xref: /dflybsd-src/sys/kern/kern_event.c (revision 37fcf2909492f7075bf6d42e7fd1f78345527048)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $
27  * $DragonFly: src/sys/kern/kern_event.c,v 1.33 2007/02/03 17:05:57 corecode Exp $
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/malloc.h>
35 #include <sys/unistd.h>
36 #include <sys/file.h>
37 #include <sys/lock.h>
38 #include <sys/fcntl.h>
39 #include <sys/select.h>
40 #include <sys/queue.h>
41 #include <sys/event.h>
42 #include <sys/eventvar.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/stat.h>
47 #include <sys/sysctl.h>
48 #include <sys/sysproto.h>
49 #include <sys/uio.h>
50 #include <sys/signalvar.h>
51 #include <sys/filio.h>
52 #include <sys/ktr.h>
53 
54 #include <sys/thread2.h>
55 #include <sys/file2.h>
56 #include <sys/mplock2.h>
57 
58 #include <vm/vm_zone.h>
59 
60 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
61 
62 struct kevent_copyin_args {
63 	struct kevent_args	*ka;
64 	int			pchanges;
65 };
66 
67 static int	kqueue_sleep(struct kqueue *kq, struct timespec *tsp);
68 static int	kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
69 		    struct knote *marker);
70 static int 	kqueue_read(struct file *fp, struct uio *uio,
71 		    struct ucred *cred, int flags);
72 static int	kqueue_write(struct file *fp, struct uio *uio,
73 		    struct ucred *cred, int flags);
74 static int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
75 		    struct ucred *cred, struct sysmsg *msg);
76 static int 	kqueue_kqfilter(struct file *fp, struct knote *kn);
77 static int 	kqueue_stat(struct file *fp, struct stat *st,
78 		    struct ucred *cred);
79 static int 	kqueue_close(struct file *fp);
80 
81 /*
82  * MPSAFE
83  */
84 static struct fileops kqueueops = {
85 	.fo_read = kqueue_read,
86 	.fo_write = kqueue_write,
87 	.fo_ioctl = kqueue_ioctl,
88 	.fo_kqfilter = kqueue_kqfilter,
89 	.fo_stat = kqueue_stat,
90 	.fo_close = kqueue_close,
91 	.fo_shutdown = nofo_shutdown
92 };
93 
94 static void 	knote_attach(struct knote *kn);
95 static void 	knote_drop(struct knote *kn);
96 static void 	knote_enqueue(struct knote *kn);
97 static void 	knote_dequeue(struct knote *kn);
98 static void 	knote_init(void);
99 static struct 	knote *knote_alloc(void);
100 static void 	knote_free(struct knote *kn);
101 
102 static void	filt_kqdetach(struct knote *kn);
103 static int	filt_kqueue(struct knote *kn, long hint);
104 static int	filt_procattach(struct knote *kn);
105 static void	filt_procdetach(struct knote *kn);
106 static int	filt_proc(struct knote *kn, long hint);
107 static int	filt_fileattach(struct knote *kn);
108 static void	filt_timerexpire(void *knx);
109 static int	filt_timerattach(struct knote *kn);
110 static void	filt_timerdetach(struct knote *kn);
111 static int	filt_timer(struct knote *kn, long hint);
112 
113 static struct filterops file_filtops =
114 	{ 1, filt_fileattach, NULL, NULL };
115 static struct filterops kqread_filtops =
116 	{ 1, NULL, filt_kqdetach, filt_kqueue };
117 static struct filterops proc_filtops =
118 	{ 0, filt_procattach, filt_procdetach, filt_proc };
119 static struct filterops timer_filtops =
120 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
121 
122 static vm_zone_t	knote_zone;
123 static int 		kq_ncallouts = 0;
124 static int 		kq_calloutmax = (4 * 1024);
125 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
126     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
127 
128 #define KNOTE_ACTIVATE(kn) do { 					\
129 	kn->kn_status |= KN_ACTIVE;					\
130 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
131 		knote_enqueue(kn);					\
132 } while(0)
133 
134 #define	KN_HASHSIZE		64		/* XXX should be tunable */
135 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
136 
137 extern struct filterops aio_filtops;
138 extern struct filterops sig_filtops;
139 
140 /*
141  * Table for for all system-defined filters.
