xref: /dflybsd-src/sys/kern/kern_event.c (revision 884717e1debcf4b08bda1d29d01b0c8a34b86a59)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/proc.h>
33 #include <sys/malloc.h>
34 #include <sys/unistd.h>
35 #include <sys/file.h>
36 #include <sys/lock.h>
37 #include <sys/fcntl.h>
38 #include <sys/queue.h>
39 #include <sys/event.h>
40 #include <sys/eventvar.h>
41 #include <sys/protosw.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/sysproto.h>
47 #include <sys/thread.h>
48 #include <sys/uio.h>
49 #include <sys/signalvar.h>
50 #include <sys/filio.h>
51 #include <sys/ktr.h>
52 
53 #include <sys/thread2.h>
54 #include <sys/file2.h>
55 #include <sys/mplock2.h>
56 
57 /*
58  * Global token for kqueue subsystem
59  */
60 #if 0
61 struct lwkt_token kq_token = LWKT_TOKEN_INITIALIZER(kq_token);
62 SYSCTL_LONG(_lwkt, OID_AUTO, kq_collisions,
63     CTLFLAG_RW, &kq_token.t_collisions, 0,
64     "Collision counter of kq_token");
65 #endif
66 
67 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
68 
69 struct kevent_copyin_args {
70 	struct kevent_args	*ka;
71 	int			pchanges;
72 };
73 
74 static int	kqueue_sleep(struct kqueue *kq, struct timespec *tsp);
75 static int	kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
76 		    struct knote *marker);
77 static int 	kqueue_read(struct file *fp, struct uio *uio,
78 		    struct ucred *cred, int flags);
79 static int	kqueue_write(struct file *fp, struct uio *uio,
80 		    struct ucred *cred, int flags);
81 static int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
82 		    struct ucred *cred, struct sysmsg *msg);
83 static int 	kqueue_kqfilter(struct file *fp, struct knote *kn);
84 static int 	kqueue_stat(struct file *fp, struct stat *st,
85 		    struct ucred *cred);
86 static int 	kqueue_close(struct file *fp);
87 static void	kqueue_wakeup(struct kqueue *kq);
88 static int	filter_attach(struct knote *kn);
89 static int	filter_event(struct knote *kn, long hint);
90 
91 /*
92  * MPSAFE
93  */
94 static struct fileops kqueueops = {
95 	.fo_read = kqueue_read,
96 	.fo_write = kqueue_write,
97 	.fo_ioctl = kqueue_ioctl,
98 	.fo_kqfilter = kqueue_kqfilter,
99 	.fo_stat = kqueue_stat,
100 	.fo_close = kqueue_close,
101 	.fo_shutdown = nofo_shutdown
102 };
103 
104 static void 	knote_attach(struct knote *kn);
105 static void 	knote_drop(struct knote *kn);
106 static void	knote_detach_and_drop(struct knote *kn);
107 static void 	knote_enqueue(struct knote *kn);
108 static void 	knote_dequeue(struct knote *kn);
109 static struct 	knote *knote_alloc(void);
110 static void 	knote_free(struct knote *kn);
111 
112 static void	filt_kqdetach(struct knote *kn);
113 static int	filt_kqueue(struct knote *kn, long hint);
114 static int	filt_procattach(struct knote *kn);
115 static void	filt_procdetach(struct knote *kn);
116 static int	filt_proc(struct knote *kn, long hint);
117 static int	filt_fileattach(struct knote *kn);
118 static void	filt_timerexpire(void *knx);
119 static int	filt_timerattach(struct knote *kn);
120 static void	filt_timerdetach(struct knote *kn);
121 static int	filt_timer(struct knote *kn, long hint);
122 
123 static struct filterops file_filtops =
124 	{ FILTEROP_ISFD, filt_fileattach, NULL, NULL };
125 static struct filterops kqread_filtops =
126 	{ FILTEROP_ISFD, NULL, filt_kqdetach, filt_kqueue };
127 static struct filterops proc_filtops =
128 	{ 0, filt_procattach, filt_procdetach, filt_proc };
129 static struct filterops timer_filtops =
130 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
131 
132 static int 		kq_ncallouts = 0;
133 static int 		kq_calloutmax = (4 * 1024);
134 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
135     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
136 static int		kq_checkloop = 1000000;
137 SYSCTL_INT(_kern, OID_AUTO, kq_checkloop, CTLFLAG_RW,
138     &kq_checkloop, 0, "Maximum number of callouts allocated for kqueue");
139 
140 #define KNOTE_ACTIVATE(kn) do { 					\
141 	kn->kn_status |= KN_ACTIVE;					\
142 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
143 		knote_enqueue(kn);					\
144 } while(0)
145 
146 #define	KN_HASHSIZE		64		/* XXX should be tunable */
147 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
148 
149 extern struct filterops aio_filtops;
150 extern struct filterops sig_filtops;
151 
152 /*
153  * Table for for all system-defined filters.
154  */
155 static struct filterops *sysfilt_ops[] = {
156 	&file_filtops,			/* EVFILT_READ */
157 	&file_filtops,			/* EVFILT_WRITE */
158 	&aio_filtops,			/* EVFILT_AIO */
159 	&file_filtops,			/* EVFILT_VNODE */
160 	&proc_filtops,			/* EVFILT_PROC */
161 	&sig_filtops,			/* EVFILT_SIGNAL */
162 	&timer_filtops,			/* EVFILT_TIMER */
163 	&file_filtops,			/* EVFILT_EXCEPT */
164 };
165 
166 static int
167 filt_fileattach(struct knote *kn)
168 {
169 	return (fo_kqfilter(kn->kn_fp, kn));
170 }
171 
172 /*
173  * MPSAFE
174  */
175 static int
176 kqueue_kqfilter(struct file *fp, struct knote *kn)
177 {
178 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
179 
180 	if (kn->kn_filter != EVFILT_READ)
181 		return (EOPNOTSUPP);
182 
183 	kn->kn_fop = &kqread_filtops;
184 	knote_insert(&kq->kq_kqinfo.ki_note, kn);
185 	return (0);
186 }
187 
188 static void
189 filt_kqdetach(struct knote *kn)
190 {
191 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
192 
193 	knote_remove(&kq->kq_kqinfo.ki_note, kn);
194 }
195 
196 /*ARGSUSED*/
197 static int
198 filt_kqueue(struct knote *kn, long hint)
199 {
200 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
201 
202 	kn->kn_data = kq->kq_count;
203 	return (kn->kn_data > 0);
204 }
205 
206 static int
207 filt_procattach(struct knote *kn)
208 {
209 	struct proc *p;
210 	int immediate;
211 
212 	immediate = 0;
213 	p = pfind(kn->kn_id);
214 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
215 		p = zpfind(kn->kn_id);
216 		immediate = 1;
217 	}
218 	if (p == NULL) {
219 		return (ESRCH);
220 	}
221 	if (!PRISON_CHECK(curthread->td_ucred, p->p_ucred)) {
222 		if (p)
223 			PRELE(p);
224 		return (EACCES);
225 	}
226 
227 	lwkt_gettoken(&p->p_token);
228 	kn->kn_ptr.p_proc = p;
229 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
230 
231 	/*
232 	 * internal flag indicating registration done by kernel
233 	 */
234 	if (kn->kn_flags & EV_FLAG1) {
235 		kn->kn_data = kn->kn_sdata;		/* ppid */
236 		kn->kn_fflags = NOTE_CHILD;
237 		kn->kn_flags &= ~EV_FLAG1;
238 	}
239 
240 	knote_insert(&p->p_klist, kn);
241 
242 	/*
243 	 * Immediately activate any exit notes if the target process is a
244 	 * zombie.  This is necessary to handle the case where the target
245 	 * process, e.g. a child, dies before the kevent is negistered.
