1 /*- 2 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $ 27 * $DragonFly: src/sys/kern/kern_event.c,v 1.33 2007/02/03 17:05:57 corecode Exp $ 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/kernel.h> 33 #include <sys/proc.h> 34 #include <sys/malloc.h> 35 #include <sys/unistd.h> 36 #include <sys/file.h> 37 #include <sys/lock.h> 38 #include <sys/fcntl.h> 39 #include <sys/select.h> 40 #include <sys/queue.h> 41 #include <sys/event.h> 42 #include <sys/eventvar.h> 43 #include <sys/protosw.h> 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <sys/stat.h> 47 #include <sys/sysctl.h> 48 #include <sys/sysproto.h> 49 #include <sys/uio.h> 50 #include <sys/signalvar.h> 51 #include <sys/filio.h> 52 #include <sys/ktr.h> 53 54 #include <sys/thread2.h> 55 #include <sys/file2.h> 56 #include <sys/mplock2.h> 57 58 #include <vm/vm_zone.h> 59 60 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system"); 61 62 struct kevent_copyin_args { 63 struct kevent_args *ka; 64 int pchanges; 65 }; 66 67 static int kqueue_sleep(struct kqueue *kq, struct timespec *tsp); 68 static int kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count, 69 struct knote *marker); 70 static int kqueue_read(struct file *fp, struct uio *uio, 71 struct ucred *cred, int flags); 72 static int kqueue_write(struct file *fp, struct uio *uio, 73 struct ucred *cred, int flags); 74 static int kqueue_ioctl(struct file *fp, u_long com, caddr_t data, 75 struct ucred *cred, struct sysmsg *msg); 76 static int kqueue_kqfilter(struct file *fp, struct knote *kn); 77 static int kqueue_stat(struct file *fp, struct stat *st, 78 struct ucred *cred); 79 static int kqueue_close(struct file *fp); 80 81 /* 82 * MPSAFE 83 */ 84 static struct fileops kqueueops = { 85 .fo_read = kqueue_read, 86 .fo_write = kqueue_write, 87 .fo_ioctl = kqueue_ioctl, 88 .fo_kqfilter = kqueue_kqfilter, 89 .fo_stat = kqueue_stat, 90 .fo_close = kqueue_close, 91 .fo_shutdown = nofo_shutdown 92 }; 93 94 static void knote_attach(struct knote *kn); 95 static void knote_drop(struct knote *kn); 96 static void knote_enqueue(struct knote *kn); 97 static void knote_dequeue(struct knote *kn); 98 static void knote_init(void); 99 static struct knote *knote_alloc(void); 100 static void knote_free(struct knote *kn); 101 102 static void filt_kqdetach(struct knote *kn); 103 static int filt_kqueue(struct knote *kn, long hint); 104 static int filt_procattach(struct knote *kn); 105 static void filt_procdetach(struct knote *kn); 106 static int filt_proc(struct knote *kn, long hint); 107 static int filt_fileattach(struct knote *kn); 108 static void filt_timerexpire(void *knx); 109 static int filt_timerattach(struct knote *kn); 110 static void filt_timerdetach(struct knote *kn); 111 static int filt_timer(struct knote *kn, long hint); 112 113 static struct filterops file_filtops = 114 { 1, filt_fileattach, NULL, NULL }; 115 static struct filterops kqread_filtops = 116 { 1, NULL, filt_kqdetach, filt_kqueue }; 117 static struct filterops proc_filtops = 118 { 0, filt_procattach, filt_procdetach, filt_proc }; 119 static struct filterops timer_filtops = 120 { 0, filt_timerattach, filt_timerdetach, filt_timer }; 121 122 static vm_zone_t knote_zone; 123 static int kq_ncallouts = 0; 124 static int kq_calloutmax = (4 * 1024); 125 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW, 126 &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue"); 127 128 #define KNOTE_ACTIVATE(kn) do { \ 129 kn->kn_status |= KN_ACTIVE; \ 130 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \ 131 knote_enqueue(kn); \ 132 } while(0) 133 134 #define KN_HASHSIZE 64 /* XXX should be tunable */ 135 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) 136 137 extern struct filterops aio_filtops; 138 extern struct filterops sig_filtops; 139 140 /* 141 * Table for for all system-defined filters. 