xref: /dflybsd-src/sys/kern/kern_event.c (revision 635ed9ba8ad51007f4196e5625a17e8f2e1a8d0f)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $
27  * $DragonFly: src/sys/kern/kern_event.c,v 1.33 2007/02/03 17:05:57 corecode Exp $
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/malloc.h>
35 #include <sys/unistd.h>
36 #include <sys/file.h>
37 #include <sys/lock.h>
38 #include <sys/fcntl.h>
39 #include <sys/queue.h>
40 #include <sys/event.h>
41 #include <sys/eventvar.h>
42 #include <sys/protosw.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/stat.h>
46 #include <sys/sysctl.h>
47 #include <sys/sysproto.h>
48 #include <sys/thread.h>
49 #include <sys/uio.h>
50 #include <sys/signalvar.h>
51 #include <sys/filio.h>
52 #include <sys/ktr.h>
53 
54 #include <sys/thread2.h>
55 #include <sys/file2.h>
56 #include <sys/mplock2.h>
57 
58 #include <vm/vm_zone.h>
59 
60 /*
61  * Global token for kqueue subsystem
62  */
63 struct lwkt_token kq_token = LWKT_TOKEN_UP_INITIALIZER;
64 
65 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
66 
67 struct kevent_copyin_args {
68 	struct kevent_args	*ka;
69 	int			pchanges;
70 };
71 
72 static int	kqueue_sleep(struct kqueue *kq, struct timespec *tsp);
73 static int	kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
74 		    struct knote *marker);
75 static int 	kqueue_read(struct file *fp, struct uio *uio,
76 		    struct ucred *cred, int flags);
77 static int	kqueue_write(struct file *fp, struct uio *uio,
78 		    struct ucred *cred, int flags);
79 static int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
80 		    struct ucred *cred, struct sysmsg *msg);
81 static int 	kqueue_kqfilter(struct file *fp, struct knote *kn);
82 static int 	kqueue_stat(struct file *fp, struct stat *st,
83 		    struct ucred *cred);
84 static int 	kqueue_close(struct file *fp);
85 static void	kqueue_wakeup(struct kqueue *kq);
86 static int	filter_attach(struct knote *kn);
87 static void	filter_detach(struct knote *kn);
88 static int	filter_event(struct knote *kn, long hint);
89 
90 /*
91  * MPSAFE
92  */
93 static struct fileops kqueueops = {
94 	.fo_read = kqueue_read,
95 	.fo_write = kqueue_write,
96 	.fo_ioctl = kqueue_ioctl,
97 	.fo_kqfilter = kqueue_kqfilter,
98 	.fo_stat = kqueue_stat,
99 	.fo_close = kqueue_close,
100 	.fo_shutdown = nofo_shutdown
101 };
102 
103 static void 	knote_attach(struct knote *kn);
104 static void 	knote_drop(struct knote *kn);
105 static void 	knote_enqueue(struct knote *kn);
106 static void 	knote_dequeue(struct knote *kn);
107 static void 	knote_init(void);
108 static struct 	knote *knote_alloc(void);
109 static void 	knote_free(struct knote *kn);
110 
111 static void	filt_kqdetach(struct knote *kn);
112 static int	filt_kqueue(struct knote *kn, long hint);
113 static int	filt_procattach(struct knote *kn);
114 static void	filt_procdetach(struct knote *kn);
115 static int	filt_proc(struct knote *kn, long hint);
116 static int	filt_fileattach(struct knote *kn);
117 static void	filt_timerexpire(void *knx);
118 static int	filt_timerattach(struct knote *kn);
119 static void	filt_timerdetach(struct knote *kn);
120 static int	filt_timer(struct knote *kn, long hint);
121 
122 static struct filterops file_filtops =
123 	{ FILTEROP_ISFD, filt_fileattach, NULL, NULL };
124 static struct filterops kqread_filtops =
125 	{ FILTEROP_ISFD, NULL, filt_kqdetach, filt_kqueue };
126 static struct filterops proc_filtops =
127 	{ 0, filt_procattach, filt_procdetach, filt_proc };
128 static struct filterops timer_filtops =
129 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
130 
131 static vm_zone_t	knote_zone;
132 static int 		kq_ncallouts = 0;
133 static int 		kq_calloutmax = (4 * 1024);
134 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
135     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
136 
137 #define KNOTE_ACTIVATE(kn) do { 					\
138 	kn->kn_status |= KN_ACTIVE;					\
139 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
140 		knote_enqueue(kn);					\
141 } while(0)
142 
143 #define	KN_HASHSIZE		64		/* XXX should be tunable */
144 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
145 
146 extern struct filterops aio_filtops;
147 extern struct filterops sig_filtops;
148 
149 /*
150  * Table for for all system-defined filters.