246 	 */
247 	if (immediate && filt_proc(kn, NOTE_EXIT))
248 		KNOTE_ACTIVATE(kn);
249 	lwkt_reltoken(&p->p_token);
250 	PRELE(p);
251 
252 	return (0);
253 }
254 
255 /*
256  * The knote may be attached to a different process, which may exit,
257  * leaving nothing for the knote to be attached to.  So when the process
258  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
259  * it will be deleted when read out.  However, as part of the knote deletion,
260  * this routine is called, so a check is needed to avoid actually performing
261  * a detach, because the original process does not exist any more.
262  */
263 static void
264 filt_procdetach(struct knote *kn)
265 {
266 	struct proc *p;
267 
268 	if (kn->kn_status & KN_DETACHED)
269 		return;
270 	/* XXX locking? take proc_token here? */
271 	p = kn->kn_ptr.p_proc;
272 	knote_remove(&p->p_klist, kn);
273 }
274 
275 static int
276 filt_proc(struct knote *kn, long hint)
277 {
278 	u_int event;
279 
280 	/*
281 	 * mask off extra data
282 	 */
283 	event = (u_int)hint & NOTE_PCTRLMASK;
284 
285 	/*
286 	 * if the user is interested in this event, record it.
287 	 */
288 	if (kn->kn_sfflags & event)
289 		kn->kn_fflags |= event;
290 
291 	/*
292 	 * Process is gone, so flag the event as finished.  Detach the
293 	 * knote from the process now because the process will be poof,
294 	 * gone later on.
295 	 */
296 	if (event == NOTE_EXIT) {
297 		struct proc *p = kn->kn_ptr.p_proc;
298 		if ((kn->kn_status & KN_DETACHED) == 0) {
299 			knote_remove(&p->p_klist, kn);
300 			kn->kn_status |= KN_DETACHED;
301 			kn->kn_data = p->p_xstat;
302 			kn->kn_ptr.p_proc = NULL;
303 		}
304 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
305 		return (1);
306 	}
307 
308 	/*
309 	 * process forked, and user wants to track the new process,
310 	 * so attach a new knote to it, and immediately report an
311 	 * event with the parent's pid.
312 	 */
313 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
314 		struct kevent kev;
315 		int error;
316 
317 		/*
318 		 * register knote with new process.
319 		 */
320 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
321 		kev.filter = kn->kn_filter;
322 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
323 		kev.fflags = kn->kn_sfflags;
324 		kev.data = kn->kn_id;			/* parent */
325 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
326 		error = kqueue_register(kn->kn_kq, &kev);
327 		if (error)
328 			kn->kn_fflags |= NOTE_TRACKERR;
329 	}
330 
331 	return (kn->kn_fflags != 0);
332 }
333 
334 /*
335  * The callout interlocks with callout_terminate() but can still
336  * race a deletion so if KN_DELETING is set we just don't touch
337  * the knote.
338  */
339 static void
340 filt_timerexpire(void *knx)
341 {
342 	struct lwkt_token *tok;
343 	struct knote *kn = knx;
344 	struct callout *calloutp;
345 	struct timeval tv;
346 	int tticks;
347 
348 	tok = lwkt_token_pool_lookup(kn->kn_kq);
349 	lwkt_gettoken(tok);
350 	if ((kn->kn_status & KN_DELETING) == 0) {
351 		kn->kn_data++;
352 		KNOTE_ACTIVATE(kn);
353 
354 		if ((kn->kn_flags & EV_ONESHOT) == 0) {
355 			tv.tv_sec = kn->kn_sdata / 1000;
356 			tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
357 			tticks = tvtohz_high(&tv);
358 			calloutp = (struct callout *)kn->kn_hook;
359 			callout_reset(calloutp, tticks, filt_timerexpire, kn);
360 		}
361 	}
362 	lwkt_reltoken(tok);
363 }
364 
365 /*
366  * data contains amount of time to sleep, in milliseconds
367  */
368 static int
369 filt_timerattach(struct knote *kn)
370 {
371 	struct callout *calloutp;
372 	struct timeval tv;
373 	int tticks;
374 
375 	if (kq_ncallouts >= kq_calloutmax) {
376 		kn->kn_hook = NULL;
377 		return (ENOMEM);
378 	}
379 	kq_ncallouts++;
380 
381 	tv.tv_sec = kn->kn_sdata / 1000;
382 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
383 	tticks = tvtohz_high(&tv);
384 
385 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
386 	calloutp = kmalloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
387 	callout_init(calloutp);
388 	kn->kn_hook = (caddr_t)calloutp;
389 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
390 
391 	return (0);
392 }
393 
394 /*
395  * This function is called with the knote flagged locked but it is
396  * still possible to race a callout event due to the callback blocking.
397  * We must call callout_terminate() instead of callout_stop() to deal
398  * with the race.
399  */
400 static void
401 filt_timerdetach(struct knote *kn)
402 {
403 	struct callout *calloutp;
404 
405 	calloutp = (struct callout *)kn->kn_hook;
406 	callout_terminate(calloutp);
407 	kfree(calloutp, M_KQUEUE);
408 	kq_ncallouts--;
409 }
410 
411 static int
412 filt_timer(struct knote *kn, long hint)
413 {
414 
415 	return (kn->kn_data != 0);
416 }
417 
418 /*
419  * Acquire a knote, return non-zero on success, 0 on failure.
