1 /*- 2 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $ 27 * $DragonFly: src/sys/kern/kern_event.c,v 1.33 2007/02/03 17:05:57 corecode Exp $ 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/proc.h> 34 #include <sys/malloc.h> 35 #include <sys/unistd.h> 36 #include <sys/file.h> 37 #include <sys/lock.h> 38 #include <sys/fcntl.h> 39 #include <sys/queue.h> 40 #include <sys/event.h> 41 #include <sys/eventvar.h> 42 #include <sys/protosw.h> 43 #include <sys/socket.h> 44 #include <sys/socketvar.h> 45 #include <sys/stat.h> 46 #include <sys/sysctl.h> 47 #include <sys/sysproto.h> 48 #include <sys/thread.h> 49 #include <sys/uio.h> 50 #include <sys/signalvar.h> 51 #include <sys/filio.h> 52 #include <sys/ktr.h> 53 54 #include <sys/thread2.h> 55 #include <sys/file2.h> 56 #include <sys/mplock2.h> 57 58 /* 59 * Global token for kqueue subsystem 60 */ 61 struct lwkt_token kq_token = LWKT_TOKEN_INITIALIZER(kq_token); 62 SYSCTL_LONG(_lwkt, OID_AUTO, kq_collisions, 63 CTLFLAG_RW, &kq_token.t_collisions, 0, 64 "Collision counter of kq_token"); 65 66 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system"); 67 68 struct kevent_copyin_args { 69 struct kevent_args *ka; 70 int pchanges; 71 }; 72 73 static int kqueue_sleep(struct kqueue *kq, struct timespec *tsp); 74 static int kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count, 75 struct knote *marker); 76 static int kqueue_read(struct file *fp, struct uio *uio, 77 struct ucred *cred, int flags); 78 static int kqueue_write(struct file *fp, struct uio *uio, 79 struct ucred *cred, int flags); 80 static int kqueue_ioctl(struct file *fp, u_long com, caddr_t data, 81 struct ucred *cred, struct sysmsg *msg); 82 static int kqueue_kqfilter(struct file *fp, struct knote *kn); 83 static int kqueue_stat(struct file *fp, struct stat *st, 84 struct ucred *cred); 85 static int kqueue_close(struct file *fp); 86 static void kqueue_wakeup(struct kqueue *kq); 87 static int filter_attach(struct knote *kn); 88 static int filter_event(struct knote *kn, long hint); 89 90 /* 91 * MPSAFE 92 */ 93 static struct fileops kqueueops = { 94 .fo_read = kqueue_read, 95 .fo_write = kqueue_write, 96 .fo_ioctl = kqueue_ioctl, 97 .fo_kqfilter = kqueue_kqfilter, 98 .fo_stat = kqueue_stat, 99 .fo_close = kqueue_close, 100 .fo_shutdown = nofo_shutdown 101 }; 102 103 static void knote_attach(struct knote *kn); 104 static void knote_drop(struct knote *kn); 105 static void knote_detach_and_drop(struct knote *kn); 106 static void knote_enqueue(struct knote *kn); 107 static void knote_dequeue(struct knote *kn); 108 static struct knote *knote_alloc(void); 109 static void knote_free(struct knote *kn); 110 111 static void filt_kqdetach(struct knote *kn); 112 static int filt_kqueue(struct knote *kn, long hint); 113 static int filt_procattach(struct knote *kn); 114 static void filt_procdetach(struct knote *kn); 115 static int filt_proc(struct knote *kn, long hint); 116 static int filt_fileattach(struct knote *kn); 117 static void filt_timerexpire(void *knx); 118 static int filt_timerattach(struct knote *kn); 119 static void filt_timerdetach(struct knote *kn); 120 static int filt_timer(struct knote *kn, long hint); 121 122 static struct filterops file_filtops = 123 { FILTEROP_ISFD, filt_fileattach, NULL, NULL }; 124 static struct filterops kqread_filtops = 125 { FILTEROP_ISFD, NULL, filt_kqdetach, filt_kqueue }; 126 static struct filterops proc_filtops = 127 { 0, filt_procattach, filt_procdetach, filt_proc }; 128 static struct filterops timer_filtops = 129 { 0, filt_timerattach, filt_timerdetach, filt_timer }; 130 131 static int kq_ncallouts = 0; 132 static int kq_calloutmax = (4 * 1024); 133 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW, 134 &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue"); 135 static int kq_checkloop = 1000000; 136 SYSCTL_INT(_kern, OID_AUTO, kq_checkloop, CTLFLAG_RW, 137 &kq_checkloop, 0, "Maximum number of callouts allocated for kqueue"); 138 139 #define KNOTE_ACTIVATE(kn) do { \ 140 kn->kn_status |= KN_ACTIVE; \ 141 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \ 142 knote_enqueue(kn); \ 143 } while(0) 144 145 #define KN_HASHSIZE 64 /* XXX should be tunable */ 146 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) 147 148 extern struct filterops aio_filtops; 149 extern struct filterops sig_filtops; 150 151 /* 152 * Table for for all system-defined filters. 