xref: /dflybsd-src/sys/kern/kern_event.c (revision 7c9678bceddea262076084ed1096a5a75d9132a4)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/proc.h>
33 #include <sys/malloc.h>
34 #include <sys/unistd.h>
35 #include <sys/file.h>
36 #include <sys/lock.h>
37 #include <sys/fcntl.h>
38 #include <sys/queue.h>
39 #include <sys/event.h>
40 #include <sys/eventvar.h>
41 #include <sys/protosw.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/sysproto.h>
47 #include <sys/thread.h>
48 #include <sys/uio.h>
49 #include <sys/signalvar.h>
50 #include <sys/filio.h>
51 #include <sys/ktr.h>
52 
53 #include <sys/thread2.h>
54 #include <sys/file2.h>
55 #include <sys/mplock2.h>
56 
57 #define EVENT_REGISTER	1
58 #define EVENT_PROCESS	2
59 
60 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
61 
62 struct kevent_copyin_args {
63 	struct kevent_args	*ka;
64 	int			pchanges;
65 };
66 
67 static int	kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
68 		    struct knote *marker);
69 static int 	kqueue_read(struct file *fp, struct uio *uio,
70 		    struct ucred *cred, int flags);
71 static int	kqueue_write(struct file *fp, struct uio *uio,
72 		    struct ucred *cred, int flags);
73 static int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
74 		    struct ucred *cred, struct sysmsg *msg);
75 static int 	kqueue_kqfilter(struct file *fp, struct knote *kn);
76 static int 	kqueue_stat(struct file *fp, struct stat *st,
77 		    struct ucred *cred);
78 static int 	kqueue_close(struct file *fp);
79 static void	kqueue_wakeup(struct kqueue *kq);
80 static int	filter_attach(struct knote *kn);
81 static int	filter_event(struct knote *kn, long hint);
82 
83 /*
84  * MPSAFE
85  */
86 static struct fileops kqueueops = {
87 	.fo_read = kqueue_read,
88 	.fo_write = kqueue_write,
89 	.fo_ioctl = kqueue_ioctl,
90 	.fo_kqfilter = kqueue_kqfilter,
91 	.fo_stat = kqueue_stat,
92 	.fo_close = kqueue_close,
93 	.fo_shutdown = nofo_shutdown
94 };
95 
96 static void 	knote_attach(struct knote *kn);
97 static void 	knote_drop(struct knote *kn);
98 static void	knote_detach_and_drop(struct knote *kn);
99 static void 	knote_enqueue(struct knote *kn);
100 static void 	knote_dequeue(struct knote *kn);
101 static struct 	knote *knote_alloc(void);
102 static void 	knote_free(struct knote *kn);
103 
104 static void	filt_kqdetach(struct knote *kn);
105 static int	filt_kqueue(struct knote *kn, long hint);
106 static int	filt_procattach(struct knote *kn);
107 static void	filt_procdetach(struct knote *kn);
108 static int	filt_proc(struct knote *kn, long hint);
109 static int	filt_fileattach(struct knote *kn);
110 static void	filt_timerexpire(void *knx);
111 static int	filt_timerattach(struct knote *kn);
112 static void	filt_timerdetach(struct knote *kn);
113 static int	filt_timer(struct knote *kn, long hint);
114 static int	filt_userattach(struct knote *kn);
115 static void	filt_userdetach(struct knote *kn);
116 static int	filt_user(struct knote *kn, long hint);
117 static void	filt_usertouch(struct knote *kn, struct kevent *kev,
118 				u_long type);
119 
120 static struct filterops file_filtops =
121 	{ FILTEROP_ISFD | FILTEROP_MPSAFE, filt_fileattach, NULL, NULL };
122 static struct filterops kqread_filtops =
123 	{ FILTEROP_ISFD | FILTEROP_MPSAFE, NULL, filt_kqdetach, filt_kqueue };
124 static struct filterops proc_filtops =
125 	{ 0, filt_procattach, filt_procdetach, filt_proc };
126 static struct filterops timer_filtops =
127 	{ FILTEROP_MPSAFE, filt_timerattach, filt_timerdetach, filt_timer };
128 static struct filterops user_filtops =
129 	{ FILTEROP_MPSAFE, filt_userattach, filt_userdetach, filt_user };
130 
131 static int 		kq_ncallouts = 0;
132 static int 		kq_calloutmax = (4 * 1024);
133 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
134     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
135 static int		kq_checkloop = 1000000;
136 SYSCTL_INT(_kern, OID_AUTO, kq_checkloop, CTLFLAG_RW,
137     &kq_checkloop, 0, "Maximum number of loops for kqueue scan");
138 static int		kq_wakeup_one = 1;
139 SYSCTL_INT(_kern, OID_AUTO, kq_wakeup_one, CTLFLAG_RW,
140     &kq_wakeup_one, 0, "Wakeup only one kqueue scanner");
141 
142 #define KNOTE_ACTIVATE(kn) do { 					\
143 	kn->kn_status |= KN_ACTIVE;					\
144 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
145 		knote_enqueue(kn);					\
146 } while(0)
147 
148 #define	KN_HASHSIZE		64		/* XXX should be tunable */
149 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
150 
151 extern struct filterops aio_filtops;
152 extern struct filterops sig_filtops;
153 
154 /*
155  * Table for for all system-defined filters.
156  */
157 static struct filterops *sysfilt_ops[] = {
158 	&file_filtops,			/* EVFILT_READ */
159 	&file_filtops,			/* EVFILT_WRITE */
160 	&aio_filtops,			/* EVFILT_AIO */
161 	&file_filtops,			/* EVFILT_VNODE */
162 	&proc_filtops,			/* EVFILT_PROC */
163 	&sig_filtops,			/* EVFILT_SIGNAL */
164 	&timer_filtops,			/* EVFILT_TIMER */
165 	&file_filtops,			/* EVFILT_EXCEPT */
166 	&user_filtops,			/* EVFILT_USER */
167 };
168 
169 /*
170  * Acquire a knote, return non-zero on success, 0 on failure.
171  *
172  * If we cannot acquire the knote we sleep and return 0.  The knote
173  * may be stale on return in this case and the caller must restart
174  * whatever loop they are in.
175  *
176  * Related kq token must be held.
177  */
178 static __inline int
179 knote_acquire(struct knote *kn)
180 {
181 	if (kn->kn_status & KN_PROCESSING) {
182 		kn->kn_status |= KN_WAITING | KN_REPROCESS;
183 		tsleep(kn, 0, "kqepts", hz);
184 		/* knote may be stale now */
185 		return(0);
186 	}
187 	kn->kn_status |= KN_PROCESSING;
188 	return(1);
189 }
190 
191 /*
192  * Release an acquired knote, clearing KN_PROCESSING and handling any
193  * KN_REPROCESS events.
194  *
195  * Caller must be holding the related kq token
196  *
197  * Non-zero is returned if the knote is destroyed or detached.