142  */
143 static struct filterops *sysfilt_ops[] = {
144 	&file_filtops,			/* EVFILT_READ */
145 	&file_filtops,			/* EVFILT_WRITE */
146 	&aio_filtops,			/* EVFILT_AIO */
147 	&file_filtops,			/* EVFILT_VNODE */
148 	&proc_filtops,			/* EVFILT_PROC */
149 	&sig_filtops,			/* EVFILT_SIGNAL */
150 	&timer_filtops,			/* EVFILT_TIMER */
151 	&file_filtops,			/* EVFILT_EXCEPT */
152 };
153 
154 static int
155 filt_fileattach(struct knote *kn)
156 {
157 	return (fo_kqfilter(kn->kn_fp, kn));
158 }
159 
160 /*
161  * MPALMOSTSAFE - acquires mplock
162  */
163 static int
164 kqueue_kqfilter(struct file *fp, struct knote *kn)
165 {
166 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
167 
168 	get_mplock();
169 	if (kn->kn_filter != EVFILT_READ) {
170 		rel_mplock();
171 		return (EOPNOTSUPP);
172 	}
173 
174 	kn->kn_fop = &kqread_filtops;
175 	SLIST_INSERT_HEAD(&kq->kq_sel.si_note, kn, kn_selnext);
176 	rel_mplock();
177 	return (0);
178 }
179 
180 static void
181 filt_kqdetach(struct knote *kn)
182 {
183 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
184 
185 	SLIST_REMOVE(&kq->kq_sel.si_note, kn, knote, kn_selnext);
186 }
187 
188 /*ARGSUSED*/
189 static int
190 filt_kqueue(struct knote *kn, long hint)
191 {
192 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
193 
194 	kn->kn_data = kq->kq_count;
195 	return (kn->kn_data > 0);
196 }
197 
198 static int
199 filt_procattach(struct knote *kn)
200 {
201 	struct proc *p;
202 	int immediate;
203 
204 	immediate = 0;
205 	lwkt_gettoken(&proc_token);
206 	p = pfind(kn->kn_id);
207 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
208 		p = zpfind(kn->kn_id);
209 		immediate = 1;
210 	}
211 	if (p == NULL) {
212 		lwkt_reltoken(&proc_token);
213 		return (ESRCH);
214 	}
215 	if (!PRISON_CHECK(curthread->td_ucred, p->p_ucred)) {
216 		lwkt_reltoken(&proc_token);
217 		return (EACCES);
218 	}
219 
220 	kn->kn_ptr.p_proc = p;
221 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
222 
223 	/*
224 	 * internal flag indicating registration done by kernel
225 	 */
226 	if (kn->kn_flags & EV_FLAG1) {
227 		kn->kn_data = kn->kn_sdata;		/* ppid */
228 		kn->kn_fflags = NOTE_CHILD;
229 		kn->kn_flags &= ~EV_FLAG1;
230 	}
231 
232 	/* XXX lock the proc here while adding to the list? */
233 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
234 
235 	/*
236 	 * Immediately activate any exit notes if the target process is a
237 	 * zombie.  This is necessary to handle the case where the target
238 	 * process, e.g. a child, dies before the kevent is negistered.
239 	 */
240 	if (immediate && filt_proc(kn, NOTE_EXIT))
241 		KNOTE_ACTIVATE(kn);
242 	lwkt_reltoken(&proc_token);
243 
244 	return (0);
245 }
246 
247 /*
248  * The knote may be attached to a different process, which may exit,
249  * leaving nothing for the knote to be attached to.  So when the process
250  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
251  * it will be deleted when read out.  However, as part of the knote deletion,
252  * this routine is called, so a check is needed to avoid actually performing
253  * a detach, because the original process does not exist any more.
254  */
255 static void
256 filt_procdetach(struct knote *kn)
257 {
258 	struct proc *p;
259 
260 	if (kn->kn_status & KN_DETACHED)
261 		return;
262 	/* XXX locking?  this might modify another process. */
263 	p = kn->kn_ptr.p_proc;
264 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
265 }
266 
267 static int
268 filt_proc(struct knote *kn, long hint)
269 {
270 	u_int event;
271 
272 	/*
273 	 * mask off extra data
274 	 */
275 	event = (u_int)hint & NOTE_PCTRLMASK;
276 
277 	/*
278 	 * if the user is interested in this event, record it.
279 	 */
280 	if (kn->kn_sfflags & event)
281 		kn->kn_fflags |= event;
282 
283 	/*
284 	 * Process is gone, so flag the event as finished.  Detach the
285 	 * knote from the process now because the process will be poof,
286 	 * gone later on.
287 	 */
288 	if (event == NOTE_EXIT) {
289 		struct proc *p = kn->kn_ptr.p_proc;
290 		if ((kn->kn_status & KN_DETACHED) == 0) {
291 			SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
292 			kn->kn_status |= KN_DETACHED;
293 			kn->kn_data = p->p_xstat;
294 			kn->kn_ptr.p_proc = NULL;
295 		}
296 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
297 		return (1);
298 	}
299 
300 	/*
301 	 * process forked, and user wants to track the new process,
302 	 * so attach a new knote to it, and immediately report an
303 	 * event with the parent's pid.