151  */
152 static struct filterops *sysfilt_ops[] = {
153 	&file_filtops,			/* EVFILT_READ */
154 	&file_filtops,			/* EVFILT_WRITE */
155 	&aio_filtops,			/* EVFILT_AIO */
156 	&file_filtops,			/* EVFILT_VNODE */
157 	&proc_filtops,			/* EVFILT_PROC */
158 	&sig_filtops,			/* EVFILT_SIGNAL */
159 	&timer_filtops,			/* EVFILT_TIMER */
160 	&file_filtops,			/* EVFILT_EXCEPT */
161 };
162 
163 static int
164 filt_fileattach(struct knote *kn)
165 {
166 	return (fo_kqfilter(kn->kn_fp, kn));
167 }
168 
169 /*
170  * MPSAFE
171  */
172 static int
173 kqueue_kqfilter(struct file *fp, struct knote *kn)
174 {
175 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
176 
177 	if (kn->kn_filter != EVFILT_READ)
178 		return (EOPNOTSUPP);
179 
180 	kn->kn_fop = &kqread_filtops;
181 	knote_insert(&kq->kq_kqinfo.ki_note, kn);
182 	return (0);
183 }
184 
185 static void
186 filt_kqdetach(struct knote *kn)
187 {
188 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
189 
190 	knote_remove(&kq->kq_kqinfo.ki_note, kn);
191 }
192 
193 /*ARGSUSED*/
194 static int
195 filt_kqueue(struct knote *kn, long hint)
196 {
197 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
198 
199 	kn->kn_data = kq->kq_count;
200 	return (kn->kn_data > 0);
201 }
202 
203 static int
204 filt_procattach(struct knote *kn)
205 {
206 	struct proc *p;
207 	int immediate;
208 
209 	immediate = 0;
210 	lwkt_gettoken(&proc_token);
211 	p = pfind(kn->kn_id);
212 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
213 		p = zpfind(kn->kn_id);
214 		immediate = 1;
215 	}
216 	if (p == NULL) {
217 		lwkt_reltoken(&proc_token);
218 		return (ESRCH);
219 	}
220 	if (!PRISON_CHECK(curthread->td_ucred, p->p_ucred)) {
221 		lwkt_reltoken(&proc_token);
222 		return (EACCES);
223 	}
224 
225 	kn->kn_ptr.p_proc = p;
226 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
227 
228 	/*
229 	 * internal flag indicating registration done by kernel
230 	 */
231 	if (kn->kn_flags & EV_FLAG1) {
232 		kn->kn_data = kn->kn_sdata;		/* ppid */
233 		kn->kn_fflags = NOTE_CHILD;
234 		kn->kn_flags &= ~EV_FLAG1;
235 	}
236 
237 	knote_insert(&p->p_klist, kn);
238 
239 	/*
240 	 * Immediately activate any exit notes if the target process is a
241 	 * zombie.  This is necessary to handle the case where the target
242 	 * process, e.g. a child, dies before the kevent is negistered.
243 	 */
244 	if (immediate && filt_proc(kn, NOTE_EXIT))
245 		KNOTE_ACTIVATE(kn);
246 	lwkt_reltoken(&proc_token);
247 
248 	return (0);
249 }
250 
251 /*
252  * The knote may be attached to a different process, which may exit,
253  * leaving nothing for the knote to be attached to.  So when the process
254  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
255  * it will be deleted when read out.  However, as part of the knote deletion,
256  * this routine is called, so a check is needed to avoid actually performing
257  * a detach, because the original process does not exist any more.
258  */
259 static void
260 filt_procdetach(struct knote *kn)
261 {
262 	struct proc *p;
263 
264 	if (kn->kn_status & KN_DETACHED)
265 		return;
266 	/* XXX locking? take proc_token here? */
267 	p = kn->kn_ptr.p_proc;
268 	knote_remove(&p->p_klist, kn);
269 }
270 
271 static int
272 filt_proc(struct knote *kn, long hint)
273 {
274 	u_int event;
275 
276 	/*
277 	 * mask off extra data
278 	 */
279 	event = (u_int)hint & NOTE_PCTRLMASK;
280 
281 	/*
282 	 * if the user is interested in this event, record it.
283 	 */
284 	if (kn->kn_sfflags & event)
285 		kn->kn_fflags |= event;
286 
287 	/*
288 	 * Process is gone, so flag the event as finished.  Detach the
289 	 * knote from the process now because the process will be poof,
290 	 * gone later on.
291 	 */
292 	if (event == NOTE_EXIT) {
293 		struct proc *p = kn->kn_ptr.p_proc;
294 		if ((kn->kn_status & KN_DETACHED) == 0) {
295 			knote_remove(&p->p_klist, kn);
296 			kn->kn_status |= KN_DETACHED;
297 			kn->kn_data = p->p_xstat;
298 			kn->kn_ptr.p_proc = NULL;
299 		}
300 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
301 		return (1);
302 	}
303 
304 	/*
305 	 * process forked, and user wants to track the new process,
306 	 * so attach a new knote to it, and immediately report an
307 	 * event with the parent's pid.