142 */ 143 static struct filterops *sysfilt_ops[] = { 144 &file_filtops, /* EVFILT_READ */ 145 &file_filtops, /* EVFILT_WRITE */ 146 &aio_filtops, /* EVFILT_AIO */ 147 &file_filtops, /* EVFILT_VNODE */ 148 &proc_filtops, /* EVFILT_PROC */ 149 &sig_filtops, /* EVFILT_SIGNAL */ 150 &timer_filtops, /* EVFILT_TIMER */ 151 &file_filtops, /* EVFILT_EXCEPT */ 152 }; 153 154 static int 155 filt_fileattach(struct knote *kn) 156 { 157 return (fo_kqfilter(kn->kn_fp, kn)); 158 } 159 160 /* 161 * MPALMOSTSAFE - acquires mplock 162 */ 163 static int 164 kqueue_kqfilter(struct file *fp, struct knote *kn) 165 { 166 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; 167 168 get_mplock(); 169 if (kn->kn_filter != EVFILT_READ) { 170 rel_mplock(); 171 return (EOPNOTSUPP); 172 } 173 174 kn->kn_fop = &kqread_filtops; 175 SLIST_INSERT_HEAD(&kq->kq_sel.si_note, kn, kn_selnext); 176 rel_mplock(); 177 return (0); 178 } 179 180 static void 181 filt_kqdetach(struct knote *kn) 182 { 183 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; 184 185 SLIST_REMOVE(&kq->kq_sel.si_note, kn, knote, kn_selnext); 186 } 187 188 /*ARGSUSED*/ 189 static int 190 filt_kqueue(struct knote *kn, long hint) 191 { 192 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; 193 194 kn->kn_data = kq->kq_count; 195 return (kn->kn_data > 0); 196 } 197 198 static int 199 filt_procattach(struct knote *kn) 200 { 201 struct proc *p; 202 int immediate; 203 204 immediate = 0; 205 lwkt_gettoken(&proc_token); 206 p = pfind(kn->kn_id); 207 if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) { 208 p = zpfind(kn->kn_id); 209 immediate = 1; 210 } 211 if (p == NULL) { 212 lwkt_reltoken(&proc_token); 213 return (ESRCH); 214 } 215 if (!PRISON_CHECK(curthread->td_ucred, p->p_ucred)) { 216 lwkt_reltoken(&proc_token); 217 return (EACCES); 218 } 219 220 kn->kn_ptr.p_proc = p; 221 kn->kn_flags |= EV_CLEAR; /* automatically set */ 222 223 /* 224 * internal flag indicating registration done by kernel 225 */ 226 if (kn->kn_flags & EV_FLAG1) { 227 kn->kn_data = kn->kn_sdata; /* ppid */ 228 kn->kn_fflags = NOTE_CHILD; 229 kn->kn_flags &= ~EV_FLAG1; 230 } 231 232 /* XXX lock the proc here while adding to the list? */ 233 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 234 235 /* 236 * Immediately activate any exit notes if the target process is a 237 * zombie. This is necessary to handle the case where the target 238 * process, e.g. a child, dies before the kevent is negistered. 239 */ 240 if (immediate && filt_proc(kn, NOTE_EXIT)) 241 KNOTE_ACTIVATE(kn); 242 lwkt_reltoken(&proc_token); 243 244 return (0); 245 } 246 247 /* 248 * The knote may be attached to a different process, which may exit, 249 * leaving nothing for the knote to be attached to. So when the process 250 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so 251 * it will be deleted when read out. However, as part of the knote deletion, 252 * this routine is called, so a check is needed to avoid actually performing 253 * a detach, because the original process does not exist any more. 254 */ 255 static void 256 filt_procdetach(struct knote *kn) 257 { 258 struct proc *p; 259 260 if (kn->kn_status & KN_DETACHED) 261 return; 262 /* XXX locking? this might modify another process. */ 263 p = kn->kn_ptr.p_proc; 264 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 265 } 266 267 static int 268 filt_proc(struct knote *kn, long hint) 269 { 270 u_int event; 271 272 /* 273 * mask off extra data 274 */ 275 event = (u_int)hint & NOTE_PCTRLMASK; 276 277 /* 278 * if the user is interested in this event, record it. 279 */ 280 if (kn->kn_sfflags & event) 281 kn->kn_fflags |= event; 282 283 /* 