1 /*- 2 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $ 27 * $DragonFly: src/sys/kern/kern_event.c,v 1.33 2007/02/03 17:05:57 corecode Exp $ 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/proc.h> 34 #include <sys/malloc.h> 35 #include <sys/unistd.h> 36 #include <sys/file.h> 37 #include <sys/lock.h> 38 #include <sys/fcntl.h> 39 #include <sys/queue.h> 40 #include <sys/event.h> 41 #include <sys/eventvar.h> 42 #include <sys/protosw.h> 43 #include <sys/socket.h> 44 #include <sys/socketvar.h> 45 #include <sys/stat.h> 46 #include <sys/sysctl.h> 47 #include <sys/sysproto.h> 48 #include <sys/thread.h> 49 #include <sys/uio.h> 50 #include <sys/signalvar.h> 51 #include <sys/filio.h> 52 #include <sys/ktr.h> 53 54 #include <sys/thread2.h> 55 #include <sys/file2.h> 56 #include <sys/mplock2.h> 57 58 #include <vm/vm_zone.h> 59 60 /* 61 * Global token for kqueue subsystem 62 */ 63 struct lwkt_token kq_token = LWKT_TOKEN_UP_INITIALIZER; 64 65 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system"); 66 67 struct kevent_copyin_args { 68 struct kevent_args *ka; 69 int pchanges; 70 }; 71 72 static int kqueue_sleep(struct kqueue *kq, struct timespec *tsp); 73 static int kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count, 74 struct knote *marker); 75 static int kqueue_read(struct file *fp, struct uio *uio, 76 struct ucred *cred, int flags); 77 static int kqueue_write(struct file *fp, struct uio *uio, 78 struct ucred *cred, int flags); 79 static int kqueue_ioctl(struct file *fp, u_long com, caddr_t data, 80 struct ucred *cred, struct sysmsg *msg); 81 static int kqueue_kqfilter(struct file *fp, struct knote *kn); 82 static int kqueue_stat(struct file *fp, struct stat *st, 83 struct ucred *cred); 84 static int kqueue_close(struct file *fp); 85 static void kqueue_wakeup(struct kqueue *kq); 86 87 /* 88 * MPSAFE 89 */ 90 static struct fileops kqueueops = { 91 .fo_read = kqueue_read, 92 .fo_write = kqueue_write, 93 .fo_ioctl = kqueue_ioctl, 94 .fo_kqfilter = kqueue_kqfilter, 95 .fo_stat = kqueue_stat, 96 .fo_close = kqueue_close, 97 .fo_shutdown = nofo_shutdown 98 }; 99 100 static void knote_attach(struct knote *kn); 101 static void knote_drop(struct knote *kn); 102 static void knote_enqueue(struct knote *kn); 103 static void knote_dequeue(struct knote *kn); 104 static void knote_init(void); 105 static struct knote *knote_alloc(void); 106 static void knote_free(struct knote *kn); 107 108 static void filt_kqdetach(struct knote *kn); 109 static int filt_kqueue(struct knote *kn, long hint); 110 static int filt_procattach(struct knote *kn); 111 static void filt_procdetach(struct knote *kn); 112 static int filt_proc(struct knote *kn, long hint); 113 static int filt_fileattach(struct knote *kn); 114 static void filt_timerexpire(void *knx); 115 static int filt_timerattach(struct knote *kn); 116 static void filt_timerdetach(struct knote *kn); 117 static int filt_timer(struct knote *kn, long hint); 118 119 static struct filterops file_filtops = 120 { 1, filt_fileattach, NULL, NULL }; 121 static struct filterops kqread_filtops = 122 { 1, NULL, filt_kqdetach, filt_kqueue }; 123 static struct filterops proc_filtops = 124 { 0, filt_procattach, filt_procdetach, filt_proc }; 125 static struct filterops timer_filtops = 126 { 0, filt_timerattach, filt_timerdetach, filt_timer }; 127 128 static vm_zone_t knote_zone; 129 static int kq_ncallouts = 0; 130 static int kq_calloutmax = (4 * 1024); 131 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW, 132 &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue"); 133 134 #define KNOTE_ACTIVATE(kn) do { \ 135 kn->kn_status |= KN_ACTIVE; \ 136 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \ 137 knote_enqueue(kn); \ 138 } while(0) 139 140 #define KN_HASHSIZE 64 /* XXX should be tunable */ 141 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) 142 143 extern struct filterops aio_filtops; 144 extern struct filterops sig_filtops; 145 146 /* 147 * Table for for all system-defined filters. 