198  */
199 static __inline int
200 knote_release(struct knote *kn)
201 {
202 	while (kn->kn_status & KN_REPROCESS) {
203 		kn->kn_status &= ~KN_REPROCESS;
204 		if (kn->kn_status & KN_WAITING) {
205 			kn->kn_status &= ~KN_WAITING;
206 			wakeup(kn);
207 		}
208 		if (kn->kn_status & KN_DELETING) {
209 			knote_detach_and_drop(kn);
210 			return(1);
211 			/* NOT REACHED */
212 		}
213 		if (filter_event(kn, 0))
214 			KNOTE_ACTIVATE(kn);
215 	}
216 	kn->kn_status &= ~KN_PROCESSING;
217 	if (kn->kn_status & KN_DETACHED)
218 		return(1);
219 	else
220 		return(0);
221 }
222 
223 static int
224 filt_fileattach(struct knote *kn)
225 {
226 	return (fo_kqfilter(kn->kn_fp, kn));
227 }
228 
229 /*
230  * MPSAFE
231  */
232 static int
233 kqueue_kqfilter(struct file *fp, struct knote *kn)
234 {
235 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
236 
237 	if (kn->kn_filter != EVFILT_READ)
238 		return (EOPNOTSUPP);
239 
240 	kn->kn_fop = &kqread_filtops;
241 	knote_insert(&kq->kq_kqinfo.ki_note, kn);
242 	return (0);
243 }
244 
245 static void
246 filt_kqdetach(struct knote *kn)
247 {
248 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
249 
250 	knote_remove(&kq->kq_kqinfo.ki_note, kn);
251 }
252 
253 /*ARGSUSED*/
254 static int
255 filt_kqueue(struct knote *kn, long hint)
256 {
257 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
258 
259 	kn->kn_data = kq->kq_count;
260 	return (kn->kn_data > 0);
261 }
262 
263 static int
264 filt_procattach(struct knote *kn)
265 {
266 	struct proc *p;
267 	int immediate;
268 
269 	immediate = 0;
270 	p = pfind(kn->kn_id);
271 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
272 		p = zpfind(kn->kn_id);
273 		immediate = 1;
274 	}
275 	if (p == NULL) {
276 		return (ESRCH);
277 	}
278 	if (!PRISON_CHECK(curthread->td_ucred, p->p_ucred)) {
279 		if (p)
280 			PRELE(p);
281 		return (EACCES);
282 	}
283 
284 	lwkt_gettoken(&p->p_token);
285 	kn->kn_ptr.p_proc = p;
286 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
287 
288 	/*
289 	 * internal flag indicating registration done by kernel
290 	 */
291 	if (kn->kn_flags & EV_FLAG1) {
292 		kn->kn_data = kn->kn_sdata;		/* ppid */
293 		kn->kn_fflags = NOTE_CHILD;
294 		kn->kn_flags &= ~EV_FLAG1;
295 	}
296 
297 	knote_insert(&p->p_klist, kn);
298 
299 	/*
300 	 * Immediately activate any exit notes if the target process is a
301 	 * zombie.  This is necessary to handle the case where the target
302 	 * process, e.g. a child, dies before the kevent is negistered.
303 	 */
304 	if (immediate && filt_proc(kn, NOTE_EXIT))
305 		KNOTE_ACTIVATE(kn);
306 	lwkt_reltoken(&p->p_token);
307 	PRELE(p);
308 
309 	return (0);
310 }
311 
312 /*
313  * The knote may be attached to a different process, which may exit,
314  * leaving nothing for the knote to be attached to.  So when the process
315  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
316  * it will be deleted when read out.  However, as part of the knote deletion,
317  * this routine is called, so a check is needed to avoid actually performing
318  * a detach, because the original process does not exist any more.
319  */
320 static void
321 filt_procdetach(struct knote *kn)
322 {
323 	struct proc *p;
324 
325 	if (kn->kn_status & KN_DETACHED)
326 		return;
327 	p = kn->kn_ptr.p_proc;
328 	knote_remove(&p->p_klist, kn);
329 }
330 
331 static int
332 filt_proc(struct knote *kn, long hint)
333 {
334 	u_int event;
335 
336 	/*
337 	 * mask off extra data
338 	 */
339 	event = (u_int)hint & NOTE_PCTRLMASK;
340 
341 	/*
342 	 * if the user is interested in this event, record it.
343 	 */
344 	if (kn->kn_sfflags & event)
345 		kn->kn_fflags |= event;
346 
347 	/*
348 	 * Process is gone, so flag the event as finished.  Detach the
349 	 * knote from the process now because the process will be poof,
350 	 * gone later on.
351 	 */
352 	if (event == NOTE_EXIT) {
353 		struct proc *p = kn->kn_ptr.p_proc;
354 		if ((kn->kn_status & KN_DETACHED) == 0) {
355 			PHOLD(p);
356 			knote_remove(&p->p_klist, kn);
357 			kn->kn_status |= KN_DETACHED;
358 			kn->kn_data = p->p_xstat;
359 			kn->kn_ptr.p_proc = NULL;
360 			PRELE(p);
361 		}
362 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
363 		return (1);
364 	}
365 
366 	/*
367 	 * process forked, and user wants to track the new process,
368 	 * so attach a new knote to it, and immediately report an
369 	 * event with the parent's pid.
370 	 */
371 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
372 		struct kevent kev;
373 		int error;
374 
375 		/*
376 		 * register knote with new process.
377 		 */
378 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
379 		kev.filter = kn->kn_filter;
380 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
381 		kev.fflags = kn->kn_sfflags;
382 		kev.data = kn->kn_id;			/* parent */
383 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
384 		error = kqueue_register(kn->kn_kq, &kev);
385 		if (error)
386 			kn->kn_fflags |= NOTE_TRACKERR;
387 	}
388 
389 	return (kn->kn_fflags != 0);
390 }
391 
392 static void
393 filt_timerreset(struct knote *kn)
394 {
395 	struct callout *calloutp;
396 	struct timeval tv;
397 	int tticks;
398 
399 	tv.tv_sec = kn->kn_sdata / 1000;
400 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
401 	tticks = tvtohz_high(&tv);
402 	calloutp = (struct callout *)kn->kn_hook;
403 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
404 }
405 
406 /*
407  * The callout interlocks with callout_terminate() but can still
408  * race a deletion so if KN_DELETING is set we just don't touch
409  * the knote.
410  */
411 static void
412 filt_timerexpire(void *knx)
413 {
414 	struct knote *kn = knx;
415 	struct kqueue *kq = kn->kn_kq;
416 
417 	lwkt_getpooltoken(kq);
418 
419 	/*
420 	 * Open knote_acquire(), since we can't sleep in callout,
421 	 * however, we do need to record this expiration.
422 	 */
423 	kn->kn_data++;
424 	if (kn->kn_status & KN_PROCESSING) {
425 		kn->kn_status |= KN_REPROCESS;
426 		if ((kn->kn_status & KN_DELETING) == 0 &&
427 		    (kn->kn_flags & EV_ONESHOT) == 0)
428 			filt_timerreset(kn);
429 		lwkt_relpooltoken(kq);
430 		return;
431 	}
432 	KASSERT((kn->kn_status & KN_DELETING) == 0,
433 	    ("acquire a deleting knote %#x", kn->kn_status));
434 	kn->kn_status |= KN_PROCESSING;
435 
436 	KNOTE_ACTIVATE(kn);
437 	if ((kn->kn_flags & EV_ONESHOT) == 0)
438 		filt_timerreset(kn);
439 
440 	knote_release(kn);
441 
442 	lwkt_relpooltoken(kq);
443 }
444 
445 /*
446  * data contains amount of time to sleep, in milliseconds
447  */
448 static int
449 filt_timerattach(struct knote *kn)
450 {
451 	struct callout *calloutp;
452 	int prev_ncallouts;
453 
454 	prev_ncallouts = atomic_fetchadd_int(&kq_ncallouts, 1);
455 	if (prev_ncallouts >= kq_calloutmax) {
456 		atomic_subtract_int(&kq_ncallouts, 1);
457 		kn->kn_hook = NULL;
458 		return (ENOMEM);
459 	}
460 
461 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
462 	calloutp = kmalloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
463 	callout_init_mp(calloutp);
464 	kn->kn_hook = (caddr_t)calloutp;
465 
466 	filt_timerreset(kn);
467 	return (0);
468 }
469 
470 /*
471  * This function is called with the knote flagged locked but it is
472  * still possible to race a callout event due to the callback blocking.