420  *
421  * If we cannot acquire the knote we sleep and return 0.  The knote
422  * may be stale on return in this case and the caller must restart
423  * whatever loop they are in.
424  *
425  * Related kq token must be held.
426  */
427 static __inline
428 int
429 knote_acquire(struct knote *kn)
430 {
431 	if (kn->kn_status & KN_PROCESSING) {
432 		kn->kn_status |= KN_WAITING | KN_REPROCESS;
433 		tsleep(kn, 0, "kqepts", hz);
434 		/* knote may be stale now */
435 		return(0);
436 	}
437 	kn->kn_status |= KN_PROCESSING;
438 	return(1);
439 }
440 
441 /*
442  * Release an acquired knote, clearing KN_PROCESSING and handling any
443  * KN_REPROCESS events.
444  *
445  * Caller must be holding the related kq token
446  *
447  * Non-zero is returned if the knote is destroyed.
448  */
449 static __inline
450 int
451 knote_release(struct knote *kn)
452 {
453 	while (kn->kn_status & KN_REPROCESS) {
454 		kn->kn_status &= ~KN_REPROCESS;
455 		if (kn->kn_status & KN_WAITING) {
456 			kn->kn_status &= ~KN_WAITING;
457 			wakeup(kn);
458 		}
459 		if (kn->kn_status & KN_DELETING) {
460 			knote_detach_and_drop(kn);
461 			return(1);
462 			/* NOT REACHED */
463 		}
464 		if (filter_event(kn, 0))
465 			KNOTE_ACTIVATE(kn);
466 	}
467 	kn->kn_status &= ~KN_PROCESSING;
468 	return(0);
469 }
470 
471 /*
472  * Initialize a kqueue.
473  *
474  * NOTE: The lwp/proc code initializes a kqueue for select/poll ops.
475  *
476  * MPSAFE
477  */
478 void
479 kqueue_init(struct kqueue *kq, struct filedesc *fdp)
480 {
481 	TAILQ_INIT(&kq->kq_knpend);
482 	TAILQ_INIT(&kq->kq_knlist);
483 	kq->kq_count = 0;
484 	kq->kq_fdp = fdp;
485 	SLIST_INIT(&kq->kq_kqinfo.ki_note);
486 }
487 
488 /*
489  * Terminate a kqueue.  Freeing the actual kq itself is left up to the
490  * caller (it might be embedded in a lwp so we don't do it here).
491  *
492  * The kq's knlist must be completely eradicated so block on any
493  * processing races.
494  */
495 void
496 kqueue_terminate(struct kqueue *kq)
497 {
498 	struct lwkt_token *tok;
499 	struct knote *kn;
500 
501 	tok = lwkt_token_pool_lookup(kq);
502 	lwkt_gettoken(tok);
503 	while ((kn = TAILQ_FIRST(&kq->kq_knlist)) != NULL) {
504 		if (knote_acquire(kn))
505 			knote_detach_and_drop(kn);
506 	}
507 	if (kq->kq_knhash) {
508 		kfree(kq->kq_knhash, M_KQUEUE);
509 		kq->kq_knhash = NULL;
510 		kq->kq_knhashmask = 0;
511 	}
512 	lwkt_reltoken(tok);
513 }
514 
515 /*
516  * MPSAFE
517  */
518 int
519 sys_kqueue(struct kqueue_args *uap)
520 {
521 	struct thread *td = curthread;
522 	struct kqueue *kq;
523 	struct file *fp;
524 	int fd, error;
525 
526 	error = falloc(td->td_lwp, &fp, &fd);
527 	if (error)
528 		return (error);
529 	fp->f_flag = FREAD | FWRITE;
530 	fp->f_type = DTYPE_KQUEUE;
531 	fp->f_ops = &kqueueops;
532 
533 	kq = kmalloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO);
534 	kqueue_init(kq, td->td_proc->p_fd);
535 	fp->f_data = kq;
536 
537 	fsetfd(kq->kq_fdp, fp, fd);
538 	uap->sysmsg_result = fd;
539 	fdrop(fp);
540 	return (error);
541 }
542 
543 /*
544  * Copy 'count' items into the destination list pointed to by uap->eventlist.
545  */
546 static int
547 kevent_copyout(void *arg, struct kevent *kevp, int count, int *res)
548 {
549 	struct kevent_copyin_args *kap;
550 	int error;
551 
552 	kap = (struct kevent_copyin_args *)arg;
553 
554 	error = copyout(kevp, kap->ka->eventlist, count * sizeof(*kevp));
555 	if (error == 0) {
556 		kap->ka->eventlist += count;
557 		*res += count;
558 	} else {
559 		*res = -1;
560 	}
561 
562 	return (error);
563 }
564 
565 /*
566  * Copy at most 'max' items from the list pointed to by kap->changelist,
567  * return number of items in 'events'.
568  */
569 static int
570 kevent_copyin(void *arg, struct kevent *kevp, int max, int *events)
571 {
572 	struct kevent_copyin_args *kap;
573 	int error, count;
574 
575 	kap = (struct kevent_copyin_args *)arg;
576 
577 	count = min(kap->ka->nchanges - kap->pchanges, max);
578 	error = copyin(kap->ka->changelist, kevp, count * sizeof *kevp);
579 	if (error == 0) {
580 		kap->ka->changelist += count;
581 		kap->pchanges += count;
582 		*events = count;
583 	}
584 
585 	return (error);
586 }
587 
588 /*
589  * MPSAFE
590  */
591 int
592 kern_kevent(struct kqueue *kq, int nevents, int *res, void *uap,
593 	    k_copyin_fn kevent_copyinfn, k_copyout_fn kevent_copyoutfn,
594 	    struct timespec *tsp_in)
595 {
596 	struct kevent *kevp;
597 	struct timespec *tsp;
598 	int i, n, total, error, nerrors = 0;
599 	int lres;
600 	int limit = kq_checkloop;
601 	struct kevent kev[KQ_NEVENTS];
602 	struct knote marker;
603 	struct lwkt_token *tok;
604 
605 	tsp = tsp_in;
606 	*res = 0;
607 
608 	tok = lwkt_token_pool_lookup(kq);
609 	lwkt_gettoken(tok);
610 	for ( ;; ) {
611 		n = 0;
612 		error = kevent_copyinfn(uap, kev, KQ_NEVENTS, &n);
613 		if (error)
614 			goto done;
615 		if (n == 0)
616 			break;
617 		for (i = 0; i < n; i++) {
618 			kevp = &kev[i];
619 			kevp->flags &= ~EV_SYSFLAGS;
620 			error = kqueue_register(kq, kevp);
621 
622 			/*
623 			 * If a registration returns an error we
624 			 * immediately post the error.  The kevent()
625 			 * call itself will fail with the error if
626 			 * no space is available for posting.