308 	 */
309 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
310 		struct kevent kev;
311 		int error;
312 
313 		/*
314 		 * register knote with new process.
315 		 */
316 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
317 		kev.filter = kn->kn_filter;
318 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
319 		kev.fflags = kn->kn_sfflags;
320 		kev.data = kn->kn_id;			/* parent */
321 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
322 		error = kqueue_register(kn->kn_kq, &kev);
323 		if (error)
324 			kn->kn_fflags |= NOTE_TRACKERR;
325 	}
326 
327 	return (kn->kn_fflags != 0);
328 }
329 
330 static void
331 filt_timerexpire(void *knx)
332 {
333 	struct knote *kn = knx;
334 	struct callout *calloutp;
335 	struct timeval tv;
336 	int tticks;
337 
338 	kn->kn_data++;
339 	KNOTE_ACTIVATE(kn);
340 
341 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
342 		tv.tv_sec = kn->kn_sdata / 1000;
343 		tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
344 		tticks = tvtohz_high(&tv);
345 		calloutp = (struct callout *)kn->kn_hook;
346 		callout_reset(calloutp, tticks, filt_timerexpire, kn);
347 	}
348 }
349 
350 /*
351  * data contains amount of time to sleep, in milliseconds
352  */
353 static int
354 filt_timerattach(struct knote *kn)
355 {
356 	struct callout *calloutp;
357 	struct timeval tv;
358 	int tticks;
359 
360 	if (kq_ncallouts >= kq_calloutmax)
361 		return (ENOMEM);
362 	kq_ncallouts++;
363 
364 	tv.tv_sec = kn->kn_sdata / 1000;
365 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
366 	tticks = tvtohz_high(&tv);
367 
368 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
369 	MALLOC(calloutp, struct callout *, sizeof(*calloutp),
370 	    M_KQUEUE, M_WAITOK);
371 	callout_init(calloutp);
372 	kn->kn_hook = (caddr_t)calloutp;
373 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
374 
375 	return (0);
376 }
377 
378 static void
379 filt_timerdetach(struct knote *kn)
380 {
381 	struct callout *calloutp;
382 
383 	calloutp = (struct callout *)kn->kn_hook;
384 	callout_stop(calloutp);
385 	FREE(calloutp, M_KQUEUE);
386 	kq_ncallouts--;
387 }
388 
389 static int
390 filt_timer(struct knote *kn, long hint)
391 {
392 
393 	return (kn->kn_data != 0);
394 }
395 
396 /*
397  * Initialize a kqueue.
398  *
399  * NOTE: The lwp/proc code initializes a kqueue for select/poll ops.
400  *
401  * MPSAFE
402  */
403 void
404 kqueue_init(struct kqueue *kq, struct filedesc *fdp)
405 {
406 	TAILQ_INIT(&kq->kq_knpend);
407 	TAILQ_INIT(&kq->kq_knlist);
408 	kq->kq_count = 0;
409 	kq->kq_fdp = fdp;
410 	SLIST_INIT(&kq->kq_kqinfo.ki_note);
411 }
412 
413 /*
414  * Terminate a kqueue.  Freeing the actual kq itself is left up to the
415  * caller (it might be embedded in a lwp so we don't do it here).
416  */
417 void
418 kqueue_terminate(struct kqueue *kq)
419 {
420 	struct knote *kn;
421 	struct klist *list;
422 	int hv;
423 
424 	while ((kn = TAILQ_FIRST(&kq->kq_knlist)) != NULL) {
425 		filter_detach(kn);
426 		if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
427 			list = &kn->kn_fp->f_klist;
428 			SLIST_REMOVE(list, kn, knote, kn_link);
429 			fdrop(kn->kn_fp);
430 			kn->kn_fp = NULL;
431 		} else {
432 			hv = KN_HASH(kn->kn_id, kq->kq_knhashmask);
433 			list = &kq->kq_knhash[hv];
434 			SLIST_REMOVE(list, kn, knote, kn_link);
435 		}
436 		TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink);
437 		if (kn->kn_status & KN_QUEUED)
438 			knote_dequeue(kn);
439 		knote_free(kn);
440 	}
441 
442 	if (kq->kq_knhash) {
443 		kfree(kq->kq_knhash, M_KQUEUE);
444 		kq->kq_knhash = NULL;
445 		kq->kq_knhashmask = 0;
446 	}
447 }
448 
449 /*
450  * MPSAFE
451  */
452 int
453 sys_kqueue(struct kqueue_args *uap)
454 {
455 	struct thread *td = curthread;
456 	struct kqueue *kq;
457 	struct file *fp;
458 	int fd, error;
459 
460 	error = falloc(td->td_lwp, &fp, &fd);
461 	if (error)
462 		return (error);
463 	fp->f_flag = FREAD | FWRITE;
464 	fp->f_type = DTYPE_KQUEUE;
465 	fp->f_ops = &kqueueops;
466 
467 	kq = kmalloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO);
468 	kqueue_init(kq, td->td_proc->p_fd);
469 	fp->f_data = kq;
470 
471 	fsetfd(kq->kq_fdp, fp, fd);
472 	uap->sysmsg_result = fd;
473 	fdrop(fp);
474 	return (error);
475 }
476 
477 /*
478  * Copy 'count' items into the destination list pointed to by uap->eventlist.