284 * Process is gone, so flag the event as finished. Detach the 285 * knote from the process now because the process will be poof, 286 * gone later on. 287 */ 288 if (event == NOTE_EXIT) { 289 struct proc *p = kn->kn_ptr.p_proc; 290 if ((kn->kn_status & KN_DETACHED) == 0) { 291 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 292 kn->kn_status |= KN_DETACHED; 293 kn->kn_data = p->p_xstat; 294 kn->kn_ptr.p_proc = NULL; 295 } 296 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 297 return (1); 298 } 299 300 /* 301 * process forked, and user wants to track the new process, 302 * so attach a new knote to it, and immediately report an 303 * event with the parent's pid. 304 */ 305 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) { 306 struct kevent kev; 307 int error; 308 309 /* 310 * register knote with new process. 311 */ 312 kev.ident = hint & NOTE_PDATAMASK; /* pid */ 313 kev.filter = kn->kn_filter; 314 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1; 315 kev.fflags = kn->kn_sfflags; 316 kev.data = kn->kn_id; /* parent */ 317 kev.udata = kn->kn_kevent.udata; /* preserve udata */ 318 error = kqueue_register(kn->kn_kq, &kev); 319 if (error) 320 kn->kn_fflags |= NOTE_TRACKERR; 321 } 322 323 return (kn->kn_fflags != 0); 324 } 325 326 static void 327 filt_timerexpire(void *knx) 328 { 329 struct knote *kn = knx; 330 struct callout *calloutp; 331 struct timeval tv; 332 int tticks; 333 334 kn->kn_data++; 335 KNOTE_ACTIVATE(kn); 336 337 if ((kn->kn_flags & EV_ONESHOT) == 0) { 338 tv.tv_sec = kn->kn_sdata / 1000; 339 tv.tv_usec = (kn->kn_sdata % 1000) * 1000; 340 tticks = tvtohz_high(&tv); 341 calloutp = (struct callout *)kn->kn_hook; 342 callout_reset(calloutp, tticks, filt_timerexpire, kn); 343 } 344 } 345 346 /* 347 * data contains amount of time to sleep, in milliseconds 348 */ 349 static int 350 filt_timerattach(struct knote *kn) 351 { 352 struct callout *calloutp; 353 struct timeval tv; 354 int tticks; 355 356 if (kq_ncallouts >= kq_calloutmax) 357 return (ENOMEM); 358 kq_ncallouts++; 359 360 tv.tv_sec = kn->kn_sdata / 1000; 361 tv.tv_usec = (kn->kn_sdata % 1000) * 1000; 362 tticks = tvtohz_high(&tv); 363 364 kn->kn_flags |= EV_CLEAR; /* automatically set */ 365 MALLOC(calloutp, struct callout *, sizeof(*calloutp), 366 M_KQUEUE, M_WAITOK); 367 callout_init(calloutp); 368 kn->kn_hook = (caddr_t)calloutp; 369 callout_reset(calloutp, tticks, filt_timerexpire, kn); 370 371 return (0); 372 } 373 374 static void 375 filt_timerdetach(struct knote *kn) 376 { 377 struct callout *calloutp; 378 379 calloutp = (struct callout *)kn->kn_hook; 380 callout_stop(calloutp); 381 FREE(calloutp, M_KQUEUE); 382 kq_ncallouts--; 383 } 384 385 static int 386 filt_timer(struct knote *kn, long hint) 387 { 388 389 return (kn->kn_data != 0); 390 } 391 392 /* 393 * Initialize a kqueue. 394 * 395 * NOTE: The lwp/proc code initializes a kqueue for select/poll ops. 396 * 397 * MPSAFE 398 */ 399 void 400 kqueue_init(struct kqueue *kq, struct filedesc *fdp) 401 { 402 TAILQ_INIT(&kq->kq_knpend); 403 TAILQ_INIT(&kq->kq_knlist); 404 kq->kq_count = 0; 405 kq->kq_fdp = fdp; 406 SLIST_INIT(&kq->kq_sel.si_note); 407 } 408 409 /* 410 * Terminate a kqueue. Freeing the actual kq itself is left up to the 411 * caller (it might be embedded in a lwp so we don't do it here). 