61 #include <sys/lock.h>
62 #include <vm/pmap.h>
63 #include <vm/vm_page.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_extern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vnode_pager.h>
69 #include <vm/vm_pager.h>
70 
71 #include <sys/user.h>
72 #include <sys/reg.h>
73 
74 #include <sys/refcount.h>
75 #include <sys/thread2.h>
76 #include <sys/mplock2.h>
77 
78 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
79 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
80 
81 static register_t *exec_copyout_strings (struct image_params *);
82 
83 /* XXX This should be vm_size_t. */
84 static u_long ps_strings = PS_STRINGS;
85 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
86 
87 /* XXX This should be vm_size_t. */
88 static u_long usrstack = USRSTACK;
89 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
90 
91 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
92 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW,
93     &ps_arg_cache_limit, 0, "");
94 
95 int ps_argsopen = 1;
96 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
97 
98 static int ktrace_suid = 0;
99 SYSCTL_INT(_kern, OID_AUTO, ktrace_suid, CTLFLAG_RW, &ktrace_suid, 0, "");
100 
101 void print_execve_args(struct image_args *args);
102 int debug_execve_args = 0;
103 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
104     0, "");
105 
106 /*
107  * Exec arguments object cache
108  */
109 static struct objcache *exec_objcache;
110 
111 static
112 void
113 exec_objcache_init(void *arg __unused)
114 {
115 	int cluster_limit;
116 
117 	cluster_limit = 16;	/* up to this many objects */
118 	exec_objcache = objcache_create_mbacked(
119 					M_EXECARGS, PATH_MAX + ARG_MAX,
120 					&cluster_limit,
121 					2,	/* minimal magazine capacity */
122 					NULL, NULL, NULL);
123 }
124 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
125 
126 /*
127  * stackgap_random specifies if the stackgap should have a random size added
128  * to it.  It must be a power of 2.  If non-zero, the stack gap will be
129  * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
130  */
131 static int stackgap_random = 1024;
132 static int
133 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
134 {
135 	int error, new_val;
136 	new_val = stackgap_random;
137 	error = sysctl_handle_int(oidp, &new_val, 0, req);
138 	if (error != 0 || req->newptr == NULL)
139 		return (error);
140 	if ((new_val < 0) || (new_val > 16 * PAGE_SIZE) || ! powerof2(new_val))
141 		return (EINVAL);
142 	stackgap_random = new_val;
143 
144 	return(0);
145 }
146 
147 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_UINT,
148 	0, 0, sysctl_kern_stackgap, "IU", "Max random stack gap (power of 2)");
149 
150 void
151 print_execve_args(struct image_args *args)
152 {
153 	char *cp;
154 	int ndx;
155 
156 	cp = args->begin_argv;
157 	for (ndx = 0; ndx < args->argc; ndx++) {
158 		kprintf("\targv[%d]: %s\n", ndx, cp);
159 		while (*cp++ != '\0');
160 	}
161 	for (ndx = 0; ndx < args->envc; ndx++) {
162 		kprintf("\tenvv[%d]: %s\n", ndx, cp);
163 		while (*cp++ != '\0');
164 	}
165 }
166 
167 /*
168  * Each of the items is a pointer to a `const struct execsw', hence the
169  * double pointer here.
170  */
171 static const struct execsw **execsw;
172 
173 /*
174  * Replace current vmspace with a new binary.
175  * Returns 0 on success, > 0 on recoverable error (use as errno).
176  * Returns -1 on lethal error which demands killing of the current
177  * process!
178  */
179 int
180 kern_execve(struct nlookupdata *nd, struct image_args *args)
181 {
182 	struct thread *td = curthread;
183 	struct lwp *lp = td->td_lwp;
184 	struct proc *p = td->td_proc;
185 	register_t *stack_base;
186 	struct pargs *pa;
187 	struct sigacts *ops;
188 	struct sigacts *nps;
189 	int error, len, i;
190 	struct image_params image_params, *imgp;
191 	struct vattr attr;
192 	int (*img_first) (struct image_params *);
193 
194 	if (debug_execve_args) {
195 		kprintf("%s()\n", __func__);
196 		print_execve_args(args);
197 	}
198 
199 	KKASSERT(p);
200 	lwkt_gettoken(&p->p_token);
201 	imgp = &image_params;
202 
203 	/*
204 	 * NOTE: P_INEXEC is handled by exec_new_vmspace() now.  We make
205 	 * no modifications to the process at all until we get there.