304 	 */
305 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
306 		struct kevent kev;
307 		int error;
308 
309 		/*
310 		 * register knote with new process.
311 		 */
312 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
313 		kev.filter = kn->kn_filter;
314 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
315 		kev.fflags = kn->kn_sfflags;
316 		kev.data = kn->kn_id;			/* parent */
317 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
318 		error = kqueue_register(kn->kn_kq, &kev);
319 		if (error)
320 			kn->kn_fflags |= NOTE_TRACKERR;
321 	}
322 
323 	return (kn->kn_fflags != 0);
324 }
325 
326 static void
327 filt_timerexpire(void *knx)
328 {
329 	struct knote *kn = knx;
330 	struct callout *calloutp;
331 	struct timeval tv;
332 	int tticks;
333 
334 	kn->kn_data++;
335 	KNOTE_ACTIVATE(kn);
336 
337 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
338 		tv.tv_sec = kn->kn_sdata / 1000;
339 		tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
340 		tticks = tvtohz_high(&tv);
341 		calloutp = (struct callout *)kn->kn_hook;
342 		callout_reset(calloutp, tticks, filt_timerexpire, kn);
343 	}
344 }
345 
346 /*
347  * data contains amount of time to sleep, in milliseconds
348  */
349 static int
350 filt_timerattach(struct knote *kn)
351 {
352 	struct callout *calloutp;
353 	struct timeval tv;
354 	int tticks;
355 
356 	if (kq_ncallouts >= kq_calloutmax)
357 		return (ENOMEM);
358 	kq_ncallouts++;
359 
360 	tv.tv_sec = kn->kn_sdata / 1000;
361 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
362 	tticks = tvtohz_high(&tv);
363 
364 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
365 	MALLOC(calloutp, struct callout *, sizeof(*calloutp),
366 	    M_KQUEUE, M_WAITOK);
367 	callout_init(calloutp);
368 	kn->kn_hook = (caddr_t)calloutp;
369 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
370 
371 	return (0);
372 }
373 
374 static void
375 filt_timerdetach(struct knote *kn)
376 {
377 	struct callout *calloutp;
378 
379 	calloutp = (struct callout *)kn->kn_hook;
380 	callout_stop(calloutp);
381 	FREE(calloutp, M_KQUEUE);
382 	kq_ncallouts--;
383 }
384 
385 static int
386 filt_timer(struct knote *kn, long hint)
387 {
388 
389 	return (kn->kn_data != 0);
390 }
391 
392 /*
393  * Initialize a kqueue.
394  *
395  * NOTE: The lwp/proc code initializes a kqueue for select/poll ops.
396  *
397  * MPSAFE
398  */
399 void
400 kqueue_init(struct kqueue *kq, struct filedesc *fdp)
401 {
402 	TAILQ_INIT(&kq->kq_knpend);
403 	TAILQ_INIT(&kq->kq_knlist);
404 	kq->kq_count = 0;
405 	kq->kq_fdp = fdp;
406 	SLIST_INIT(&kq->kq_sel.si_note);
407 }
408 
409 /*
410  * Terminate a kqueue.  Freeing the actual kq itself is left up to the
411  * caller (it might be embedded in a lwp so we don't do it here).
412  */
413 void
414 kqueue_terminate(struct kqueue *kq)
415 {
416 	struct knote *kn;
417 	struct klist *list;
418 	int hv;
419 
420 	while ((kn = TAILQ_FIRST(&kq->kq_knlist)) != NULL) {
421 		kn->kn_fop->f_detach(kn);
422 		if (kn->kn_fop->f_isfd) {
423 			list = &kn->kn_fp->f_klist;
424 			SLIST_REMOVE(list, kn, knote, kn_link);
425 			fdrop(kn->kn_fp);
426 			kn->kn_fp = NULL;
427 		} else {
428 			hv = KN_HASH(kn->kn_id, kq->kq_knhashmask);
429 			list = &kq->kq_knhash[hv];
430 			SLIST_REMOVE(list, kn, knote, kn_link);
431 		}
432 		TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink);
433 		if (kn->kn_status & KN_QUEUED)
434 			knote_dequeue(kn);
435 		knote_free(kn);
436 	}
437 
438 	if (kq->kq_knhash) {
439 		kfree(kq->kq_knhash, M_KQUEUE);
440 		kq->kq_knhash = NULL;
441 		kq->kq_knhashmask = 0;
442 	}
443 }
444 
445 /*
446  * MPSAFE
447  */
448 int
449 sys_kqueue(struct kqueue_args *uap)
450 {
451 	struct thread *td = curthread;
452 	struct kqueue *kq;
453 	struct file *fp;
454 	int fd, error;
455 
456 	error = falloc(td->td_lwp, &fp, &fd);
457 	if (error)
458 		return (error);
459 	fp->f_flag = FREAD | FWRITE;
460 	fp->f_type = DTYPE_KQUEUE;
461 	fp->f_ops = &kqueueops;
462 
463 	kq = kmalloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO);
464 	kqueue_init(kq, td->td_proc->p_fd);
465 	fp->f_data = kq;
466 
467 	fsetfd(kq->kq_fdp, fp, fd);
468 	uap->sysmsg_result = fd;
469 	fdrop(fp);
470 	return (error);
471 }
472 
473 /*
474  * Copy 'count' items into the destination list pointed to by uap->eventlist.