412 */ 413 void 414 kqueue_terminate(struct kqueue *kq) 415 { 416 struct knote *kn; 417 struct klist *list; 418 int hv; 419 420 while ((kn = TAILQ_FIRST(&kq->kq_knlist)) != NULL) { 421 kn->kn_fop->f_detach(kn); 422 if (kn->kn_fop->f_isfd) { 423 list = &kn->kn_fp->f_klist; 424 SLIST_REMOVE(list, kn, knote, kn_link); 425 fdrop(kn->kn_fp); 426 kn->kn_fp = NULL; 427 } else { 428 hv = KN_HASH(kn->kn_id, kq->kq_knhashmask); 429 list = &kq->kq_knhash[hv]; 430 SLIST_REMOVE(list, kn, knote, kn_link); 431 } 432 TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink); 433 if (kn->kn_status & KN_QUEUED) 434 knote_dequeue(kn); 435 knote_free(kn); 436 } 437 438 if (kq->kq_knhash) { 439 kfree(kq->kq_knhash, M_KQUEUE); 440 kq->kq_knhash = NULL; 441 kq->kq_knhashmask = 0; 442 } 443 } 444 445 /* 446 * MPSAFE 447 */ 448 int 449 sys_kqueue(struct kqueue_args *uap) 450 { 451 struct thread *td = curthread; 452 struct kqueue *kq; 453 struct file *fp; 454 int fd, error; 455 456 error = falloc(td->td_lwp, &fp, &fd); 457 if (error) 458 return (error); 459 fp->f_flag = FREAD | FWRITE; 460 fp->f_type = DTYPE_KQUEUE; 461 fp->f_ops = &kqueueops; 462 463 kq = kmalloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO); 464 kqueue_init(kq, td->td_proc->p_fd); 465 fp->f_data = kq; 466 467 fsetfd(kq->kq_fdp, fp, fd); 468 uap->sysmsg_result = fd; 469 fdrop(fp); 470 return (error); 471 } 472 473 /* 474 * Copy 'count' items into the destination list pointed to by uap->eventlist. 475 */ 476 static int 477 kevent_copyout(void *arg, struct kevent *kevp, int count, int *res) 478 { 479 struct kevent_copyin_args *kap; 480 int error; 481 482 kap = (struct kevent_copyin_args *)arg; 483 484 error = copyout(kevp, kap->ka->eventlist, count * sizeof(*kevp)); 485 if (error == 0) { 486 kap->ka->eventlist += count; 487 *res += count; 488 } else { 489 *res = -1; 490 } 491 492 return (error); 493 } 494 495 /* 496 * Copy at most 'max' items from the list pointed to by kap->changelist, 497 * return number of items in 'events'. 498 */ 499 static int 500 kevent_copyin(void *arg, struct kevent *kevp, int max, int *events) 501 { 502 struct kevent_copyin_args *kap; 503 int error, count; 504 505 kap = (struct kevent_copyin_args *)arg; 506 507 count = min(kap->ka->nchanges - kap->pchanges, max); 508 error = copyin(kap->ka->changelist, kevp, count * sizeof *kevp); 509 if (error == 0) { 510 kap->ka->changelist += count; 511 kap->pchanges += count; 512 *events = count; 513 } 514 515 return (error); 516 } 517 518 /* 519 * MPALMOSTSAFE 520 */ 521 int 522 kern_kevent(struct kqueue *kq, int nevents, int *res, void *uap, 523 k_copyin_fn kevent_copyinfn, k_copyout_fn kevent_copyoutfn, 524 struct timespec *tsp_in) 525 { 526 struct kevent *kevp; 527 struct timespec *tsp; 528 int i, n, total, error, nerrors = 0; 529 int lres; 530 struct kevent kev[KQ_NEVENTS]; 531 struct knote marker; 532 533 tsp = tsp_in; 534 *res = 0; 535 536 get_mplock(); 537 for ( ;; ) { 538 n = 0; 539 error = kevent_copyinfn(uap, kev, KQ_NEVENTS, &n); 540 if (error) 541 goto done; 542 if (n == 0) 543 break; 544 for (i = 0; i < n; i++) { 545 kevp = &kev[i]; 546 kevp->flags &= ~EV_SYSFLAGS; 547 error = kqueue_register(kq, kevp); 548 549 /* 550 * If a registration returns an error we 551 * immediately post the error. The kevent() 552 * call itself will fail with the error if 553 * no space is available for posting. 554 * 555 * Such errors normally bypass the timeout/blocking 556 * code. However, if the copyoutfn function refuses 557 * to post the error (see sys_poll()), then we 558 * ignore it too. 559 */ 560 if (error) { 561 if (nevents != 0) { 562 kevp->flags = EV_ERROR; 563 kevp->data = error; 564 lres = *res; 565 kevent_copyoutfn(uap, kevp, 1, res); 566 if (lres != *res) { 567 nevents--; 568 nerrors++; 569 } 570 } else { 571 goto done; 572 } 573 } 574 } 575 } 576 if (nerrors) { 577 error = 0; 578 goto done; 579 } 580 581 /* 582 * Acquire/wait for events - setup timeout 583 */ 584 if (tsp != NULL) { 585 struct timespec ats; 586 587 if (tsp->tv_sec || tsp->tv_nsec) { 588 nanouptime(&ats); 589 timespecadd(tsp, &ats); /* tsp = target time */ 590 } 591 } 592 593 /* 594 * Loop as required. 