627 			 *
628 			 * Such errors normally bypass the timeout/blocking
629 			 * code.  However, if the copyoutfn function refuses
630 			 * to post the error (see sys_poll()), then we
631 			 * ignore it too.
632 			 */
633 			if (error) {
634 				kevp->flags = EV_ERROR;
635 				kevp->data = error;
636 				lres = *res;
637 				kevent_copyoutfn(uap, kevp, 1, res);
638 				if (*res < 0) {
639 					goto done;
640 				} else if (lres != *res) {
641 					nevents--;
642 					nerrors++;
643 				}
644 			}
645 		}
646 	}
647 	if (nerrors) {
648 		error = 0;
649 		goto done;
650 	}
651 
652 	/*
653 	 * Acquire/wait for events - setup timeout
654 	 */
655 	if (tsp != NULL) {
656 		struct timespec ats;
657 
658 		if (tsp->tv_sec || tsp->tv_nsec) {
659 			nanouptime(&ats);
660 			timespecadd(tsp, &ats);		/* tsp = target time */
661 		}
662 	}
663 
664 	/*
665 	 * Loop as required.
666 	 *
667 	 * Collect as many events as we can. Sleeping on successive
668 	 * loops is disabled if copyoutfn has incremented (*res).
669 	 *
670 	 * The loop stops if an error occurs, all events have been
671 	 * scanned (the marker has been reached), or fewer than the
672 	 * maximum number of events is found.
673 	 *
674 	 * The copyoutfn function does not have to increment (*res) in
675 	 * order for the loop to continue.
676 	 *
677 	 * NOTE: doselect() usually passes 0x7FFFFFFF for nevents.
678 	 */
679 	total = 0;
680 	error = 0;
681 	marker.kn_filter = EVFILT_MARKER;
682 	marker.kn_status = KN_PROCESSING;
683 	TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
684 	while ((n = nevents - total) > 0) {
685 		if (n > KQ_NEVENTS)
686 			n = KQ_NEVENTS;
687 
688 		/*
689 		 * If no events are pending sleep until timeout (if any)
690 		 * or an event occurs.
691 		 *
692 		 * After the sleep completes the marker is moved to the
693 		 * end of the list, making any received events available
694 		 * to our scan.
695 		 */
696 		if (kq->kq_count == 0 && *res == 0) {
697 			error = kqueue_sleep(kq, tsp);
698 			if (error)
699 				break;
700 
701 			TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
702 			TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
703 		}
704 
705 		/*
706 		 * Process all received events
707 		 * Account for all non-spurious events in our total
708 		 */
709 		i = kqueue_scan(kq, kev, n, &marker);
710 		if (i) {
711 			lres = *res;
712 			error = kevent_copyoutfn(uap, kev, i, res);
713 			total += *res - lres;
714 			if (error)
715 				break;
716 		}
717 		if (limit && --limit == 0)
718 			panic("kqueue: checkloop failed i=%d", i);
719 
720 		/*
721 		 * Normally when fewer events are returned than requested
722 		 * we can stop.  However, if only spurious events were
723 		 * collected the copyout will not bump (*res) and we have
724 		 * to continue.
725 		 */
726 		if (i < n && *res)
727 			break;
728 
729 		/*
730 		 * Deal with an edge case where spurious events can cause
731 		 * a loop to occur without moving the marker.  This can
732 		 * prevent kqueue_scan() from picking up new events which
733 		 * race us.  We must be sure to move the marker for this
734 		 * case.
735 		 *
736 		 * NOTE: We do not want to move the marker if events
737 		 *	 were scanned because normal kqueue operations
738 		 *	 may reactivate events.  Moving the marker in
739 		 *	 that case could result in duplicates for the
740 		 *	 same event.
741 		 */
742 		if (i == 0) {
743 			TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
744 			TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
745 		}
746 	}
747 	TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
748 
749 	/* Timeouts do not return EWOULDBLOCK. */
750 	if (error == EWOULDBLOCK)
751 		error = 0;
752 
753 done:
754 	lwkt_reltoken(tok);
755 	return (error);
756 }
757 
758 /*
759  * MPALMOSTSAFE
760  */
761 int
762 sys_kevent(struct kevent_args *uap)
763 {
764 	struct thread *td = curthread;
765 	struct proc *p = td->td_proc;
766 	struct timespec ts, *tsp;
767 	struct kqueue *kq;
768 	struct file *fp = NULL;
769 	struct kevent_copyin_args *kap, ka;
770 	int error;
771 
772 	if (uap->timeout) {
773 		error = copyin(uap->timeout, &ts, sizeof(ts));
774 		if (error)
775 			return (error);
776 		tsp = &ts;
777 	} else {
778 		tsp = NULL;
779 	}
780 
781 	fp = holdfp(p->p_fd, uap->fd, -1);
782 	if (fp == NULL)
783 		return (EBADF);
784 	if (fp->f_type != DTYPE_KQUEUE) {
785 		fdrop(fp);
786 		return (EBADF);
787 	}
788 
789 	kq = (struct kqueue *)fp->f_data;
790 
791 	kap = &ka;
792 	kap->ka = uap;
793 	kap->pchanges = 0;
794 
795 	error = kern_kevent(kq, uap->nevents, &uap->sysmsg_result, kap,
796 			    kevent_copyin, kevent_copyout, tsp);
797 
798 	fdrop(fp);
799 
800 	return (error);
801 }
802 
803 /*
804  * Caller must be holding the kq token
805  */
806 int
807 kqueue_register(struct kqueue *kq, struct kevent *kev)
808 {
809 	struct lwkt_token *tok;
810 	struct filedesc *fdp = kq->kq_fdp;
811 	struct filterops *fops;
812 	struct file *fp = NULL;
813 	struct knote *kn = NULL;
814 	int error = 0;
815 
816 	if (kev->filter < 0) {
817 		if (kev->filter + EVFILT_SYSCOUNT < 0)
818 			return (EINVAL);
819 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
820 	} else {
821 		/*
822 		 * XXX
823 		 * filter attach routine is responsible for insuring that
824 		 * the identifier can be attached to it.