479  */
480 static int
481 kevent_copyout(void *arg, struct kevent *kevp, int count, int *res)
482 {
483 	struct kevent_copyin_args *kap;
484 	int error;
485 
486 	kap = (struct kevent_copyin_args *)arg;
487 
488 	error = copyout(kevp, kap->ka->eventlist, count * sizeof(*kevp));
489 	if (error == 0) {
490 		kap->ka->eventlist += count;
491 		*res += count;
492 	} else {
493 		*res = -1;
494 	}
495 
496 	return (error);
497 }
498 
499 /*
500  * Copy at most 'max' items from the list pointed to by kap->changelist,
501  * return number of items in 'events'.
502  */
503 static int
504 kevent_copyin(void *arg, struct kevent *kevp, int max, int *events)
505 {
506 	struct kevent_copyin_args *kap;
507 	int error, count;
508 
509 	kap = (struct kevent_copyin_args *)arg;
510 
511 	count = min(kap->ka->nchanges - kap->pchanges, max);
512 	error = copyin(kap->ka->changelist, kevp, count * sizeof *kevp);
513 	if (error == 0) {
514 		kap->ka->changelist += count;
515 		kap->pchanges += count;
516 		*events = count;
517 	}
518 
519 	return (error);
520 }
521 
522 /*
523  * MPSAFE
524  */
525 int
526 kern_kevent(struct kqueue *kq, int nevents, int *res, void *uap,
527 	    k_copyin_fn kevent_copyinfn, k_copyout_fn kevent_copyoutfn,
528 	    struct timespec *tsp_in)
529 {
530 	struct kevent *kevp;
531 	struct timespec *tsp;
532 	int i, n, total, error, nerrors = 0;
533 	int lres;
534 	struct kevent kev[KQ_NEVENTS];
535 	struct knote marker;
536 
537 	tsp = tsp_in;
538 	*res = 0;
539 
540 	lwkt_gettoken(&kq_token);
541 	for ( ;; ) {
542 		n = 0;
543 		error = kevent_copyinfn(uap, kev, KQ_NEVENTS, &n);
544 		if (error)
545 			goto done;
546 		if (n == 0)
547 			break;
548 		for (i = 0; i < n; i++) {
549 			kevp = &kev[i];
550 			kevp->flags &= ~EV_SYSFLAGS;
551 			error = kqueue_register(kq, kevp);
552 
553 			/*
554 			 * If a registration returns an error we
555 			 * immediately post the error.  The kevent()
556 			 * call itself will fail with the error if
557 			 * no space is available for posting.
558 			 *
559 			 * Such errors normally bypass the timeout/blocking
560 			 * code.  However, if the copyoutfn function refuses
561 			 * to post the error (see sys_poll()), then we
562 			 * ignore it too.
563 			 */
564 			if (error) {
565 				kevp->flags = EV_ERROR;
566 				kevp->data = error;
567 				lres = *res;
568 				kevent_copyoutfn(uap, kevp, 1, res);
569 				if (lres != *res) {
570 					nevents--;
571 					nerrors++;
572 				}
573 			}
574 		}
575 	}
576 	if (nerrors) {
577 		error = 0;
578 		goto done;
579 	}
580 
581 	/*
582 	 * Acquire/wait for events - setup timeout
583 	 */
584 	if (tsp != NULL) {
585 		struct timespec ats;
586 
587 		if (tsp->tv_sec || tsp->tv_nsec) {
588 			nanouptime(&ats);
589 			timespecadd(tsp, &ats);		/* tsp = target time */
590 		}
591 	}
592 
593 	/*
594 	 * Loop as required.
595 	 *
596 	 * Collect as many events as we can. Sleeping on successive
597 	 * loops is disabled if copyoutfn has incremented (*res).
598 	 *
599 	 * The loop stops if an error occurs, all events have been
600 	 * scanned (the marker has been reached), or fewer than the
601 	 * maximum number of events is found.
602 	 *
603 	 * The copyoutfn function does not have to increment (*res) in
604 	 * order for the loop to continue.
605 	 *
606 	 * NOTE: doselect() usually passes 0x7FFFFFFF for nevents.
607 	 */
608 	total = 0;
609 	error = 0;
610 	marker.kn_filter = EVFILT_MARKER;
611 	TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
612 	while ((n = nevents - total) > 0) {
613 		if (n > KQ_NEVENTS)
614 			n = KQ_NEVENTS;
615 
616 		/*
617 		 * If no events are pending sleep until timeout (if any)
618 		 * or an event occurs.
619 		 *
620 		 * After the sleep completes the marker is moved to the
621 		 * end of the list, making any received events available
622 		 * to our scan.
