1 /*- 2 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $ 27 * $DragonFly: src/sys/kern/kern_event.c,v 1.33 2007/02/03 17:05:57 corecode Exp $ 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/proc.h> 34 #include <sys/malloc.h> 35 #include <sys/unistd.h> 36 #include <sys/file.h> 37 #include <sys/lock.h> 38 #include <sys/fcntl.h> 39 #include <sys/queue.h> 40 #include <sys/event.h> 41 #include <sys/eventvar.h> 42 #include <sys/protosw.h> 43 #include <sys/socket.h> 44 #include <sys/socketvar.h> 45 #include <sys/stat.h> 46 #include <sys/sysctl.h> 47 #include <sys/sysproto.h> 48 #include <sys/thread.h> 49 #include <sys/uio.h> 50 #include <sys/signalvar.h> 51 #include <sys/filio.h> 52 #include <sys/ktr.h> 53 54 #include <sys/thread2.h> 55 #include <sys/file2.h> 56 #include <sys/mplock2.h> 57 58 /* 59 * Global token for kqueue subsystem 60 */ 61 struct lwkt_token kq_token = LWKT_TOKEN_INITIALIZER(kq_token); 62 SYSCTL_LONG(_lwkt, OID_AUTO, kq_collisions, 63 CTLFLAG_RW, &kq_token.t_collisions, 0, 64 "Collision counter of kq_token"); 65 66 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system"); 67 68 struct kevent_copyin_args { 69 struct kevent_args *ka; 70 int pchanges; 71 }; 72 73 static int kqueue_sleep(struct kqueue *kq, struct timespec *tsp); 74 static int kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count, 75 struct knote *marker); 76 static int kqueue_read(struct file *fp, struct uio *uio, 77 struct ucred *cred, int flags); 78 static int kqueue_write(struct file *fp, struct uio *uio, 79 struct ucred *cred, int flags); 80 static int kqueue_ioctl(struct file *fp, u_long com, caddr_t data, 81 struct ucred *cred, struct sysmsg *msg); 82 static int kqueue_kqfilter(struct file *fp, struct knote *kn); 83 static int kqueue_stat(struct file *fp, struct stat *st, 84 struct ucred *cred); 85 static int kqueue_close(struct file *fp); 86 static void kqueue_wakeup(struct kqueue *kq); 87 static int filter_attach(struct knote *kn); 88 static int filter_event(struct knote *kn, long hint); 89 90 /* 91 * MPSAFE 92 */ 93 static struct fileops kqueueops = { 94 .fo_read = kqueue_read, 95 .fo_write = kqueue_write, 96 .fo_ioctl = kqueue_ioctl, 97 .fo_kqfilter = kqueue_kqfilter, 98 .fo_stat = kqueue_stat, 99 .fo_close = kqueue_close, 100 .fo_shutdown = nofo_shutdown 101 }; 102 103 static void knote_attach(struct knote *kn); 104 static void knote_drop(struct knote *kn); 105 static void knote_detach_and_drop(struct knote *kn); 106 static void knote_enqueue(struct knote *kn); 107 static void knote_dequeue(struct knote *kn); 108 static struct knote *knote_alloc(void); 109 static void knote_free(struct knote *kn); 110 111 static void filt_kqdetach(struct knote *kn); 112 static int filt_kqueue(struct knote *kn, long hint); 113 static int filt_procattach(struct knote *kn); 114 static void filt_procdetach(struct knote *kn); 115 static int filt_proc(struct knote *kn, long hint); 116 static int filt_fileattach(struct knote *kn); 117 static void filt_timerexpire(void *knx); 118 static int filt_timerattach(struct knote *kn); 119 static void filt_timerdetach(struct knote *kn); 120 static int filt_timer(struct knote *kn, long hint); 121 122 static struct filterops file_filtops = 123 { FILTEROP_ISFD, filt_fileattach, NULL, NULL }; 124 static struct filterops kqread_filtops = 125 { FILTEROP_ISFD, NULL, filt_kqdetach, filt_kqueue }; 126 static struct filterops proc_filtops = 127 { 0, filt_procattach, filt_procdetach, filt_proc }; 128 static struct filterops timer_filtops = 129 { 0, filt_timerattach, filt_timerdetach, filt_timer }; 130 131 static int kq_ncallouts = 0; 132 static int kq_calloutmax = (4 * 1024); 133 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW, 134 &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue"); 135 static int kq_checkloop = 1000000; 136 SYSCTL_INT(_kern, OID_AUTO, kq_checkloop, CTLFLAG_RW, 137 &kq_checkloop, 0, "Maximum number of callouts allocated for kqueue"); 138 139 #define KNOTE_ACTIVATE(kn) do { \ 140 kn->kn_status |= KN_ACTIVE; \ 141 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \ 142 knote_enqueue(kn); \ 143 } while(0) 144 145 #define KN_HASHSIZE 64 /* XXX should be tunable */ 146 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) 147 148 extern struct filterops aio_filtops; 149 extern struct filterops sig_filtops; 150 151 /* 152 * Table for for all system-defined filters. 