148 */ 149 static struct filterops *sysfilt_ops[] = { 150 &file_filtops, /* EVFILT_READ */ 151 &file_filtops, /* EVFILT_WRITE */ 152 &aio_filtops, /* EVFILT_AIO */ 153 &file_filtops, /* EVFILT_VNODE */ 154 &proc_filtops, /* EVFILT_PROC */ 155 &sig_filtops, /* EVFILT_SIGNAL */ 156 &timer_filtops, /* EVFILT_TIMER */ 157 &file_filtops, /* EVFILT_EXCEPT */ 158 }; 159 160 static int 161 filt_fileattach(struct knote *kn) 162 { 163 return (fo_kqfilter(kn->kn_fp, kn)); 164 } 165 166 /* 167 * MPSAFE 168 */ 169 static int 170 kqueue_kqfilter(struct file *fp, struct knote *kn) 171 { 172 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; 173 174 if (kn->kn_filter != EVFILT_READ) 175 return (EOPNOTSUPP); 176 177 kn->kn_fop = &kqread_filtops; 178 knote_insert(&kq->kq_kqinfo.ki_note, kn); 179 return (0); 180 } 181 182 static void 183 filt_kqdetach(struct knote *kn) 184 { 185 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; 186 187 knote_remove(&kq->kq_kqinfo.ki_note, kn); 188 } 189 190 /*ARGSUSED*/ 191 static int 192 filt_kqueue(struct knote *kn, long hint) 193 { 194 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; 195 196 kn->kn_data = kq->kq_count; 197 return (kn->kn_data > 0); 198 } 199 200 static int 201 filt_procattach(struct knote *kn) 202 { 203 struct proc *p; 204 int immediate; 205 206 immediate = 0; 207 lwkt_gettoken(&proc_token); 208 p = pfind(kn->kn_id); 209 if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) { 210 p = zpfind(kn->kn_id); 211 immediate = 1; 212 } 213 if (p == NULL) { 214 lwkt_reltoken(&proc_token); 215 return (ESRCH); 216 } 217 if (!PRISON_CHECK(curthread->td_ucred, p->p_ucred)) { 218 lwkt_reltoken(&proc_token); 219 return (EACCES); 220 } 221 222 kn->kn_ptr.p_proc = p; 223 kn->kn_flags |= EV_CLEAR; /* automatically set */ 224 225 /* 226 * internal flag indicating registration done by kernel 227 */ 228 if (kn->kn_flags & EV_FLAG1) { 229 kn->kn_data = kn->kn_sdata; /* ppid */ 230 kn->kn_fflags = NOTE_CHILD; 231 kn->kn_flags &= ~EV_FLAG1; 232 } 233 234 knote_insert(&p->p_klist, kn); 235 236 /* 237 * Immediately activate any exit notes if the target process is a 238 * zombie. This is necessary to handle the case where the target 239 * process, e.g. a child, dies before the kevent is negistered. 240 */ 241 if (immediate && filt_proc(kn, NOTE_EXIT)) 242 KNOTE_ACTIVATE(kn); 243 lwkt_reltoken(&proc_token); 244 245 return (0); 246 } 247 248 /* 249 * The knote may be attached to a different process, which may exit, 250 * leaving nothing for the knote to be attached to. So when the process 251 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so 252 * it will be deleted when read out. However, as part of the knote deletion, 253 * this routine is called, so a check is needed to avoid actually performing 254 * a detach, because the original process does not exist any more. 255 */ 256 static void 257 filt_procdetach(struct knote *kn) 258 { 259 struct proc *p; 260 261 if (kn->kn_status & KN_DETACHED) 262 return; 263 /* XXX locking? take proc_token here? */ 264 p = kn->kn_ptr.p_proc; 265 knote_remove(&p->p_klist, kn); 266 } 267 268 static int 269 filt_proc(struct knote *kn, long hint) 270 { 271 u_int event; 272 273 /* 274 * mask off extra data 275 */ 276 event = (u_int)hint & NOTE_PCTRLMASK; 277 278 /* 279 * if the user is interested in this event, record it. 280 */ 281 if (kn->kn_sfflags & event) 282 kn->kn_fflags |= event; 283 284 /* 285 * Process is gone, so flag the event as