206 	 *
207 	 * Note that multiple threads may be trying to exec at the same
208 	 * time.  exec_new_vmspace() handles that too.
209 	 */
210 
211 	/*
212 	 * Initialize part of the common data
213 	 */
214 	imgp->proc = p;
215 	imgp->args = args;
216 	imgp->attr = &attr;
217 	imgp->entry_addr = 0;
218 	imgp->resident = 0;
219 	imgp->vmspace_destroyed = 0;
220 	imgp->interpreted = 0;
221 	imgp->interpreter_name[0] = 0;
222 	imgp->auxargs = NULL;
223 	imgp->vp = NULL;
224 	imgp->firstpage = NULL;
225 	imgp->ps_strings = 0;
226 	imgp->image_header = NULL;
227 
228 interpret:
229 
230 	/*
231 	 * Translate the file name to a vnode.  Unlock the cache entry to
232 	 * improve parallelism for programs exec'd in parallel.
233 	 */
234 	if ((error = nlookup(nd)) != 0)
235 		goto exec_fail;
236 	error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_EXCLUSIVE, &imgp->vp);
237 	KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
238 	nd->nl_flags &= ~NLC_NCPISLOCKED;
239 	cache_unlock(&nd->nl_nch);
240 	if (error)
241 		goto exec_fail;
242 
243 	/*
244 	 * Check file permissions (also 'opens' file).
245 	 * Include also the top level mount in the check.
246 	 */
247 	error = exec_check_permissions(imgp, nd->nl_nch.mount);
248 	if (error) {
249 		vn_unlock(imgp->vp);
250 		goto exec_fail_dealloc;
251 	}
252 
253 	error = exec_map_first_page(imgp);
254 	vn_unlock(imgp->vp);
255 	if (error)
256 		goto exec_fail_dealloc;
257 
258 	if (debug_execve_args && imgp->interpreted) {
259 		kprintf("    target is interpreted -- recursive pass\n");
260 		kprintf("    interpreter: %s\n", imgp->interpreter_name);
261 		print_execve_args(args);
262 	}
263 
264 	/*
265 	 *	If the current process has a special image activator it
266 	 *	wants to try first, call it.   For example, emulating shell
267 	 *	scripts differently.
268 	 */
269 	error = -1;
270 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
271 		error = img_first(imgp);
272 
273 	/*
274 	 *	If the vnode has a registered vmspace, exec the vmspace
275 	 */
276 	if (error == -1 && imgp->vp->v_resident) {
277 		error = exec_resident_imgact(imgp);
278 	}
279 
280 	/*
281 	 *	Loop through the list of image activators, calling each one.
282 	 *	An activator returns -1 if there is no match, 0 on success,
283 	 *	and an error otherwise.
284 	 */
285 	for (i = 0; error == -1 && execsw[i]; ++i) {
286 		if (execsw[i]->ex_imgact == NULL ||
287 		    execsw[i]->ex_imgact == img_first) {
288 			continue;
289 		}
290 		error = (*execsw[i]->ex_imgact)(imgp);
291 	}
292 
293 	if (error) {
294 		if (error == -1)
295 			error = ENOEXEC;
296 		goto exec_fail_dealloc;
297 	}
298 
299 	/*
300 	 * Special interpreter operation, cleanup and loop up to try to
301 	 * activate the interpreter.
302 	 */
303 	if (imgp->interpreted) {
304 		exec_unmap_first_page(imgp);
305 		nlookup_done(nd);
306 		vrele(imgp->vp);
307 		imgp->vp = NULL;
308 		error = nlookup_init(nd, imgp->interpreter_name, UIO_SYSSPACE,
309 					NLC_FOLLOW);
310 		if (error)
311 			goto exec_fail;
312 		goto interpret;
313 	}
314 
315 	/*
316 	 * Copy out strings (args and env) and initialize stack base
317 	 */
318 	stack_base = exec_copyout_strings(imgp);
319 	p->p_vmspace->vm_minsaddr = (char *)stack_base;
320 
321 	/*
322 	 * If custom stack fixup routine present for this process
323 	 * let it do the stack setup.  If we are running a resident
324 	 * image there is no auxinfo or other image activator context
325 	 * so don't try to add fixups to the stack.