595 * 596 * Collect as many events as we can. Sleeping on successive 597 * loops is disabled if copyoutfn has incremented (*res). 598 * 599 * The loop stops if an error occurs, all events have been 600 * scanned (the marker has been reached), or fewer than the 601 * maximum number of events is found. 602 * 603 * The copyoutfn function does not have to increment (*res) in 604 * order for the loop to continue. 605 * 606 * NOTE: doselect() usually passes 0x7FFFFFFF for nevents. 607 */ 608 total = 0; 609 error = 0; 610 marker.kn_filter = EVFILT_MARKER; 611 crit_enter(); 612 TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe); 613 crit_exit(); 614 while ((n = nevents - total) > 0) { 615 if (n > KQ_NEVENTS) 616 n = KQ_NEVENTS; 617 618 /* 619 * If no events are pending sleep until timeout (if any) 620 * or an event occurs. 621 * 622 * After the sleep completes the marker is moved to the 623 * end of the list, making any received events available 624 * to our scan. 625 */ 626 if (kq->kq_count == 0 && *res == 0) { 627 error = kqueue_sleep(kq, tsp); 628 629 if (error) 630 break; 631 crit_enter(); 632 TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe); 633 TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe); 634 crit_exit(); 635 } 636 637 /* 638 * Process all received events 639 */ 640 i = kqueue_scan(kq, kev, n, &marker); 641 if (i) { 642 error = kevent_copyoutfn(uap, kev, i, res); 643 total += i; 644 if (error) 645 break; 646 } 647 648 /* 649 * Normally when fewer events are returned than requested 650 * we can stop. However, if only spurious events were 651 * collected the copyout will not bump (*res) and we have 652 * to continue. 653 */ 654 if (i < n && *res) 655 break; 656 657 /* 658 * Deal with an edge case where spurious events can cause 659 * a loop to occur without moving the marker. This can 660 * prevent kqueue_scan() from picking up new events which 661 * race us. We must be sure to move the marker for this 662 * case. 663 * 664 * NOTE: We do not want to move the marker if events 665 * were scanned because normal kqueue operations 666 * may reactivate events. Moving the marker in 667 * that case could result in duplicates for the 668 * same event. 669 */ 670 if (i == 0) { 671 crit_enter(); 672 TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe); 673 TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe); 674 crit_exit(); 675 } 676 } 677 crit_enter(); 678 TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe); 679 crit_exit(); 680 681 /* Timeouts do not return EWOULDBLOCK. */ 682 if (error == EWOULDBLOCK) 683 error = 0; 684 685 done: 686 rel_mplock(); 687 return (error); 688 } 689 690 /* 691 * MPALMOSTSAFE 692 */ 693 int 694 sys_kevent(struct kevent_args *uap) 695 { 696 struct thread *td = curthread; 697 struct proc *p = td->td_proc; 698 struct timespec ts, *tsp; 699 struct kqueue *kq; 700 struct file *fp = NULL; 701 struct kevent_copyin_args *kap, ka; 702 int error; 703 704 if (uap->timeout) { 705 error = copyin(uap->timeout, &ts, sizeof(ts)); 706 if (error) 707 return (error); 708 tsp = &ts; 709 } else { 710 tsp = NULL; 711 } 712 713 fp = holdfp(p->p_fd, uap->fd, -1); 714 if (fp == NULL) 715 return (EBADF); 716 if (fp->f_type != DTYPE_KQUEUE) { 717 fdrop(fp); 718 return (EBADF); 719 } 720 721 kq = (struct kqueue *)fp->f_data; 722 723 kap = &ka; 724 kap->ka = uap; 725 kap->pchanges = 0; 726 727 error = kern_kevent(kq, uap->nevents, &uap->sysmsg_result, kap, 728 kevent_copyin, kevent_copyout, tsp); 729 730 fdrop(fp); 731 732 return (error); 733 } 734 735 int 736 kqueue_register(struct kqueue *kq, struct kevent *kev) 737 { 738 struct filedesc *fdp = kq->kq_fdp; 739 struct filterops *fops; 740 struct file *fp = NULL; 741 struct knote *kn = NULL; 742 int error = 0; 743 744 