475  */
476 static int
477 kevent_copyout(void *arg, struct kevent *kevp, int count, int *res)
478 {
479 	struct kevent_copyin_args *kap;
480 	int error;
481 
482 	kap = (struct kevent_copyin_args *)arg;
483 
484 	error = copyout(kevp, kap->ka->eventlist, count * sizeof(*kevp));
485 	if (error == 0) {
486 		kap->ka->eventlist += count;
487 		*res += count;
488 	} else {
489 		*res = -1;
490 	}
491 
492 	return (error);
493 }
494 
495 /*
496  * Copy at most 'max' items from the list pointed to by kap->changelist,
497  * return number of items in 'events'.
498  */
499 static int
500 kevent_copyin(void *arg, struct kevent *kevp, int max, int *events)
501 {
502 	struct kevent_copyin_args *kap;
503 	int error, count;
504 
505 	kap = (struct kevent_copyin_args *)arg;
506 
507 	count = min(kap->ka->nchanges - kap->pchanges, max);
508 	error = copyin(kap->ka->changelist, kevp, count * sizeof *kevp);
509 	if (error == 0) {
510 		kap->ka->changelist += count;
511 		kap->pchanges += count;
512 		*events = count;
513 	}
514 
515 	return (error);
516 }
517 
518 /*
519  * MPALMOSTSAFE
520  */
521 int
522 kern_kevent(struct kqueue *kq, int nevents, int *res, void *uap,
523 	    k_copyin_fn kevent_copyinfn, k_copyout_fn kevent_copyoutfn,
524 	    struct timespec *tsp_in)
525 {
526 	struct kevent *kevp;
527 	struct timespec *tsp;
528 	int i, n, total, error, nerrors = 0;
529 	int lres;
530 	struct kevent kev[KQ_NEVENTS];
531 	struct knote marker;
532 
533 	tsp = tsp_in;
534 	*res = 0;
535 
536 	get_mplock();
537 	for ( ;; ) {
538 		n = 0;
539 		error = kevent_copyinfn(uap, kev, KQ_NEVENTS, &n);
540 		if (error)
541 			goto done;
542 		if (n == 0)
543 			break;
544 		for (i = 0; i < n; i++) {
545 			kevp = &kev[i];
546 			kevp->flags &= ~EV_SYSFLAGS;
547 			error = kqueue_register(kq, kevp);
548 
549 			/*
550 			 * If a registration returns an error we
551 			 * immediately post the error.  The kevent()
552 			 * call itself will fail with the error if
553 			 * no space is available for posting.
554 			 *
555 			 * Such errors normally bypass the timeout/blocking
556 			 * code.  However, if the copyoutfn function refuses
557 			 * to post the error (see sys_poll()), then we
558 			 * ignore it too.
559 			 */
560 			if (error) {
561 				if (nevents != 0) {
562 					kevp->flags = EV_ERROR;
563 					kevp->data = error;
564 					lres = *res;
565 					kevent_copyoutfn(uap, kevp, 1, res);
566 					if (lres != *res) {
567 						nevents--;
568 						nerrors++;
569 					}
570 				} else {
571 					goto done;
572 				}
573 			}
574 		}
575 	}
576 	if (nerrors) {
577 		error = 0;
578 		goto done;
579 	}
580 
581 	/*
582 	 * Acquire/wait for events - setup timeout
583 	 */
584 	if (tsp != NULL) {
585 		struct timespec ats;
586 
587 		if (tsp->tv_sec || tsp->tv_nsec) {
588 			nanouptime(&ats);
589 			timespecadd(tsp, &ats);		/* tsp = target time */
590 		}
591 	}
592 
593 	/*
594 	 * Loop as required.
595 	 *
596 	 * Collect as many events as we can. Sleeping on successive
597 	 * loops is disabled if copyoutfn has incremented (*res).
598 	 *
599 	 * The loop stops if an error occurs, all events have been
600 	 * scanned (the marker has been reached), or fewer than the
601 	 * maximum number of events is found.