326 	 *
327 	 * Else stuff argument count as first item on stack
328 	 */
329 	if (p->p_sysent->sv_fixup && imgp->resident == 0)
330 		(*p->p_sysent->sv_fixup)(&stack_base, imgp);
331 	else
332 		suword(--stack_base, imgp->args->argc);
333 
334 	/*
335 	 * For security and other reasons, the file descriptor table cannot
336 	 * be shared after an exec.
337 	 */
338 	if (p->p_fd->fd_refcnt > 1) {
339 		struct filedesc *tmp;
340 
341 		tmp = fdcopy(p);
342 		fdfree(p, tmp);
343 	}
344 
345 	/*
346 	 * For security and other reasons, signal handlers cannot
347 	 * be shared after an exec. The new proces gets a copy of the old
348 	 * handlers. In execsigs(), the new process will have its signals
349 	 * reset.
350 	 */
351 	ops = p->p_sigacts;
352 	if (ops->ps_refcnt > 1) {
353 		nps = kmalloc(sizeof(*nps), M_SUBPROC, M_WAITOK);
354 		bcopy(ops, nps, sizeof(*nps));
355 		refcount_init(&nps->ps_refcnt, 1);
356 		p->p_sigacts = nps;
357 		if (refcount_release(&ops->ps_refcnt)) {
358 			kfree(ops, M_SUBPROC);
359 			ops = NULL;
360 		}
361 	}
362 
363 	/*
364 	 * For security and other reasons virtual kernels cannot be
365 	 * inherited by an exec.  This also allows a virtual kernel
366 	 * to fork/exec unrelated applications.
367 	 */
368 	if (p->p_vkernel)
369 		vkernel_exit(p);
370 
371 	/* Stop profiling */
372 	stopprofclock(p);
373 
374 	/* close files on exec */
375 	fdcloseexec(p);
376 
377 	/* reset caught signals */
378 	execsigs(p);
379 
380 	/* name this process - nameiexec(p, ndp) */
381 	len = min(nd->nl_nch.ncp->nc_nlen, MAXCOMLEN);
382 	bcopy(nd->nl_nch.ncp->nc_name, p->p_comm, len);
383 	p->p_comm[len] = 0;
384 	bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
385 
386 	/*
387 	 * mark as execed, wakeup the process that vforked (if any) and tell
388 	 * it that it now has its own resources back
389 	 */
390 	p->p_flag |= P_EXEC;
391 	if (p->p_pptr && (p->p_flag & P_PPWAIT)) {
392 		p->p_flag &= ~P_PPWAIT;
393 		wakeup((caddr_t)p->p_pptr);
394 	}
395 
396 	/*
397 	 * Implement image setuid/setgid.
398 	 *
399 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
400 	 * the process is being traced.
401 	 */
402 	if ((((attr.va_mode & VSUID) && p->p_ucred->cr_uid != attr.va_uid) ||
403 	     ((attr.va_mode & VSGID) && p->p_ucred->cr_gid != attr.va_gid)) &&
404 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
405 	    (p->p_flag & P_TRACED) == 0) {
406 		/*
407 		 * Turn off syscall tracing for set-id programs, except for
408 		 * root.  Record any set-id flags first to make sure that
409 		 * we do not regain any tracing during a possible block.
410 		 */
411 		setsugid();
412 		if (p->p_tracenode && ktrace_suid == 0 &&
413 		    priv_check(td, PRIV_ROOT) != 0) {
414 			ktrdestroy(&p->p_tracenode);
415 			p->p_traceflag = 0;
416 		}
417 		/* Close any file descriptors 0..2 that reference procfs */
418 		setugidsafety(p);
419 		/* Make sure file descriptors 0..2 are in use. */
420 		error = fdcheckstd(lp);
421 		if (error != 0)
422 			goto exec_fail_dealloc;
423 		/*
424 		 * Set the new credentials.
425 		 */
426 		cratom(&p->p_ucred);
427 		if (attr.va_mode & VSUID)
428 			change_euid(attr.va_uid);
429 		if (attr.va_mode & VSGID)
430 			p->p_ucred->cr_gid = attr.va_gid;
431 
432 		/*
433 		 * Clear local varsym variables
434 		 */
435 		varsymset_clean(&p->p_varsymset);
436 	} else {
437 		if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
438 		    p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
439 			p->p_flag &= ~P_SUGID;
440 	}
441 
442 	/*
443 	 * Implement correct POSIX saved-id behavior.