153 */ 154 static struct filterops *sysfilt_ops[] = { 155 &file_filtops, /* EVFILT_READ */ 156 &file_filtops, /* EVFILT_WRITE */ 157 &aio_filtops, /* EVFILT_AIO */ 158 &file_filtops, /* EVFILT_VNODE */ 159 &proc_filtops, /* EVFILT_PROC */ 160 &sig_filtops, /* EVFILT_SIGNAL */ 161 &timer_filtops, /* EVFILT_TIMER */ 162 &file_filtops, /* EVFILT_EXCEPT */ 163 }; 164 165 static int 166 filt_fileattach(struct knote *kn) 167 { 168 return (fo_kqfilter(kn->kn_fp, kn)); 169 } 170 171 /* 172 * MPSAFE 173 */ 174 static int 175 kqueue_kqfilter(struct file *fp, struct knote *kn) 176 { 177 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; 178 179 if (kn->kn_filter != EVFILT_READ) 180 return (EOPNOTSUPP); 181 182 kn->kn_fop = &kqread_filtops; 183 knote_insert(&kq->kq_kqinfo.ki_note, kn); 184 return (0); 185 } 186 187 static void 188 filt_kqdetach(struct knote *kn) 189 { 190 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; 191 192 knote_remove(&kq->kq_kqinfo.ki_note, kn); 193 } 194 195 /*ARGSUSED*/ 196 static int 197 filt_kqueue(struct knote *kn, long hint) 198 { 199 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; 200 201 kn->kn_data = kq->kq_count; 202 return (kn->kn_data > 0); 203 } 204 205 static int 206 filt_procattach(struct knote *kn) 207 { 208 struct proc *p; 209 int immediate; 210 211 immediate = 0; 212 p = pfind(kn->kn_id); 213 if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) { 214 p = zpfind(kn->kn_id); 215 immediate = 1; 216 } 217 if (p == NULL) { 218 return (ESRCH); 219 } 220 if (!PRISON_CHECK(curthread->td_ucred, p->p_ucred)) { 221 if (p) 222 PRELE(p); 223 return (EACCES); 224 } 225 226 lwkt_gettoken(&p->p_token); 227 kn->kn_ptr.p_proc = p; 228 kn->kn_flags |= EV_CLEAR; /* automatically set */ 229 230 /* 231 * internal flag indicating registration done by kernel 232 */ 233 if (kn->kn_flags & EV_FLAG1) { 234 kn->kn_data = kn->kn_sdata; /* ppid */ 235 kn->kn_fflags = NOTE_CHILD; 236 kn->kn_flags &= ~EV_FLAG1; 237 } 238 239 knote_insert(&p->p_klist, kn); 240 241 /* 242 * Immediately activate any exit notes if the target process is a 243 * zombie. This is necessary to handle the case where the target 244 * process, e.g. a child, dies before the kevent is negistered. 245 */ 246 if (immediate && filt_proc(kn, NOTE_EXIT)) 247 KNOTE_ACTIVATE(kn); 248 lwkt_reltoken(&p->p_token); 249 PRELE(p); 250 251 return (0); 252 } 253 254 /* 255 * The knote may be attached to a different process, which may exit, 256 * leaving nothing for the knote to be attached to. So when the process 257 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so 258 * it will be deleted when read out. However, as part of the knote deletion, 259 * this routine is called, so a check is needed to avoid actually performing 260 * a detach, because the original process does not exist any more. 261 */ 262 static void 263 filt_procdetach(struct knote *kn) 264 { 265 struct proc *p; 266 267 if (kn->kn_status & KN_DETACHED) 268 return; 269 /* XXX locking? take proc_token here? */ 270 p = kn->kn_ptr.p_proc; 271 knote_remove(&p->p_klist, kn); 272 } 273 274 static int 275 filt_proc(struct knote *kn, long hint) 276 { 277 u_int event; 278 279 /* 280 * mask off extra data 281 */ 282 event = (u_int)hint & NOTE_PCTRLMASK; 283 284 /* 285 * if the user is interested in this event, record it. 286 */ 287 if (kn->kn_sfflags & event) 288 kn->kn_fflags |= event; 289 290 /* 291 * Process is gone, so flag the event as finished. Detach the 292 * knote from the process now because the process will be poof, 293 * gone later on. 294 */ 295 if (event == NOTE_EXIT) { 296 struct proc *p = kn->kn_ptr.p_proc; 297 if ((kn->kn_status & KN_DETACHED) == 0) { 298 knote_remove(&p->p_klist, kn); 299 kn->kn_status |= KN_DETACHED; 300 kn->kn_data = p->p_xstat; 301 kn->kn_ptr.p_proc = NULL; 302 } 303 kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT); 304 return (1); 305 } 306 307 /* 308 * process forked, and user wants to track the new process, 309 * so attach a new knote to it, and immediately report an 310 * event with the parent's pid. 311 */ 312 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) { 313 struct kevent kev; 314 int error; 315 316 /* 317 * register knote with new process. 318 */ 319 kev.ident = hint & NOTE_PDATAMASK; /* pid */ 320 kev.filter = kn->kn_filter; 321 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1; 322 kev.fflags = kn->kn_sfflags; 323 kev.data = kn->kn_id; /* parent */ 324 kev.udata = kn->kn_kevent.udata; /* preserve udata */ 325 error = kqueue_register(kn->kn_kq, &kev); 326 if (error) 327 kn->kn_fflags |= NOTE_TRACKERR; 328 } 329 330 return (kn->kn_fflags != 0); 331 } 332 333 /* 334 * The callout interlocks with callout_terminate() but can still 335 * race a deletion so if KN_DELETING is set we just don't touch 336 * the knote. 