623 		 */
624 		if (kq->kq_count == 0 && *res == 0) {
625 			error = kqueue_sleep(kq, tsp);
626 			if (error)
627 				break;
628 
629 			TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
630 			TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
631 		}
632 
633 		/*
634 		 * Process all received events
635 		 * Account for all non-spurious events in our total
636 		 */
637 		i = kqueue_scan(kq, kev, n, &marker);
638 		if (i) {
639 			lres = *res;
640 			error = kevent_copyoutfn(uap, kev, i, res);
641 			total += *res - lres;
642 			if (error)
643 				break;
644 		}
645 
646 		/*
647 		 * Normally when fewer events are returned than requested
648 		 * we can stop.  However, if only spurious events were
649 		 * collected the copyout will not bump (*res) and we have
650 		 * to continue.
651 		 */
652 		if (i < n && *res)
653 			break;
654 
655 		/*
656 		 * Deal with an edge case where spurious events can cause
657 		 * a loop to occur without moving the marker.  This can
658 		 * prevent kqueue_scan() from picking up new events which
659 		 * race us.  We must be sure to move the marker for this
660 		 * case.
661 		 *
662 		 * NOTE: We do not want to move the marker if events
663 		 *	 were scanned because normal kqueue operations
664 		 *	 may reactivate events.  Moving the marker in
665 		 *	 that case could result in duplicates for the
666 		 *	 same event.
667 		 */
668 		if (i == 0) {
669 			TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
670 			TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
671 		}
672 	}
673 	TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
674 
675 	/* Timeouts do not return EWOULDBLOCK. */
676 	if (error == EWOULDBLOCK)
677 		error = 0;
678 
679 done:
680 	lwkt_reltoken(&kq_token);
681 	return (error);
682 }
683 
684 /*
685  * MPALMOSTSAFE
686  */
687 int
688 sys_kevent(struct kevent_args *uap)
689 {
690 	struct thread *td = curthread;
691 	struct proc *p = td->td_proc;
692 	struct timespec ts, *tsp;
693 	struct kqueue *kq;
694 	struct file *fp = NULL;
695 	struct kevent_copyin_args *kap, ka;
696 	int error;
697 
698 	if (uap->timeout) {
699 		error = copyin(uap->timeout, &ts, sizeof(ts));
700 		if (error)
701 			return (error);
702 		tsp = &ts;
703 	} else {
704 		tsp = NULL;
705 	}
706 
707 	fp = holdfp(p->p_fd, uap->fd, -1);
708 	if (fp == NULL)
709 		return (EBADF);
710 	if (fp->f_type != DTYPE_KQUEUE) {
711 		fdrop(fp);
712 		return (EBADF);
713 	}
714 
715 	kq = (struct kqueue *)fp->f_data;
716 
717 	kap = &ka;
718 	kap->ka = uap;
719 	kap->pchanges = 0;
720 
721 	error = kern_kevent(kq, uap->nevents, &uap->sysmsg_result, kap,
722 			    kevent_copyin, kevent_copyout, tsp);
723 
724 	fdrop(fp);
725 
726 	return (error);
727 }
728 
729 int
730 kqueue_register(struct kqueue *kq, struct kevent *kev)
731 {
732 	struct filedesc *fdp = kq->kq_fdp;
733 	struct filterops *fops;
734 	struct file *fp = NULL;
735 	struct knote *kn = NULL;
736 	int error = 0;
737 
738 	if (kev->filter < 0) {
739 		if (kev->filter + EVFILT_SYSCOUNT < 0)
740 			return (EINVAL);
741 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
742 	} else {
743 		/*
744 		 * XXX
745 		 * filter attach routine is responsible for insuring that
746 		 * the identifier can be attached to it.
747 		 */
748 		kprintf("unknown filter: %d\n", kev->filter);
749 		return (EINVAL);
750 	}
751 
752 	if (fops->f_flags & FILTEROP_ISFD) {
753 		/* validate descriptor */
754 		fp = holdfp(fdp, kev->ident, -1);
755 		if (fp == NULL)
756 			return (EBADF);
757 
758 		SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
759 			if (kn->kn_kq == kq &&
760 			    kn->kn_filter == kev->filter &&
761 			    kn->kn_id == kev->ident) {
762 				break;
763 			}
764 		}
765 	} else {
766 		if (kq->kq_knhashmask) {
767 			struct klist *list;
768 
769 			list = &kq->kq_knhash[
770 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
771 			SLIST_FOREACH(kn, list, kn_link) {
772 				if (kn->kn_id == kev->ident &&
773 				    kn->kn_filter == kev->filter)
774 					break;
775 			}
776 		}
777 	}
778 
779 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
780 		error = ENOENT;
781 		goto done;
782 	}
783 
784 	/*
785 	 * kn now contains the matching knote, or NULL if no match
786 	 */
787 	if (kev->flags & EV_ADD) {
788 		if (kn == NULL) {
789 			kn = knote_alloc();
790 			if (kn == NULL) {
791 				error = ENOMEM;
792 				goto done;
793 			}
794 			kn->kn_fp = fp;
795 			kn->kn_kq = kq;
796 			kn->kn_fop = fops;
797 
798 			/*
799 			 * apply reference count to knote structure, and
800 			 * do not release it at the end of this routine.