444 	 */
445 	if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
446 	    p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
447 		cratom(&p->p_ucred);
448 		p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
449 		p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
450 	}
451 
452 	/*
453 	 * Store the vp for use in procfs
454 	 */
455 	if (p->p_textvp)		/* release old reference */
456 		vrele(p->p_textvp);
457 	p->p_textvp = imgp->vp;
458 	vref(p->p_textvp);
459 
460 	/* Release old namecache handle to text file */
461 	if (p->p_textnch.ncp)
462 		cache_drop(&p->p_textnch);
463 
464 	if (nd->nl_nch.mount)
465 		cache_copy(&nd->nl_nch, &p->p_textnch);
466 
467         /*
468          * Notify others that we exec'd, and clear the P_INEXEC flag
469          * as we're now a bona fide freshly-execed process.
470          */
471 	KNOTE(&p->p_klist, NOTE_EXEC);
472 	p->p_flag &= ~P_INEXEC;
473 
474 	/*
475 	 * If tracing the process, trap to debugger so breakpoints
476 	 * 	can be set before the program executes.
477 	 */
478 	STOPEVENT(p, S_EXEC, 0);
479 
480 	if (p->p_flag & P_TRACED)
481 		ksignal(p, SIGTRAP);
482 
483 	/* clear "fork but no exec" flag, as we _are_ execing */
484 	p->p_acflag &= ~AFORK;
485 
486 	/* Set values passed into the program in registers. */
487 	exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
488 	    imgp->ps_strings);
489 
490 	/* Set the access time on the vnode */
491 	vn_mark_atime(imgp->vp, td);
492 
493 	/*
494 	 * Free any previous argument cache
495 	 */
496 	pa = p->p_args;
497 	p->p_args = NULL;
498 	if (pa && refcount_release(&pa->ar_ref)) {
499 		kfree(pa, M_PARGS);
500 		pa = NULL;
501 	}
502 
503 	/*
504 	 * Cache arguments if they fit inside our allowance
505 	 */
506 	i = imgp->args->begin_envv - imgp->args->begin_argv;
507 	if (sizeof(struct pargs) + i <= ps_arg_cache_limit) {
508 		pa = kmalloc(sizeof(struct pargs) + i, M_PARGS, M_WAITOK);
509 		refcount_init(&pa->ar_ref, 1);
510 		pa->ar_length = i;
511 		bcopy(imgp->args->begin_argv, pa->ar_args, i);
512 		KKASSERT(p->p_args == NULL);
513 		p->p_args = pa;
514 	}
515 
516 exec_fail_dealloc:
517 
518 	/*
519 	 * free various allocated resources
520 	 */
521 	if (imgp->firstpage)
522 		exec_unmap_first_page(imgp);
523 
524 	if (imgp->vp) {
525 		vrele(imgp->vp);
526 		imgp->vp = NULL;
527 	}
528 
529 	if (error == 0) {
530 		++mycpu->gd_cnt.v_exec;
531 		lwkt_reltoken(&p->p_token);
532 		return (0);
533 	}
534 
535 exec_fail:
536 	/*
537 	 * we're done here, clear P_INEXEC if we were the ones that
538 	 * set it.  Otherwise if vmspace_destroyed is still set we
539 	 * raced another thread and that thread is responsible for
540 	 * clearing it.
541 	 */
542 	if (imgp->vmspace_destroyed & 2)
543 		p->p_flag &= ~P_INEXEC;
544 	lwkt_reltoken(&p->p_token);
545 	if (imgp->vmspace_destroyed) {
546 		/*
547 		 * Sorry, no more process anymore. exit gracefully.
548 		 * However we can't die right here, because our
549 		 * caller might have to clean up, so indicate a
550 		 * lethal error by returning -1.
551 		 */
552 		return(-1);
553 	} else {
554 		return(error);
555 	}
556 }
557 
558 /*
559  * execve() system call.
560  *
561  * MPALMOSTSAFE
562  */
563 int
564 sys_execve(struct execve_args *uap)
565 {
566 	struct nlookupdata nd;
567 	struct image_args args;
568 	int error;
569 
570 	bzero(&args, sizeof(args));
571 
572 	get_mplock();
573 	error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
574 	if (error == 0) {
575 		error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
576 					uap->argv, uap->envv);
577 	}
578 	if (error == 0)
579 		error = kern_execve(&nd, &args);
580 	nlookup_done(&nd);
581 	exec_free_args(&args);
582 
583 	if (error < 0) {
584 		/* We hit a lethal error condition.  Let's die now. */
585 		exit1(W_EXITCODE(0, SIGABRT));
586 		/* NOTREACHED */
587 	}
588 	rel_mplock();
589 
590 	/*
591 	 * The syscall result is returned in registers to the new program.