153 */ 154 static struct filterops *sysfilt_ops[] = { 155 &file_filtops, /* EVFILT_READ */ 156 &file_filtops, /* EVFILT_WRITE */ 157 &aio_filtops, /* EVFILT_AIO */ 158 &file_filtops, /* EVFILT_VNODE */ 159 &proc_filtops, /* EVFILT_PROC */ 160 &sig_filtops, /* EVFILT_SIGNAL */ 161 &timer_filtops, /* EVFILT_TIMER */ 162 &file_filtops, /* EVFILT_EXCEPT */ 163 }; 164 165 static int 166 filt_fileattach(struct knote *kn) 167 { 168 return (fo_kqfilter(kn->kn_fp, kn)); 169 } 170 171 /* 172 * MPSAFE 173 */ 174 static int 175 kqueue_kqfilter(struct file *fp, struct knote *kn) 176 { 177 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; 178 179 if (kn->kn_filter != EVFILT_READ) 180 return (EOPNOTSUPP); 181 182 kn->kn_fop = &kqread_filtops; 183 knote_insert(&kq->kq_kqinfo.ki_note, kn); 184 return (0); 185 } 186 187 static void 188 filt_kqdetach(struct knote *kn) 189 { 190 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; 191 192 knote_remove(&kq->kq_kqinfo.ki_note, kn); 193 } 194 195 /*ARGSUSED*/ 196 static int 197 filt_kqueue(struct knote *kn, long hint) 198 { 199 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; 200 201 kn->kn_data = kq->kq_count; 202 return (kn->kn_data > 0); 203 } 204 205 static int 206 filt_procattach(struct knote *kn) 207 { 208 struct proc *p; 209 int immediate; 210 211 immediate = 0; 212 lwkt_gettoken(&proc_token); 213 p = pfind(kn->kn_id); 214 if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) { 215 p = zpfind(kn->kn_id); 216 immediate = 1; 217 } 218 if (p == NULL) { 219 lwkt_reltoken(&proc_token); 220 return (ESRCH); 221 } 222 if (!PRISON_CHECK(curthread->td_ucred, p->p_ucred)) { 223 lwkt_reltoken(&proc_token); 224 return (EACCES); 225 } 226 227 kn->kn_ptr.p_proc = p; 228 kn->kn_flags |= EV_CLEAR; /* automatically set */ 229 230 /* 231 * internal flag indicating registration done by kernel 232 */ 233 if (kn->kn_flags & EV_FLAG1) { 234 kn->kn_data = kn->kn_sdata; /* ppid */ 235 kn->kn_fflags = NOTE_CHILD; 236 kn->kn_flags &= ~EV_FLAG1; 237 } 238 239 knote_insert(&p->p_klist, kn); 240 241 /* 242 * Immediately activate any exit notes if the target process is a 243 * zombie. This is necessary to handle the case where the target 244 * process, e.g. a child, dies before the kevent is negistered. 245 */ 246 if (immediate && filt_proc(kn, NOTE_EXIT)) 247 KNOTE_ACTIVATE(kn); 248 lwkt_reltoken(&proc_token); 249 250 return (0); 251 } 252 253 /* 254 * The knote may be attached to a different process, which may exit, 255 * leaving nothing for the knote to be attached to. So when the process 256 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so 257 * it will be deleted when read out. However, as part of the knote deletion, 258 * this routine is called, so a check is needed to avoid actually performing 259 * a detach, because the original process does not exist any more. 260 */ 261 static void 262 filt_procdetach(struct knote *kn) 263 { 264 struct proc *p; 265 266 if (kn->kn_status & KN_DETACHED) 267 return; 268 /* XXX locking? take proc_token here? */ 269 p = kn->kn_ptr.p_proc; 270 knote_remove(&p->p_klist, kn); 271 } 272 273 static int 274 filt_proc(struct knote *kn, long hint) 275 { 276 u_int event; 277 278 /* 279 * mask off extra data 280 */ 281 event = (u_int)hint & NOTE_PCTRLMASK; 282 283 /* 284 * if the user is interested in this event, record it. 285 */ 286 if (kn->kn_sfflags & event) 287 kn->kn_fflags |= event; 288 289 /* 290 * Process is gone, so flag the event as finished. Detach the 291 * knote from the process now because the process will be poof, 292 * gone later on. 293 */ 294 if (event == NOTE_EXIT) { 295 struct proc *p = kn->kn_ptr.p_proc; 296 if ((kn->kn_status & KN_DETACHED) == 0) { 297 knote_remove(&p->p_klist, kn); 298 kn->kn_status |= KN_DETACHED; 299 kn->kn_data = p->p_xstat; 300 kn->kn_ptr.p_proc = NULL; 301 } 302 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 303 return (1); 304 } 305 306 /* 307 * process forked, and user wants to track the new process, 308 * so attach a new knote to it, and immediately report an 309 * event with the parent's pid. 310 */ 311 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) { 312 struct kevent kev; 313 int error; 314 315 /* 316 * register knote with new process. 317 */ 318 kev.ident = hint & NOTE_PDATAMASK; /* pid */ 319 kev.filter = kn->kn_filter; 320 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1; 321 kev.fflags = kn->kn_sfflags; 322 kev.data = kn->kn_id; /* parent */ 323 kev.udata = kn->kn_kevent.udata; /* preserve udata */ 324 error = kqueue_register(kn->kn_kq, &kev); 325 if (error) 326 kn->kn_fflags |= NOTE_TRACKERR; 327 } 328 329 return (kn->kn_fflags != 0); 330 } 331 332 /* 333 * The callout interlocks with callout_stop() (or should), so the 334 * knote should still be a valid structure. However the timeout 335 * can race a deletion so if KN_DELETING is set we just don't touch 336 * the knote. 