801 			 */
802 			fp = NULL;
803 
804 			kn->kn_sfflags = kev->fflags;
805 			kn->kn_sdata = kev->data;
806 			kev->fflags = 0;
807 			kev->data = 0;
808 			kn->kn_kevent = *kev;
809 
810 			knote_attach(kn);
811 			if ((error = filter_attach(kn)) != 0) {
812 				knote_drop(kn);
813 				goto done;
814 			}
815 		} else {
816 			/*
817 			 * The user may change some filter values after the
818 			 * initial EV_ADD, but doing so will not reset any
819 			 * filter which have already been triggered.
820 			 */
821 			kn->kn_sfflags = kev->fflags;
822 			kn->kn_sdata = kev->data;
823 			kn->kn_kevent.udata = kev->udata;
824 		}
825 
826 		if (filter_event(kn, 0))
827 			KNOTE_ACTIVATE(kn);
828 
829 	} else if (kev->flags & EV_DELETE) {
830 		filter_detach(kn);
831 		knote_drop(kn);
832 		goto done;
833 	}
834 
835 	if ((kev->flags & EV_DISABLE) &&
836 	    ((kn->kn_status & KN_DISABLED) == 0)) {
837 		kn->kn_status |= KN_DISABLED;
838 	}
839 
840 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
841 		kn->kn_status &= ~KN_DISABLED;
842 		if ((kn->kn_status & KN_ACTIVE) &&
843 		    ((kn->kn_status & KN_QUEUED) == 0))
844 			knote_enqueue(kn);
845 	}
846 
847 done:
848 	if (fp != NULL)
849 		fdrop(fp);
850 	return (error);
851 }
852 
853 /*
854  * Block as necessary until the target time is reached.
855  * If tsp is NULL we block indefinitely.  If tsp->ts_secs/nsecs are both
856  * 0 we do not block at all.
857  */
858 static int
859 kqueue_sleep(struct kqueue *kq, struct timespec *tsp)
860 {
861 	int error = 0;
862 
863 	if (tsp == NULL) {
864 		kq->kq_state |= KQ_SLEEP;
865 		error = tsleep(kq, PCATCH, "kqread", 0);
866 	} else if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
867 		error = EWOULDBLOCK;
868 	} else {
869 		struct timespec ats;
870 		struct timespec atx = *tsp;
871 		int timeout;
872 
873 		nanouptime(&ats);
874 		timespecsub(&atx, &ats);
875 		if (ats.tv_sec < 0) {
876 			error = EWOULDBLOCK;
877 		} else {
878 			timeout = atx.tv_sec > 24 * 60 * 60 ?
879 				24 * 60 * 60 * hz : tstohz_high(&atx);
880 			kq->kq_state |= KQ_SLEEP;
881 			error = tsleep(kq, PCATCH, "kqread", timeout);
882 		}
883 	}
884 
885 	/* don't restart after signals... */
886 	if (error == ERESTART)
887 		return (EINTR);
888 
889 	return (error);
890 }
891 
892 /*
893  * Scan the kqueue, return the number of active events placed in kevp up
894  * to count.
895  *
896  * Continuous mode events may get recycled, do not continue scanning past
897  * marker unless no events have been collected.
898  */
899 static int
900 kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
901             struct knote *marker)
902 {
903         struct knote *kn, local_marker;
904         int total;
905 
906         total = 0;
907 	local_marker.kn_filter = EVFILT_MARKER;
908 
909 	/*
910 	 * Collect events.
911 	 */
912 	TAILQ_INSERT_HEAD(&kq->kq_knpend, &local_marker, kn_tqe);
913 	while (count) {
914 		kn = TAILQ_NEXT(&local_marker, kn_tqe);
915 		if (kn->kn_filter == EVFILT_MARKER) {
916 			/* Marker reached, we are done */
917 			if (kn == marker)
918 				break;
919 
920 			/* Move local marker past some other threads marker */
921 			kn = TAILQ_NEXT(kn, kn_tqe);
922 			TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
923 			TAILQ_INSERT_BEFORE(kn, &local_marker, kn_tqe);
924 			continue;
925 		}
926 
927 		TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
928 		kq->kq_count--;
929 		if (kn->kn_status & KN_DISABLED) {
930 			kn->kn_status &= ~KN_QUEUED;
931 			continue;
932 		}
933 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
934 		    filter_event(kn, 0) == 0) {
935 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
936 			continue;
937 		}
938 		*kevp++ = kn->kn_kevent;
939 		++total;
940 		--count;
941 
942 		/*
943 		 * Post-event action on the note
944 		 */
945 		if (kn->kn_flags & EV_ONESHOT) {
946 			kn->kn_status &= ~KN_QUEUED;
947 			filter_detach(kn);
948 			knote_drop(kn);
949 		} else if (kn->kn_flags & EV_CLEAR) {
950 			kn->kn_data = 0;
951 			kn->kn_fflags = 0;
952 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
953 		} else {
954 			TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
955 			kq->kq_count++;
956 		}
957 	}
958 	TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
959 
960 	return (total);
961 }
962 
963 /*
964  * XXX
965  * This could be expanded to call kqueue_scan, if desired.