finished. Detach the 286 * knote from the process now because the process will be poof, 287 * gone later on. 288 */ 289 if (event == NOTE_EXIT) { 290 struct proc *p = kn->kn_ptr.p_proc; 291 if ((kn->kn_status & KN_DETACHED) == 0) { 292 knote_remove(&p->p_klist, kn); 293 kn->kn_status |= KN_DETACHED; 294 kn->kn_data = p->p_xstat; 295 kn->kn_ptr.p_proc = NULL; 296 } 297 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 298 return (1); 299 } 300 301 /* 302 * process forked, and user wants to track the new process, 303 * so attach a new knote to it, and immediately report an 304 * event with the parent's pid. 305 */ 306 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) { 307 struct kevent kev; 308 int error; 309 310 /* 311 * register knote with new process. 312 */ 313 kev.ident = hint & NOTE_PDATAMASK; /* pid */ 314 kev.filter = kn->kn_filter; 315 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1; 316 kev.fflags = kn->kn_sfflags; 317 kev.data = kn->kn_id; /* parent */ 318 kev.udata = kn->kn_kevent.udata; /* preserve udata */ 319 error = kqueue_register(kn->kn_kq, &kev); 320 if (error) 321 kn->kn_fflags |= NOTE_TRACKERR; 322 } 323 324 return (kn->kn_fflags != 0); 325 } 326 327 static void 328 filt_timerexpire(void *knx) 329 { 330 struct knote *kn = knx; 331 struct callout *calloutp; 332 struct timeval tv; 333 int tticks; 334 335 kn->kn_data++; 336 KNOTE_ACTIVATE(kn); 337 338 if ((kn->kn_flags & EV_ONESHOT) == 0) { 339 tv.tv_sec = kn->kn_sdata / 1000; 340 tv.tv_usec = (kn->kn_sdata % 1000) * 1000; 341 tticks = tvtohz_high(&tv); 342 calloutp = (struct callout *)kn->kn_hook; 343 callout_reset(calloutp, tticks, filt_timerexpire, kn); 344 } 345 } 346 347 /* 348 * data contains amount of time to sleep, in milliseconds 349 */ 350 static int 351 filt_timerattach(struct knote *kn) 352 { 353 struct callout *calloutp; 354 struct timeval tv; 355 int tticks; 356 357 if (kq_ncallouts >= kq_calloutmax) 358 return (ENOMEM); 359 kq_ncallouts++; 360 361 tv.tv_sec = kn->kn_sdata / 1000; 362 tv.tv_usec = (kn->kn_sdata % 1000) * 1000; 363 tticks = tvtohz_high(&tv); 364 365 kn->kn_flags |= EV_CLEAR; /* automatically set */ 366 MALLOC(calloutp, struct callout *, sizeof(*calloutp), 367 M_KQUEUE, M_WAITOK); 368 callout_init(calloutp); 369 kn->kn_hook = (caddr_t)calloutp; 370 callout_reset(calloutp, tticks, filt_timerexpire, kn); 371 372 return (0); 373 } 374 375 static void 376 filt_timerdetach(struct knote *kn) 377 { 378 struct callout *calloutp; 379 380 calloutp = (struct callout *)kn->kn_hook; 381 callout_stop(calloutp); 382 FREE(calloutp, M_KQUEUE); 383 kq_ncallouts--; 384 } 385 386 static int 387 filt_timer(struct knote *kn, long hint) 388 { 389 390 return (kn->kn_data != 0); 391 } 392 393 /* 394 * Initialize a kqueue. 395 * 396 * NOTE: The lwp/proc code initializes a kqueue for select/poll ops. 397 * 398 * MPSAFE 399 */ 400 void 401 kqueue_init(struct kqueue *kq, struct filedesc *fdp) 402 { 403 TAILQ_INIT(&kq->kq_knpend); 404 TAILQ_INIT(&kq->kq_knlist); 405 kq->kq_count = 0; 406 kq->kq_fdp = fdp; 407 SLIST_INIT(&kq->kq_kqinfo.ki_note); 408 } 409 410 /* 411 * Terminate a kqueue. Freeing the actual kq itself is left up to the 412 * caller (it might be embedded in a lwp so we don't do it here). 