337 */ 338 static void 339 filt_timerexpire(void *knx) 340 { 341 struct knote *kn = knx; 342 struct callout *calloutp; 343 struct timeval tv; 344 int tticks; 345 346 lwkt_gettoken(&kq_token); 347 if ((kn->kn_status & KN_DELETING) == 0) { 348 kn->kn_data++; 349 KNOTE_ACTIVATE(kn); 350 351 if ((kn->kn_flags & EV_ONESHOT) == 0) { 352 tv.tv_sec = kn->kn_sdata / 1000; 353 tv.tv_usec = (kn->kn_sdata % 1000) * 1000; 354 tticks = tvtohz_high(&tv); 355 calloutp = (struct callout *)kn->kn_hook; 356 callout_reset(calloutp, tticks, filt_timerexpire, kn); 357 } 358 } 359 lwkt_reltoken(&kq_token); 360 } 361 362 /* 363 * data contains amount of time to sleep, in milliseconds 364 */ 365 static int 366 filt_timerattach(struct knote *kn) 367 { 368 struct callout *calloutp; 369 struct timeval tv; 370 int tticks; 371 372 if (kq_ncallouts >= kq_calloutmax) 373 return (ENOMEM); 374 kq_ncallouts++; 375 376 tv.tv_sec = kn->kn_sdata / 1000; 377 tv.tv_usec = (kn->kn_sdata % 1000) * 1000; 378 tticks = tvtohz_high(&tv); 379 380 kn->kn_flags |= EV_CLEAR; /* automatically set */ 381 MALLOC(calloutp, struct callout *, sizeof(*calloutp), 382 M_KQUEUE, M_WAITOK); 383 callout_init(calloutp); 384 kn->kn_hook = (caddr_t)calloutp; 385 callout_reset(calloutp, tticks, filt_timerexpire, kn); 386 387 return (0); 388 } 389 390 static void 391 filt_timerdetach(struct knote *kn) 392 { 393 struct callout *calloutp; 394 395 calloutp = (struct callout *)kn->kn_hook; 396 callout_stop(calloutp); 397 FREE(calloutp, M_KQUEUE); 398 kq_ncallouts--; 399 } 400 401 static int 402 filt_timer(struct knote *kn, long hint) 403 { 404 405 return (kn->kn_data != 0); 406 } 407 408 /* 409 * Acquire a knote, return non-zero on success, 0 on failure. 410 * 411 * If we cannot acquire the knote we sleep and return 0. The knote 412 * may be stale on return in this case and the caller must restart 413 * whatever loop they are in. 414 */ 415 static __inline 416 int 417 knote_acquire(struct knote *kn) 418 { 419 if (kn->kn_status & KN_PROCESSING) { 420 kn->kn_status |= KN_WAITING | KN_REPROCESS; 421 tsleep(kn, 0, "kqepts", hz); 422 /* knote may be stale now */ 423 return(0); 424 } 425 kn->kn_status |= KN_PROCESSING; 426 return(1); 427 } 428 429 /* 430 * Release an acquired knote, clearing KN_PROCESSING and handling any 431 * KN_REPROCESS events. 432 * 433 * Non-zero is returned if the knote is destroyed. 434 */ 435 static __inline 436 int 437 knote_release(struct knote *kn) 438 { 439 while (kn->kn_status & KN_REPROCESS) { 440 kn->kn_status &= ~KN_REPROCESS; 441 if (kn->kn_status & KN_WAITING) { 442 kn->kn_status &= ~KN_WAITING; 443 wakeup(kn); 444 } 445 if (kn->kn_status & KN_DELETING) { 446 knote_detach_and_drop(kn); 447 return(1); 448 /* NOT REACHED */ 449 } 450 if (filter_event(kn, 0)) 451 KNOTE_ACTIVATE(kn); 452 } 453 kn->kn_status &= ~KN_PROCESSING; 454 return(0); 455 } 456 457 /* 458 * Initialize a kqueue. 459 * 460 * NOTE: The lwp/proc code initializes a kqueue for select/poll ops. 461 * 462 * MPSAFE 463 */ 464 void 465 kqueue_init(struct kqueue *kq, struct filedesc *fdp) 466 { 467 TAILQ_INIT(&kq->kq_knpend); 468 TAILQ_INIT(&kq->kq_knlist); 469 kq->kq_count = 0; 470 kq->kq_fdp = fdp; 471 SLIST_INIT(&kq->kq_kqinfo.ki_note); 472 } 473 474 /* 475 * Terminate a kqueue. Freeing the actual kq itself is left up to the 476 * caller (it might be embedded in a lwp so we don't do it here). 477 * 478 * The kq's knlist must be completely eradicated so block on any 479 * processing races. 480 */ 481 void 482 kqueue_terminate(struct kqueue *kq) 483 { 484 struct knote *kn; 485 486 lwkt_gettoken(&kq_token); 487 while ((kn = TAILQ_FIRST(&kq->kq_knlist)) != NULL) { 488 if (knote_acquire(kn)) 489 knote_detach_and_drop(kn); 490 } 491 if (kq->kq_knhash) { 492 kfree(kq->kq_knhash, M_KQUEUE); 493 kq->kq_knhash = NULL; 494 kq->kq_knhashmask = 0; 495 } 496 lwkt_reltoken(&kq_token); 497 } 498 499 /* 500 * MPSAFE 501 */ 502 int 503 sys_kqueue(struct kqueue_args *uap) 504 { 505 struct thread *td = curthread; 506 struct kqueue *kq; 507 struct file *fp; 508 int fd, error; 509 510 error = falloc(td->td_lwp, &fp, &fd); 511 if (error) 512 return (error); 513 fp->f_flag = FREAD | FWRITE; 514 fp->f_type = DTYPE_KQUEUE; 515 fp->f_ops = &kqueueops; 516 517 kq = kmalloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO); 518 kqueue_init(kq, td->td_proc->p_fd); 519 fp->f_data = kq; 520 521 fsetfd(kq->kq_fdp, fp, fd); 522 uap->sysmsg_result = fd; 523 fdrop(fp); 524 return (error); 525 } 526 527 /* 528 * Copy 'count' items into the destination list pointed to by uap->eventlist. 529 */ 530 static int 531 kevent_copyout(void *arg, struct kevent *kevp, int count, int *res) 532 { 533 struct kevent_copyin_args *kap; 534 int error; 535 536 kap = (struct kevent_copyin_args *)arg; 537 538 error = copyout(kevp, kap->ka->eventlist, count * sizeof(*kevp)); 539 if (error == 0) { 540 kap->ka->eventlist += count; 541 *res += count; 542 } else { 543 *res = -1; 544 } 545 546 return (error); 547 } 548 549 /* 550 * Copy at most 'max' items from the list pointed to by kap->changelist, 551 * return number of items in 'events'. 