473  * We must call callout_terminate() instead of callout_stop() to deal
474  * with the race.
475  */
476 static void
477 filt_timerdetach(struct knote *kn)
478 {
479 	struct callout *calloutp;
480 
481 	calloutp = (struct callout *)kn->kn_hook;
482 	callout_terminate(calloutp);
483 	kfree(calloutp, M_KQUEUE);
484 	atomic_subtract_int(&kq_ncallouts, 1);
485 }
486 
487 static int
488 filt_timer(struct knote *kn, long hint)
489 {
490 
491 	return (kn->kn_data != 0);
492 }
493 
494 /*
495  * EVFILT_USER
496  */
497 static int
498 filt_userattach(struct knote *kn)
499 {
500 	kn->kn_hook = NULL;
501 	if (kn->kn_fflags & NOTE_TRIGGER)
502 		kn->kn_ptr.hookid = 1;
503 	else
504 		kn->kn_ptr.hookid = 0;
505 	return 0;
506 }
507 
508 static void
509 filt_userdetach(struct knote *kn)
510 {
511 	/* nothing to do */
512 }
513 
514 static int
515 filt_user(struct knote *kn, long hint)
516 {
517 	return (kn->kn_ptr.hookid);
518 }
519 
520 static void
521 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
522 {
523 	u_int ffctrl;
524 
525 	switch (type) {
526 	case EVENT_REGISTER:
527 		if (kev->fflags & NOTE_TRIGGER)
528 			kn->kn_ptr.hookid = 1;
529 
530 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
531 		kev->fflags &= NOTE_FFLAGSMASK;
532 		switch (ffctrl) {
533 		case NOTE_FFNOP:
534 			break;
535 
536 		case NOTE_FFAND:
537 			kn->kn_sfflags &= kev->fflags;
538 			break;
539 
540 		case NOTE_FFOR:
541 			kn->kn_sfflags |= kev->fflags;
542 			break;
543 
544 		case NOTE_FFCOPY:
545 			kn->kn_sfflags = kev->fflags;
546 			break;
547 
548 		default:
549 			/* XXX Return error? */
550 			break;
551 		}
552 		kn->kn_sdata = kev->data;
553 
554 		/*
555 		 * This is not the correct use of EV_CLEAR in an event
556 		 * modification, it should have been passed as a NOTE instead.
557 		 * But we need to maintain compatibility with Apple & FreeBSD.
558 		 *
559 		 * Note however that EV_CLEAR can still be used when doing
560 		 * the initial registration of the event and works as expected
561 		 * (clears the event on reception).
562 		 */
563 		if (kev->flags & EV_CLEAR) {
564 			kn->kn_ptr.hookid = 0;
565 			kn->kn_data = 0;
566 			kn->kn_fflags = 0;
567 		}
568 		break;
569 
570         case EVENT_PROCESS:
571 		*kev = kn->kn_kevent;
572 		kev->fflags = kn->kn_sfflags;
573 		kev->data = kn->kn_sdata;
574 		if (kn->kn_flags & EV_CLEAR) {
575 			kn->kn_ptr.hookid = 0;
576 			/* kn_data, kn_fflags handled by parent */
577 		}
578 		break;
579 
580 	default:
581 		panic("filt_usertouch() - invalid type (%ld)", type);
582 		break;
583 	}
584 }
585 
586 /*
587  * Initialize a kqueue.
588  *
589  * NOTE: The lwp/proc code initializes a kqueue for select/poll ops.
590  *
591  * MPSAFE
592  */
593 void
594 kqueue_init(struct kqueue *kq, struct filedesc *fdp)
595 {
596 	TAILQ_INIT(&kq->kq_knpend);
597 	TAILQ_INIT(&kq->kq_knlist);
598 	kq->kq_count = 0;
599 	kq->kq_fdp = fdp;
600 	SLIST_INIT(&kq->kq_kqinfo.ki_note);
601 }
602 
603 /*
604  * Terminate a kqueue.  Freeing the actual kq itself is left up to the
605  * caller (it might be embedded in a lwp so we don't do it here).
606  *
607  * The kq's knlist must be completely eradicated so block on any
608  * processing races.
609  */
610 void
611 kqueue_terminate(struct kqueue *kq)
612 {
613 	struct lwkt_token *tok;
614 	struct knote *kn;
615 
616 	tok = lwkt_token_pool_lookup(kq);
617 	lwkt_gettoken(tok);
618 	while ((kn = TAILQ_FIRST(&kq->kq_knlist)) != NULL) {
619 		if (knote_acquire(kn))
620 			knote_detach_and_drop(kn);
621 	}
622 	lwkt_reltoken(tok);
623 
624 	if (kq->kq_knhash) {
625 		hashdestroy(kq->kq_knhash, M_KQUEUE, kq->kq_knhashmask);
626 		kq->kq_knhash = NULL;
627 		kq->kq_knhashmask = 0;
628 	}
629 }
630 
631 /*
632  * MPSAFE
633  */
634 int
635 sys_kqueue(struct kqueue_args *uap)
636 {
637 	struct thread *td = curthread;
638 	struct kqueue *kq;
639 	struct file *fp;
640 	int fd, error;
641 
642 	error = falloc(td->td_lwp, &fp, &fd);
643 	if (error)
644 		return (error);
645 	fp->f_flag = FREAD | FWRITE;
646 	fp->f_type = DTYPE_KQUEUE;
647 	fp->f_ops = &kqueueops;
648 
649 	kq = kmalloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO);
650 	kqueue_init(kq, td->td_proc->p_fd);
651 	fp->f_data = kq;
652 
653 	fsetfd(kq->kq_fdp, fp, fd);
654 	uap->sysmsg_result = fd;
655 	fdrop(fp);
656 	return (error);
657 }
658 
659 /*
660  * Copy 'count' items into the destination list pointed to by uap->eventlist.
661  */
662 static int
663 kevent_copyout(void *arg, struct kevent *kevp, int count, int *res)
664 {
665 	struct kevent_copyin_args *kap;
666 	int error;
667 
668 	kap = (struct kevent_copyin_args *)arg;
669 
670 	error = copyout(kevp, kap->ka->eventlist, count * sizeof(*kevp));
671 	if (error == 0) {
672 		kap->ka->eventlist += count;
673 		*res += count;
674 	} else {
675 		*res = -1;
676 	}
677 
678 	return (error);
679 }
680 
681 /*
682  * Copy at most 'max' items from the list pointed to by kap->changelist,
683  * return number of items in 'events'.