592 	 * Linux will register %edx as an atexit function and we must be
593 	 * sure to set it to 0.  XXX
594 	 */
595 	if (error == 0)
596 		uap->sysmsg_result64 = 0;
597 
598 	return (error);
599 }
600 
601 int
602 exec_map_page(struct image_params *imgp, vm_pindex_t pageno,
603 	      struct lwbuf **plwb, const char **pdata)
604 {
605 	int rv;
606 	vm_page_t ma;
607 	vm_page_t m;
608 	vm_object_t object;
609 
610 	/*
611 	 * The file has to be mappable.
612 	 */
613 	if ((object = imgp->vp->v_object) == NULL)
614 		return (EIO);
615 
616 	if (pageno >= object->size)
617 		return (EIO);
618 
619 	m = vm_page_grab(object, pageno, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
620 
621 	lwkt_gettoken(&vm_token);
622 	while ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
623 		ma = m;
624 
625 		/*
626 		 * get_pages unbusies all the requested pages except the
627 		 * primary page (at index 0 in this case).  The primary
628 		 * page may have been wired during the pagein (e.g. by
629 		 * the buffer cache) so vnode_pager_freepage() must be
630 		 * used to properly release it.
631 		 */
632 		rv = vm_pager_get_page(object, &ma, 1);
633 		m = vm_page_lookup(object, pageno);
634 
635 		if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
636 			if (m) {
637 				vm_page_protect(m, VM_PROT_NONE);
638 				vnode_pager_freepage(m);
639 			}
640 			lwkt_reltoken(&vm_token);
641 			return EIO;
642 		}
643 	}
644 	vm_page_hold(m);	/* requires vm_token to be held */
645 	vm_page_wakeup(m);	/* unbusy the page */
646 	lwkt_reltoken(&vm_token);
647 
648 	*plwb = lwbuf_alloc(m, *plwb);
649 	*pdata = (void *)lwbuf_kva(*plwb);
650 
651 	return (0);
652 }
653 
654 int
655 exec_map_first_page(struct image_params *imgp)
656 {
657 	int err;
658 
659 	if (imgp->firstpage)
660 		exec_unmap_first_page(imgp);
661 
662 	imgp->firstpage = &imgp->firstpage_cache;
663 	err = exec_map_page(imgp, 0, &imgp->firstpage, &imgp->image_header);
664 
665 	if (err)
666 		return err;
667 
668 	return 0;
669 }
670 
671 void
672 exec_unmap_page(struct lwbuf *lwb)
673 {
674 	vm_page_t m;
675 
676 	crit_enter();
677 	if (lwb != NULL) {
678 		m = lwbuf_page(lwb);
679 		lwbuf_free(lwb);
680 		vm_page_unhold(m);
681 	}
682 	crit_exit();
683 }
684 
685 void
686 exec_unmap_first_page(struct image_params *imgp)
687 {
688 	exec_unmap_page(imgp->firstpage);
689 	imgp->firstpage = NULL;
690 	imgp->image_header = NULL;
691 }
692 
693 /*
694  * Destroy old address space, and allocate a new stack
695  *	The new stack is only SGROWSIZ large because it is grown
696  *	automatically in trap.c.
697  *
698  * This is the point of no return.
699  */
700 int
701 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
702 {
703 	struct vmspace *vmspace = imgp->proc->p_vmspace;
704 	vm_offset_t stack_addr = USRSTACK - maxssiz;
705 	struct proc *p;
706 	vm_map_t map;
707 	int error;
708 
709 	/*
710 	 * Indicate that we cannot gracefully error out any more, kill
711 	 * any other threads present, and set P_INEXEC to indicate that
712 	 * we are now messing with the process structure proper.
713 	 *
714 	 * If killalllwps() races return an error which coupled with
715 	 * vmspace_destroyed will cause us to exit.  This is what we
716 	 * want since another thread is patiently waiting for us to exit
717 	 * in that case.