552 */ 553 static int 554 kevent_copyin(void *arg, struct kevent *kevp, int max, int *events) 555 { 556 struct kevent_copyin_args *kap; 557 int error, count; 558 559 kap = (struct kevent_copyin_args *)arg; 560 561 count = min(kap->ka->nchanges - kap->pchanges, max); 562 error = copyin(kap->ka->changelist, kevp, count * sizeof *kevp); 563 if (error == 0) { 564 kap->ka->changelist += count; 565 kap->pchanges += count; 566 *events = count; 567 } 568 569 return (error); 570 } 571 572 /* 573 * MPSAFE 574 */ 575 int 576 kern_kevent(struct kqueue *kq, int nevents, int *res, void *uap, 577 k_copyin_fn kevent_copyinfn, k_copyout_fn kevent_copyoutfn, 578 struct timespec *tsp_in) 579 { 580 struct kevent *kevp; 581 struct timespec *tsp; 582 int i, n, total, error, nerrors = 0; 583 int lres; 584 int limit = kq_checkloop; 585 struct kevent kev[KQ_NEVENTS]; 586 struct knote marker; 587 588 tsp = tsp_in; 589 *res = 0; 590 591 lwkt_gettoken(&kq_token); 592 for ( ;; ) { 593 n = 0; 594 error = kevent_copyinfn(uap, kev, KQ_NEVENTS, &n); 595 if (error) 596 goto done; 597 if (n == 0) 598 break; 599 for (i = 0; i < n; i++) { 600 kevp = &kev[i]; 601 kevp->flags &= ~EV_SYSFLAGS; 602 error = kqueue_register(kq, kevp); 603 604 /* 605 * If a registration returns an error we 606 * immediately post the error. The kevent() 607 * call itself will fail with the error if 608 * no space is available for posting. 609 * 610 * Such errors normally bypass the timeout/blocking 611 * code. However, if the copyoutfn function refuses 612 * to post the error (see sys_poll()), then we 613 * ignore it too. 614 */ 615 if (error) { 616 kevp->flags = EV_ERROR; 617 kevp->data = error; 618 lres = *res; 619 kevent_copyoutfn(uap, kevp, 1, res); 620 if (lres != *res) { 621 nevents--; 622 nerrors++; 623 } 624 } 625 } 626 } 627 if (nerrors) { 628 error = 0; 629 goto done; 630 } 631 632 /* 633 * Acquire/wait for events - setup timeout 634 */ 635 if (tsp != NULL) { 636 struct timespec ats; 637 638 if (tsp->tv_sec || tsp->tv_nsec) { 639 nanouptime(&ats); 640 timespecadd(tsp, &ats); /* tsp = target time */ 641 } 642 } 643 644 /* 645 * Loop as required. 646 * 647 * Collect as many events as we can. Sleeping on successive 648 * loops is disabled if copyoutfn has incremented (*res). 649 * 650 * The loop stops if an error occurs, all events have been 651 * scanned (the marker has been reached), or fewer than the 652 * maximum number of events is found. 653 * 654 * The copyoutfn function does not have to increment (*res) in 655 * order for the loop to continue. 656 * 657 * NOTE: doselect() usually passes 0x7FFFFFFF for nevents. 658 */ 659 total = 0; 660 error = 0; 661 marker.kn_filter = EVFILT_MARKER; 662 marker.kn_status = KN_PROCESSING; 663 TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe); 664 while ((n = nevents - total) > 0) { 665 if (n > KQ_NEVENTS) 666 n = KQ_NEVENTS; 667 668 /* 669 * If no events are pending sleep until timeout (if any) 670 * or an event occurs. 671 * 672 * After the sleep completes the marker is moved to the 673 * end of the list, making any received events available 674 * to our scan. 675 */ 676 if (kq->kq_count == 0 && *res == 0) { 677 error = kqueue_sleep(kq, tsp); 678 if (error) 679 break; 680 681 TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe); 682 TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe); 683 } 684 685 /* 686 * Process all received events 687 * Account for all non-spurious events in our total 688 */ 689 i = kqueue_scan(kq, kev, n, &marker); 690 if (i) { 691 lres = *res; 692 error = kevent_copyoutfn(uap, kev, i, res); 693 total += *res - lres; 694 if (error) 695 break; 696 } 697 if (limit && --limit == 0) 698 panic("kqueue: checkloop failed i=%d", i); 699 700 /* 701 * Normally when fewer events are returned than requested 702 * we can stop. However, if only spurious events were 703 * collected the copyout will not bump (*res) and we have 704 * to continue. 705 */ 706 if (i < n && *res) 707 break; 708 709 /* 710 * Deal with an edge case where spurious events can cause 711 * a loop to occur without moving the marker. This can 712 * prevent kqueue_scan() from picking up new events which 713 * race us. We must be sure to move the marker for this 714 * case. 715 * 716 * NOTE: We do not want to move the marker if events 717 * were scanned because normal kqueue operations 718 * may reactivate events. Moving the marker in 719 * that case could result in duplicates for the 720 * same event. 721 */ 722 if (i == 0) { 723 TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe); 724 TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe); 725 } 726 } 727 TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe); 728 729 /* Timeouts do not return EWOULDBLOCK. */ 730 if (error == EWOULDBLOCK) 731 error = 0; 732 733 done: 734 lwkt_reltoken(&kq_token); 735 return (error); 736 } 737 738 /* 739 * MPALMOSTSAFE 740 */ 741 int 742 sys_kevent(struct kevent_args *uap) 743 { 744 struct thread *td = curthread; 745 struct proc *p = td->td_proc; 746 struct timespec ts, *tsp; 747 struct kqueue *kq; 748 struct file *fp = NULL; 749 struct kevent_copyin_args *kap, ka; 750 int error; 751 752 if (uap->timeout) { 753 error = copyin(uap->timeout, &ts, sizeof(ts)); 