684  */
685 static int
686 kevent_copyin(void *arg, struct kevent *kevp, int max, int *events)
687 {
688 	struct kevent_copyin_args *kap;
689 	int error, count;
690 
691 	kap = (struct kevent_copyin_args *)arg;
692 
693 	count = min(kap->ka->nchanges - kap->pchanges, max);
694 	error = copyin(kap->ka->changelist, kevp, count * sizeof *kevp);
695 	if (error == 0) {
696 		kap->ka->changelist += count;
697 		kap->pchanges += count;
698 		*events = count;
699 	}
700 
701 	return (error);
702 }
703 
704 /*
705  * MPSAFE
706  */
707 int
708 kern_kevent(struct kqueue *kq, int nevents, int *res, void *uap,
709 	    k_copyin_fn kevent_copyinfn, k_copyout_fn kevent_copyoutfn,
710 	    struct timespec *tsp_in)
711 {
712 	struct kevent *kevp;
713 	struct timespec *tsp, ats;
714 	int i, n, total, error, nerrors = 0;
715 	int lres;
716 	int limit = kq_checkloop;
717 	struct kevent kev[KQ_NEVENTS];
718 	struct knote marker;
719 	struct lwkt_token *tok;
720 
721 	if (tsp_in == NULL || tsp_in->tv_sec || tsp_in->tv_nsec)
722 		atomic_set_int(&curthread->td_mpflags, TDF_MP_BATCH_DEMARC);
723 
724 	tsp = tsp_in;
725 	*res = 0;
726 
727 	for (;;) {
728 		n = 0;
729 		error = kevent_copyinfn(uap, kev, KQ_NEVENTS, &n);
730 		if (error)
731 			return error;
732 		if (n == 0)
733 			break;
734 		for (i = 0; i < n; i++) {
735 			kevp = &kev[i];
736 			kevp->flags &= ~EV_SYSFLAGS;
737 			error = kqueue_register(kq, kevp);
738 
739 			/*
740 			 * If a registration returns an error we
741 			 * immediately post the error.  The kevent()
742 			 * call itself will fail with the error if
743 			 * no space is available for posting.
744 			 *
745 			 * Such errors normally bypass the timeout/blocking
746 			 * code.  However, if the copyoutfn function refuses
747 			 * to post the error (see sys_poll()), then we
748 			 * ignore it too.
749 			 */
750 			if (error || (kevp->flags & EV_RECEIPT)) {
751 				kevp->flags = EV_ERROR;
752 				kevp->data = error;
753 				lres = *res;
754 				kevent_copyoutfn(uap, kevp, 1, res);
755 				if (*res < 0) {
756 					return error;
757 				} else if (lres != *res) {
758 					nevents--;
759 					nerrors++;
760 				}
761 			}
762 		}
763 	}
764 	if (nerrors)
765 		return 0;
766 
767 	/*
768 	 * Acquire/wait for events - setup timeout
769 	 */
770 	if (tsp != NULL) {
771 		if (tsp->tv_sec || tsp->tv_nsec) {
772 			getnanouptime(&ats);
773 			timespecadd(tsp, &ats);		/* tsp = target time */
774 		}
775 	}
776 
777 	/*
778 	 * Loop as required.
779 	 *
780 	 * Collect as many events as we can. Sleeping on successive
781 	 * loops is disabled if copyoutfn has incremented (*res).
782 	 *
783 	 * The loop stops if an error occurs, all events have been
784 	 * scanned (the marker has been reached), or fewer than the
785 	 * maximum number of events is found.
786 	 *
787 	 * The copyoutfn function does not have to increment (*res) in
788 	 * order for the loop to continue.
789 	 *
790 	 * NOTE: doselect() usually passes 0x7FFFFFFF for nevents.
791 	 */
792 	total = 0;
793 	error = 0;
794 	marker.kn_filter = EVFILT_MARKER;
795 	marker.kn_status = KN_PROCESSING;
796 	tok = lwkt_token_pool_lookup(kq);
797 	lwkt_gettoken(tok);
798 	TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
799 	lwkt_reltoken(tok);
800 	while ((n = nevents - total) > 0) {
801 		if (n > KQ_NEVENTS)
802 			n = KQ_NEVENTS;
803 
804 		/*
805 		 * If no events are pending sleep until timeout (if any)
806 		 * or an event occurs.
807 		 *
808 		 * After the sleep completes the marker is moved to the
809 		 * end of the list, making any received events available
810 		 * to our scan.
811 		 */
812 		if (kq->kq_count == 0 && *res == 0) {
813 			int timeout;
814 
815 			if (tsp == NULL) {
816 				timeout = 0;
817 			} else if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
818 				error = EWOULDBLOCK;
819 				break;
820 			} else {
821 				struct timespec atx = *tsp;
822 
823 				getnanouptime(&ats);
824 				timespecsub(&atx, &ats);
825 				if (atx.tv_sec < 0) {
826 					error = EWOULDBLOCK;
827 					break;
828 				} else {
829 					timeout = atx.tv_sec > 24 * 60 * 60 ?
830 					    24 * 60 * 60 * hz :
831 					    tstohz_high(&atx);
832 				}
833 			}
834 
835 			lwkt_gettoken(tok);
836 			if (kq->kq_count == 0) {
837 				kq->kq_state |= KQ_SLEEP;
838 				error = tsleep(kq, PCATCH, "kqread", timeout);
839 
840 				/* don't restart after signals... */
841 				if (error == ERESTART)
842 					error = EINTR;
843 				if (error) {
844 					lwkt_reltoken(tok);
845 					break;
846 				}
847 
848 				TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
849 				TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker,
850 				    kn_tqe);
851 			}
852 			lwkt_reltoken(tok);
853 		}
854 
855 		/*
856 		 * Process all received events
857 		 * Account for all non-spurious events in our total
858 		 */
859 		i = kqueue_scan(kq, kev, n, &marker);
860 		if (i) {
861 			lres = *res;
862 			error = kevent_copyoutfn(uap, kev, i, res);
863 			total += *res - lres;
864 			if (error)
865 				break;
866 		}
867 		if (limit && --limit == 0)
868 			panic("kqueue: checkloop failed i=%d", i);
869 
870 		/*
871 		 * Normally when fewer events are returned than requested
872 		 * we can stop.  However, if only spurious events were
873 		 * collected the copyout will not bump (*res) and we have
874 		 * to continue.
875 		 */
876 		if (i < n && *res)
877 			break;
878 
879 		/*
880 		 * Deal with an edge case where spurious events can cause
881 		 * a loop to occur without moving the marker.  This can
882 		 * prevent kqueue_scan() from picking up new events which
883 		 * race us.  We must be sure to move the marker for this
884 		 * case.
885 		 *
886 		 * NOTE: We do not want to move the marker if events
887 		 *	 were scanned because normal kqueue operations
888 		 *	 may reactivate events.  Moving the marker in
889 		 *	 that case could result in duplicates for the
890 		 *	 same event.