825 		 */
826 		kprintf("unknown filter: %d\n", kev->filter);
827 		return (EINVAL);
828 	}
829 
830 	tok = lwkt_token_pool_lookup(kq);
831 	lwkt_gettoken(tok);
832 	if (fops->f_flags & FILTEROP_ISFD) {
833 		/* validate descriptor */
834 		fp = holdfp(fdp, kev->ident, -1);
835 		if (fp == NULL) {
836 			lwkt_reltoken(tok);
837 			return (EBADF);
838 		}
839 		lwkt_getpooltoken(&fp->f_klist);
840 again1:
841 		SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
842 			if (kn->kn_kq == kq &&
843 			    kn->kn_filter == kev->filter &&
844 			    kn->kn_id == kev->ident) {
845 				if (knote_acquire(kn) == 0)
846 					goto again1;
847 				break;
848 			}
849 		}
850 		lwkt_relpooltoken(&fp->f_klist);
851 	} else {
852 		if (kq->kq_knhashmask) {
853 			struct klist *list;
854 
855 			list = &kq->kq_knhash[
856 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
857 			lwkt_getpooltoken(list);
858 again2:
859 			SLIST_FOREACH(kn, list, kn_link) {
860 				if (kn->kn_id == kev->ident &&
861 				    kn->kn_filter == kev->filter) {
862 					if (knote_acquire(kn) == 0)
863 						goto again2;
864 					break;
865 				}
866 			}
867 			lwkt_relpooltoken(list);
868 		}
869 	}
870 
871 	/*
872 	 * NOTE: At this point if kn is non-NULL we will have acquired
873 	 *	 it and set KN_PROCESSING.
874 	 */
875 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
876 		error = ENOENT;
877 		goto done;
878 	}
879 
880 	/*
881 	 * kn now contains the matching knote, or NULL if no match
882 	 */
883 	if (kev->flags & EV_ADD) {
884 		if (kn == NULL) {
885 			kn = knote_alloc();
886 			if (kn == NULL) {
887 				error = ENOMEM;
888 				goto done;
889 			}
890 			kn->kn_fp = fp;
891 			kn->kn_kq = kq;
892 			kn->kn_fop = fops;
893 
894 			/*
895 			 * apply reference count to knote structure, and
896 			 * do not release it at the end of this routine.
897 			 */
898 			fp = NULL;
899 
900 			kn->kn_sfflags = kev->fflags;
901 			kn->kn_sdata = kev->data;
902 			kev->fflags = 0;
903 			kev->data = 0;
904 			kn->kn_kevent = *kev;
905 
906 			/*
907 			 * KN_PROCESSING prevents the knote from getting
908 			 * ripped out from under us while we are trying
909 			 * to attach it, in case the attach blocks.
910 			 */
911 			kn->kn_status = KN_PROCESSING;
912 			knote_attach(kn);
913 			if ((error = filter_attach(kn)) != 0) {
914 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
915 				knote_drop(kn);
916 				goto done;
917 			}
918 
919 			/*
920 			 * Interlock against close races which either tried
921 			 * to remove our knote while we were blocked or missed
922 			 * it entirely prior to our attachment.  We do not
923 			 * want to end up with a knote on a closed descriptor.
924 			 */
925 			if ((fops->f_flags & FILTEROP_ISFD) &&
926 			    checkfdclosed(fdp, kev->ident, kn->kn_fp)) {
927 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
928 			}
929 		} else {
930 			/*
931 			 * The user may change some filter values after the
932 			 * initial EV_ADD, but doing so will not reset any
933 			 * filter which have already been triggered.
934 			 */
935 			KKASSERT(kn->kn_status & KN_PROCESSING);
936 			kn->kn_sfflags = kev->fflags;
937 			kn->kn_sdata = kev->data;
938 			kn->kn_kevent.udata = kev->udata;
939 		}
940 
941 		/*
942 		 * Execute the filter event to immediately activate the
943 		 * knote if necessary.  If reprocessing events are pending
944 		 * due to blocking above we do not run the filter here
945 		 * but instead let knote_release() do it.  Otherwise we
946 		 * might run the filter on a deleted event.
947 		 */
948 		if ((kn->kn_status & KN_REPROCESS) == 0) {
949 			if (filter_event(kn, 0))
950 				KNOTE_ACTIVATE(kn);
951 		}
952 	} else if (kev->flags & EV_DELETE) {
953 		/*
954 		 * Delete the existing knote
955 		 */
956 		knote_detach_and_drop(kn);
957 		goto done;
958 	}
959 
960 	/*
961 	 * Disablement does not deactivate a knote here.
962 	 */
963 	if ((kev->flags & EV_DISABLE) &&
964 	    ((kn->kn_status & KN_DISABLED) == 0)) {
965 		kn->kn_status |= KN_DISABLED;
966 	}
967 
968 	/*
969 	 * Re-enablement may have to immediately enqueue an active knote.
970 	 */
971 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
972 		kn->kn_status &= ~KN_DISABLED;
973 		if ((kn->kn_status & KN_ACTIVE) &&
974 		    ((kn->kn_status & KN_QUEUED) == 0)) {
975 			knote_enqueue(kn);
976 		}
977 	}
978 
979 	/*
980 	 * Handle any required reprocessing
981 	 */
982 	knote_release(kn);
983 	/* kn may be invalid now */
984 
985 done:
986 	lwkt_reltoken(tok);
987 	if (fp != NULL)
988 		fdrop(fp);
989 	return (error);
990 }
991 
992 /*
993  * Block as necessary until the target time is reached.
994  * If tsp is NULL we block indefinitely.  If tsp->ts_secs/nsecs are both
995  * 0 we do not block at all.
996  *
997  * Caller must be holding the kq token.
998  */
999 static int
1000 kqueue_sleep(struct kqueue *kq, struct timespec *tsp)
1001 {
1002 	int error = 0;
1003 
1004 	if (tsp == NULL) {
1005 		kq->kq_state |= KQ_SLEEP;
1006 		error = tsleep(kq, PCATCH, "kqread", 0);
1007 	} else if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
1008 		error = EWOULDBLOCK;
1009 	} else {
1010 		struct timespec ats;
1011 		struct timespec atx = *tsp;
1012 		int timeout;
1013 
1014 		nanouptime(&ats);
1015 		timespecsub(&atx, &ats);
1016 		if (ats.tv_sec < 0) {
1017 			error = EWOULDBLOCK;
1018 		} else {
1019 			timeout = atx.tv_sec > 24 * 60 * 60 ?
1020 				24 * 60 * 60 * hz : tstohz_high(&atx);
1021 			kq->kq_state |= KQ_SLEEP;
1022 			error = tsleep(kq, PCATCH, "kqread", timeout);
1023 		}
1024 	}
1025 
1026 	/* don't restart after signals... */
1027 	if (error == ERESTART)
1028 		return (EINTR);
1029 
1030 	return (error);
1031 }
1032 
1033 /*
1034  * Scan the kqueue, return the number of active events placed in kevp up
1035  * to count.