337 */ 338 static void 339 filt_timerexpire(void *knx) 340 { 341 struct knote *kn = knx; 342 struct callout *calloutp; 343 struct timeval tv; 344 int tticks; 345 346 lwkt_gettoken(&kq_token); 347 if ((kn->kn_status & KN_DELETING) == 0) { 348 kn->kn_data++; 349 KNOTE_ACTIVATE(kn); 350 351 if ((kn->kn_flags & EV_ONESHOT) == 0) { 352 tv.tv_sec = kn->kn_sdata / 1000; 353 tv.tv_usec = (kn->kn_sdata % 1000) * 1000; 354 tticks = tvtohz_high(&tv); 355 calloutp = (struct callout *)kn->kn_hook; 356 callout_reset(calloutp, tticks, filt_timerexpire, kn); 357 } 358 } 359 lwkt_reltoken(&kq_token); 360 } 361 362 /* 363 * data contains amount of time to sleep, in milliseconds 364 */ 365 static int 366 filt_timerattach(struct knote *kn) 367 { 368 struct callout *calloutp; 369 struct timeval tv; 370 int tticks; 371 372 if (kq_ncallouts >= kq_calloutmax) { 373 kn->kn_hook = NULL; 374 return (ENOMEM); 375 } 376 kq_ncallouts++; 377 378 tv.tv_sec = kn->kn_sdata / 1000; 379 tv.tv_usec = (kn->kn_sdata % 1000) * 1000; 380 tticks = tvtohz_high(&tv); 381 382 kn->kn_flags |= EV_CLEAR; /* automatically set */ 383 MALLOC(calloutp, struct callout *, sizeof(*calloutp), 384 M_KQUEUE, M_WAITOK); 385 callout_init(calloutp); 386 kn->kn_hook = (caddr_t)calloutp; 387 callout_reset(calloutp, tticks, filt_timerexpire, kn); 388 389 return (0); 390 } 391 392 /* 393 * This function is called with the knote flagged locked but it is 394 * still possible to race a callout event due to the callback blocking. 395 * We must call callout_terminate() instead of callout_stop() to deal 396 * with the race. 397 */ 398 static void 399 filt_timerdetach(struct knote *kn) 400 { 401 struct callout *calloutp; 402 403 calloutp = (struct callout *)kn->kn_hook; 404 callout_terminate(calloutp); 405 FREE(calloutp, M_KQUEUE); 406 kq_ncallouts--; 407 } 408 409 static int 410 filt_timer(struct knote *kn, long hint) 411 { 412 413 return (kn->kn_data != 0); 414 } 415 416 /* 417 * Acquire a knote, return non-zero on success, 0 on failure. 418 * 419 * If we cannot acquire the knote we sleep and return 0. The knote 420 * may be stale on return in this case and the caller must restart 421 * whatever loop they are in. 422 */ 423 static __inline 424 int 425 knote_acquire(struct knote *kn) 426 { 427 if (kn->kn_status & KN_PROCESSING) { 428 kn->kn_status |= KN_WAITING | KN_REPROCESS; 429 tsleep(kn, 0, "kqepts", hz); 430 /* knote may be stale now */ 431 return(0); 432 } 433 kn->kn_status |= KN_PROCESSING; 434 return(1); 435 } 436 437 /* 438 * Release an acquired knote, clearing KN_PROCESSING and handling any 439 * KN_REPROCESS events. 440 * 441 * Non-zero is returned if the knote is destroyed. 442 */ 443 static __inline 444 int 445 knote_release(struct knote *kn) 446 { 447 while (kn->kn_status & KN_REPROCESS) { 448 kn->kn_status &= ~KN_REPROCESS; 449 if (kn->kn_status & KN_WAITING) { 450 kn->kn_status &= ~KN_WAITING; 451 wakeup(kn); 452 } 453 if (kn->kn_status & KN_DELETING) { 454 knote_detach_and_drop(kn); 455 return(1); 456 /* NOT REACHED */ 457 } 458 if (filter_event(kn, 0)) 459 KNOTE_ACTIVATE(kn); 460 } 461 kn->kn_status &= ~KN_PROCESSING; 462 return(0); 463 } 464 465 /* 466 * Initialize a kqueue. 467 * 468 * NOTE: The lwp/proc code initializes a kqueue for select/poll ops. 469 * 470 * MPSAFE 471 */ 472 void 473 kqueue_init(struct kqueue *kq, struct filedesc *fdp) 474 { 475 TAILQ_INIT(&kq->kq_knpend); 476 TAILQ_INIT(&kq->kq_knlist); 477 kq->kq_count = 0; 478 kq->kq_fdp = fdp; 479 SLIST_INIT(&kq->kq_kqinfo.ki_note); 480 } 481 482 /* 483 * Terminate a kqueue. Freeing the actual kq itself is left up to the 484 * caller (it might be embedded in a lwp so we don't do it here). 485 * 486 * The kq's knlist must be completely eradicated so block on any 487 * processing races. 488 */ 489 void 490 kqueue_terminate(struct kqueue *kq) 491 { 492 struct knote *kn; 493 494 lwkt_gettoken(&kq_token); 495 while ((kn = TAILQ_FIRST(&kq->kq_knlist)) != NULL) { 496 if (knote_acquire(kn)) 497 knote_detach_and_drop(kn); 498 } 499 if (kq->kq_knhash) { 500 kfree(kq->kq_knhash, M_KQUEUE); 501 kq->kq_knhash = NULL; 502 kq->kq_knhashmask = 0; 503 } 504 lwkt_reltoken(&kq_token); 505 } 506 507 /* 508 * MPSAFE 509 */ 510 int 511 sys_kqueue(struct kqueue_args *uap) 512 { 513 struct thread *td = curthread; 514 struct kqueue *kq; 515 struct file *fp; 516 int fd, error; 517 518 error = falloc(td->td_lwp, &fp, &fd); 519 if (error) 520 return (error); 521 fp->f_flag = FREAD | FWRITE; 522 fp->f_type = DTYPE_KQUEUE; 523 fp->f_ops = &kqueueops; 524 525 kq = kmalloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO); 526 kqueue_init(kq, td->td_proc->p_fd); 527 fp->f_data = kq; 528 529 fsetfd(kq->kq_fdp, fp, fd); 530 uap->sysmsg_result = fd; 531 fdrop(fp); 532 return (error); 533 } 534 535 /* 536 * Copy 'count' items into the destination list pointed to by uap->eventlist. 537 */ 538 static int 539 kevent_copyout(void *arg, struct kevent *kevp, int count, int *res) 540 { 541 struct kevent_copyin_args *kap; 542 int error; 543 544 kap = (struct kevent_copyin_args *)arg; 545 546 error = copyout(kevp, kap->ka->eventlist, count * sizeof(*kevp)); 547 if (error == 0) { 548 kap->ka->eventlist += count; 549 *res += count; 550 } else { 551 *res = -1; 552 } 553 554 return (error); 555 } 556 557 /* 558 * Copy at most 'max' items from the list pointed to by kap->changelist, 559 * return number of items in 'events'. 