754 if (error) 755 return (error); 756 tsp = &ts; 757 } else { 758 tsp = NULL; 759 } 760 761 fp = holdfp(p->p_fd, uap->fd, -1); 762 if (fp == NULL) 763 return (EBADF); 764 if (fp->f_type != DTYPE_KQUEUE) { 765 fdrop(fp); 766 return (EBADF); 767 } 768 769 kq = (struct kqueue *)fp->f_data; 770 771 kap = &ka; 772 kap->ka = uap; 773 kap->pchanges = 0; 774 775 error = kern_kevent(kq, uap->nevents, &uap->sysmsg_result, kap, 776 kevent_copyin, kevent_copyout, tsp); 777 778 fdrop(fp); 779 780 return (error); 781 } 782 783 int 784 kqueue_register(struct kqueue *kq, struct kevent *kev) 785 { 786 struct filedesc *fdp = kq->kq_fdp; 787 struct filterops *fops; 788 struct file *fp = NULL; 789 struct knote *kn = NULL; 790 int error = 0; 791 792 if (kev->filter < 0) { 793 if (kev->filter + EVFILT_SYSCOUNT < 0) 794 return (EINVAL); 795 fops = sysfilt_ops[~kev->filter]; /* to 0-base index */ 796 } else { 797 /* 798 * XXX 799 * filter attach routine is responsible for insuring that 800 * the identifier can be attached to it. 801 */ 802 kprintf("unknown filter: %d\n", kev->filter); 803 return (EINVAL); 804 } 805 806 lwkt_gettoken(&kq_token); 807 if (fops->f_flags & FILTEROP_ISFD) { 808 /* validate descriptor */ 809 fp = holdfp(fdp, kev->ident, -1); 810 if (fp == NULL) { 811 lwkt_reltoken(&kq_token); 812 return (EBADF); 813 } 814 815 again1: 816 SLIST_FOREACH(kn, &fp->f_klist, kn_link) { 817 if (kn->kn_kq == kq && 818 kn->kn_filter == kev->filter && 819 kn->kn_id == kev->ident) { 820 if (knote_acquire(kn) == 0) 821 goto again1; 822 break; 823 } 824 } 825 } else { 826 if (kq->kq_knhashmask) { 827 struct klist *list; 828 829 list = &kq->kq_knhash[ 830 KN_HASH((u_long)kev->ident, kq->kq_knhashmask)]; 831 again2: 832 SLIST_FOREACH(kn, list, kn_link) { 833 if (kn->kn_id == kev->ident && 834 kn->kn_filter == kev->filter) { 835 if (knote_acquire(kn) == 0) 836 goto again2; 837 break; 838 } 839 } 840 } 841 } 842 843 /* 844 * NOTE: At this point if kn is non-NULL we will have acquired 845 * it and set KN_PROCESSING. 846 */ 847 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) { 848 error = ENOENT; 849 goto done; 850 } 851 852 /* 853 * kn now contains the matching knote, or NULL if no match 854 */ 855 if (kev->flags & EV_ADD) { 856 if (kn == NULL) { 857 kn = knote_alloc(); 858 if (kn == NULL) { 859 error = ENOMEM; 860 goto done; 861 } 862 kn->kn_fp = fp; 863 kn->kn_kq = kq; 864 kn->kn_fop = fops; 865 866 /* 867 * apply reference count to knote structure, and 868 * do not release it at the end of this routine. 869 */ 870 fp = NULL; 871 872 kn->kn_sfflags = kev->fflags; 873 kn->kn_sdata = kev->data; 874 kev->fflags = 0; 875 kev->data = 0; 876 kn->kn_kevent = *kev; 877 878 /* 879 * KN_PROCESSING prevents the knote from getting 880 * ripped out from under us while we are trying 881 * to attach it, in case the attach blocks. 882 */ 883 kn->kn_status = KN_PROCESSING; 884 knote_attach(kn); 885 if ((error = filter_attach(kn)) != 0) { 886 kn->kn_status |= KN_DELETING | KN_REPROCESS; 887 knote_drop(kn); 888 goto done; 889 } 890 891 /* 892 * Interlock against close races which either tried 893 * to remove our knote while we were blocked or missed 894 * it entirely prior to our attachment. We do not 895 * want to end up with a knote on a closed descriptor. 896 */ 897 if ((fops->f_flags & FILTEROP_ISFD) && 898 checkfdclosed(fdp, kev->ident, kn->kn_fp)) { 899 kn->kn_status |= KN_DELETING | KN_REPROCESS; 900 } 901 } else { 902 /* 903 * The user may change some filter values after the 904 * initial EV_ADD, but doing so will not reset any 905 * filter which have already been triggered. 906 */ 907 KKASSERT(kn->kn_status & KN_PROCESSING); 908 kn->kn_sfflags = kev->fflags; 909 kn->kn_sdata = kev->data; 910 kn->kn_kevent.udata = kev->udata; 911 } 912 913 /* 914 * Execute the filter event to immediately activate the 915 * knote if necessary. If reprocessing events are pending 916 * due to blocking above we do not run the filter here 917 * but instead let knote_release() do it. Otherwise we 918 * might run the filter on a deleted event. 919 */ 920 if ((kn->kn_status & KN_REPROCESS) == 0) { 921 if (filter_event(kn, 0)) 922 KNOTE_ACTIVATE(kn); 923 } 924 } else if (kev->flags & EV_DELETE) { 925 /* 926 * Delete the existing knote 927 */ 928 knote_detach_and_drop(kn); 929 goto done; 930 } 931 932 /* 933 * Disablement does not deactivate a knote here. 934 */ 935 if ((kev->flags & EV_DISABLE) && 936 ((kn->kn_status & KN_DISABLED) == 0)) { 937 kn->kn_status |= KN_DISABLED; 938 } 939 940 /* 941 * Re-enablement may have to immediately enqueue an active knote. 942 */ 943 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) { 944 kn->kn_status &= ~KN_DISABLED; 945 if ((kn->kn_status & KN_ACTIVE) && 946 ((kn->kn_status & KN_QUEUED) == 0)) { 947 knote_enqueue(kn); 948 } 949 } 950 951 /* 952 * Handle any required reprocessing 953 */ 954 knote_release(kn); 955 /* kn may be invalid now */ 956 957 done: 958 lwkt_reltoken(&kq_token); 959 if (fp != NULL) 960 fdrop(fp); 961 return (error); 962 } 963 964 /* 965 * Block as necessary until the target time is reached. 