413 */ 414 void 415 kqueue_terminate(struct kqueue *kq) 416 { 417 struct knote *kn; 418 struct klist *list; 419 int hv; 420 421 while ((kn = TAILQ_FIRST(&kq->kq_knlist)) != NULL) { 422 kn->kn_fop->f_detach(kn); 423 if (kn->kn_fop->f_isfd) { 424 list = &kn->kn_fp->f_klist; 425 SLIST_REMOVE(list, kn, knote, kn_link); 426 fdrop(kn->kn_fp); 427 kn->kn_fp = NULL; 428 } else { 429 hv = KN_HASH(kn->kn_id, kq->kq_knhashmask); 430 list = &kq->kq_knhash[hv]; 431 SLIST_REMOVE(list, kn, knote, kn_link); 432 } 433 TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink); 434 if (kn->kn_status & KN_QUEUED) 435 knote_dequeue(kn); 436 knote_free(kn); 437 } 438 439 if (kq->kq_knhash) { 440 kfree(kq->kq_knhash, M_KQUEUE); 441 kq->kq_knhash = NULL; 442 kq->kq_knhashmask = 0; 443 } 444 } 445 446 /* 447 * MPSAFE 448 */ 449 int 450 sys_kqueue(struct kqueue_args *uap) 451 { 452 struct thread *td = curthread; 453 struct kqueue *kq; 454 struct file *fp; 455 int fd, error; 456 457 error = falloc(td->td_lwp, &fp, &fd); 458 if (error) 459 return (error); 460 fp->f_flag = FREAD | FWRITE; 461 fp->f_type = DTYPE_KQUEUE; 462 fp->f_ops = &kqueueops; 463 464 kq = kmalloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO); 465 kqueue_init(kq, td->td_proc->p_fd); 466 fp->f_data = kq; 467 468 fsetfd(kq->kq_fdp, fp, fd); 469 uap->sysmsg_result = fd; 470 fdrop(fp); 471 return (error); 472 } 473 474 /* 475 * Copy 'count' items into the destination list pointed to by uap->eventlist. 476 */ 477 static int 478 kevent_copyout(void *arg, struct kevent *kevp, int count, int *res) 479 { 480 struct kevent_copyin_args *kap; 481 int error; 482 483 kap = (struct kevent_copyin_args *)arg; 484 485 error = copyout(kevp, kap->ka->eventlist, count * sizeof(*kevp)); 486 if (error == 0) { 487 kap->ka->eventlist += count; 488 *res += count; 489 } else { 490 *res = -1; 491 } 492 493 return (error); 494 } 495 496 /* 497 * Copy at most 'max' items from the list pointed to by kap->changelist, 498 * return number of items in 'events'. 499 */ 500 static int 501 kevent_copyin(void *arg, struct kevent *kevp, int max, int *events) 502 { 503 struct kevent_copyin_args *kap; 504 int error, count; 505 506 kap = (struct kevent_copyin_args *)arg; 507 508 count = min(kap->ka->nchanges - kap->pchanges, max); 509 error = copyin(kap->ka->changelist, kevp, count * sizeof *kevp); 510 if (error == 0) { 511 kap->ka->changelist += count; 512 kap->pchanges += count; 513 *events = count; 514 } 515 516 return (error); 517 } 518 519 /* 520 * MPSAFE 521 */ 522 int 523 kern_kevent(struct kqueue *kq, int nevents, int *res, void *uap, 524 k_copyin_fn kevent_copyinfn, k_copyout_fn kevent_copyoutfn, 525 struct timespec *tsp_in) 526 { 527 struct kevent *kevp; 528 struct timespec *tsp; 529 int i, n, total, error, nerrors = 0; 530 int lres; 531 struct kevent kev[KQ_NEVENTS]; 532 struct knote marker; 533 534 tsp = tsp_in; 535 *res = 0; 536 537 lwkt_gettoken(&kq_token); 538 for ( ;; ) { 539 n = 0; 540 error = kevent_copyinfn(uap, kev, KQ_NEVENTS, &n); 541 if (error) 542 goto done; 543 if (n == 0) 544 break; 545 for (i = 0; i < n; i++) { 546 kevp = &kev[i]; 547 kevp->flags &= ~EV_SYSFLAGS; 548 error = kqueue_register(kq, kevp); 549 550 /* 551 * If a registration returns an error we 552 * immediately post the error. The kevent() 553 * call itself will fail with the error if 554 * no space is available for posting. 555 * 556 * Such errors normally bypass the timeout/blocking 557 * code. However, if the copyoutfn function refuses 558 * to post the error (see sys_poll()), then we 559 * ignore it too. 560 */ 561 if (error) { 562 kevp->flags = EV_ERROR; 563 kevp->data = error; 564 lres = *res; 565 kevent_copyoutfn(uap, kevp, 1, res); 566 if (lres != *res) { 567 nevents--; 568 nerrors++; 569 } 570 } 571 } 572 } 573 if (nerrors) { 574 error = 0; 575 goto done; 576 } 577 578 /* 579 * Acquire/wait for events - setup timeout 580 */ 581 if (tsp != NULL) { 582 struct timespec ats; 583 584 if (tsp->tv_sec || tsp->tv_nsec) { 585 nanouptime(&ats); 586 timespecadd(tsp, &ats); /* tsp = target time */ 587 } 588 } 589 590 /* 591 * Loop as required. 592 * 593 * Collect as many events as we can. Sleeping on successive 594 * loops is disabled if copyoutfn has incremented (*res). 