966  *
967  * MPSAFE
968  */
969 static int
970 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
971 {
972 	return (ENXIO);
973 }
974 
975 /*
976  * MPSAFE
977  */
978 static int
979 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
980 {
981 	return (ENXIO);
982 }
983 
984 /*
985  * MPALMOSTSAFE
986  */
987 static int
988 kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
989 	     struct ucred *cred, struct sysmsg *msg)
990 {
991 	struct kqueue *kq;
992 	int error;
993 
994 	lwkt_gettoken(&kq_token);
995 	kq = (struct kqueue *)fp->f_data;
996 
997 	switch(com) {
998 	case FIOASYNC:
999 		if (*(int *)data)
1000 			kq->kq_state |= KQ_ASYNC;
1001 		else
1002 			kq->kq_state &= ~KQ_ASYNC;
1003 		error = 0;
1004 		break;
1005 	case FIOSETOWN:
1006 		error = fsetown(*(int *)data, &kq->kq_sigio);
1007 		break;
1008 	default:
1009 		error = ENOTTY;
1010 		break;
1011 	}
1012 	lwkt_reltoken(&kq_token);
1013 	return (error);
1014 }
1015 
1016 /*
1017  * MPSAFE
1018  */
1019 static int
1020 kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred)
1021 {
1022 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1023 
1024 	bzero((void *)st, sizeof(*st));
1025 	st->st_size = kq->kq_count;
1026 	st->st_blksize = sizeof(struct kevent);
1027 	st->st_mode = S_IFIFO;
1028 	return (0);
1029 }
1030 
1031 /*
1032  * MPSAFE
1033  */
1034 static int
1035 kqueue_close(struct file *fp)
1036 {
1037 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1038 
1039 	lwkt_gettoken(&kq_token);
1040 
1041 	kqueue_terminate(kq);
1042 
1043 	fp->f_data = NULL;
1044 	funsetown(kq->kq_sigio);
1045 	lwkt_reltoken(&kq_token);
1046 
1047 	kfree(kq, M_KQUEUE);
1048 	return (0);
1049 }
1050 
1051 static void
1052 kqueue_wakeup(struct kqueue *kq)
1053 {
1054 	if (kq->kq_state & KQ_SLEEP) {
1055 		kq->kq_state &= ~KQ_SLEEP;
1056 		wakeup(kq);
1057 	}
1058 	KNOTE(&kq->kq_kqinfo.ki_note, 0);
1059 }
1060 
1061 /*
1062  * Calls filterops f_attach function, acquiring mplock if filter is not
1063  * marked as FILTEROP_MPSAFE.
1064  */
1065 static int
1066 filter_attach(struct knote *kn)
1067 {
1068 	int ret;
1069 
1070 	if (!(kn->kn_fop->f_flags & FILTEROP_MPSAFE)) {
1071 		get_mplock();
1072 		ret = kn->kn_fop->f_attach(kn);
1073 		rel_mplock();
1074 	} else {
1075 		ret = kn->kn_fop->f_attach(kn);
1076 	}
1077 
1078 	return (ret);
1079 }
1080 
1081 /*
1082  * Calls filterops f_detach function, acquiring mplock if filter is not
1083  * marked as FILTEROP_MPSAFE.
1084  */
1085 static void
1086 filter_detach(struct knote *kn)
1087 {
1088 	if (!(kn->kn_fop->f_flags & FILTEROP_MPSAFE)) {
1089 		get_mplock();
1090 		kn->kn_fop->f_detach(kn);
1091 		rel_mplock();
1092 	} else {
1093 		kn->kn_fop->f_detach(kn);
1094 	}
1095 }
1096 
1097 /*
1098  * Calls filterops f_event function, acquiring mplock if filter is not
1099  * marked as FILTEROP_MPSAFE.
1100  */
1101 static int
1102 filter_event(struct knote *kn, long hint)
1103 {
1104 	int ret;
1105 
1106 	if (!(kn->kn_fop->f_flags & FILTEROP_MPSAFE)) {
1107 		get_mplock();
1108 		ret = kn->kn_fop->f_event(kn, hint);
1109 		rel_mplock();
1110 	} else {
1111 		ret = kn->kn_fop->f_event(kn, hint);
1112 	}
1113 
1114 	return (ret);
1115 }
1116 
1117 /*
1118  * walk down a list of knotes, activating them if their event has triggered.