891 		 */
892 		if (i == 0) {
893 			lwkt_gettoken(tok);
894 			TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
895 			TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
896 			lwkt_reltoken(tok);
897 		}
898 	}
899 	lwkt_gettoken(tok);
900 	TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
901 	lwkt_reltoken(tok);
902 
903 	/* Timeouts do not return EWOULDBLOCK. */
904 	if (error == EWOULDBLOCK)
905 		error = 0;
906 	return error;
907 }
908 
909 /*
910  * MPALMOSTSAFE
911  */
912 int
913 sys_kevent(struct kevent_args *uap)
914 {
915 	struct thread *td = curthread;
916 	struct proc *p = td->td_proc;
917 	struct timespec ts, *tsp;
918 	struct kqueue *kq;
919 	struct file *fp = NULL;
920 	struct kevent_copyin_args *kap, ka;
921 	int error;
922 
923 	if (uap->timeout) {
924 		error = copyin(uap->timeout, &ts, sizeof(ts));
925 		if (error)
926 			return (error);
927 		tsp = &ts;
928 	} else {
929 		tsp = NULL;
930 	}
931 	fp = holdfp(p->p_fd, uap->fd, -1);
932 	if (fp == NULL)
933 		return (EBADF);
934 	if (fp->f_type != DTYPE_KQUEUE) {
935 		fdrop(fp);
936 		return (EBADF);
937 	}
938 
939 	kq = (struct kqueue *)fp->f_data;
940 
941 	kap = &ka;
942 	kap->ka = uap;
943 	kap->pchanges = 0;
944 
945 	error = kern_kevent(kq, uap->nevents, &uap->sysmsg_result, kap,
946 			    kevent_copyin, kevent_copyout, tsp);
947 
948 	fdrop(fp);
949 
950 	return (error);
951 }
952 
953 int
954 kqueue_register(struct kqueue *kq, struct kevent *kev)
955 {
956 	struct lwkt_token *tok;
957 	struct filedesc *fdp = kq->kq_fdp;
958 	struct filterops *fops;
959 	struct file *fp = NULL;
960 	struct knote *kn = NULL;
961 	int error = 0;
962 
963 	if (kev->filter < 0) {
964 		if (kev->filter + EVFILT_SYSCOUNT < 0)
965 			return (EINVAL);
966 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
967 	} else {
968 		/*
969 		 * XXX
970 		 * filter attach routine is responsible for insuring that
971 		 * the identifier can be attached to it.
972 		 */
973 		return (EINVAL);
974 	}
975 
976 	tok = lwkt_token_pool_lookup(kq);
977 	lwkt_gettoken(tok);
978 	if (fops->f_flags & FILTEROP_ISFD) {
979 		/* validate descriptor */
980 		fp = holdfp(fdp, kev->ident, -1);
981 		if (fp == NULL) {
982 			lwkt_reltoken(tok);
983 			return (EBADF);
984 		}
985 		lwkt_getpooltoken(&fp->f_klist);
986 again1:
987 		SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
988 			if (kn->kn_kq == kq &&
989 			    kn->kn_filter == kev->filter &&
990 			    kn->kn_id == kev->ident) {
991 				if (knote_acquire(kn) == 0)
992 					goto again1;
993 				break;
994 			}
995 		}
996 		lwkt_relpooltoken(&fp->f_klist);
997 	} else {
998 		if (kq->kq_knhashmask) {
999 			struct klist *list;
1000 
1001 			list = &kq->kq_knhash[
1002 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1003 			lwkt_getpooltoken(list);
1004 again2:
1005 			SLIST_FOREACH(kn, list, kn_link) {
1006 				if (kn->kn_id == kev->ident &&
1007 				    kn->kn_filter == kev->filter) {
1008 					if (knote_acquire(kn) == 0)
1009 						goto again2;
1010 					break;
1011 				}
1012 			}
1013 			lwkt_relpooltoken(list);
1014 		}
1015 	}
1016 
1017 	/*
1018 	 * NOTE: At this point if kn is non-NULL we will have acquired
1019 	 *	 it and set KN_PROCESSING.
1020 	 */
1021 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
1022 		error = ENOENT;
1023 		goto done;
1024 	}
1025 
1026 	/*
1027 	 * kn now contains the matching knote, or NULL if no match
1028 	 */
1029 	if (kev->flags & EV_ADD) {
1030 		if (kn == NULL) {
1031 			kn = knote_alloc();
1032 			kn->kn_fp = fp;
1033 			kn->kn_kq = kq;
1034 			kn->kn_fop = fops;
1035 
1036 			/*
1037 			 * apply reference count to knote structure, and
1038 			 * do not release it at the end of this routine.
1039 			 */
1040 			fp = NULL;
1041 
1042 			kn->kn_sfflags = kev->fflags;
1043 			kn->kn_sdata = kev->data;
1044 			kev->fflags = 0;
1045 			kev->data = 0;
1046 			kn->kn_kevent = *kev;
1047 
1048 			/*
1049 			 * KN_PROCESSING prevents the knote from getting
1050 			 * ripped out from under us while we are trying
1051 			 * to attach it, in case the attach blocks.
1052 			 */
1053 			kn->kn_status = KN_PROCESSING;
1054 			knote_attach(kn);
1055 			if ((error = filter_attach(kn)) != 0) {
1056 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1057 				knote_drop(kn);
1058 				goto done;
1059 			}
1060 
1061 			/*
1062 			 * Interlock against close races which either tried
1063 			 * to remove our knote while we were blocked or missed
1064 			 * it entirely prior to our attachment.  We do not
1065 			 * want to end up with a knote on a closed descriptor.
1066 			 */
1067 			if ((fops->f_flags & FILTEROP_ISFD) &&
1068 			    checkfdclosed(fdp, kev->ident, kn->kn_fp)) {
1069 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1070 			}
1071 		} else {
1072 			/*
1073 			 * The user may change some filter values after the
1074 			 * initial EV_ADD, but doing so will not reset any
1075 			 * filter which have already been triggered.
1076 			 */
1077 			KKASSERT(kn->kn_status & KN_PROCESSING);
1078 			if (fops == &user_filtops) {
1079 				filt_usertouch(kn, kev, EVENT_REGISTER);
1080 			} else {
1081 				kn->kn_sfflags = kev->fflags;
1082 				kn->kn_sdata = kev->data;
1083 				kn->kn_kevent.udata = kev->udata;
1084 			}
1085 		}
1086 
1087 		/*
1088 		 * Execute the filter event to immediately activate the
1089 		 * knote if necessary.  If reprocessing events are pending
1090 		 * due to blocking above we do not run the filter here
1091 		 * but instead let knote_release() do it.  Otherwise we
1092 		 * might run the filter on a deleted event.
1093 		 */
1094 		if ((kn->kn_status & KN_REPROCESS) == 0) {
1095 			if (filter_event(kn, 0))
1096 				KNOTE_ACTIVATE(kn);
1097 		}
1098 	} else if (kev->flags & EV_DELETE) {
1099 		/*
1100 		 * Delete the existing knote
1101 		 */
1102 		knote_detach_and_drop(kn);
1103 		goto done;
1104 	} else {
1105 		/*
1106 		 * Modify an existing event.
1107 		 *
1108 		 * The user may change some filter values after the
1109 		 * initial EV_ADD, but doing so will not reset any
1110 		 * filter which have already been triggered.