602 	 *
603 	 * The copyoutfn function does not have to increment (*res) in
604 	 * order for the loop to continue.
605 	 *
606 	 * NOTE: doselect() usually passes 0x7FFFFFFF for nevents.
607 	 */
608 	total = 0;
609 	error = 0;
610 	marker.kn_filter = EVFILT_MARKER;
611 	crit_enter();
612 	TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
613 	crit_exit();
614 	while ((n = nevents - total) > 0) {
615 		if (n > KQ_NEVENTS)
616 			n = KQ_NEVENTS;
617 
618 		/*
619 		 * If no events are pending sleep until timeout (if any)
620 		 * or an event occurs.
621 		 *
622 		 * After the sleep completes the marker is moved to the
623 		 * end of the list, making any received events available
624 		 * to our scan.
625 		 */
626 		if (kq->kq_count == 0 && *res == 0) {
627 			error = kqueue_sleep(kq, tsp);
628 
629 			if (error)
630 				break;
631 			crit_enter();
632 			TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
633 			TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
634 			crit_exit();
635 		}
636 
637 		/*
638 		 * Process all received events
639 		 */
640 		i = kqueue_scan(kq, kev, n, &marker);
641 		if (i) {
642 			error = kevent_copyoutfn(uap, kev, i, res);
643 			total += i;
644 			if (error)
645 				break;
646 		}
647 
648 		/*
649 		 * Normally when fewer events are returned than requested
650 		 * we can stop.  However, if only spurious events were
651 		 * collected the copyout will not bump (*res) and we have
652 		 * to continue.
653 		 */
654 		if (i < n && *res)
655 			break;
656 
657 		/*
658 		 * Deal with an edge case where spurious events can cause
659 		 * a loop to occur without moving the marker.  This can
660 		 * prevent kqueue_scan() from picking up new events which
661 		 * race us.  We must be sure to move the marker for this
662 		 * case.
663 		 *
664 		 * NOTE: We do not want to move the marker if events
665 		 *	 were scanned because normal kqueue operations
666 		 *	 may reactivate events.  Moving the marker in
667 		 *	 that case could result in duplicates for the
668 		 *	 same event.
669 		 */
670 		if (i == 0) {
671 			crit_enter();
672 			TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
673 			TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
674 			crit_exit();
675 		}
676 	}
677 	crit_enter();
678 	TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
679 	crit_exit();
680 
681 	/* Timeouts do not return EWOULDBLOCK. */
682 	if (error == EWOULDBLOCK)
683 		error = 0;
684 
685 done:
686 	rel_mplock();
687 	return (error);
688 }
689 
690 /*
691  * MPALMOSTSAFE
692  */
693 int
694 sys_kevent(struct kevent_args *uap)
695 {
696 	struct thread *td = curthread;
697 	struct proc *p = td->td_proc;
698 	struct timespec ts, *tsp;
699 	struct kqueue *kq;
700 	struct file *fp = NULL;
701 	struct kevent_copyin_args *kap, ka;
702 	int error;
703 
704 	if (uap->timeout) {
705 		error = copyin(uap->timeout, &ts, sizeof(ts));
706 		if (error)
707 			return (error);
708 		tsp = &ts;
709 	} else {
710 		tsp = NULL;
711 	}
712 
713 	fp = holdfp(p->p_fd, uap->fd, -1);
714 	if (fp == NULL)
715 		return (EBADF);
716 	if (fp->f_type != DTYPE_KQUEUE) {
717 		fdrop(fp);
718 		return (EBADF);
719 	}
720 
721 	kq = (struct kqueue *)fp->f_data;
722 
723 	kap = &ka;
724 	kap->ka = uap;
725 	kap->pchanges = 0;
726 
727 	error = kern_kevent(kq, uap->nevents, &uap->sysmsg_result, kap,
728 			    kevent_copyin, kevent_copyout, tsp);
729 
730 	fdrop(fp);
731 
732 	return (error);
733 }
734 
735 int
736 kqueue_register(struct kqueue *kq, struct kevent *kev)
737 {
738 	struct filedesc *fdp = kq->kq_fdp;
739 	struct filterops *fops;
740 	struct file *fp = NULL;
741 	struct knote *kn = NULL;
742 	int error = 0;
743 
744 	if (kev->filter < 0) {
745 		if (kev->filter + EVFILT_SYSCOUNT < 0)
746 			return (EINVAL);
747 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
748 	} else {
749 		/*
750 		 * XXX
751 		 * filter attach routine is responsible for insuring that
752 		 * the identifier can be attached to it.