1036  *
1037  * Continuous mode events may get recycled, do not continue scanning past
1038  * marker unless no events have been collected.
1039  *
1040  * Caller must be holding the kq token
1041  */
1042 static int
1043 kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
1044             struct knote *marker)
1045 {
1046         struct knote *kn, local_marker;
1047         int total;
1048 
1049         total = 0;
1050 	local_marker.kn_filter = EVFILT_MARKER;
1051 	local_marker.kn_status = KN_PROCESSING;
1052 
1053 	/*
1054 	 * Collect events.
1055 	 */
1056 	TAILQ_INSERT_HEAD(&kq->kq_knpend, &local_marker, kn_tqe);
1057 	while (count) {
1058 		kn = TAILQ_NEXT(&local_marker, kn_tqe);
1059 		if (kn->kn_filter == EVFILT_MARKER) {
1060 			/* Marker reached, we are done */
1061 			if (kn == marker)
1062 				break;
1063 
1064 			/* Move local marker past some other threads marker */
1065 			kn = TAILQ_NEXT(kn, kn_tqe);
1066 			TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
1067 			TAILQ_INSERT_BEFORE(kn, &local_marker, kn_tqe);
1068 			continue;
1069 		}
1070 
1071 		/*
1072 		 * We can't skip a knote undergoing processing, otherwise
1073 		 * we risk not returning it when the user process expects
1074 		 * it should be returned.  Sleep and retry.
1075 		 */
1076 		if (knote_acquire(kn) == 0)
1077 			continue;
1078 
1079 		/*
1080 		 * Remove the event for processing.
1081 		 *
1082 		 * WARNING!  We must leave KN_QUEUED set to prevent the
1083 		 *	     event from being KNOTE_ACTIVATE()d while
1084 		 *	     the queue state is in limbo, in case we
1085 		 *	     block.
1086 		 *
1087 		 * WARNING!  We must set KN_PROCESSING to avoid races
1088 		 *	     against deletion or another thread's
1089 		 *	     processing.
1090 		 */
1091 		TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1092 		kq->kq_count--;
1093 
1094 		/*
1095 		 * We have to deal with an extremely important race against
1096 		 * file descriptor close()s here.  The file descriptor can
1097 		 * disappear MPSAFE, and there is a small window of
1098 		 * opportunity between that and the call to knote_fdclose().
1099 		 *
1100 		 * If we hit that window here while doselect or dopoll is
1101 		 * trying to delete a spurious event they will not be able
1102 		 * to match up the event against a knote and will go haywire.
1103 		 */
1104 		if ((kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1105 		    checkfdclosed(kq->kq_fdp, kn->kn_kevent.ident, kn->kn_fp)) {
1106 			kn->kn_status |= KN_DELETING | KN_REPROCESS;
1107 		}
1108 
1109 		if (kn->kn_status & KN_DISABLED) {
1110 			/*
1111 			 * If disabled we ensure the event is not queued
1112 			 * but leave its active bit set.  On re-enablement
1113 			 * the event may be immediately triggered.
1114 			 */
1115 			kn->kn_status &= ~KN_QUEUED;
1116 		} else if ((kn->kn_flags & EV_ONESHOT) == 0 &&
1117 			   (kn->kn_status & KN_DELETING) == 0 &&
1118 			   filter_event(kn, 0) == 0) {
1119 			/*
1120 			 * If not running in one-shot mode and the event
1121 			 * is no longer present we ensure it is removed
1122 			 * from the queue and ignore it.
1123 			 */
1124 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1125 		} else {
1126 			/*
1127 			 * Post the event
1128 			 */
1129 			*kevp++ = kn->kn_kevent;
1130 			++total;
1131 			--count;
1132 
1133 			if (kn->kn_flags & EV_ONESHOT) {
1134 				kn->kn_status &= ~KN_QUEUED;
1135 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1136 			} else if (kn->kn_flags & EV_CLEAR) {
1137 				kn->kn_data = 0;
1138 				kn->kn_fflags = 0;
1139 				kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1140 			} else {
1141 				TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1142 				kq->kq_count++;
1143 			}
1144 		}
1145 
1146 		/*
1147 		 * Handle any post-processing states
1148 		 */
1149 		knote_release(kn);
1150 	}
1151 	TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
1152 
1153 	return (total);
1154 }
1155 
1156 /*
1157  * XXX
1158  * This could be expanded to call kqueue_scan, if desired.
1159  *
1160  * MPSAFE
1161  */
1162 static int
1163 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1164 {
1165 	return (ENXIO);
1166 }
1167 
1168 /*
1169  * MPSAFE
1170  */
1171 static int
1172 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1173 {
1174 	return (ENXIO);
1175 }
1176 
1177 /*
1178  * MPALMOSTSAFE
1179  */
1180 static int
1181 kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
1182 	     struct ucred *cred, struct sysmsg *msg)
1183 {
1184 	struct lwkt_token *tok;
1185 	struct kqueue *kq;
1186 	int error;
1187 
1188 	kq = (struct kqueue *)fp->f_data;
1189 	tok = lwkt_token_pool_lookup(kq);
1190 	lwkt_gettoken(tok);
1191 
1192 	switch(com) {
1193 	case FIOASYNC:
1194 		if (*(int *)data)
1195 			kq->kq_state |= KQ_ASYNC;
1196 		else
1197 			kq->kq_state &= ~KQ_ASYNC;
1198 		error = 0;
1199 		break;
1200 	case FIOSETOWN:
1201 		error = fsetown(*(int *)data, &kq->kq_sigio);
1202 		break;
1203 	default:
1204 		error = ENOTTY;
1205 		break;
1206 	}
1207 	lwkt_reltoken(tok);
1208 	return (error);
1209 }
1210 
1211 /*
1212  * MPSAFE
1213  */
1214 static int
1215 kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred)
1216 {
1217 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1218 
1219 	bzero((void *)st, sizeof(*st));
1220 	st->st_size = kq->kq_count;
1221 	st->st_blksize = sizeof(struct kevent);
1222 	st->st_mode = S_IFIFO;
1223 	return (0);
1224 }
1225 
1226 /*
1227  * MPSAFE
1228  */
1229 static int
1230 kqueue_close(struct file *fp)
1231 {
1232 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1233 
1234 	kqueue_terminate(kq);
1235 
1236 	fp->f_data = NULL;
1237 	funsetown(&kq->kq_sigio);
1238 
1239 	kfree(kq, M_KQUEUE);
1240 	return (0);
1241 }
1242 
1243 static void
1244 kqueue_wakeup(struct kqueue *kq)
1245 {
1246 	if (kq->kq_state & KQ_SLEEP) {
1247 		kq->kq_state &= ~KQ_SLEEP;
1248 		wakeup(kq);
1249 	}
1250 	KNOTE(&kq->kq_kqinfo.ki_note, 0);
1251 }
1252 
1253 /*
1254  * Calls filterops f_attach function, acquiring mplock if filter is not
1255  * marked as FILTEROP_MPSAFE.