560 */ 561 static int 562 kevent_copyin(void *arg, struct kevent *kevp, int max, int *events) 563 { 564 struct kevent_copyin_args *kap; 565 int error, count; 566 567 kap = (struct kevent_copyin_args *)arg; 568 569 count = min(kap->ka->nchanges - kap->pchanges, max); 570 error = copyin(kap->ka->changelist, kevp, count * sizeof *kevp); 571 if (error == 0) { 572 kap->ka->changelist += count; 573 kap->pchanges += count; 574 *events = count; 575 } 576 577 return (error); 578 } 579 580 /* 581 * MPSAFE 582 */ 583 int 584 kern_kevent(struct kqueue *kq, int nevents, int *res, void *uap, 585 k_copyin_fn kevent_copyinfn, k_copyout_fn kevent_copyoutfn, 586 struct timespec *tsp_in) 587 { 588 struct kevent *kevp; 589 struct timespec *tsp; 590 int i, n, total, error, nerrors = 0; 591 int lres; 592 int limit = kq_checkloop; 593 struct kevent kev[KQ_NEVENTS]; 594 struct knote marker; 595 596 tsp = tsp_in; 597 *res = 0; 598 599 lwkt_gettoken(&kq_token); 600 for ( ;; ) { 601 n = 0; 602 error = kevent_copyinfn(uap, kev, KQ_NEVENTS, &n); 603 if (error) 604 goto done; 605 if (n == 0) 606 break; 607 for (i = 0; i < n; i++) { 608 kevp = &kev[i]; 609 kevp->flags &= ~EV_SYSFLAGS; 610 error = kqueue_register(kq, kevp); 611 612 /* 613 * If a registration returns an error we 614 * immediately post the error. The kevent() 615 * call itself will fail with the error if 616 * no space is available for posting. 617 * 618 * Such errors normally bypass the timeout/blocking 619 * code. However, if the copyoutfn function refuses 620 * to post the error (see sys_poll()), then we 621 * ignore it too. 622 */ 623 if (error) { 624 kevp->flags = EV_ERROR; 625 kevp->data = error; 626 lres = *res; 627 kevent_copyoutfn(uap, kevp, 1, res); 628 if (*res < 0) { 629 goto done; 630 } else if (lres != *res) { 631 nevents--; 632 nerrors++; 633 } 634 } 635 } 636 } 637 if (nerrors) { 638 error = 0; 639 goto done; 640 } 641 642 /* 643 * Acquire/wait for events - setup timeout 644 */ 645 if (tsp != NULL) { 646 struct timespec ats; 647 648 if (tsp->tv_sec || tsp->tv_nsec) { 649 nanouptime(&ats); 650 timespecadd(tsp, &ats); /* tsp = target time */ 651 } 652 } 653 654 /* 655 * Loop as required. 656 * 657 * Collect as many events as we can. Sleeping on successive 658 * loops is disabled if copyoutfn has incremented (*res). 659 * 660 * The loop stops if an error occurs, all events have been 661 * scanned (the marker has been reached), or fewer than the 662 * maximum number of events is found. 663 * 664 * The copyoutfn function does not have to increment (*res) in 665 * order for the loop to continue. 666 * 667 * NOTE: doselect() usually passes 0x7FFFFFFF for nevents. 668 */ 669 total = 0; 670 error = 0; 671 marker.kn_filter = EVFILT_MARKER; 672 marker.kn_status = KN_PROCESSING; 673 TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe); 674 while ((n = nevents - total) > 0) { 675 if (n > KQ_NEVENTS) 676 n = KQ_NEVENTS; 677 678 /* 679 * If no events are pending sleep until timeout (if any) 680 * or an event occurs. 681 * 682 * After the sleep completes the marker is moved to the 683 * end of the list, making any received events available 684 * to our scan. 685 */ 686 if (kq->kq_count == 0 && *res == 0) { 687 error = kqueue_sleep(kq, tsp); 688 if (error) 689 break; 690 691 TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe); 692 TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe); 693 } 694 695 /* 696 * Process all received events 697 * Account for all non-spurious events in our total 698 */ 699 i = kqueue_scan(kq, kev, n, &marker); 700 if (i) { 701 lres = *res; 702 error = kevent_copyoutfn(uap, kev, i, res); 703 total += *res - lres; 704 if (error) 705 break; 706 } 707 if (limit && --limit == 0) 708 panic("kqueue: checkloop failed i=%d", i); 709 710 /* 711 * Normally when fewer events are returned than requested 712 * we can stop. However, if only spurious events were 713 * collected the copyout will not bump (*res) and we have 714 * to continue. 715 */ 716 if (i < n && *res) 717 break; 718 719 /* 720 * Deal with an edge case where spurious events can cause 721 * a loop to occur without moving the marker. This can 722 * prevent kqueue_scan() from picking up new events which 723 * race us. We must be sure to move the marker for this 724 * case. 725 * 726 * NOTE: We do not want to move the marker if events 727 * were scanned because normal kqueue operations 728 * may reactivate events. Moving the marker in 729 * that case could result in duplicates for the 730 * same event. 