753 		 */
754 		kprintf("unknown filter: %d\n", kev->filter);
755 		return (EINVAL);
756 	}
757 
758 	if (fops->f_isfd) {
759 		/* validate descriptor */
760 		fp = holdfp(fdp, kev->ident, -1);
761 		if (fp == NULL)
762 			return (EBADF);
763 
764 		SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
765 			if (kn->kn_kq == kq &&
766 			    kn->kn_filter == kev->filter &&
767 			    kn->kn_id == kev->ident) {
768 				break;
769 			}
770 		}
771 	} else {
772 		if (kq->kq_knhashmask) {
773 			struct klist *list;
774 
775 			list = &kq->kq_knhash[
776 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
777 			SLIST_FOREACH(kn, list, kn_link) {
778 				if (kn->kn_id == kev->ident &&
779 				    kn->kn_filter == kev->filter)
780 					break;
781 			}
782 		}
783 	}
784 
785 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
786 		error = ENOENT;
787 		goto done;
788 	}
789 
790 	/*
791 	 * kn now contains the matching knote, or NULL if no match
792 	 */
793 	if (kev->flags & EV_ADD) {
794 		if (kn == NULL) {
795 			kn = knote_alloc();
796 			if (kn == NULL) {
797 				error = ENOMEM;
798 				goto done;
799 			}
800 			kn->kn_fp = fp;
801 			kn->kn_kq = kq;
802 			kn->kn_fop = fops;
803 
804 			/*
805 			 * apply reference count to knote structure, and
806 			 * do not release it at the end of this routine.
807 			 */
808 			fp = NULL;
809 
810 			kn->kn_sfflags = kev->fflags;
811 			kn->kn_sdata = kev->data;
812 			kev->fflags = 0;
813 			kev->data = 0;
814 			kn->kn_kevent = *kev;
815 
816 			knote_attach(kn);
817 			if ((error = fops->f_attach(kn)) != 0) {
818 				knote_drop(kn);
819 				goto done;
820 			}
821 		} else {
822 			/*
823 			 * The user may change some filter values after the
824 			 * initial EV_ADD, but doing so will not reset any
825 			 * filter which have already been triggered.
826 			 */
827 			kn->kn_sfflags = kev->fflags;
828 			kn->kn_sdata = kev->data;
829 			kn->kn_kevent.udata = kev->udata;
830 		}
831 
832 		crit_enter();
833 		if (kn->kn_fop->f_event(kn, 0))
834 			KNOTE_ACTIVATE(kn);
835 		crit_exit();
836 	} else if (kev->flags & EV_DELETE) {
837 		kn->kn_fop->f_detach(kn);
838 		knote_drop(kn);
839 		goto done;
840 	}
841 
842 	if ((kev->flags & EV_DISABLE) &&
843 	    ((kn->kn_status & KN_DISABLED) == 0)) {
844 		crit_enter();
845 		kn->kn_status |= KN_DISABLED;
846 		crit_exit();
847 	}
848 
849 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
850 		crit_enter();
851 		kn->kn_status &= ~KN_DISABLED;
852 		if ((kn->kn_status & KN_ACTIVE) &&
853 		    ((kn->kn_status & KN_QUEUED) == 0))
854 			knote_enqueue(kn);
855 		crit_exit();
856 	}
857 
858 done:
859 	if (fp != NULL)
860 		fdrop(fp);
861 	return (error);
862 }
863 
864 /*
865  * Block as necessary until the target time is reached.
866  * If tsp is NULL we block indefinitely.  If tsp->ts_secs/nsecs are both
867  * 0 we do not block at all.
868  */
869 static int
870 kqueue_sleep(struct kqueue *kq, struct timespec *tsp)
871 {
872 	int error = 0;
873 
874 	crit_enter();
875 	if (tsp == NULL) {
876 		kq->kq_state |= KQ_SLEEP;
877 		error = tsleep(kq, PCATCH, "kqread", 0);
878 	} else if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
879 		error = EWOULDBLOCK;
880 	} else {
881 		struct timespec ats;
882 		struct timespec atx = *tsp;
883 		int timeout;
884 
885 		nanouptime(&ats);
886 		timespecsub(&atx, &ats);
887 		if (ats.tv_sec < 0) {
888 			error = EWOULDBLOCK;
889 		} else {
890 			timeout = atx.tv_sec > 24 * 60 * 60 ?
891 				24 * 60 * 60 * hz : tstohz_high(&atx);
892 			kq->kq_state |= KQ_SLEEP;
893 			error = tsleep(kq, PCATCH, "kqread", timeout);
894 		}
895 	}
896 	crit_exit();
897 
898 	/* don't restart after signals... */
899 	if (error == ERESTART)
900 		return (EINTR);
901 
902 	return (error);
903 }
904 
905 /*
906  * Scan the kqueue, return the number of active events placed in kevp up
907  * to count.