1256  *
1257  * Caller must be holding the related kq token
1258  */
1259 static int
1260 filter_attach(struct knote *kn)
1261 {
1262 	int ret;
1263 
1264 	if (!(kn->kn_fop->f_flags & FILTEROP_MPSAFE)) {
1265 		get_mplock();
1266 		ret = kn->kn_fop->f_attach(kn);
1267 		rel_mplock();
1268 	} else {
1269 		ret = kn->kn_fop->f_attach(kn);
1270 	}
1271 
1272 	return (ret);
1273 }
1274 
1275 /*
1276  * Detach the knote and drop it, destroying the knote.
1277  *
1278  * Calls filterops f_detach function, acquiring mplock if filter is not
1279  * marked as FILTEROP_MPSAFE.
1280  *
1281  * Caller must be holding the related kq token
1282  */
1283 static void
1284 knote_detach_and_drop(struct knote *kn)
1285 {
1286 	kn->kn_status |= KN_DELETING | KN_REPROCESS;
1287 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1288 		kn->kn_fop->f_detach(kn);
1289 	} else {
1290 		get_mplock();
1291 		kn->kn_fop->f_detach(kn);
1292 		rel_mplock();
1293 	}
1294 	knote_drop(kn);
1295 }
1296 
1297 /*
1298  * Calls filterops f_event function, acquiring mplock if filter is not
1299  * marked as FILTEROP_MPSAFE.
1300  *
1301  * If the knote is in the middle of being created or deleted we cannot
1302  * safely call the filter op.
1303  *
1304  * Caller must be holding the related kq token
1305  */
1306 static int
1307 filter_event(struct knote *kn, long hint)
1308 {
1309 	int ret;
1310 
1311 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1312 		ret = kn->kn_fop->f_event(kn, hint);
1313 	} else {
1314 		get_mplock();
1315 		ret = kn->kn_fop->f_event(kn, hint);
1316 		rel_mplock();
1317 	}
1318 	return (ret);
1319 }
1320 
1321 /*
1322  * Walk down a list of knotes, activating them if their event has triggered.
1323  *
1324  * If we encounter any knotes which are undergoing processing we just mark
1325  * them for reprocessing and do not try to [re]activate the knote.  However,
1326  * if a hint is being passed we have to wait and that makes things a bit
1327  * sticky.
1328  */
1329 void
1330 knote(struct klist *list, long hint)
1331 {
1332 	struct kqueue *kq;
1333 	struct knote *kn;
1334 	struct knote *kntmp;
1335 
1336 	lwkt_getpooltoken(list);
1337 restart:
1338 	SLIST_FOREACH(kn, list, kn_next) {
1339 		kq = kn->kn_kq;
1340 		lwkt_getpooltoken(kq);
1341 
1342 		/* temporary verification hack */
1343 		SLIST_FOREACH(kntmp, list, kn_next) {
1344 			if (kn == kntmp)
1345 				break;
1346 		}
1347 		if (kn != kntmp || kn->kn_kq != kq) {
1348 			lwkt_relpooltoken(kq);
1349 			goto restart;
1350 		}
1351 
1352 		if (kn->kn_status & KN_PROCESSING) {
1353 			/*
1354 			 * Someone else is processing the knote, ask the
1355 			 * other thread to reprocess it and don't mess
1356 			 * with it otherwise.
1357 			 */
1358 			if (hint == 0) {
1359 				kn->kn_status |= KN_REPROCESS;
1360 				lwkt_relpooltoken(kq);
1361 				continue;
1362 			}
1363 
1364 			/*
1365 			 * If the hint is non-zero we have to wait or risk
1366 			 * losing the state the caller is trying to update.
1367 			 *
1368 			 * XXX This is a real problem, certain process
1369 			 *     and signal filters will bump kn_data for
1370 			 *     already-processed notes more than once if
1371 			 *     we restart the list scan.  FIXME.
1372 			 */
1373 			kn->kn_status |= KN_WAITING | KN_REPROCESS;
1374 			tsleep(kn, 0, "knotec", hz);
1375 			lwkt_relpooltoken(kq);
1376 			goto restart;
1377 		}
1378 
1379 		/*
1380 		 * Become the reprocessing master ourselves.
1381 		 *
1382 		 * If hint is non-zer running the event is mandatory
1383 		 * when not deleting so do it whether reprocessing is
1384 		 * set or not.
1385 		 */
1386 		kn->kn_status |= KN_PROCESSING;
1387 		if ((kn->kn_status & KN_DELETING) == 0) {
1388 			if (filter_event(kn, hint))
1389 				KNOTE_ACTIVATE(kn);
1390 		}
1391 		if (knote_release(kn)) {
1392 			lwkt_relpooltoken(kq);
1393 			goto restart;
1394 		}
1395 		lwkt_relpooltoken(kq);
1396 	}
1397 	lwkt_relpooltoken(list);
1398 }
1399 
1400 /*
1401  * Insert knote at head of klist.
1402  *
1403  * This function may only be called via a filter function and thus
1404  * kq_token should already be held and marked for processing.
1405  */
1406 void
1407 knote_insert(struct klist *klist, struct knote *kn)
1408 {
1409 	lwkt_getpooltoken(klist);
1410 	KKASSERT(kn->kn_status & KN_PROCESSING);
1411 	SLIST_INSERT_HEAD(klist, kn, kn_next);
1412 	lwkt_relpooltoken(klist);
1413 }
1414 
1415 /*
1416  * Remove knote from a klist
1417  *
1418  * This function may only be called via a filter function and thus
1419  * kq_token should already be held and marked for processing.
1420  */
1421 void
1422 knote_remove(struct klist *klist, struct knote *kn)
1423 {
1424 	lwkt_getpooltoken(klist);
1425 	KKASSERT(kn->kn_status & KN_PROCESSING);
1426 	SLIST_REMOVE(klist, kn, knote, kn_next);
1427 	lwkt_relpooltoken(klist);
1428 }
1429 
1430 #if 0
1431 /*
1432  * Remove all knotes from a specified klist
1433  *
1434  * Only called from aio.