731 */ 732 if (i == 0) { 733 TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe); 734 TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe); 735 } 736 } 737 TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe); 738 739 /* Timeouts do not return EWOULDBLOCK. */ 740 if (error == EWOULDBLOCK) 741 error = 0; 742 743 done: 744 lwkt_reltoken(&kq_token); 745 return (error); 746 } 747 748 /* 749 * MPALMOSTSAFE 750 */ 751 int 752 sys_kevent(struct kevent_args *uap) 753 { 754 struct thread *td = curthread; 755 struct proc *p = td->td_proc; 756 struct timespec ts, *tsp; 757 struct kqueue *kq; 758 struct file *fp = NULL; 759 struct kevent_copyin_args *kap, ka; 760 int error; 761 762 if (uap->timeout) { 763 error = copyin(uap->timeout, &ts, sizeof(ts)); 764 if (error) 765 return (error); 766 tsp = &ts; 767 } else { 768 tsp = NULL; 769 } 770 771 fp = holdfp(p->p_fd, uap->fd, -1); 772 if (fp == NULL) 773 return (EBADF); 774 if (fp->f_type != DTYPE_KQUEUE) { 775 fdrop(fp); 776 return (EBADF); 777 } 778 779 kq = (struct kqueue *)fp->f_data; 780 781 kap = &ka; 782 kap->ka = uap; 783 kap->pchanges = 0; 784 785 error = kern_kevent(kq, uap->nevents, &uap->sysmsg_result, kap, 786 kevent_copyin, kevent_copyout, tsp); 787 788 fdrop(fp); 789 790 return (error); 791 } 792 793 int 794 kqueue_register(struct kqueue *kq, struct kevent *kev) 795 { 796 struct filedesc *fdp = kq->kq_fdp; 797 struct filterops *fops; 798 struct file *fp = NULL; 799 struct knote *kn = NULL; 800 int error = 0; 801 802 if (kev->filter < 0) { 803 if (kev->filter + EVFILT_SYSCOUNT < 0) 804 return (EINVAL); 805 fops = sysfilt_ops[~kev->filter]; /* to 0-base index */ 806 } else { 807 /* 808 * XXX 809 * filter attach routine is responsible for insuring that 810 * the identifier can be attached to it. 811 */ 812 kprintf("unknown filter: %d\n", kev->filter); 813 return (EINVAL); 814 } 815 816 lwkt_gettoken(&kq_token); 817 if (fops->f_flags & FILTEROP_ISFD) { 818 /* validate descriptor */ 819 fp = holdfp(fdp, kev->ident, -1); 820 if (fp == NULL) { 821 lwkt_reltoken(&kq_token); 822 return (EBADF); 823 } 824 825 again1: 826 SLIST_FOREACH(kn, &fp->f_klist, kn_link) { 827 if (kn->kn_kq == kq && 828 kn->kn_filter == kev->filter && 829 kn->kn_id == kev->ident) { 830 if (knote_acquire(kn) == 0) 831 goto again1; 832 break; 833 } 834 } 835 } else { 836 if (kq->kq_knhashmask) { 837 struct klist *list; 838 839 list = &kq->kq_knhash[ 840 KN_HASH((u_long)kev->ident, kq->kq_knhashmask)]; 841 again2: 842 SLIST_FOREACH(kn, list, kn_link) { 843 if (kn->kn_id == kev->ident && 844 kn->kn_filter == kev->filter) { 845 if (knote_acquire(kn) == 0) 846 goto again2; 847 break; 848 } 849 } 850 } 851 } 852 853 /* 854 * NOTE: At this point if kn is non-NULL we will have acquired 855 * it and set KN_PROCESSING. 856 */ 857 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) { 858 error = ENOENT; 859 goto done; 860 } 861 862 /* 863 * kn now contains the matching knote, or NULL if no match 864 */ 865 if (kev->flags & EV_ADD) { 866 if (kn == NULL) { 867 kn = knote_alloc(); 868 if (kn == NULL) { 869 error = ENOMEM; 870 goto done; 871 } 872 kn->kn_fp = fp; 873 kn->kn_kq = kq; 874 kn->kn_fop = fops; 875 876 /* 877 * apply reference count to knote structure, and 878 * do not release it at the end of this routine. 879 */ 880 fp = NULL; 881 882 kn->kn_sfflags = kev->fflags; 883 kn->kn_sdata = kev->data; 884 kev->fflags = 0; 885 kev->data = 0; 886 kn->kn_kevent = *kev; 887 888 /* 889 * KN_PROCESSING prevents the knote from getting 890 * ripped out from under us while we are trying 891 * to attach it, in case the attach blocks. 892 */ 893 kn->kn_status = KN_PROCESSING; 894 knote_attach(kn); 895 if ((error = filter_attach(kn)) != 0) { 896 kn->kn_status |= KN_DELETING | KN_REPROCESS; 897 knote_drop(kn); 898 goto done; 899 } 900 901 /* 902 * Interlock against close races which either tried 903 * to remove our knote while we were blocked or missed 904 * it entirely prior to our attachment. We do not 905 * want to end up with a knote on a closed descriptor. 906 */ 907 if ((fops->f_flags & FILTEROP_ISFD) && 908 checkfdclosed(fdp, kev->ident, kn->kn_fp)) { 909 kn->kn_status |= KN_DELETING | KN_REPROCESS; 910 } 911 } else { 912 /* 913 * The user may change some filter values after the 914 * initial EV_ADD, but doing so will not reset any 915 * filter which have already been triggered. 916 */ 917 KKASSERT(kn->kn_status & KN_PROCESSING); 918 kn->kn_sfflags = kev->fflags; 919 kn->kn_sdata = kev->data; 920 kn->kn_kevent.udata = kev->udata; 921 } 922 923 /* 924 * Execute the filter event to immediately activate the 925 * knote if necessary. If reprocessing events are pending 926 * due to blocking above we do not run the filter here 927 * but instead let knote_release() do it. Otherwise we 928 * might run the filter on a deleted event. 929 */ 930 if ((kn->kn_status & KN_REPROCESS) == 0) { 931 if (filter_event(kn, 0)) 932 KNOTE_ACTIVATE(kn); 933 } 934 } else if (kev->flags & EV_DELETE) { 935 /* 936 * Delete the existing knote 937 */ 938 knote_detach_and_drop(kn); 939 goto done; 940 } 941 942 /* 943 * Disablement does not deactivate a knote here. 944 */ 945 if ((kev->flags & EV_DISABLE) && 946 ((kn->kn_status & KN_DISABLED) == 0)) { 947 kn->kn_status |= KN_DISABLED; 948 } 949 950 /* 951 * Re-enablement may have to immediately enqueue an active knote. 