1111 		 */
1112 		KKASSERT(kn->kn_status & KN_PROCESSING);
1113 		if (fops == &user_filtops) {
1114 			filt_usertouch(kn, kev, EVENT_REGISTER);
1115 		} else {
1116 			kn->kn_sfflags = kev->fflags;
1117 			kn->kn_sdata = kev->data;
1118 			kn->kn_kevent.udata = kev->udata;
1119 		}
1120 
1121 		/*
1122 		 * Execute the filter event to immediately activate the
1123 		 * knote if necessary.  If reprocessing events are pending
1124 		 * due to blocking above we do not run the filter here
1125 		 * but instead let knote_release() do it.  Otherwise we
1126 		 * might run the filter on a deleted event.
1127 		 */
1128 		if ((kn->kn_status & KN_REPROCESS) == 0) {
1129 			if (filter_event(kn, 0))
1130 				KNOTE_ACTIVATE(kn);
1131 		}
1132 	}
1133 
1134 	/*
1135 	 * Disablement does not deactivate a knote here.
1136 	 */
1137 	if ((kev->flags & EV_DISABLE) &&
1138 	    ((kn->kn_status & KN_DISABLED) == 0)) {
1139 		kn->kn_status |= KN_DISABLED;
1140 	}
1141 
1142 	/*
1143 	 * Re-enablement may have to immediately enqueue an active knote.
1144 	 */
1145 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
1146 		kn->kn_status &= ~KN_DISABLED;
1147 		if ((kn->kn_status & KN_ACTIVE) &&
1148 		    ((kn->kn_status & KN_QUEUED) == 0)) {
1149 			knote_enqueue(kn);
1150 		}
1151 	}
1152 
1153 	/*
1154 	 * Handle any required reprocessing
1155 	 */
1156 	knote_release(kn);
1157 	/* kn may be invalid now */
1158 
1159 done:
1160 	lwkt_reltoken(tok);
1161 	if (fp != NULL)
1162 		fdrop(fp);
1163 	return (error);
1164 }
1165 
1166 /*
1167  * Scan the kqueue, return the number of active events placed in kevp up
1168  * to count.
1169  *
1170  * Continuous mode events may get recycled, do not continue scanning past
1171  * marker unless no events have been collected.
1172  */
1173 static int
1174 kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
1175             struct knote *marker)
1176 {
1177         struct knote *kn, local_marker;
1178         int total;
1179 
1180 	total = 0;
1181 	local_marker.kn_filter = EVFILT_MARKER;
1182 	local_marker.kn_status = KN_PROCESSING;
1183 
1184 	lwkt_getpooltoken(kq);
1185 
1186 	/*
1187 	 * Collect events.
1188 	 */
1189 	TAILQ_INSERT_HEAD(&kq->kq_knpend, &local_marker, kn_tqe);
1190 	while (count) {
1191 		kn = TAILQ_NEXT(&local_marker, kn_tqe);
1192 		if (kn->kn_filter == EVFILT_MARKER) {
1193 			/* Marker reached, we are done */
1194 			if (kn == marker)
1195 				break;
1196 
1197 			/* Move local marker past some other threads marker */
1198 			kn = TAILQ_NEXT(kn, kn_tqe);
1199 			TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
1200 			TAILQ_INSERT_BEFORE(kn, &local_marker, kn_tqe);
1201 			continue;
1202 		}
1203 
1204 		/*
1205 		 * We can't skip a knote undergoing processing, otherwise
1206 		 * we risk not returning it when the user process expects
1207 		 * it should be returned.  Sleep and retry.
1208 		 */
1209 		if (knote_acquire(kn) == 0)
1210 			continue;
1211 
1212 		/*
1213 		 * Remove the event for processing.
1214 		 *
1215 		 * WARNING!  We must leave KN_QUEUED set to prevent the
1216 		 *	     event from being KNOTE_ACTIVATE()d while
1217 		 *	     the queue state is in limbo, in case we
1218 		 *	     block.
1219 		 */
1220 		TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1221 		kq->kq_count--;
1222 
1223 		/*
1224 		 * We have to deal with an extremely important race against
1225 		 * file descriptor close()s here.  The file descriptor can
1226 		 * disappear MPSAFE, and there is a small window of
1227 		 * opportunity between that and the call to knote_fdclose().
1228 		 *
1229 		 * If we hit that window here while doselect or dopoll is
1230 		 * trying to delete a spurious event they will not be able
1231 		 * to match up the event against a knote and will go haywire.
1232 		 */
1233 		if ((kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1234 		    checkfdclosed(kq->kq_fdp, kn->kn_kevent.ident, kn->kn_fp)) {
1235 			kn->kn_status |= KN_DELETING | KN_REPROCESS;
1236 		}
1237 
1238 		if (kn->kn_status & KN_DISABLED) {
1239 			/*
1240 			 * If disabled we ensure the event is not queued
1241 			 * but leave its active bit set.  On re-enablement
1242 			 * the event may be immediately triggered.
1243 			 */
1244 			kn->kn_status &= ~KN_QUEUED;
1245 		} else if ((kn->kn_flags & EV_ONESHOT) == 0 &&
1246 			   (kn->kn_status & KN_DELETING) == 0 &&
1247 			   filter_event(kn, 0) == 0) {
1248 			/*
1249 			 * If not running in one-shot mode and the event
1250 			 * is no longer present we ensure it is removed
1251 			 * from the queue and ignore it.
1252 			 */
1253 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1254 		} else {
1255 			/*
1256 			 * Post the event
1257 			 */
1258 			if (kn->kn_fop == &user_filtops)
1259 				filt_usertouch(kn, kevp, EVENT_PROCESS);
1260 			else
1261 				*kevp = kn->kn_kevent;
1262 			++kevp;
1263 			++total;
1264 			--count;
1265 
1266 			if (kn->kn_flags & EV_ONESHOT) {
1267 				kn->kn_status &= ~KN_QUEUED;
1268 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1269 			} else {
1270 				if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
1271 					if (kn->kn_flags & EV_CLEAR) {
1272 						kn->kn_data = 0;
1273 						kn->kn_fflags = 0;
1274 					}
1275 					if (kn->kn_flags & EV_DISPATCH) {
1276 						kn->kn_status |= KN_DISABLED;
1277 					}
1278 					kn->kn_status &= ~(KN_QUEUED |
1279 							   KN_ACTIVE);
1280 				} else {
1281 					TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1282 					kq->kq_count++;
1283 				}
1284 			}
1285 		}
1286 
1287 		/*
1288 		 * Handle any post-processing states
1289 		 */
1290 		knote_release(kn);
1291 	}
1292 	TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
1293 
1294 	lwkt_relpooltoken(kq);
1295 	return (total);
1296 }
1297 
1298 /*
1299  * XXX
1300  * This could be expanded to call kqueue_scan, if desired.