718 	 */
719 	p = curproc;
720 	imgp->vmspace_destroyed = 1;
721 
722 	if (curthread->td_proc->p_nthreads > 1) {
723 		error = killalllwps(1);
724 		if (error)
725 			return (error);
726 	}
727 	imgp->vmspace_destroyed |= 2;	/* we are responsible for P_INEXEC */
728 	p->p_flag |= P_INEXEC;
729 
730 	/*
731 	 * Blow away entire process VM, if address space not shared,
732 	 * otherwise, create a new VM space so that other threads are
733 	 * not disrupted.  If we are execing a resident vmspace we
734 	 * create a duplicate of it and remap the stack.
735 	 *
736 	 * The exitingcnt test is not strictly necessary but has been
737 	 * included for code sanity (to make the code more deterministic).
738 	 */
739 	map = &vmspace->vm_map;
740 	if (vmcopy) {
741 		vmspace_exec(imgp->proc, vmcopy);
742 		vmspace = imgp->proc->p_vmspace;
743 		pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
744 		map = &vmspace->vm_map;
745 	} else if (vmspace->vm_sysref.refcnt == 1 &&
746 		   vmspace->vm_exitingcnt == 0) {
747 		shmexit(vmspace);
748 		if (vmspace->vm_upcalls)
749 			upc_release(vmspace, ONLY_LWP_IN_PROC(imgp->proc));
750 		pmap_remove_pages(vmspace_pmap(vmspace),
751 			0, VM_MAX_USER_ADDRESS);
752 		vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
753 	} else {
754 		vmspace_exec(imgp->proc, NULL);
755 		vmspace = imgp->proc->p_vmspace;
756 		map = &vmspace->vm_map;
757 	}
758 
759 	/* Allocate a new stack */
760 	error = vm_map_stack(&vmspace->vm_map, stack_addr, (vm_size_t)maxssiz,
761 			     0, VM_PROT_ALL, VM_PROT_ALL, 0);
762 	if (error)
763 		return (error);
764 
765 	/* vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
766 	 * VM_STACK case, but they are still used to monitor the size of the
767 	 * process stack so we can check the stack rlimit.
768 	 */
769 	vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
770 	vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
771 
772 	return(0);
773 }
774 
775 /*
776  * Copy out argument and environment strings from the old process
777  *	address space into the temporary string buffer.
778  */
779 int
780 exec_copyin_args(struct image_args *args, char *fname,
781 		enum exec_path_segflg segflg, char **argv, char **envv)
782 {
783 	char	*argp, *envp;
784 	int	error = 0;
785 	size_t	length;
786 
787 	args->buf = objcache_get(exec_objcache, M_WAITOK);
788 	if (args->buf == NULL)
789 		return (ENOMEM);
790 	args->begin_argv = args->buf;
791 	args->endp = args->begin_argv;
792 	args->space = ARG_MAX;
793 
794 	args->fname = args->buf + ARG_MAX;
795 
796 	/*
797 	 * Copy the file name.
798 	 */
799 	if (segflg == PATH_SYSSPACE) {
800 		error = copystr(fname, args->fname, PATH_MAX, &length);
801 	} else if (segflg == PATH_USERSPACE) {
802 		error = copyinstr(fname, args->fname, PATH_MAX, &length);
803 	}
804 
805 	/*
806 	 * Extract argument strings.  argv may not be NULL.  The argv
807 	 * array is terminated by a NULL entry.  We special-case the
808 	 * situation where argv[0] is NULL by passing { filename, NULL }
809 	 * to the new program to guarentee that the interpreter knows what
810 	 * file to open in case we exec an interpreted file.   Note that
811 	 * a NULL argv[0] terminates the argv[] array.
812 	 *
813 	 * XXX the special-casing of argv[0] is historical and needs to be
814 	 * revisited.
815 	 */
816 	if (argv == NULL)
817 		error = EFAULT;
818 	if (error == 0) {
819 		while ((argp = (caddr_t)(intptr_t)fuword(argv++)) != NULL) {
820 			if (argp == (caddr_t)-1) {
821 				error = EFAULT;
822 				break;
823 			}
824 			error = copyinstr(argp, args->endp,
825 					    args->space, &length);
826 			if (error) {
827 				if (error == ENAMETOOLONG)
828 					error = E2BIG;
829 				break;
830 			}
831 			args->space -= length;
832 			args->endp += length;
833 			args->argc++;
834 		}
835 		if (args->argc == 0 && error == 0) {
836 			length = strlen(args->fname) + 1;
837 			if (length > args->space) {
838 				error = E2BIG;
839 			} else {
840 				bcopy(args->fname, args->endp, length);
841 				args->space -= length;
842 				args->endp += length;
843 				args->argc++;
844 			}
845 		}
846 	}
847 
848 	args->begin_envv = args->endp;
849 
850 	/*
851 	 * extract environment strings.  envv may be NULL.