952 */ 953 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) { 954 kn->kn_status &= ~KN_DISABLED; 955 if ((kn->kn_status & KN_ACTIVE) && 956 ((kn->kn_status & KN_QUEUED) == 0)) { 957 knote_enqueue(kn); 958 } 959 } 960 961 /* 962 * Handle any required reprocessing 963 */ 964 knote_release(kn); 965 /* kn may be invalid now */ 966 967 done: 968 lwkt_reltoken(&kq_token); 969 if (fp != NULL) 970 fdrop(fp); 971 return (error); 972 } 973 974 /* 975 * Block as necessary until the target time is reached. 976 * If tsp is NULL we block indefinitely. If tsp->ts_secs/nsecs are both 977 * 0 we do not block at all. 978 */ 979 static int 980 kqueue_sleep(struct kqueue *kq, struct timespec *tsp) 981 { 982 int error = 0; 983 984 if (tsp == NULL) { 985 kq->kq_state |= KQ_SLEEP; 986 error = tsleep(kq, PCATCH, "kqread", 0); 987 } else if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) { 988 error = EWOULDBLOCK; 989 } else { 990 struct timespec ats; 991 struct timespec atx = *tsp; 992 int timeout; 993 994 nanouptime(&ats); 995 timespecsub(&atx, &ats); 996 if (ats.tv_sec < 0) { 997 error = EWOULDBLOCK; 998 } else { 999 timeout = atx.tv_sec > 24 * 60 * 60 ? 1000 24 * 60 * 60 * hz : tstohz_high(&atx); 1001 kq->kq_state |= KQ_SLEEP; 1002 error = tsleep(kq, PCATCH, "kqread", timeout); 1003 } 1004 } 1005 1006 /* don't restart after signals... */ 1007 if (error == ERESTART) 1008 return (EINTR); 1009 1010 return (error); 1011 } 1012 1013 /* 1014 * Scan the kqueue, return the number of active events placed in kevp up 1015 * to count. 1016 * 1017 * Continuous mode events may get recycled, do not continue scanning past 1018 * marker unless no events have been collected. 1019 */ 1020 static int 1021 kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count, 1022 struct knote *marker) 1023 { 1024 struct knote *kn, local_marker; 1025 int total; 1026 1027 total = 0; 1028 local_marker.kn_filter = EVFILT_MARKER; 1029 local_marker.kn_status = KN_PROCESSING; 1030 1031 /* 1032 * Collect events. 1033 */ 1034 TAILQ_INSERT_HEAD(&kq->kq_knpend, &local_marker, kn_tqe); 1035 while (count) { 1036 kn = TAILQ_NEXT(&local_marker, kn_tqe); 1037 if (kn->kn_filter == EVFILT_MARKER) { 1038 /* Marker reached, we are done */ 1039 if (kn == marker) 1040 break; 1041 1042 /* Move local marker past some other threads marker */ 1043 kn = TAILQ_NEXT(kn, kn_tqe); 1044 TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe); 1045 TAILQ_INSERT_BEFORE(kn, &local_marker, kn_tqe); 1046 continue; 1047 } 1048 1049 /* 1050 * We can't skip a knote undergoing processing, otherwise 1051 * we risk not returning it when the user process expects 1052 * it should be returned. Sleep and retry. 1053 */ 1054 if (knote_acquire(kn) == 0) 1055 continue; 1056 1057 /* 1058 * Remove the event for processing. 1059 * 1060 * WARNING! We must leave KN_QUEUED set to prevent the 1061 * event from being KNOTE_ACTIVATE()d while 1062 * the queue state is in limbo, in case we 1063 * block. 1064 * 1065 * WARNING! We must set KN_PROCESSING to avoid races 1066 * against deletion or another thread's 1067 * processing. 1068 */ 1069 TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe); 1070 kq->kq_count--; 1071 1072 /* 1073 * We have to deal with an extremely important race against 1074 * file descriptor close()s here. The file descriptor can 1075 * disappear MPSAFE, and there is a small window of 1076 * opportunity between that and the call to knote_fdclose(). 1077 * 1078 * If we hit that window here while doselect or dopoll is 1079 * trying to delete a spurious event they will not be able 1080 * to match up the event against a knote and will go haywire. 1081 */ 1082 if ((kn->kn_fop->f_flags & FILTEROP_ISFD) && 1083 checkfdclosed(kq->kq_fdp, kn->kn_kevent.ident, kn->kn_fp)) { 1084 kn->kn_status |= KN_DELETING | KN_REPROCESS; 1085 } 1086 1087 if (kn->kn_status & KN_DISABLED) { 1088 /* 1089 * If disabled we ensure the event is not queued 1090 * but leave its active bit set. On re-enablement 1091 * the event may be immediately triggered. 1092 */ 1093 kn->kn_status &= ~KN_QUEUED; 1094 } else if ((kn->kn_flags & EV_ONESHOT) == 0 && 1095 (kn->kn_status & KN_DELETING) == 0 && 1096 filter_event(kn, 0) == 0) { 1097 /* 1098 * If not running in one-shot mode and the event 1099 * is no longer present we ensure it is removed 1100 * from the queue and ignore it. 1101 */ 1102 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); 1103 } else { 1104 /* 1105 * Post the event 1106 */ 1107 *kevp++ = kn->kn_kevent; 1108 ++total; 1109 --count; 1110 1111 if (kn->kn_flags & EV_ONESHOT) { 1112 kn->kn_status &= ~KN_QUEUED; 1113 kn->kn_status |= KN_DELETING | KN_REPROCESS; 1114 } else if (kn->kn_flags & EV_CLEAR) { 1115 kn->kn_data = 0; 1116 kn->kn_fflags = 0; 1117 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); 1118 } else { 1119 TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe); 1120 kq->kq_count++; 1121 } 1122 } 1123 1124 /* 1125 * Handle any post-processing states 1126 */ 1127 knote_release(kn); 1128 } 1129 TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe); 1130 1131 return (total); 1132 } 1133 1134 /* 1135 * XXX 1136 * This could be expanded to call kqueue_scan, if desired. 