908  *
909  * Continuous mode events may get recycled, do not continue scanning past
910  * marker unless no events have been collected.
911  */
912 static int
913 kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
914             struct knote *marker)
915 {
916         struct knote *kn, local_marker;
917         int total;
918 
919         total = 0;
920 	local_marker.kn_filter = EVFILT_MARKER;
921         crit_enter();
922 
923 	/*
924 	 * Collect events.
925 	 */
926 	TAILQ_INSERT_HEAD(&kq->kq_knpend, &local_marker, kn_tqe);
927 	while (count) {
928 		kn = TAILQ_NEXT(&local_marker, kn_tqe);
929 		if (kn->kn_filter == EVFILT_MARKER) {
930 			/* Marker reached, we are done */
931 			if (kn == marker)
932 				break;
933 
934 			/* Move local marker past some other threads marker */
935 			kn = TAILQ_NEXT(kn, kn_tqe);
936 			TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
937 			TAILQ_INSERT_BEFORE(kn, &local_marker, kn_tqe);
938 			continue;
939 		}
940 
941 		TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
942 		if (kn->kn_status & KN_DISABLED) {
943 			kn->kn_status &= ~KN_QUEUED;
944 			kq->kq_count--;
945 			continue;
946 		}
947 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
948 		    kn->kn_fop->f_event(kn, 0) == 0) {
949 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
950 			kq->kq_count--;
951 			continue;
952 		}
953 		*kevp++ = kn->kn_kevent;
954 		++total;
955 		--count;
956 
957 		/*
958 		 * Post-event action on the note
959 		 */
960 		if (kn->kn_flags & EV_ONESHOT) {
961 			kn->kn_status &= ~KN_QUEUED;
962 			kq->kq_count--;
963 			crit_exit();
964 			kn->kn_fop->f_detach(kn);
965 			knote_drop(kn);
966 			crit_enter();
967 		} else if (kn->kn_flags & EV_CLEAR) {
968 			kn->kn_data = 0;
969 			kn->kn_fflags = 0;
970 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
971 			kq->kq_count--;
972 		} else {
973 			TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
974 		}
975 	}
976 	TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
977 
978 	crit_exit();
979 	return (total);
980 }
981 
982 /*
983  * XXX
984  * This could be expanded to call kqueue_scan, if desired.
985  *
986  * MPSAFE
987  */
988 static int
989 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
990 {
991 	return (ENXIO);
992 }
993 
994 /*
995  * MPSAFE
996  */
997 static int
998 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
999 {
1000 	return (ENXIO);
1001 }
1002 
1003 /*
1004  * MPALMOSTSAFE
1005  */
1006 static int
1007 kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
1008 	     struct ucred *cred, struct sysmsg *msg)
1009 {
1010 	struct kqueue *kq;
1011 	int error;
1012 
1013 	get_mplock();
1014 	kq = (struct kqueue *)fp->f_data;
1015 
1016 	switch(com) {
1017 	case FIOASYNC:
1018 		if (*(int *)data)
1019 			kq->kq_state |= KQ_ASYNC;
1020 		else
1021 			kq->kq_state &= ~KQ_ASYNC;
1022 		error = 0;
1023 		break;
1024 	case FIOSETOWN:
1025 		error = fsetown(*(int *)data, &kq->kq_sigio);
1026 		break;
1027 	default:
1028 		error = ENOTTY;
1029 		break;
1030 	}
1031 	rel_mplock();
1032 	return (error);
1033 }
1034 
1035 /*
1036  * MPSAFE
1037  */
1038 static int
1039 kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred)
1040 {
1041 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1042 
1043 	bzero((void *)st, sizeof(*st));
1044 	st->st_size = kq->kq_count;
1045 	st->st_blksize = sizeof(struct kevent);
1046 	st->st_mode = S_IFIFO;
1047 	return (0);
1048 }
1049 
1050 /*
1051  * MPALMOSTSAFE - acquires mplock
1052  */
1053 static int
1054 kqueue_close(struct file *fp)
1055 {
1056 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1057 
1058 	get_mplock();
1059 
1060 	kqueue_terminate(kq);
1061 
1062 	fp->f_data = NULL;
1063 	funsetown(kq->kq_sigio);
1064 	rel_mplock();
1065 
1066 	kfree(kq, M_KQUEUE);
1067 	return (0);
1068 }
1069 
1070 void
1071 kqueue_wakeup(struct kqueue *kq)
1072 {
1073 	if (kq->kq_state & KQ_SLEEP) {
1074 		kq->kq_state &= ~KQ_SLEEP;
1075 		wakeup(kq);
1076 	}
1077 	if (kq->kq_state & KQ_SEL) {
1078 		kq->kq_state &= ~KQ_SEL;
1079 		selwakeup(&kq->kq_sel);
1080 	}
1081 	KNOTE(&kq->kq_sel.si_note, 0);
1082 }
1083 
1084 /*
1085  * walk down a list of knotes, activating them if their event has triggered.