if (kev->filter < 0) { 745 if (kev->filter + EVFILT_SYSCOUNT < 0) 746 return (EINVAL); 747 fops = sysfilt_ops[~kev->filter]; /* to 0-base index */ 748 } else { 749 /* 750 * XXX 751 * filter attach routine is responsible for insuring that 752 * the identifier can be attached to it. 753 */ 754 kprintf("unknown filter: %d\n", kev->filter); 755 return (EINVAL); 756 } 757 758 if (fops->f_isfd) { 759 /* validate descriptor */ 760 fp = holdfp(fdp, kev->ident, -1); 761 if (fp == NULL) 762 return (EBADF); 763 764 SLIST_FOREACH(kn, &fp->f_klist, kn_link) { 765 if (kn->kn_kq == kq && 766 kn->kn_filter == kev->filter && 767 kn->kn_id == kev->ident) { 768 break; 769 } 770 } 771 } else { 772 if (kq->kq_knhashmask) { 773 struct klist *list; 774 775 list = &kq->kq_knhash[ 776 KN_HASH((u_long)kev->ident, kq->kq_knhashmask)]; 777 SLIST_FOREACH(kn, list, kn_link) { 778 if (kn->kn_id == kev->ident && 779 kn->kn_filter == kev->filter) 780 break; 781 } 782 } 783 } 784 785 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) { 786 error = ENOENT; 787 goto done; 788 } 789 790 /* 791 * kn now contains the matching knote, or NULL if no match 792 */ 793 if (kev->flags & EV_ADD) { 794 if (kn == NULL) { 795 kn = knote_alloc(); 796 if (kn == NULL) { 797 error = ENOMEM; 798 goto done; 799 } 800 kn->kn_fp = fp; 801 kn->kn_kq = kq; 802 kn->kn_fop = fops; 803 804 /* 805 * apply reference count to knote structure, and 806 * do not release it at the end of this routine. 807 */ 808 fp = NULL; 809 810 kn->kn_sfflags = kev->fflags; 811 kn->kn_sdata = kev->data; 812 kev->fflags = 0; 813 kev->data = 0; 814 kn->kn_kevent = *kev; 815 816 knote_attach(kn); 817 if ((error = fops->f_attach(kn)) != 0) { 818 knote_drop(kn); 819 goto done; 820 } 821 } else { 822 /* 823 * The user may change some filter values after the 824 * initial EV_ADD, but doing so will not reset any 825 * filter which have already been triggered. 826 */ 827 kn->kn_sfflags = kev->fflags; 828 kn->kn_sdata = kev->data; 829 kn->kn_kevent.udata = kev->udata; 830 } 831 832 crit_enter(); 833 if (kn->kn_fop->f_event(kn, 0)) 834 KNOTE_ACTIVATE(kn); 835 crit_exit(); 836 } else if (kev->flags & EV_DELETE) { 837 kn->kn_fop->f_detach(kn); 838 knote_drop(kn); 839 goto done; 840 } 841 842 if ((kev->flags & EV_DISABLE) && 843 ((kn->kn_status & KN_DISABLED) == 0)) { 844 crit_enter(); 845 kn->kn_status |= KN_DISABLED; 846 crit_exit(); 847 } 848 849 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) { 850 crit_enter(); 851 kn->kn_status &= ~KN_DISABLED; 852 if ((kn->kn_status & KN_ACTIVE) && 853 ((kn->kn_status & KN_QUEUED) == 0)) 854 knote_enqueue(kn); 855 crit_exit(); 856 } 857 858 done: 859 if (fp != NULL) 860 fdrop(fp); 861 return (error); 862 } 863 864 /* 865 * Block as necessary until the target time is reached. 866 * If tsp is NULL we block indefinitely. If tsp->ts_secs/nsecs are both 867 * 0 we do not block at all. 868 */ 869 static int 870 kqueue_sleep(struct kqueue *kq, struct timespec *tsp) 871 { 872 int error = 0; 873 874 crit_enter(); 875 if (tsp == NULL) { 876 kq->kq_state |= KQ_SLEEP; 877 error = tsleep(kq, PCATCH, "kqread", 0); 878 } else if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) { 879 error = EWOULDBLOCK; 880 } else { 881 struct timespec ats; 882 struct timespec atx = *tsp; 883 int timeout; 884 885 nanouptime(&ats); 886 timespecsub(&atx, &ats); 887 if (ats.tv_sec < 0) { 888 error = EWOULDBLOCK; 889 } else { 890 timeout = atx.tv_sec > 24 * 60 * 60 ? 891 24 * 60 * 60 * hz : tstohz_high(&atx); 892 kq->kq_state |= KQ_SLEEP; 893 error = tsleep(kq, PCATCH, "kqread", timeout); 894 } 895 } 896 crit_exit(); 897 898 /* don't restart after signals... */ 899 if (error == ERESTART) 900 return (EINTR); 901 902 return (error); 903 } 904 905 /* 906 * Scan the kqueue, return the number of active events placed in kevp up 907 * to count. 