1301  *
1302  * MPSAFE
1303  */
1304 static int
1305 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1306 {
1307 	return (ENXIO);
1308 }
1309 
1310 /*
1311  * MPSAFE
1312  */
1313 static int
1314 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1315 {
1316 	return (ENXIO);
1317 }
1318 
1319 /*
1320  * MPALMOSTSAFE
1321  */
1322 static int
1323 kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
1324 	     struct ucred *cred, struct sysmsg *msg)
1325 {
1326 	struct lwkt_token *tok;
1327 	struct kqueue *kq;
1328 	int error;
1329 
1330 	kq = (struct kqueue *)fp->f_data;
1331 	tok = lwkt_token_pool_lookup(kq);
1332 	lwkt_gettoken(tok);
1333 
1334 	switch(com) {
1335 	case FIOASYNC:
1336 		if (*(int *)data)
1337 			kq->kq_state |= KQ_ASYNC;
1338 		else
1339 			kq->kq_state &= ~KQ_ASYNC;
1340 		error = 0;
1341 		break;
1342 	case FIOSETOWN:
1343 		error = fsetown(*(int *)data, &kq->kq_sigio);
1344 		break;
1345 	default:
1346 		error = ENOTTY;
1347 		break;
1348 	}
1349 	lwkt_reltoken(tok);
1350 	return (error);
1351 }
1352 
1353 /*
1354  * MPSAFE
1355  */
1356 static int
1357 kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred)
1358 {
1359 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1360 
1361 	bzero((void *)st, sizeof(*st));
1362 	st->st_size = kq->kq_count;
1363 	st->st_blksize = sizeof(struct kevent);
1364 	st->st_mode = S_IFIFO;
1365 	return (0);
1366 }
1367 
1368 /*
1369  * MPSAFE
1370  */
1371 static int
1372 kqueue_close(struct file *fp)
1373 {
1374 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1375 
1376 	kqueue_terminate(kq);
1377 
1378 	fp->f_data = NULL;
1379 	funsetown(&kq->kq_sigio);
1380 
1381 	kfree(kq, M_KQUEUE);
1382 	return (0);
1383 }
1384 
1385 static void
1386 kqueue_wakeup(struct kqueue *kq)
1387 {
1388 	if (kq->kq_state & KQ_SLEEP) {
1389 		kq->kq_state &= ~KQ_SLEEP;
1390 		if (kq_wakeup_one)
1391 			wakeup_one(kq);
1392 		else
1393 			wakeup(kq);
1394 	}
1395 	KNOTE(&kq->kq_kqinfo.ki_note, 0);
1396 }
1397 
1398 /*
1399  * Calls filterops f_attach function, acquiring mplock if filter is not
1400  * marked as FILTEROP_MPSAFE.
1401  *
1402  * Caller must be holding the related kq token
1403  */
1404 static int
1405 filter_attach(struct knote *kn)
1406 {
1407 	int ret;
1408 
1409 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1410 		ret = kn->kn_fop->f_attach(kn);
1411 	} else {
1412 		get_mplock();
1413 		ret = kn->kn_fop->f_attach(kn);
1414 		rel_mplock();
1415 	}
1416 	return (ret);
1417 }
1418 
1419 /*
1420  * Detach the knote and drop it, destroying the knote.
1421  *
1422  * Calls filterops f_detach function, acquiring mplock if filter is not
1423  * marked as FILTEROP_MPSAFE.
1424  *
1425  * Caller must be holding the related kq token
1426  */
1427 static void
1428 knote_detach_and_drop(struct knote *kn)
1429 {
1430 	kn->kn_status |= KN_DELETING | KN_REPROCESS;
1431 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1432 		kn->kn_fop->f_detach(kn);
1433 	} else {
1434 		get_mplock();
1435 		kn->kn_fop->f_detach(kn);
1436 		rel_mplock();
1437 	}
1438 	knote_drop(kn);
1439 }
1440 
1441 /*
1442  * Calls filterops f_event function, acquiring mplock if filter is not
1443  * marked as FILTEROP_MPSAFE.
1444  *
1445  * If the knote is in the middle of being created or deleted we cannot
1446  * safely call the filter op.
1447  *
1448  * Caller must be holding the related kq token
1449  */
1450 static int
1451 filter_event(struct knote *kn, long hint)
1452 {
1453 	int ret;
1454 
1455 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1456 		ret = kn->kn_fop->f_event(kn, hint);
1457 	} else {
1458 		get_mplock();
1459 		ret = kn->kn_fop->f_event(kn, hint);
1460 		rel_mplock();
1461 	}
1462 	return (ret);
1463 }
1464 
1465 /*
1466  * Walk down a list of knotes, activating them if their event has triggered.
1467  *
1468  * If we encounter any knotes which are undergoing processing we just mark
1469  * them for reprocessing and do not try to [re]activate the knote.  However,
1470  * if a hint is being passed we have to wait and that makes things a bit
1471  * sticky.
1472  */
1473 void
1474 knote(struct klist *list, long hint)
1475 {
1476 	struct kqueue *kq;
1477 	struct knote *kn;
1478 	struct knote *kntmp;
1479 
1480 	lwkt_getpooltoken(list);
1481 restart:
1482 	SLIST_FOREACH(kn, list, kn_next) {
1483 		kq = kn->kn_kq;
1484 		lwkt_getpooltoken(kq);
1485 
1486 		/* temporary verification hack */
1487 		SLIST_FOREACH(kntmp, list, kn_next) {
1488 			if (kn == kntmp)
1489 				break;
1490 		}
1491 		if (kn != kntmp || kn->kn_kq != kq) {
1492 			lwkt_relpooltoken(kq);
1493 			goto restart;
1494 		}
1495 
1496 		if (kn->kn_status & KN_PROCESSING) {
1497 			/*
1498 			 * Someone else is processing the knote, ask the
1499 			 * other thread to reprocess it and don't mess
1500 			 * with it otherwise.
1501 			 */
1502 			if (hint == 0) {
1503 				kn->kn_status |= KN_REPROCESS;
1504 				lwkt_relpooltoken(kq);
1505 				continue;
1506 			}
1507 
1508 			/*
1509 			 * If the hint is non-zero we have to wait or risk
1510 			 * losing the state the caller is trying to update.
1511 			 *
1512 			 * XXX This is a real problem, certain process
1513 			 *     and signal filters will bump kn_data for
1514 			 *     already-processed notes more than once if
1515 			 *     we restart the list scan.  FIXME.
1516 			 */
1517 			kn->kn_status |= KN_WAITING | KN_REPROCESS;
1518 			tsleep(kn, 0, "knotec", hz);
1519 			lwkt_relpooltoken(kq);
1520 			goto restart;
1521 		}
1522 
1523 		/*
1524 		 * Become the reprocessing master ourselves.
1525 		 *
1526 		 * If hint is non-zero running the event is mandatory
1527 		 * when not deleting so do it whether reprocessing is
1528 		 * set or not.
1529 		 */
1530 		kn->kn_status |= KN_PROCESSING;
1531 		if ((kn->kn_status & KN_DELETING) == 0) {
1532 			if (filter_event(kn, hint))
1533 				KNOTE_ACTIVATE(kn);
1534 		}
1535 		if (knote_release(kn)) {
1536 			lwkt_relpooltoken(kq);
1537 			goto restart;
1538 		}
1539 		lwkt_relpooltoken(kq);
1540 	}
1541 	lwkt_relpooltoken(list);
1542 }
1543 
1544 /*
1545  * Insert knote at head of klist.
1546  *
1547  * This function may only be called via a filter function and thus
1548  * kq_token should already be held and marked for processing.