966 * If tsp is NULL we block indefinitely. If tsp->ts_secs/nsecs are both 967 * 0 we do not block at all. 968 */ 969 static int 970 kqueue_sleep(struct kqueue *kq, struct timespec *tsp) 971 { 972 int error = 0; 973 974 if (tsp == NULL) { 975 kq->kq_state |= KQ_SLEEP; 976 error = tsleep(kq, PCATCH, "kqread", 0); 977 } else if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) { 978 error = EWOULDBLOCK; 979 } else { 980 struct timespec ats; 981 struct timespec atx = *tsp; 982 int timeout; 983 984 nanouptime(&ats); 985 timespecsub(&atx, &ats); 986 if (ats.tv_sec < 0) { 987 error = EWOULDBLOCK; 988 } else { 989 timeout = atx.tv_sec > 24 * 60 * 60 ? 990 24 * 60 * 60 * hz : tstohz_high(&atx); 991 kq->kq_state |= KQ_SLEEP; 992 error = tsleep(kq, PCATCH, "kqread", timeout); 993 } 994 } 995 996 /* don't restart after signals... */ 997 if (error == ERESTART) 998 return (EINTR); 999 1000 return (error); 1001 } 1002 1003 /* 1004 * Scan the kqueue, return the number of active events placed in kevp up 1005 * to count. 1006 * 1007 * Continuous mode events may get recycled, do not continue scanning past 1008 * marker unless no events have been collected. 1009 */ 1010 static int 1011 kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count, 1012 struct knote *marker) 1013 { 1014 struct knote *kn, local_marker; 1015 int total; 1016 1017 total = 0; 1018 local_marker.kn_filter = EVFILT_MARKER; 1019 local_marker.kn_status = KN_PROCESSING; 1020 1021 /* 1022 * Collect events. 1023 */ 1024 TAILQ_INSERT_HEAD(&kq->kq_knpend, &local_marker, kn_tqe); 1025 while (count) { 1026 kn = TAILQ_NEXT(&local_marker, kn_tqe); 1027 if (kn->kn_filter == EVFILT_MARKER) { 1028 /* Marker reached, we are done */ 1029 if (kn == marker) 1030 break; 1031 1032 /* Move local marker past some other threads marker */ 1033 kn = TAILQ_NEXT(kn, kn_tqe); 1034 TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe); 1035 TAILQ_INSERT_BEFORE(kn, &local_marker, kn_tqe); 1036 continue; 1037 } 1038 1039 /* 1040 * We can't skip a knote undergoing processing, otherwise 1041 * we risk not returning it when the user process expects 1042 * it should be returned. Sleep and retry. 1043 */ 1044 if (knote_acquire(kn) == 0) 1045 continue; 1046 1047 /* 1048 * Remove the event for processing. 1049 * 1050 * WARNING! We must leave KN_QUEUED set to prevent the 1051 * event from being KNOTE_ACTIVATE()d while 1052 * the queue state is in limbo, in case we 1053 * block. 1054 * 1055 * WARNING! We must set KN_PROCESSING to avoid races 1056 * against deletion or another thread's 1057 * processing. 1058 */ 1059 TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe); 1060 kq->kq_count--; 1061 1062 /* 1063 * We have to deal with an extremely important race against 1064 * file descriptor close()s here. The file descriptor can 1065 * disappear MPSAFE, and there is a small window of 1066 * opportunity between that and the call to knote_fdclose(). 1067 * 1068 * If we hit that window here while doselect or dopoll is 1069 * trying to delete a spurious event they will not be able 1070 * to match up the event against a knote and will go haywire. 1071 */ 1072 if ((kn->kn_fop->f_flags & FILTEROP_ISFD) && 1073 checkfdclosed(kq->kq_fdp, kn->kn_kevent.ident, kn->kn_fp)) { 1074 kn->kn_status |= KN_DELETING | KN_REPROCESS; 1075 } 1076 1077 if (kn->kn_status & KN_DISABLED) { 1078 /* 1079 * If disabled we ensure the event is not queued 1080 * but leave its active bit set. On re-enablement 1081 * the event may be immediately triggered. 1082 */ 1083 kn->kn_status &= ~KN_QUEUED; 1084 } else if ((kn->kn_flags & EV_ONESHOT) == 0 && 1085 (kn->kn_status & KN_DELETING) == 0 && 1086 filter_event(kn, 0) == 0) { 1087 /* 1088 * If not running in one-shot mode and the event 1089 * is no longer present we ensure it is removed 1090 * from the queue and ignore it. 1091 */ 1092 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); 1093 } else { 1094 /* 1095 * Post the event 1096 */ 1097 *kevp++ = kn->kn_kevent; 1098 ++total; 1099 --count; 1100 1101 if (kn->kn_flags & EV_ONESHOT) { 1102 kn->kn_status &= ~KN_QUEUED; 1103 kn->kn_status |= KN_DELETING | KN_REPROCESS; 1104 } else if (kn->kn_flags & EV_CLEAR) { 1105 kn->kn_data = 0; 1106 kn->kn_fflags = 0; 1107 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); 1108 } else { 1109 TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe); 1110 kq->kq_count++; 1111 } 1112 } 1113 1114 /* 1115 * Handle any post-processing states 1116 */ 1117 knote_release(kn); 1118 } 1119 TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe); 1120 1121 return (total); 1122 } 1123 1124 /* 1125 * XXX 1126 * This could be expanded to call kqueue_scan, if desired. 