908 * 909 * Continuous mode events may get recycled, do not continue scanning past 910 * marker unless no events have been collected. 911 */ 912 static int 913 kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count, 914 struct knote *marker) 915 { 916 struct knote *kn, local_marker; 917 int total; 918 919 total = 0; 920 local_marker.kn_filter = EVFILT_MARKER; 921 crit_enter(); 922 923 /* 924 * Collect events. 925 */ 926 TAILQ_INSERT_HEAD(&kq->kq_knpend, &local_marker, kn_tqe); 927 while (count) { 928 kn = TAILQ_NEXT(&local_marker, kn_tqe); 929 if (kn->kn_filter == EVFILT_MARKER) { 930 /* Marker reached, we are done */ 931 if (kn == marker) 932 break; 933 934 /* Move local marker past some other threads marker */ 935 kn = TAILQ_NEXT(kn, kn_tqe); 936 TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe); 937 TAILQ_INSERT_BEFORE(kn, &local_marker, kn_tqe); 938 continue; 939 } 940 941 TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe); 942 if (kn->kn_status & KN_DISABLED) { 943 kn->kn_status &= ~KN_QUEUED; 944 kq->kq_count--; 945 continue; 946 } 947 if ((kn->kn_flags & EV_ONESHOT) == 0 && 948 kn->kn_fop->f_event(kn, 0) == 0) { 949 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); 950 kq->kq_count--; 951 continue; 952 } 953 *kevp++ = kn->kn_kevent; 954 ++total; 955 --count; 956 957 /* 958 * Post-event action on the note 959 */ 960 if (kn->kn_flags & EV_ONESHOT) { 961 kn->kn_status &= ~KN_QUEUED; 962 kq->kq_count--; 963 crit_exit(); 964 kn->kn_fop->f_detach(kn); 965 knote_drop(kn); 966 crit_enter(); 967 } else if (kn->kn_flags & EV_CLEAR) { 968 kn->kn_data = 0; 969 kn->kn_fflags = 0; 970 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); 971 kq->kq_count--; 972 } else { 973 TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe); 974 } 975 } 976 TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe); 977 978 crit_exit(); 979 return (total); 980 } 981 982 /* 983 * XXX 984 * This could be expanded to call kqueue_scan, if desired. 985 * 986 * MPSAFE 987 */ 988 static int 989 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags) 990 { 991 return (ENXIO); 992 } 993 994 /* 995 * MPSAFE 996 */ 997 static int 998 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags) 999 { 1000 return (ENXIO); 1001 } 1002 1003 /* 1004 * MPALMOSTSAFE 1005 */ 1006 static int 1007 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, 1008 struct ucred *cred, struct sysmsg *msg) 1009 { 1010 struct kqueue *kq; 1011 int error; 1012 1013 get_mplock(); 1014 kq = (struct kqueue *)fp->f_data; 1015 1016 switch(com) { 1017 case FIOASYNC: 1018 if (*(int *)data) 1019 kq->kq_state |= KQ_ASYNC; 1020 else 1021 kq->kq_state &= ~KQ_ASYNC; 1022 error = 0; 1023 break; 1024 case FIOSETOWN: 1025 error = fsetown(*(int *)data, &kq->kq_sigio); 1026 break; 1027 default: 1028 error = ENOTTY; 1029 break; 1030 } 1031 rel_mplock(); 1032 return (error); 1033 } 1034 1035 /* 1036 * MPSAFE 1037 */ 1038 static int 1039 kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred) 1040 { 1041 struct kqueue *kq = (struct kqueue *)fp->f_data; 1042 1043 bzero((void *)st, sizeof(*st)); 1044 st->st_size = kq->kq_count; 1045 st->st_blksize = sizeof(struct kevent); 1046 st->st_mode = S_IFIFO; 1047 return (0); 1048 } 1049 1050 /* 1051 * MPALMOSTSAFE - acquires mplock 1052 */ 1053 static int 1054 kqueue_close(struct file *fp) 1055 { 1056 struct kqueue *kq = (struct kqueue *)fp->f_data; 1057 1058 get_mplock(); 1059 1060 kqueue_terminate(kq); 1061 1062 fp->f_data = NULL; 1063 funsetown(kq->kq_sigio); 1064 rel_mplock(); 1065 1066 kfree(kq, M_KQUEUE); 1067 return (0); 1068 } 1069 1070 void 1071 kqueue_wakeup(struct kqueue *kq) 1072 { 1073 if (kq->kq_state & KQ_SLEEP) { 1074 kq->kq_state &= ~KQ_SLEEP; 1075 wakeup(kq); 1076 } 1077 if (kq->kq_state & KQ_SEL) { 1078 kq->kq_state &= ~KQ_SEL; 1079 selwakeup(&kq->kq_sel); 1080 } 1081 KNOTE(&kq->kq_sel.si_note, 0); 1082 } 1083 1084 /* 1085 * walk down a list of knotes, activating them if their event has triggered. 