595 * 596 * The loop stops if an error occurs, all events have been 597 * scanned (the marker has been reached), or fewer than the 598 * maximum number of events is found. 599 * 600 * The copyoutfn function does not have to increment (*res) in 601 * order for the loop to continue. 602 * 603 * NOTE: doselect() usually passes 0x7FFFFFFF for nevents. 604 */ 605 total = 0; 606 error = 0; 607 marker.kn_filter = EVFILT_MARKER; 608 TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe); 609 while ((n = nevents - total) > 0) { 610 if (n > KQ_NEVENTS) 611 n = KQ_NEVENTS; 612 613 /* 614 * If no events are pending sleep until timeout (if any) 615 * or an event occurs. 616 * 617 * After the sleep completes the marker is moved to the 618 * end of the list, making any received events available 619 * to our scan. 620 */ 621 if (kq->kq_count == 0 && *res == 0) { 622 error = kqueue_sleep(kq, tsp); 623 if (error) 624 break; 625 626 TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe); 627 TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe); 628 } 629 630 /* 631 * Process all received events 632 * Account for all non-spurious events in our total 633 */ 634 i = kqueue_scan(kq, kev, n, &marker); 635 if (i) { 636 lres = *res; 637 error = kevent_copyoutfn(uap, kev, i, res); 638 total += *res - lres; 639 if (error) 640 break; 641 } 642 643 /* 644 * Normally when fewer events are returned than requested 645 * we can stop. However, if only spurious events were 646 * collected the copyout will not bump (*res) and we have 647 * to continue. 648 */ 649 if (i < n && *res) 650 break; 651 652 /* 653 * Deal with an edge case where spurious events can cause 654 * a loop to occur without moving the marker. This can 655 * prevent kqueue_scan() from picking up new events which 656 * race us. We must be sure to move the marker for this 657 * case. 658 * 659 * NOTE: We do not want to move the marker if events 660 * were scanned because normal kqueue operations 661 * may reactivate events. Moving the marker in 662 * that case could result in duplicates for the 663 * same event. 664 */ 665 if (i == 0) { 666 TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe); 667 TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe); 668 } 669 } 670 TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe); 671 672 /* Timeouts do not return EWOULDBLOCK. */ 673 if (error == EWOULDBLOCK) 674 error = 0; 675 676 done: 677 lwkt_reltoken(&kq_token); 678 return (error); 679 } 680 681 /* 682 * MPALMOSTSAFE 683 */ 684 int 685 sys_kevent(struct kevent_args *uap) 686 { 687 struct thread *td = curthread; 688 struct proc *p = td->td_proc; 689 struct timespec ts, *tsp; 690 struct kqueue *kq; 691 struct file *fp = NULL; 692 struct kevent_copyin_args *kap, ka; 693 int error; 694 695 if (uap->timeout) { 696 error = copyin(uap->timeout, &ts, sizeof(ts)); 697 if (error) 698 return (error); 699 tsp = &ts; 700 } else { 701 tsp = NULL; 702 } 703 704 fp = holdfp(p->p_fd, uap->fd, -1); 705 if (fp == NULL) 706 return (EBADF); 707 if (fp->f_type != DTYPE_KQUEUE) { 708 fdrop(fp); 709 return (EBADF); 710 } 711 712 kq = (struct kqueue *)fp->f_data; 713 714 kap = &ka; 715 kap->ka = uap; 716 kap->pchanges = 0; 717 718 error = kern_kevent(kq, uap->nevents, &uap->sysmsg_result, kap, 719 kevent_copyin, kevent_copyout, tsp); 720 721 fdrop(fp); 722 723 return (error); 724 } 725 726 int 727 kqueue_register(struct kqueue *kq, struct kevent *kev) 728 { 729 struct filedesc *fdp = kq->kq_fdp; 730 struct filterops *fops; 731 struct file *fp = NULL; 732 struct knote *kn = NULL; 733 int error = 0; 734 735 if (kev->filter < 0) { 736 if (kev->filter + EVFILT_SYSCOUNT < 0) 737 return (EINVAL); 738 fops = sysfilt_ops[~kev->filter]; /* to 