1137 * 1138 * MPSAFE 1139 */ 1140 static int 1141 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags) 1142 { 1143 return (ENXIO); 1144 } 1145 1146 /* 1147 * MPSAFE 1148 */ 1149 static int 1150 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags) 1151 { 1152 return (ENXIO); 1153 } 1154 1155 /* 1156 * MPALMOSTSAFE 1157 */ 1158 static int 1159 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, 1160 struct ucred *cred, struct sysmsg *msg) 1161 { 1162 struct kqueue *kq; 1163 int error; 1164 1165 lwkt_gettoken(&kq_token); 1166 kq = (struct kqueue *)fp->f_data; 1167 1168 switch(com) { 1169 case FIOASYNC: 1170 if (*(int *)data) 1171 kq->kq_state |= KQ_ASYNC; 1172 else 1173 kq->kq_state &= ~KQ_ASYNC; 1174 error = 0; 1175 break; 1176 case FIOSETOWN: 1177 error = fsetown(*(int *)data, &kq->kq_sigio); 1178 break; 1179 default: 1180 error = ENOTTY; 1181 break; 1182 } 1183 lwkt_reltoken(&kq_token); 1184 return (error); 1185 } 1186 1187 /* 1188 * MPSAFE 1189 */ 1190 static int 1191 kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred) 1192 { 1193 struct kqueue *kq = (struct kqueue *)fp->f_data; 1194 1195 bzero((void *)st, sizeof(*st)); 1196 st->st_size = kq->kq_count; 1197 st->st_blksize = sizeof(struct kevent); 1198 st->st_mode = S_IFIFO; 1199 return (0); 1200 } 1201 1202 /* 1203 * MPSAFE 1204 */ 1205 static int 1206 kqueue_close(struct file *fp) 1207 { 1208 struct kqueue *kq = (struct kqueue *)fp->f_data; 1209 1210 kqueue_terminate(kq); 1211 1212 fp->f_data = NULL; 1213 funsetown(&kq->kq_sigio); 1214 1215 kfree(kq, M_KQUEUE); 1216 return (0); 1217 } 1218 1219 static void 1220 kqueue_wakeup(struct kqueue *kq) 1221 { 1222 if (kq->kq_state & KQ_SLEEP) { 1223 kq->kq_state &= ~KQ_SLEEP; 1224 wakeup(kq); 1225 } 1226 KNOTE(&kq->kq_kqinfo.ki_note, 0); 1227 } 1228 1229 /* 1230 * Calls filterops f_attach function, acquiring mplock if filter is not 1231 * marked as FILTEROP_MPSAFE. 1232 */ 1233 static int 1234 filter_attach(struct knote *kn) 1235 { 1236 int ret; 1237 1238 if (!(kn->kn_fop->f_flags & FILTEROP_MPSAFE)) { 1239 get_mplock(); 1240 ret = kn->kn_fop->f_attach(kn); 1241 rel_mplock(); 1242 } else { 1243 ret = kn->kn_fop->f_attach(kn); 1244 } 1245 1246 return (ret); 1247 } 1248 1249 /* 1250 * Detach the knote and drop it, destroying the knote. 1251 * 1252 * Calls filterops f_detach function, acquiring mplock if filter is not 1253 * marked as FILTEROP_MPSAFE. 1254 */ 1255 static void 1256 knote_detach_and_drop(struct knote *kn) 1257 { 1258 kn->kn_status |= KN_DELETING | KN_REPROCESS; 1259 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 1260 kn->kn_fop->f_detach(kn); 1261 } else { 1262 get_mplock(); 1263 kn->kn_fop->f_detach(kn); 1264 rel_mplock(); 1265 } 1266 knote_drop(kn); 1267 } 1268 1269 /* 1270 * Calls filterops f_event function, acquiring mplock if filter is not 1271 * marked as FILTEROP_MPSAFE. 1272 * 1273 * If the knote is in the middle of being created or deleted we cannot 1274 * safely call the filter op. 1275 */ 1276 static int 1277 filter_event(struct knote *kn, long hint) 1278 { 1279 int ret; 1280 1281 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 1282 ret = kn->kn_fop->f_event(kn, hint); 1283 } else { 1284 get_mplock(); 1285 ret = kn->kn_fop->f_event(kn, hint); 1286 rel_mplock(); 1287 } 1288 return (ret); 1289 } 1290 1291 /* 1292 * Walk down a list of knotes, activating them if their event has triggered. 1293 * 1294 * If we encounter any knotes which are undergoing processing we just mark 1295 * them for reprocessing and do not try to [re]activate the knote. However, 1296 * if a hint is being passed we have to wait and that makes things a bit 1297 * sticky. 1298 */ 1299 void 1300 knote(struct klist *list, long hint) 1301 { 1302 struct knote *kn; 1303 1304 lwkt_gettoken(&kq_token); 1305 restart: 1306 SLIST_FOREACH(kn, list, kn_next) { 1307 if (kn->kn_status & KN_PROCESSING) { 1308 /* 1309 * Someone else is processing the knote, ask the 1310 * other thread to reprocess it and don't mess 1311 * with it otherwise. 1312 */ 1313 if (hint == 0) { 1314 kn->kn_status |= KN_REPROCESS; 1315 continue; 1316 } 1317 1318 /* 1319 * If the hint is non-zero we have to wait or risk 1320 * losing the state the caller is trying to update. 1321 * 1322 * XXX This is a real problem, certain process 1323 * and signal filters will bump kn_data for 1324 * already-processed notes more than once if 1325 * we restart the list scan. FIXME. 1326 */ 1327 kn->kn_status |= KN_WAITING | KN_REPROCESS; 1328 tsleep(kn, 0, "knotec", hz); 1329 goto restart; 1330 } 1331 1332 /* 1333 * Become the reprocessing master ourselves. 1334 * 1335 * If hint is non-zer running the event is mandatory 1336 * when not deleting so do it whether reprocessing is 1337 * set or not. 1338 */ 1339 kn->kn_status |= KN_PROCESSING; 1340 if ((kn->kn_status & KN_DELETING) == 0) { 1341 if (filter_event(kn, hint)) 1342 KNOTE_ACTIVATE(kn); 1343 } 1344 if (knote_release(kn)) 1345 goto restart; 1346 } 1347 lwkt_reltoken(&kq_token); 1348 } 1349 1350 /* 1351 * Insert knote at head of klist. 