1086 */ 1087 void 1088 knote(struct klist *list, long hint) 1089 { 1090 struct knote *kn; 1091 1092 SLIST_FOREACH(kn, list, kn_selnext) 1093 if (kn->kn_fop->f_event(kn, hint)) 1094 KNOTE_ACTIVATE(kn); 1095 } 1096 1097 /* 1098 * remove all knotes from a specified klist 1099 */ 1100 void 1101 knote_remove(struct klist *list) 1102 { 1103 struct knote *kn; 1104 1105 while ((kn = SLIST_FIRST(list)) != NULL) { 1106 kn->kn_fop->f_detach(kn); 1107 knote_drop(kn); 1108 } 1109 } 1110 1111 /* 1112 * remove all knotes referencing a specified fd 1113 */ 1114 void 1115 knote_fdclose(struct file *fp, struct filedesc *fdp, int fd) 1116 { 1117 struct knote *kn; 1118 1119 restart: 1120 SLIST_FOREACH(kn, &fp->f_klist, kn_link) { 1121 if (kn->kn_kq->kq_fdp == fdp && kn->kn_id == fd) { 1122 kn->kn_fop->f_detach(kn); 1123 knote_drop(kn); 1124 goto restart; 1125 } 1126 } 1127 } 1128 1129 static void 1130 knote_attach(struct knote *kn) 1131 { 1132 struct klist *list; 1133 struct kqueue *kq = kn->kn_kq; 1134 1135 if (kn->kn_fop->f_isfd) { 1136 KKASSERT(kn->kn_fp); 1137 list = &kn->kn_fp->f_klist; 1138 } else { 1139 if (kq->kq_knhashmask == 0) 1140 kq->kq_knhash = hashinit(KN_HASHSIZE, M_KQUEUE, 1141 &kq->kq_knhashmask); 1142 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)]; 1143 } 1144 SLIST_INSERT_HEAD(list, kn, kn_link); 1145 TAILQ_INSERT_HEAD(&kq->kq_knlist, kn, kn_kqlink); 1146 kn->kn_status = 0; 1147 } 1148 1149 /* 1150 * should be called outside of a critical section, since we don't want to 1151 * hold a critical section while calling fdrop and free. 1152 */ 1153 static void 1154 knote_drop(struct knote *kn) 1155 { 1156 struct kqueue *kq; 1157 struct klist *list; 1158 1159 kq = kn->kn_kq; 1160 1161 if (kn->kn_fop->f_isfd) 1162 list = &kn->kn_fp->f_klist; 1163 else 1164 list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)]; 1165 1166 SLIST_REMOVE(list, kn, knote, kn_link); 1167 TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink); 1168 if (kn->kn_status & KN_QUEUED) 1169 knote_dequeue(kn); 1170 if (kn->kn_fop->f_isfd) 1171 fdrop(kn->kn_fp); 1172 knote_free(kn); 1173 } 1174 1175 1176 static void 1177 knote_enqueue(struct knote *kn) 1178 { 1179 struct kqueue *kq = kn->kn_kq; 1180 1181 crit_enter(); 1182 KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued")); 1183 1184 TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe); 1185 kn->kn_status |= KN_QUEUED; 1186 ++kq->kq_count; 1187 1188 /* 1189 * Send SIGIO on request (typically set up as a mailbox signal) 1190 */ 1191 if (kq->kq_sigio && (kq->kq_state & KQ_ASYNC) && kq->kq_count == 1) 1192 pgsigio(kq->kq_sigio, SIGIO, 0); 1193 crit_exit(); 1194 kqueue_wakeup(kq); 1195 } 1196 1197 static void 1198 knote_dequeue(struct knote *kn) 1199 { 1200 struct kqueue *kq = kn->kn_kq; 1201 1202 KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued")); 1203 crit_enter(); 1204 1205 TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe); 1206 kn->kn_status &= ~KN_QUEUED; 1207 kq->kq_count--; 1208 crit_exit(); 1209 } 1210 1211 static void 1212 knote_init(void) 1213 { 1214 knote_zone = zinit("KNOTE", sizeof(struct knote), 0, 0, 1); 1215 } 1216 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL) 1217 1218 static struct knote * 1219 knote_alloc(void) 1220 { 1221 return ((struct knote *)zalloc(knote_zone)); 1222 } 1223 1224 static void 1225 knote_free(struct knote *kn) 1226 { 1227 zfree(knote_zone, kn); 1228 } 1229