0-base index */ 739 } else { 740 /* 741 * XXX 742 * filter attach routine is responsible for insuring that 743 * the identifier can be attached to it. 744 */ 745 kprintf("unknown filter: %d\n", kev->filter); 746 return (EINVAL); 747 } 748 749 if (fops->f_isfd) { 750 /* validate descriptor */ 751 fp = holdfp(fdp, kev->ident, -1); 752 if (fp == NULL) 753 return (EBADF); 754 755 SLIST_FOREACH(kn, &fp->f_klist, kn_link) { 756 if (kn->kn_kq == kq && 757 kn->kn_filter == kev->filter && 758 kn->kn_id == kev->ident) { 759 break; 760 } 761 } 762 } else { 763 if (kq->kq_knhashmask) { 764 struct klist *list; 765 766 list = &kq->kq_knhash[ 767 KN_HASH((u_long)kev->ident, kq->kq_knhashmask)]; 768 SLIST_FOREACH(kn, list, kn_link) { 769 if (kn->kn_id == kev->ident && 770 kn->kn_filter == kev->filter) 771 break; 772 } 773 } 774 } 775 776 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) { 777 error = ENOENT; 778 goto done; 779 } 780 781 /* 782 * kn now contains the matching knote, or NULL if no match 783 */ 784 if (kev->flags & EV_ADD) { 785 if (kn == NULL) { 786 kn = knote_alloc(); 787 if (kn == NULL) { 788 error = ENOMEM; 789 goto done; 790 } 791 kn->kn_fp = fp; 792 kn->kn_kq = kq; 793 kn->kn_fop = fops; 794 795 /* 796 * apply reference count to knote structure, and 797 * do not release it at the end of this routine. 798 */ 799 fp = NULL; 800 801 kn->kn_sfflags = kev->fflags; 802 kn->kn_sdata = kev->data; 803 kev->fflags = 0; 804 kev->data = 0; 805 kn->kn_kevent = *kev; 806 807 knote_attach(kn); 808 if ((error = fops->f_attach(kn)) != 0) { 809 knote_drop(kn); 810 goto done; 811 } 812 } else { 813 /* 814 * The user may change some filter values after the 815 * initial EV_ADD, but doing so will not reset any 816 * filter which have already been triggered. 817 */ 818 kn->kn_sfflags = kev->fflags; 819 kn->kn_sdata = kev->data; 820 kn->kn_kevent.udata = kev->udata; 821 } 822 823 if (kn->kn_fop->f_event(kn, 0)) 824 KNOTE_ACTIVATE(kn); 825 } else if (kev->flags & EV_DELETE) { 826 kn->kn_fop->f_detach(kn); 827 knote_drop(kn); 828 goto done; 829 } 830 831 if ((kev->flags & EV_DISABLE) && 832 ((kn->kn_status & KN_DISABLED) == 0)) { 833 kn->kn_status |= KN_DISABLED; 834 } 835 836 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) { 837 kn->kn_status &= ~KN_DISABLED; 838 if ((kn->kn_status & KN_ACTIVE) && 839 ((kn->kn_status & KN_QUEUED) == 0)) 840 knote_enqueue(kn); 841 } 842 843 done: 844 if (fp != NULL) 845 fdrop(fp); 846 return (error); 847 } 848 849 /* 850 * Block as necessary until the target time is reached. 851 * If tsp is NULL we block indefinitely. If tsp->ts_secs/nsecs are both 852 * 0 we do not block at all. 853 */ 854 static int 855 kqueue_sleep(struct kqueue *kq, struct timespec *tsp) 856 { 857 int error = 0; 858 859 if (tsp == NULL) { 860 kq->kq_state |= KQ_SLEEP; 861 error = tsleep(kq, PCATCH, "kqread", 0); 862 } else if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) { 863 error = EWOULDBLOCK; 864 } else { 865 struct timespec ats; 866 struct timespec atx = *tsp; 867 int timeout; 868 869 nanouptime(&ats); 870 timespecsub(&atx, &ats); 871 if (ats.tv_sec < 0) { 872 error = EWOULDBLOCK; 873 } else { 874 timeout = atx.tv_sec > 24 * 60 * 60 ? 875 24 * 60 * 60 * hz : tstohz_high(&atx); 876 kq->kq_state |= KQ_SLEEP; 877 error = tsleep(kq, PCATCH, "kqread", timeout); 878 } 879 } 880 881 /* don't restart after signals... */ 882 if (error == ERESTART) 883 return (EINTR); 884 885 return (error); 886 } 887 888 /* 889 * Scan the kqueue, return the number of active events placed in kevp up 890 * to count. 891 * 892 * Continuous mode events may get recycled, do not continue scanning past 893 * marker unless no events have been collected. 