1352 * 1353 * This function may only be called via a filter function and thus 1354 * kq_token should already be held and marked for processing. 1355 */ 1356 void 1357 knote_insert(struct klist *klist, struct knote *kn) 1358 { 1359 KKASSERT(kn->kn_status & KN_PROCESSING); 1360 ASSERT_LWKT_TOKEN_HELD(&kq_token); 1361 SLIST_INSERT_HEAD(klist, kn, kn_next); 1362 } 1363 1364 /* 1365 * Remove knote from a klist 1366 * 1367 * This function may only be called via a filter function and thus 1368 * kq_token should already be held and marked for processing. 1369 */ 1370 void 1371 knote_remove(struct klist *klist, struct knote *kn) 1372 { 1373 KKASSERT(kn->kn_status & KN_PROCESSING); 1374 ASSERT_LWKT_TOKEN_HELD(&kq_token); 1375 SLIST_REMOVE(klist, kn, knote, kn_next); 1376 } 1377 1378 /* 1379 * Remove all knotes from a specified klist 1380 * 1381 * Only called from aio. 1382 */ 1383 void 1384 knote_empty(struct klist *list) 1385 { 1386 struct knote *kn; 1387 1388 lwkt_gettoken(&kq_token); 1389 while ((kn = SLIST_FIRST(list)) != NULL) { 1390 if (knote_acquire(kn)) 1391 knote_detach_and_drop(kn); 1392 } 1393 lwkt_reltoken(&kq_token); 1394 } 1395 1396 void 1397 knote_assume_knotes(struct kqinfo *src, struct kqinfo *dst, 1398 struct filterops *ops, void *hook) 1399 { 1400 struct knote *kn; 1401 1402 lwkt_gettoken(&kq_token); 1403 while ((kn = SLIST_FIRST(&src->ki_note)) != NULL) { 1404 if (knote_acquire(kn)) { 1405 knote_remove(&src->ki_note, kn); 1406 kn->kn_fop = ops; 1407 kn->kn_hook = hook; 1408 knote_insert(&dst->ki_note, kn); 1409 knote_release(kn); 1410 /* kn may be invalid now */ 1411 } 1412 } 1413 lwkt_reltoken(&kq_token); 1414 } 1415 1416 /* 1417 * Remove all knotes referencing a specified fd 1418 */ 1419 void 1420 knote_fdclose(struct file *fp, struct filedesc *fdp, int fd) 1421 { 1422 struct knote *kn; 1423 1424 lwkt_gettoken(&kq_token); 1425 restart: 1426 SLIST_FOREACH(kn, &fp->f_klist, kn_link) { 1427 if (kn->kn_kq->kq_fdp == fdp && kn->kn_id == fd) { 1428 if (knote_acquire(kn)) 1429 knote_detach_and_drop(kn); 1430 goto restart; 1431 } 1432 } 1433 lwkt_reltoken(&kq_token); 1434 } 1435 1436 /* 1437 * Low level attach function. 1438 * 1439 * The knote should already be marked for processing. 1440 */ 1441 static void 1442 knote_attach(struct knote *kn) 1443 { 1444 struct klist *list; 1445 struct kqueue *kq = kn->kn_kq; 1446 1447 if (kn->kn_fop->f_flags & FILTEROP_ISFD) { 1448 KKASSERT(kn->kn_fp); 1449 list = &kn->kn_fp->f_klist; 1450 } else { 1451 if (kq->kq_knhashmask == 0) 1452 kq->kq_knhash = hashinit(KN_HASHSIZE, M_KQUEUE, 1453 &kq->kq_knhashmask); 1454 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)]; 1455 } 1456 SLIST_INSERT_HEAD(list, kn, kn_link); 1457 TAILQ_INSERT_HEAD(&kq->kq_knlist, kn, kn_kqlink); 1458 } 1459 1460 /* 1461 * Low level drop function. 1462 * 1463 * The knote should already be marked for processing. 1464 */ 1465 static void 1466 knote_drop(struct knote *kn) 1467 { 1468 struct kqueue *kq; 1469 struct klist *list; 1470 1471 kq = kn->kn_kq; 1472 1473 if (kn->kn_fop->f_flags & FILTEROP_ISFD) 1474 list = &kn->kn_fp->f_klist; 1475 else 1476 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)]; 1477 1478 SLIST_REMOVE(list, kn, knote, kn_link); 1479 TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink); 1480 if (kn->kn_status & KN_QUEUED) 1481 knote_dequeue(kn); 1482 if (kn->kn_fop->f_flags & FILTEROP_ISFD) { 1483 fdrop(kn->kn_fp); 1484 kn->kn_fp = NULL; 1485 } 1486 knote_free(kn); 1487 } 1488 1489 /* 1490 * Low level enqueue function. 1491 * 1492 * The knote should already be marked for processing. 1493 */ 1494 static void 1495 knote_enqueue(struct knote *kn) 1496 { 1497 struct kqueue *kq = kn->kn_kq; 1498 1499 KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued")); 1500 TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe); 1501 kn->kn_status |= KN_QUEUED; 1502 ++kq->kq_count; 1503 1504 /* 1505 * Send SIGIO on request (typically set up as a mailbox signal) 1506 */ 1507 if (kq->kq_sigio && (kq->kq_state & KQ_ASYNC) && kq->kq_count == 1) 1508 pgsigio(kq->kq_sigio, SIGIO, 0); 1509 1510 kqueue_wakeup(kq); 1511 } 1512 1513 /* 1514 * Low level dequeue function. 1515 * 1516 * The knote should already be marked for processing. 1517 */ 1518 static void 1519 knote_dequeue(struct knote *kn) 1520 { 1521 struct kqueue *kq = kn->kn_kq; 1522 1523 KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued")); 1524 TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe); 1525 kn->kn_status &= ~KN_QUEUED; 1526 kq->kq_count--; 1527 } 1528 1529 static struct knote * 1530 knote_alloc(void) 1531 { 1532 return kmalloc(sizeof(struct knote), M_KQUEUE, M_WAITOK); 1533 } 1534 1535 static void 1536 knote_free(struct knote *kn) 1537 { 1538 kfree(kn, M_KQUEUE); 1539 } 1540