1119  */
1120 void
1121 knote(struct klist *list, long hint)
1122 {
1123 	struct knote *kn;
1124 
1125 	lwkt_gettoken(&kq_token);
1126 	SLIST_FOREACH(kn, list, kn_next)
1127 		if (filter_event(kn, hint))
1128 			KNOTE_ACTIVATE(kn);
1129 	lwkt_reltoken(&kq_token);
1130 }
1131 
1132 /*
1133  * insert knote at head of klist
1134  *
1135  * Requires: kq_token
1136  */
1137 void
1138 knote_insert(struct klist *klist, struct knote *kn)
1139 {
1140 	SLIST_INSERT_HEAD(klist, kn, kn_next);
1141 }
1142 
1143 /*
1144  * remove knote from a klist
1145  *
1146  * Requires: kq_token
1147  */
1148 void
1149 knote_remove(struct klist *klist, struct knote *kn)
1150 {
1151 	SLIST_REMOVE(klist, kn, knote, kn_next);
1152 }
1153 
1154 /*
1155  * remove all knotes from a specified klist
1156  */
1157 void
1158 knote_empty(struct klist *list)
1159 {
1160 	struct knote *kn;
1161 
1162 	lwkt_gettoken(&kq_token);
1163 	while ((kn = SLIST_FIRST(list)) != NULL) {
1164 		filter_detach(kn);
1165 		knote_drop(kn);
1166 	}
1167 	lwkt_reltoken(&kq_token);
1168 }
1169 
1170 /*
1171  * remove all knotes referencing a specified fd
1172  */
1173 void
1174 knote_fdclose(struct file *fp, struct filedesc *fdp, int fd)
1175 {
1176 	struct knote *kn;
1177 
1178 	lwkt_gettoken(&kq_token);
1179 restart:
1180 	SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
1181 		if (kn->kn_kq->kq_fdp == fdp && kn->kn_id == fd) {
1182 			filter_detach(kn);
1183 			knote_drop(kn);
1184 			goto restart;
1185 		}
1186 	}
1187 	lwkt_reltoken(&kq_token);
1188 }
1189 
1190 static void
1191 knote_attach(struct knote *kn)
1192 {
1193 	struct klist *list;
1194 	struct kqueue *kq = kn->kn_kq;
1195 
1196 	if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1197 		KKASSERT(kn->kn_fp);
1198 		list = &kn->kn_fp->f_klist;
1199 	} else {
1200 		if (kq->kq_knhashmask == 0)
1201 			kq->kq_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1202 						 &kq->kq_knhashmask);
1203 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1204 	}
1205 	SLIST_INSERT_HEAD(list, kn, kn_link);
1206 	TAILQ_INSERT_HEAD(&kq->kq_knlist, kn, kn_kqlink);
1207 	kn->kn_status = 0;
1208 }
1209 
1210 static void
1211 knote_drop(struct knote *kn)
1212 {
1213 	struct kqueue *kq;
1214 	struct klist *list;
1215 
1216 	kq = kn->kn_kq;
1217 
1218 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
1219 		list = &kn->kn_fp->f_klist;
1220 	else
1221 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1222 
1223 	SLIST_REMOVE(list, kn, knote, kn_link);
1224 	TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink);
1225 	if (kn->kn_status & KN_QUEUED)
1226 		knote_dequeue(kn);
1227 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
1228 		fdrop(kn->kn_fp);
1229 	knote_free(kn);
1230 }
1231 
1232 
1233 static void
1234 knote_enqueue(struct knote *kn)
1235 {
1236 	struct kqueue *kq = kn->kn_kq;
1237 
1238 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1239 
1240 	TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1241 	kn->kn_status |= KN_QUEUED;
1242 	++kq->kq_count;
1243 
1244 	/*
1245 	 * Send SIGIO on request (typically set up as a mailbox signal)
1246 	 */
1247 	if (kq->kq_sigio && (kq->kq_state & KQ_ASYNC) && kq->kq_count == 1)
1248 		pgsigio(kq->kq_sigio, SIGIO, 0);
1249 
1250 	kqueue_wakeup(kq);
1251 }
1252 
1253 static void
1254 knote_dequeue(struct knote *kn)
1255 {
1256 	struct kqueue *kq = kn->kn_kq;
1257 
1258 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1259 
1260 	TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1261 	kn->kn_status &= ~KN_QUEUED;
1262 	kq->kq_count--;
1263 }
1264 
1265 static void
1266 knote_init(void)
1267 {
1268 	knote_zone = zinit("KNOTE", sizeof(struct knote), 0, 0, 1);
1269 }
1270 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
1271 
1272 static struct knote *
1273 knote_alloc(void)
1274 {
1275 	return ((struct knote *)zalloc(knote_zone));
1276 }
1277 
1278 static void
1279 knote_free(struct knote *kn)
1280 {
1281 	zfree(knote_zone, kn);
1282 }
1283