894 */ 895 static int 896 kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count, 897 struct knote *marker) 898 { 899 struct knote *kn, local_marker; 900 int total; 901 902 total = 0; 903 local_marker.kn_filter = EVFILT_MARKER; 904 905 /* 906 * Collect events. 907 */ 908 TAILQ_INSERT_HEAD(&kq->kq_knpend, &local_marker, kn_tqe); 909 while (count) { 910 kn = TAILQ_NEXT(&local_marker, kn_tqe); 911 if (kn->kn_filter == EVFILT_MARKER) { 912 /* Marker reached, we are done */ 913 if (kn == marker) 914 break; 915 916 /* Move local marker past some other threads marker */ 917 kn = TAILQ_NEXT(kn, kn_tqe); 918 TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe); 919 TAILQ_INSERT_BEFORE(kn, &local_marker, kn_tqe); 920 continue; 921 } 922 923 TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe); 924 if (kn->kn_status & KN_DISABLED) { 925 kn->kn_status &= ~KN_QUEUED; 926 kq->kq_count--; 927 continue; 928 } 929 if ((kn->kn_flags & EV_ONESHOT) == 0 && 930 kn->kn_fop->f_event(kn, 0) == 0) { 931 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); 932 kq->kq_count--; 933 continue; 934 } 935 *kevp++ = kn->kn_kevent; 936 ++total; 937 --count; 938 939 /* 940 * Post-event action on the note 941 */ 942 if (kn->kn_flags & EV_ONESHOT) { 943 kn->kn_status &= ~KN_QUEUED; 944 kq->kq_count--; 945 kn->kn_fop->f_detach(kn); 946 knote_drop(kn); 947 } else if (kn->kn_flags & EV_CLEAR) { 948 kn->kn_data = 0; 949 kn->kn_fflags = 0; 950 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); 951 kq->kq_count--; 952 } else { 953 TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe); 954 } 955 } 956 TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe); 957 958 return (total); 959 } 960 961 /* 962 * XXX 963 * This could be expanded to call kqueue_scan, if desired. 964 * 965 * MPSAFE 966 */ 967 static int 968 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags) 969 { 970 return (ENXIO); 971 } 972 973 /* 974 * MPSAFE 975 */ 976 static int 977 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags) 978 { 979 return (ENXIO); 980 } 981 982 /* 983 * MPALMOSTSAFE 984 */ 985 static int 986 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, 987 struct ucred *cred, struct sysmsg *msg) 988 { 989 struct kqueue *kq; 990 int error; 991 992 lwkt_gettoken(&kq_token); 993 kq = (struct kqueue *)fp->f_data; 994 995 switch(com) { 996 case FIOASYNC: 997 if (*(int *)data) 998 kq->kq_state |= KQ_ASYNC; 999 else 1000 kq->kq_state &= ~KQ_ASYNC; 1001 error = 0; 1002 break; 1003 case FIOSETOWN: 1004 error = fsetown(*(int *)data, &kq->kq_sigio); 1005 break; 1006 default: 1007 error = ENOTTY; 1008 break; 1009 } 1010 lwkt_reltoken(&kq_token); 1011 return (error); 1012 } 1013 1014 /* 1015 * MPSAFE 1016 */ 1017 static int 1018 kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred) 1019 { 1020 struct kqueue *kq = (struct kqueue *)fp->f_data; 1021 1022 bzero((void *)st, sizeof(*st)); 1023 st->st_size = kq->kq_count; 1024 st->st_blksize = sizeof(struct kevent); 1025 st->st_mode = S_IFIFO; 1026 return (0); 1027 } 1028 1029 /* 1030 * MPSAFE 1031 */ 1032 static int 1033 kqueue_close(struct file *fp) 1034 { 1035 struct kqueue *kq = (struct kqueue *)fp->f_data; 1036 1037 lwkt_gettoken(&kq_token); 1038 1039 kqueue_terminate(kq); 1040 1041 fp->f_data = NULL; 1042 funsetown(kq->kq_sigio); 1043 lwkt_reltoken(&kq_token); 1044 1045 kfree(kq, M_KQUEUE); 1046 return (0); 1047 } 1048 1049 static void 1050 kqueue_wakeup(struct kqueue *kq) 1051 { 1052 if (kq->kq_state & KQ_SLEEP) { 1053 kq->kq_state &= ~KQ_SLEEP; 1054 wakeup(kq); 1055 } 1056 KNOTE(&kq->kq_kqinfo.ki_note, 0); 1057 } 1058 1059 /* 1060 * walk down a list of knotes, activating them if their event has triggered. 