852 	 */
853 	if (envv && error == 0) {
854 		while ((envp = (caddr_t) (intptr_t) fuword(envv++))) {
855 			if (envp == (caddr_t) -1) {
856 				error = EFAULT;
857 				break;
858 			}
859 			error = copyinstr(envp, args->endp, args->space,
860 			    &length);
861 			if (error) {
862 				if (error == ENAMETOOLONG)
863 					error = E2BIG;
864 				break;
865 			}
866 			args->space -= length;
867 			args->endp += length;
868 			args->envc++;
869 		}
870 	}
871 	return (error);
872 }
873 
874 void
875 exec_free_args(struct image_args *args)
876 {
877 	if (args->buf) {
878 		objcache_put(exec_objcache, args->buf);
879 		args->buf = NULL;
880 	}
881 }
882 
883 /*
884  * Copy strings out to the new process address space, constructing
885  *	new arg and env vector tables. Return a pointer to the base
886  *	so that it can be used as the initial stack pointer.
887  */
888 register_t *
889 exec_copyout_strings(struct image_params *imgp)
890 {
891 	int argc, envc, sgap;
892 	char **vectp;
893 	char *stringp, *destp;
894 	register_t *stack_base;
895 	struct ps_strings *arginfo;
896 	int szsigcode;
897 
898 	/*
899 	 * Calculate string base and vector table pointers.
900 	 * Also deal with signal trampoline code for this exec type.
901 	 */
902 	arginfo = (struct ps_strings *)PS_STRINGS;
903 	szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
904 	if (stackgap_random != 0)
905 		sgap = ALIGN(karc4random() & (stackgap_random - 1));
906 	else
907 		sgap = 0;
908 	destp =	(caddr_t)arginfo - szsigcode - SPARE_USRSPACE - sgap -
909 	    roundup((ARG_MAX - imgp->args->space), sizeof(char *));
910 
911 	/*
912 	 * install sigcode
913 	 */
914 	if (szsigcode)
915 		copyout(imgp->proc->p_sysent->sv_sigcode,
916 		    ((caddr_t)arginfo - szsigcode), szsigcode);
917 
918 	/*
919 	 * If we have a valid auxargs ptr, prepare some room
920 	 * on the stack.
921 	 *
922 	 * The '+ 2' is for the null pointers at the end of each of the
923 	 * arg and env vector sets, and 'AT_COUNT*2' is room for the
924 	 * ELF Auxargs data.
925 	 */
926 	if (imgp->auxargs) {
927 		vectp = (char **)(destp - (imgp->args->argc +
928 			imgp->args->envc + 2 + AT_COUNT * 2) * sizeof(char*));
929 	} else {
930 		vectp = (char **)(destp - (imgp->args->argc +
931 			imgp->args->envc + 2) * sizeof(char*));
932 	}
933 
934 	/*
935 	 * NOTE: don't bother aligning the stack here for GCC 2.x, it will
936 	 * be done in crt1.o.  Note that GCC 3.x aligns the stack in main.
937 	 */
938 
939 	/*
940 	 * vectp also becomes our initial stack base
941 	 */
942 	stack_base = (register_t *)vectp;
943 
944 	stringp = imgp->args->begin_argv;
945 	argc = imgp->args->argc;
946 	envc = imgp->args->envc;
947 
948 	/*
949 	 * Copy out strings - arguments and environment.
950 	 */
951 	copyout(stringp, destp, ARG_MAX - imgp->args->space);
952 
953 	/*
954 	 * Fill in "ps_strings" struct for ps, w, etc.
955 	 */
956 	suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp);
957 	suword(&arginfo->ps_nargvstr, argc);
958 
959 	/*
960 	 * Fill in argument portion of vector table.
961 	 */
962 	for (; argc > 0; --argc) {
963 		suword(vectp++, (long)(intptr_t)destp);
964 		while (*stringp++ != 0)
965 			destp++;
966 		destp++;
967 	}
968 
969 	/* a null vector table pointer separates the argp's from the envp's */
970 	suword(vectp++, 0);
971 
972 	suword(&arginfo->ps_envstr, (long)(intptr_t)vectp);
973 	suword(&arginfo->ps_nenvstr, envc);
974 
975 	/*
976 	 * Fill in environment portion of vector table.