1435  */
1436 void
1437 knote_empty(struct klist *list)
1438 {
1439 	struct knote *kn;
1440 
1441 	lwkt_gettoken(&kq_token);
1442 	while ((kn = SLIST_FIRST(list)) != NULL) {
1443 		if (knote_acquire(kn))
1444 			knote_detach_and_drop(kn);
1445 	}
1446 	lwkt_reltoken(&kq_token);
1447 }
1448 #endif
1449 
1450 void
1451 knote_assume_knotes(struct kqinfo *src, struct kqinfo *dst,
1452 		    struct filterops *ops, void *hook)
1453 {
1454 	struct kqueue *kq;
1455 	struct knote *kn;
1456 
1457 	lwkt_getpooltoken(&src->ki_note);
1458 	lwkt_getpooltoken(&dst->ki_note);
1459 	while ((kn = SLIST_FIRST(&src->ki_note)) != NULL) {
1460 		kq = kn->kn_kq;
1461 		lwkt_getpooltoken(kq);
1462 		if (SLIST_FIRST(&src->ki_note) != kn || kn->kn_kq != kq) {
1463 			lwkt_relpooltoken(kq);
1464 			continue;
1465 		}
1466 		if (knote_acquire(kn)) {
1467 			knote_remove(&src->ki_note, kn);
1468 			kn->kn_fop = ops;
1469 			kn->kn_hook = hook;
1470 			knote_insert(&dst->ki_note, kn);
1471 			knote_release(kn);
1472 			/* kn may be invalid now */
1473 		}
1474 		lwkt_relpooltoken(kq);
1475 	}
1476 	lwkt_relpooltoken(&dst->ki_note);
1477 	lwkt_relpooltoken(&src->ki_note);
1478 }
1479 
1480 /*
1481  * Remove all knotes referencing a specified fd
1482  */
1483 void
1484 knote_fdclose(struct file *fp, struct filedesc *fdp, int fd)
1485 {
1486 	struct kqueue *kq;
1487 	struct knote *kn;
1488 	struct knote *kntmp;
1489 
1490 	lwkt_getpooltoken(&fp->f_klist);
1491 restart:
1492 	SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
1493 		if (kn->kn_kq->kq_fdp == fdp && kn->kn_id == fd) {
1494 			kq = kn->kn_kq;
1495 			lwkt_getpooltoken(kq);
1496 
1497 			/* temporary verification hack */
1498 			SLIST_FOREACH(kntmp, &fp->f_klist, kn_link) {
1499 				if (kn == kntmp)
1500 					break;
1501 			}
1502 			if (kn != kntmp || kn->kn_kq->kq_fdp != fdp ||
1503 			    kn->kn_id != fd || kn->kn_kq != kq) {
1504 				lwkt_relpooltoken(kq);
1505 				goto restart;
1506 			}
1507 			if (knote_acquire(kn))
1508 				knote_detach_and_drop(kn);
1509 			lwkt_relpooltoken(kq);
1510 			goto restart;
1511 		}
1512 	}
1513 	lwkt_relpooltoken(&fp->f_klist);
1514 }
1515 
1516 /*
1517  * Low level attach function.
1518  *
1519  * The knote should already be marked for processing.
1520  * Caller must hold the related kq token.
1521  */
1522 static void
1523 knote_attach(struct knote *kn)
1524 {
1525 	struct klist *list;
1526 	struct kqueue *kq = kn->kn_kq;
1527 
1528 	if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1529 		KKASSERT(kn->kn_fp);
1530 		list = &kn->kn_fp->f_klist;
1531 	} else {
1532 		if (kq->kq_knhashmask == 0)
1533 			kq->kq_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1534 						 &kq->kq_knhashmask);
1535 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1536 	}
1537 	lwkt_getpooltoken(list);
1538 	SLIST_INSERT_HEAD(list, kn, kn_link);
1539 	TAILQ_INSERT_HEAD(&kq->kq_knlist, kn, kn_kqlink);
1540 	lwkt_relpooltoken(list);
1541 }
1542 
1543 /*
1544  * Low level drop function.
1545  *
1546  * The knote should already be marked for processing.
1547  * Caller must hold the related kq token.
1548  */
1549 static void
1550 knote_drop(struct knote *kn)
1551 {
1552 	struct kqueue *kq;
1553 	struct klist *list;
1554 
1555 	kq = kn->kn_kq;
1556 
1557 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
1558 		list = &kn->kn_fp->f_klist;
1559 	else
1560 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1561 
1562 	lwkt_getpooltoken(list);
1563 	SLIST_REMOVE(list, kn, knote, kn_link);
1564 	TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink);
1565 	if (kn->kn_status & KN_QUEUED)
1566 		knote_dequeue(kn);
1567 	if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1568 		fdrop(kn->kn_fp);
1569 		kn->kn_fp = NULL;
1570 	}
1571 	knote_free(kn);
1572 	lwkt_relpooltoken(list);
1573 }
1574 
1575 /*
1576  * Low level enqueue function.
1577  *
1578  * The knote should already be marked for processing.
1579  * Caller must be holding the kq token
1580  */
1581 static void
1582 knote_enqueue(struct knote *kn)
1583 {
1584 	struct kqueue *kq = kn->kn_kq;
1585 
1586 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1587 	TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1588 	kn->kn_status |= KN_QUEUED;
1589 	++kq->kq_count;
1590 
1591 	/*
1592 	 * Send SIGIO on request (typically set up as a mailbox signal)
1593 	 */
1594 	if (kq->kq_sigio && (kq->kq_state & KQ_ASYNC) && kq->kq_count == 1)
1595 		pgsigio(kq->kq_sigio, SIGIO, 0);
1596 
1597 	kqueue_wakeup(kq);
1598 }
1599 
1600 /*
1601  * Low level dequeue function.
1602  *
1603  * The knote should already be marked for processing.
1604  * Caller must be holding the kq token
1605  */
1606 static void
1607 knote_dequeue(struct knote *kn)
1608 {
1609 	struct kqueue *kq = kn->kn_kq;
1610 
1611 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1612 	TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1613 	kn->kn_status &= ~KN_QUEUED;
1614 	kq->kq_count--;
1615 }
1616 
1617 static struct knote *
1618 knote_alloc(void)
1619 {
1620 	return kmalloc(sizeof(struct knote), M_KQUEUE, M_WAITOK);
1621 }
1622 
1623 static void
1624 knote_free(struct knote *kn)
1625 {
1626 	kfree(kn, M_KQUEUE);
1627 }
1628