1086  */
1087 void
1088 knote(struct klist *list, long hint)
1089 {
1090 	struct knote *kn;
1091 
1092 	SLIST_FOREACH(kn, list, kn_selnext)
1093 		if (kn->kn_fop->f_event(kn, hint))
1094 			KNOTE_ACTIVATE(kn);
1095 }
1096 
1097 /*
1098  * remove all knotes from a specified klist
1099  */
1100 void
1101 knote_remove(struct klist *list)
1102 {
1103 	struct knote *kn;
1104 
1105 	while ((kn = SLIST_FIRST(list)) != NULL) {
1106 		kn->kn_fop->f_detach(kn);
1107 		knote_drop(kn);
1108 	}
1109 }
1110 
1111 /*
1112  * remove all knotes referencing a specified fd
1113  */
1114 void
1115 knote_fdclose(struct file *fp, struct filedesc *fdp, int fd)
1116 {
1117 	struct knote *kn;
1118 
1119 restart:
1120 	SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
1121 		if (kn->kn_kq->kq_fdp == fdp && kn->kn_id == fd) {
1122 			kn->kn_fop->f_detach(kn);
1123 			knote_drop(kn);
1124 			goto restart;
1125 		}
1126 	}
1127 }
1128 
1129 static void
1130 knote_attach(struct knote *kn)
1131 {
1132 	struct klist *list;
1133 	struct kqueue *kq = kn->kn_kq;
1134 
1135 	if (kn->kn_fop->f_isfd) {
1136 		KKASSERT(kn->kn_fp);
1137 		list = &kn->kn_fp->f_klist;
1138 	} else {
1139 		if (kq->kq_knhashmask == 0)
1140 			kq->kq_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1141 						 &kq->kq_knhashmask);
1142 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1143 	}
1144 	SLIST_INSERT_HEAD(list, kn, kn_link);
1145 	TAILQ_INSERT_HEAD(&kq->kq_knlist, kn, kn_kqlink);
1146 	kn->kn_status = 0;
1147 }
1148 
1149 /*
1150  * should be called outside of a critical section, since we don't want to
1151  * hold a critical section while calling fdrop and free.
1152  */
1153 static void
1154 knote_drop(struct knote *kn)
1155 {
1156 	struct kqueue *kq;
1157 	struct klist *list;
1158 
1159 	kq = kn->kn_kq;
1160 
1161 	if (kn->kn_fop->f_isfd)
1162 		list = &kn->kn_fp->f_klist;
1163 	else
1164 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1165 
1166 	SLIST_REMOVE(list, kn, knote, kn_link);
1167 	TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink);
1168 	if (kn->kn_status & KN_QUEUED)
1169 		knote_dequeue(kn);
1170 	if (kn->kn_fop->f_isfd)
1171 		fdrop(kn->kn_fp);
1172 	knote_free(kn);
1173 }
1174 
1175 
1176 static void
1177 knote_enqueue(struct knote *kn)
1178 {
1179 	struct kqueue *kq = kn->kn_kq;
1180 
1181 	crit_enter();
1182 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1183 
1184 	TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1185 	kn->kn_status |= KN_QUEUED;
1186 	++kq->kq_count;
1187 
1188 	/*
1189 	 * Send SIGIO on request (typically set up as a mailbox signal)
1190 	 */
1191 	if (kq->kq_sigio && (kq->kq_state & KQ_ASYNC) && kq->kq_count == 1)
1192 		pgsigio(kq->kq_sigio, SIGIO, 0);
1193 	crit_exit();
1194 	kqueue_wakeup(kq);
1195 }
1196 
1197 static void
1198 knote_dequeue(struct knote *kn)
1199 {
1200 	struct kqueue *kq = kn->kn_kq;
1201 
1202 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1203 	crit_enter();
1204 
1205 	TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1206 	kn->kn_status &= ~KN_QUEUED;
1207 	kq->kq_count--;
1208 	crit_exit();
1209 }
1210 
1211 static void
1212 knote_init(void)
1213 {
1214 	knote_zone = zinit("KNOTE", sizeof(struct knote), 0, 0, 1);
1215 }
1216 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
1217 
1218 static struct knote *
1219 knote_alloc(void)
1220 {
1221 	return ((struct knote *)zalloc(knote_zone));
1222 }
1223 
1224 static void
1225 knote_free(struct knote *kn)
1226 {
1227 	zfree(knote_zone, kn);
1228 }
1229