1549  */
1550 void
1551 knote_insert(struct klist *klist, struct knote *kn)
1552 {
1553 	lwkt_getpooltoken(klist);
1554 	KKASSERT(kn->kn_status & KN_PROCESSING);
1555 	SLIST_INSERT_HEAD(klist, kn, kn_next);
1556 	lwkt_relpooltoken(klist);
1557 }
1558 
1559 /*
1560  * Remove knote from a klist
1561  *
1562  * This function may only be called via a filter function and thus
1563  * kq_token should already be held and marked for processing.
1564  */
1565 void
1566 knote_remove(struct klist *klist, struct knote *kn)
1567 {
1568 	lwkt_getpooltoken(klist);
1569 	KKASSERT(kn->kn_status & KN_PROCESSING);
1570 	SLIST_REMOVE(klist, kn, knote, kn_next);
1571 	lwkt_relpooltoken(klist);
1572 }
1573 
1574 #if 0
1575 /*
1576  * Remove all knotes from a specified klist
1577  *
1578  * Only called from aio.
1579  */
1580 void
1581 knote_empty(struct klist *list)
1582 {
1583 	struct knote *kn;
1584 
1585 	lwkt_gettoken(&kq_token);
1586 	while ((kn = SLIST_FIRST(list)) != NULL) {
1587 		if (knote_acquire(kn))
1588 			knote_detach_and_drop(kn);
1589 	}
1590 	lwkt_reltoken(&kq_token);
1591 }
1592 #endif
1593 
1594 void
1595 knote_assume_knotes(struct kqinfo *src, struct kqinfo *dst,
1596 		    struct filterops *ops, void *hook)
1597 {
1598 	struct kqueue *kq;
1599 	struct knote *kn;
1600 
1601 	lwkt_getpooltoken(&src->ki_note);
1602 	lwkt_getpooltoken(&dst->ki_note);
1603 	while ((kn = SLIST_FIRST(&src->ki_note)) != NULL) {
1604 		kq = kn->kn_kq;
1605 		lwkt_getpooltoken(kq);
1606 		if (SLIST_FIRST(&src->ki_note) != kn || kn->kn_kq != kq) {
1607 			lwkt_relpooltoken(kq);
1608 			continue;
1609 		}
1610 		if (knote_acquire(kn)) {
1611 			knote_remove(&src->ki_note, kn);
1612 			kn->kn_fop = ops;
1613 			kn->kn_hook = hook;
1614 			knote_insert(&dst->ki_note, kn);
1615 			knote_release(kn);
1616 			/* kn may be invalid now */
1617 		}
1618 		lwkt_relpooltoken(kq);
1619 	}
1620 	lwkt_relpooltoken(&dst->ki_note);
1621 	lwkt_relpooltoken(&src->ki_note);
1622 }
1623 
1624 /*
1625  * Remove all knotes referencing a specified fd
1626  */
1627 void
1628 knote_fdclose(struct file *fp, struct filedesc *fdp, int fd)
1629 {
1630 	struct kqueue *kq;
1631 	struct knote *kn;
1632 	struct knote *kntmp;
1633 
1634 	lwkt_getpooltoken(&fp->f_klist);
1635 restart:
1636 	SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
1637 		if (kn->kn_kq->kq_fdp == fdp && kn->kn_id == fd) {
1638 			kq = kn->kn_kq;
1639 			lwkt_getpooltoken(kq);
1640 
1641 			/* temporary verification hack */
1642 			SLIST_FOREACH(kntmp, &fp->f_klist, kn_link) {
1643 				if (kn == kntmp)
1644 					break;
1645 			}
1646 			if (kn != kntmp || kn->kn_kq->kq_fdp != fdp ||
1647 			    kn->kn_id != fd || kn->kn_kq != kq) {
1648 				lwkt_relpooltoken(kq);
1649 				goto restart;
1650 			}
1651 			if (knote_acquire(kn))
1652 				knote_detach_and_drop(kn);
1653 			lwkt_relpooltoken(kq);
1654 			goto restart;
1655 		}
1656 	}
1657 	lwkt_relpooltoken(&fp->f_klist);
1658 }
1659 
1660 /*
1661  * Low level attach function.
1662  *
1663  * The knote should already be marked for processing.
1664  * Caller must hold the related kq token.
1665  */
1666 static void
1667 knote_attach(struct knote *kn)
1668 {
1669 	struct klist *list;
1670 	struct kqueue *kq = kn->kn_kq;
1671 
1672 	if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1673 		KKASSERT(kn->kn_fp);
1674 		list = &kn->kn_fp->f_klist;
1675 	} else {
1676 		if (kq->kq_knhashmask == 0)
1677 			kq->kq_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1678 						 &kq->kq_knhashmask);
1679 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1680 	}
1681 	lwkt_getpooltoken(list);
1682 	SLIST_INSERT_HEAD(list, kn, kn_link);
1683 	lwkt_relpooltoken(list);
1684 	TAILQ_INSERT_HEAD(&kq->kq_knlist, kn, kn_kqlink);
1685 }
1686 
1687 /*
1688  * Low level drop function.
1689  *
1690  * The knote should already be marked for processing.
1691  * Caller must hold the related kq token.
1692  */
1693 static void
1694 knote_drop(struct knote *kn)
1695 {
1696 	struct kqueue *kq;
1697 	struct klist *list;
1698 
1699 	kq = kn->kn_kq;
1700 
1701 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
1702 		list = &kn->kn_fp->f_klist;
1703 	else
1704 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1705 
1706 	lwkt_getpooltoken(list);
1707 	SLIST_REMOVE(list, kn, knote, kn_link);
1708 	lwkt_relpooltoken(list);
1709 	TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink);
1710 	if (kn->kn_status & KN_QUEUED)
1711 		knote_dequeue(kn);
1712 	if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1713 		fdrop(kn->kn_fp);
1714 		kn->kn_fp = NULL;
1715 	}
1716 	knote_free(kn);
1717 }
1718 
1719 /*
1720  * Low level enqueue function.
1721  *
1722  * The knote should already be marked for processing.
1723  * Caller must be holding the kq token
1724  */
1725 static void
1726 knote_enqueue(struct knote *kn)
1727 {
1728 	struct kqueue *kq = kn->kn_kq;
1729 
1730 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1731 	TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1732 	kn->kn_status |= KN_QUEUED;
1733 	++kq->kq_count;
1734 
1735 	/*
1736 	 * Send SIGIO on request (typically set up as a mailbox signal)
1737 	 */
1738 	if (kq->kq_sigio && (kq->kq_state & KQ_ASYNC) && kq->kq_count == 1)
1739 		pgsigio(kq->kq_sigio, SIGIO, 0);
1740 
1741 	kqueue_wakeup(kq);
1742 }
1743 
1744 /*
1745  * Low level dequeue function.
1746  *
1747  * The knote should already be marked for processing.
1748  * Caller must be holding the kq token
1749  */
1750 static void
1751 knote_dequeue(struct knote *kn)
1752 {
1753 	struct kqueue *kq = kn->kn_kq;
1754 
1755 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1756 	TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1757 	kn->kn_status &= ~KN_QUEUED;
1758 	kq->kq_count--;
1759 }
1760 
1761 static struct knote *
1762 knote_alloc(void)
1763 {
1764 	return kmalloc(sizeof(struct knote), M_KQUEUE, M_WAITOK);
1765 }
1766 
1767 static void
1768 knote_free(struct knote *kn)
1769 {
1770 	kfree(kn, M_KQUEUE);
1771 }
1772