1061 */ 1062 void 1063 knote(struct klist *list, long hint) 1064 { 1065 struct knote *kn; 1066 1067 lwkt_gettoken(&kq_token); 1068 SLIST_FOREACH(kn, list, kn_next) 1069 if (kn->kn_fop->f_event(kn, hint)) 1070 KNOTE_ACTIVATE(kn); 1071 lwkt_reltoken(&kq_token); 1072 } 1073 1074 /* 1075 * insert knote at head of klist 1076 * 1077 * Requires: kq_token 1078 */ 1079 void 1080 knote_insert(struct klist *klist, struct knote *kn) 1081 { 1082 SLIST_INSERT_HEAD(klist, kn, kn_next); 1083 } 1084 1085 /* 1086 * remove knote from a klist 1087 * 1088 * Requires: kq_token 1089 */ 1090 void 1091 knote_remove(struct klist *klist, struct knote *kn) 1092 { 1093 SLIST_REMOVE(klist, kn, knote, kn_next); 1094 } 1095 1096 /* 1097 * remove all knotes from a specified klist 1098 */ 1099 void 1100 knote_empty(struct klist *list) 1101 { 1102 struct knote *kn; 1103 1104 lwkt_gettoken(&kq_token); 1105 while ((kn = SLIST_FIRST(list)) != NULL) { 1106 kn->kn_fop->f_detach(kn); 1107 knote_drop(kn); 1108 } 1109 lwkt_reltoken(&kq_token); 1110 } 1111 1112 /* 1113 * remove all knotes referencing a specified fd 1114 */ 1115 void 1116 knote_fdclose(struct file *fp, struct filedesc *fdp, int fd) 1117 { 1118 struct knote *kn; 1119 1120 lwkt_gettoken(&kq_token); 1121 restart: 1122 SLIST_FOREACH(kn, &fp->f_klist, kn_link) { 1123 if (kn->kn_kq->kq_fdp == fdp && kn->kn_id == fd) { 1124 kn->kn_fop->f_detach(kn); 1125 knote_drop(kn); 1126 goto restart; 1127 } 1128 } 1129 lwkt_reltoken(&kq_token); 1130 } 1131 1132 static void 1133 knote_attach(struct knote *kn) 1134 { 1135 struct klist *list; 1136 struct kqueue *kq = kn->kn_kq; 1137 1138 if (kn->kn_fop->f_isfd) { 1139 KKASSERT(kn->kn_fp); 1140 list = &kn->kn_fp->f_klist; 1141 } else { 1142 if (kq->kq_knhashmask == 0) 1143 kq->kq_knhash = hashinit(KN_HASHSIZE, M_KQUEUE, 1144 &kq->kq_knhashmask); 1145 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)]; 1146 } 1147 SLIST_INSERT_HEAD(list, kn, kn_link); 1148 TAILQ_INSERT_HEAD(&kq->kq_knlist, kn, kn_kqlink); 1149 kn->kn_status = 0; 1150 } 1151 1152 static void 1153 knote_drop(struct knote *kn) 1154 { 1155 struct kqueue *kq; 1156 struct klist *list; 1157 1158 kq = kn->kn_kq; 1159 1160 if (kn->kn_fop->f_isfd) 1161 list = &kn->kn_fp->f_klist; 1162 else 1163 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)]; 1164 1165 SLIST_REMOVE(list, kn, knote, kn_link); 1166 TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink); 1167 if (kn->kn_status & KN_QUEUED) 1168 knote_dequeue(kn); 1169 if (kn->kn_fop->f_isfd) 1170 fdrop(kn->kn_fp); 1171 knote_free(kn); 1172 } 1173 1174 1175 static void 1176 knote_enqueue(struct knote *kn) 1177 { 1178 struct kqueue *kq = kn->kn_kq; 1179 1180 KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued")); 1181 1182 TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe); 1183 kn->kn_status |= KN_QUEUED; 1184 ++kq->kq_count; 1185 1186 /* 1187 * Send SIGIO on request (typically set up as a mailbox signal) 1188 */ 1189 if (kq->kq_sigio && (kq->kq_state & KQ_ASYNC) && kq->kq_count == 1) 1190 pgsigio(kq->kq_sigio, SIGIO, 0); 1191 1192 kqueue_wakeup(kq); 1193 } 1194 1195 static void 1196 knote_dequeue(struct knote *kn) 1197 { 1198 struct kqueue *kq = kn->kn_kq; 1199 1200 KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued")); 1201 1202 TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe); 1203 kn->kn_status &= ~KN_QUEUED; 1204 kq->kq_count--; 1205 } 1206 1207 static void 1208 knote_init(void) 1209 { 1210 knote_zone = zinit("KNOTE", sizeof(struct knote), 0, 0, 1); 1211 } 1212 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL) 1213 1214 static struct knote * 1215 knote_alloc(void) 1216 { 1217 return ((struct knote *)zalloc(knote_zone)); 1218 } 1219 1220 static void 1221 knote_free(struct knote *kn) 1222 { 1223 zfree(knote_zone, kn); 1224 } 1225