1127 * 1128 * MPSAFE 1129 */ 1130 static int 1131 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags) 1132 { 1133 return (ENXIO); 1134 } 1135 1136 /* 1137 * MPSAFE 1138 */ 1139 static int 1140 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags) 1141 { 1142 return (ENXIO); 1143 } 1144 1145 /* 1146 * MPALMOSTSAFE 1147 */ 1148 static int 1149 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, 1150 struct ucred *cred, struct sysmsg *msg) 1151 { 1152 struct kqueue *kq; 1153 int error; 1154 1155 lwkt_gettoken(&kq_token); 1156 kq = (struct kqueue *)fp->f_data; 1157 1158 switch(com) { 1159 case FIOASYNC: 1160 if (*(int *)data) 1161 kq->kq_state |= KQ_ASYNC; 1162 else 1163 kq->kq_state &= ~KQ_ASYNC; 1164 error = 0; 1165 break; 1166 case FIOSETOWN: 1167 error = fsetown(*(int *)data, &kq->kq_sigio); 1168 break; 1169 default: 1170 error = ENOTTY; 1171 break; 1172 } 1173 lwkt_reltoken(&kq_token); 1174 return (error); 1175 } 1176 1177 /* 1178 * MPSAFE 1179 */ 1180 static int 1181 kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred) 1182 { 1183 struct kqueue *kq = (struct kqueue *)fp->f_data; 1184 1185 bzero((void *)st, sizeof(*st)); 1186 st->st_size = kq->kq_count; 1187 st->st_blksize = sizeof(struct kevent); 1188 st->st_mode = S_IFIFO; 1189 return (0); 1190 } 1191 1192 /* 1193 * MPSAFE 1194 */ 1195 static int 1196 kqueue_close(struct file *fp) 1197 { 1198 struct kqueue *kq = (struct kqueue *)fp->f_data; 1199 1200 kqueue_terminate(kq); 1201 1202 fp->f_data = NULL; 1203 funsetown(kq->kq_sigio); 1204 1205 kfree(kq, M_KQUEUE); 1206 return (0); 1207 } 1208 1209 static void 1210 kqueue_wakeup(struct kqueue *kq) 1211 { 1212 if (kq->kq_state & KQ_SLEEP) { 1213 kq->kq_state &= ~KQ_SLEEP; 1214 wakeup(kq); 1215 } 1216 KNOTE(&kq->kq_kqinfo.ki_note, 0); 1217 } 1218 1219 /* 1220 * Calls filterops f_attach function, acquiring mplock if filter is not 1221 * marked as FILTEROP_MPSAFE. 1222 */ 1223 static int 1224 filter_attach(struct knote *kn) 1225 { 1226 int ret; 1227 1228 if (!(kn->kn_fop->f_flags & FILTEROP_MPSAFE)) { 1229 get_mplock(); 1230 ret = kn->kn_fop->f_attach(kn); 1231 rel_mplock(); 1232 } else { 1233 ret = kn->kn_fop->f_attach(kn); 1234 } 1235 1236 return (ret); 1237 } 1238 1239 /* 1240 * Detach the knote and drop it, destroying the knote. 1241 * 1242 * Calls filterops f_detach function, acquiring mplock if filter is not 1243 * marked as FILTEROP_MPSAFE. 1244 */ 1245 static void 1246 knote_detach_and_drop(struct knote *kn) 1247 { 1248 kn->kn_status |= KN_DELETING | KN_REPROCESS; 1249 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 1250 kn->kn_fop->f_detach(kn); 1251 } else { 1252 get_mplock(); 1253 kn->kn_fop->f_detach(kn); 1254 rel_mplock(); 1255 } 1256 knote_drop(kn); 1257 } 1258 1259 /* 1260 * Calls filterops f_event function, acquiring mplock if filter is not 1261 * marked as FILTEROP_MPSAFE. 1262 * 1263 * If the knote is in the middle of being created or deleted we cannot 1264 * safely call the filter op. 1265 */ 1266 static int 1267 filter_event(struct knote *kn, long hint) 1268 { 1269 int ret; 1270 1271 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 1272 ret = kn->kn_fop->f_event(kn, hint); 1273 } else { 1274 get_mplock(); 1275 ret = kn->kn_fop->f_event(kn, hint); 1276 rel_mplock(); 1277 } 1278 return (ret); 1279 } 1280 1281 /* 1282 * Walk down a list of knotes, activating them if their event has triggered. 1283 * 1284 * If we encounter any knotes which are undergoing processing we just mark 1285 * them for reprocessing and do not try to [re]activate the knote. However, 1286 * if a hint is being passed we have to wait and that makes things a bit 1287 * sticky. 1288 */ 1289 void 1290 knote(struct klist *list, long hint) 1291 { 1292 struct knote *kn; 1293 1294 lwkt_gettoken(&kq_token); 1295 restart: 1296 SLIST_FOREACH(kn, list, kn_next) { 1297 if (kn->kn_status & KN_PROCESSING) { 1298 /* 1299 * Someone else is processing the knote, ask the 1300 * other thread to reprocess it and don't mess 1301 * with it otherwise. 1302 */ 1303 if (hint == 0) { 1304 kn->kn_status |= KN_REPROCESS; 1305 continue; 1306 } 1307 1308 /* 1309 * If the hint is non-zero we have to wait or risk 1310 * losing the state the caller is trying to update. 1311 * 1312 * XXX This is a real problem, certain process 1313 * and signal filters will bump kn_data for 1314 * already-processed notes more than once if 1315 * we restart the list scan. FIXME. 1316 */ 1317 kn->kn_status |= KN_WAITING | KN_REPROCESS; 1318 tsleep(kn, 0, "knotec", hz); 1319 goto restart; 1320 } 1321 1322 /* 1323 * Become the reprocessing master ourselves. 1324 * 1325 * If hint is non-zer running the event is mandatory 1326 * when not deleting so do it whether reprocessing is 1327 * set or not. 1328 */ 1329 kn->kn_status |= KN_PROCESSING; 1330 if ((kn->kn_status & KN_DELETING) == 0) { 1331 if (filter_event(kn, hint)) 1332 KNOTE_ACTIVATE(kn); 1333 } 1334 if (knote_release(kn)) 1335 goto restart; 1336 } 1337 lwkt_reltoken(&kq_token); 1338 } 1339 1340 /* 1341 * Insert knote at head of klist. 