977 	 */
978 	for (; envc > 0; --envc) {
979 		suword(vectp++, (long)(intptr_t)destp);
980 		while (*stringp++ != 0)
981 			destp++;
982 		destp++;
983 	}
984 
985 	/* end of vector table is a null pointer */
986 	suword(vectp, 0);
987 
988 	return (stack_base);
989 }
990 
991 /*
992  * Check permissions of file to execute.
993  *	Return 0 for success or error code on failure.
994  */
995 int
996 exec_check_permissions(struct image_params *imgp, struct mount *topmnt)
997 {
998 	struct proc *p = imgp->proc;
999 	struct vnode *vp = imgp->vp;
1000 	struct vattr *attr = imgp->attr;
1001 	int error;
1002 
1003 	/* Get file attributes */
1004 	error = VOP_GETATTR(vp, attr);
1005 	if (error)
1006 		return (error);
1007 
1008 	/*
1009 	 * 1) Check if file execution is disabled for the filesystem that this
1010 	 *	file resides on.
1011 	 * 2) Insure that at least one execute bit is on - otherwise root
1012 	 *	will always succeed, and we don't want to happen unless the
1013 	 *	file really is executable.
1014 	 * 3) Insure that the file is a regular file.
1015 	 */
1016 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1017 	    ((topmnt != NULL) && (topmnt->mnt_flag & MNT_NOEXEC)) ||
1018 	    ((attr->va_mode & 0111) == 0) ||
1019 	    (attr->va_type != VREG)) {
1020 		return (EACCES);
1021 	}
1022 
1023 	/*
1024 	 * Zero length files can't be exec'd
1025 	 */
1026 	if (attr->va_size == 0)
1027 		return (ENOEXEC);
1028 
1029 	/*
1030 	 *  Check for execute permission to file based on current credentials.
1031 	 */
1032 	error = VOP_EACCESS(vp, VEXEC, p->p_ucred);
1033 	if (error)
1034 		return (error);
1035 
1036 	/*
1037 	 * Check number of open-for-writes on the file and deny execution
1038 	 * if there are any.
1039 	 */
1040 	if (vp->v_writecount)
1041 		return (ETXTBSY);
1042 
1043 	/*
1044 	 * Call filesystem specific open routine, which allows us to read,
1045 	 * write, and mmap the file.  Without the VOP_OPEN we can only
1046 	 * stat the file.
1047 	 */
1048 	error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1049 	if (error)
1050 		return (error);
1051 
1052 	return (0);
1053 }
1054 
1055 /*
1056  * Exec handler registration
1057  */
1058 int
1059 exec_register(const struct execsw *execsw_arg)
1060 {
1061 	const struct execsw **es, **xs, **newexecsw;
1062 	int count = 2;	/* New slot and trailing NULL */
1063 
1064 	if (execsw)
1065 		for (es = execsw; *es; es++)
1066 			count++;
1067 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1068 	xs = newexecsw;
1069 	if (execsw)
1070 		for (es = execsw; *es; es++)
1071 			*xs++ = *es;
1072 	*xs++ = execsw_arg;
1073 	*xs = NULL;
1074 	if (execsw)
1075 		kfree(execsw, M_TEMP);
1076 	execsw = newexecsw;
1077 	return 0;
1078 }
1079 
1080 int
1081 exec_unregister(const struct execsw *execsw_arg)
1082 {
1083 	const struct execsw **es, **xs, **newexecsw;
1084 	int count = 1;
1085 
1086 	if (execsw == NULL)
1087 		panic("unregister with no handlers left?");
1088 
1089 	for (es = execsw; *es; es++) {
1090 		if (*es == execsw_arg)
1091 			break;
1092 	}
1093 	if (*es == NULL)
1094 		return ENOENT;
1095 	for (es = execsw; *es; es++)
1096 		if (*es != execsw_arg)
1097 			count++;
1098 	newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1099 	xs = newexecsw;
1100 	for (es = execsw; *es; es++)
1101 		if (*es != execsw_arg)
1102 			*xs++ = *es;
1103 	*xs = NULL;
1104 	if (execsw)
1105 		kfree(execsw, M_TEMP);
1106 	execsw = newexecsw;
1107 	return 0;
1108 }
1109