1342 * 1343 * This function may only be called via a filter function and thus 1344 * kq_token should already be held and marked for processing. 1345 */ 1346 void 1347 knote_insert(struct klist *klist, struct knote *kn) 1348 { 1349 KKASSERT(kn->kn_status & KN_PROCESSING); 1350 ASSERT_LWKT_TOKEN_HELD(&kq_token); 1351 SLIST_INSERT_HEAD(klist, kn, kn_next); 1352 } 1353 1354 /* 1355 * Remove knote from a klist 1356 * 1357 * This function may only be called via a filter function and thus 1358 * kq_token should already be held and marked for processing. 1359 */ 1360 void 1361 knote_remove(struct klist *klist, struct knote *kn) 1362 { 1363 KKASSERT(kn->kn_status & KN_PROCESSING); 1364 ASSERT_LWKT_TOKEN_HELD(&kq_token); 1365 SLIST_REMOVE(klist, kn, knote, kn_next); 1366 } 1367 1368 /* 1369 * Remove all knotes from a specified klist 1370 * 1371 * Only called from aio. 1372 */ 1373 void 1374 knote_empty(struct klist *list) 1375 { 1376 struct knote *kn; 1377 1378 lwkt_gettoken(&kq_token); 1379 while ((kn = SLIST_FIRST(list)) != NULL) { 1380 if (knote_acquire(kn)) 1381 knote_detach_and_drop(kn); 1382 } 1383 lwkt_reltoken(&kq_token); 1384 } 1385 1386 void 1387 knote_assume_knotes(struct kqinfo *src, struct kqinfo *dst, 1388 struct filterops *ops, void *hook) 1389 { 1390 struct knote *kn; 1391 1392 lwkt_gettoken(&kq_token); 1393 while ((kn = SLIST_FIRST(&src->ki_note)) != NULL) { 1394 if (knote_acquire(kn)) { 1395 knote_remove(&src->ki_note, kn); 1396 kn->kn_fop = ops; 1397 kn->kn_hook = hook; 1398 knote_insert(&dst->ki_note, kn); 1399 knote_release(kn); 1400 /* kn may be invalid now */ 1401 } 1402 } 1403 lwkt_reltoken(&kq_token); 1404 } 1405 1406 /* 1407 * Remove all knotes referencing a specified fd 1408 */ 1409 void 1410 knote_fdclose(struct file *fp, struct filedesc *fdp, int fd) 1411 { 1412 struct knote *kn; 1413 1414 lwkt_gettoken(&kq_token); 1415 restart: 1416 SLIST_FOREACH(kn, &fp->f_klist, kn_link) { 1417 if (kn->kn_kq->kq_fdp == fdp && kn->kn_id == fd) { 1418 if (knote_acquire(kn)) 1419 knote_detach_and_drop(kn); 1420 goto restart; 1421 } 1422 } 1423 lwkt_reltoken(&kq_token); 1424 } 1425 1426 /* 1427 * Low level attach function. 1428 * 1429 * The knote should already be marked for processing. 1430 */ 1431 static void 1432 knote_attach(struct knote *kn) 1433 { 1434 struct klist *list; 1435 struct kqueue *kq = kn->kn_kq; 1436 1437 if (kn->kn_fop->f_flags & FILTEROP_ISFD) { 1438 KKASSERT(kn->kn_fp); 1439 list = &kn->kn_fp->f_klist; 1440 } else { 1441 if (kq->kq_knhashmask == 0) 1442 kq->kq_knhash = hashinit(KN_HASHSIZE, M_KQUEUE, 1443 &kq->kq_knhashmask); 1444 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)]; 1445 } 1446 SLIST_INSERT_HEAD(list, kn, kn_link); 1447 TAILQ_INSERT_HEAD(&kq->kq_knlist, kn, kn_kqlink); 1448 } 1449 1450 /* 1451 * Low level drop function. 1452 * 1453 * The knote should already be marked for processing. 1454 */ 1455 static void 1456 knote_drop(struct knote *kn) 1457 { 1458 struct kqueue *kq; 1459 struct klist *list; 1460 1461 kq = kn->kn_kq; 1462 1463 if (kn->kn_fop->f_flags & FILTEROP_ISFD) 1464 list = &kn->kn_fp->f_klist; 1465 else 1466 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)]; 1467 1468 SLIST_REMOVE(list, kn, knote, kn_link); 1469 TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink); 1470 if (kn->kn_status & KN_QUEUED) 1471 knote_dequeue(kn); 1472 if (kn->kn_fop->f_flags & FILTEROP_ISFD) { 1473 fdrop(kn->kn_fp); 1474 kn->kn_fp = NULL; 1475 } 1476 knote_free(kn); 1477 } 1478 1479 /* 1480 * Low level enqueue function. 1481 * 1482 * The knote should already be marked for processing. 1483 */ 1484 static void 1485 knote_enqueue(struct knote *kn) 1486 { 1487 struct kqueue *kq = kn->kn_kq; 1488 1489 KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued")); 1490 TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe); 1491 kn->kn_status |= KN_QUEUED; 1492 ++kq->kq_count; 1493 1494 /* 1495 * Send SIGIO on request (typically set up as a mailbox signal) 1496 */ 1497 if (kq->kq_sigio && (kq->kq_state & KQ_ASYNC) && kq->kq_count == 1) 1498 pgsigio(kq->kq_sigio, SIGIO, 0); 1499 1500 kqueue_wakeup(kq); 1501 } 1502 1503 /* 1504 * Low level dequeue function. 1505 * 1506 * The knote should already be marked for processing. 1507 */ 1508 static void 1509 knote_dequeue(struct knote *kn) 1510 { 1511 struct kqueue *kq = kn->kn_kq; 1512 1513 KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued")); 1514 TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe); 1515 kn->kn_status &= ~KN_QUEUED; 1516 kq->kq_count--; 1517 } 1518 1519 static struct knote * 1520 knote_alloc(void) 1521 { 1522 return kmalloc(sizeof(struct knote), M_KQUEUE, M_NOWAIT); 1523 } 1524 1525 static void 1526 knote_free(struct knote *kn) 1527 { 1528 kfree(kn, M_KQUEUE); 1529 } 1530