xref: /dflybsd-src/sys/kern/kern_event.c (revision 2e7bf158f373428dba2c765c927f14d9e94f00a4)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $
27  * $DragonFly: src/sys/kern/kern_event.c,v 1.33 2007/02/03 17:05:57 corecode Exp $
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/malloc.h>
35 #include <sys/unistd.h>
36 #include <sys/file.h>
37 #include <sys/lock.h>
38 #include <sys/fcntl.h>
39 #include <sys/select.h>
40 #include <sys/queue.h>
41 #include <sys/event.h>
42 #include <sys/eventvar.h>
43 #include <sys/poll.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/stat.h>
48 #include <sys/sysctl.h>
49 #include <sys/sysproto.h>
50 #include <sys/uio.h>
51 #include <sys/signalvar.h>
52 #include <sys/filio.h>
53 
54 #include <sys/thread2.h>
55 #include <sys/file2.h>
56 #include <sys/mplock2.h>
57 
58 #include <vm/vm_zone.h>
59 
60 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
61 
62 static int	kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
63 		    struct timespec *tsp, int *errorp);
64 static int 	kqueue_read(struct file *fp, struct uio *uio,
65 		    struct ucred *cred, int flags);
66 static int	kqueue_write(struct file *fp, struct uio *uio,
67 		    struct ucred *cred, int flags);
68 static int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
69 		    struct ucred *cred, struct sysmsg *msg);
70 static int 	kqueue_poll(struct file *fp, int events, struct ucred *cred);
71 static int 	kqueue_kqfilter(struct file *fp, struct knote *kn);
72 static int 	kqueue_stat(struct file *fp, struct stat *st,
73 		    struct ucred *cred);
74 static int 	kqueue_close(struct file *fp);
75 static void 	kqueue_wakeup(struct kqueue *kq);
76 
77 /*
78  * MPSAFE
79  */
80 static struct fileops kqueueops = {
81 	.fo_read = kqueue_read,
82 	.fo_write = kqueue_write,
83 	.fo_ioctl = kqueue_ioctl,
84 	.fo_poll = kqueue_poll,
85 	.fo_kqfilter = kqueue_kqfilter,
86 	.fo_stat = kqueue_stat,
87 	.fo_close = kqueue_close,
88 	.fo_shutdown = nofo_shutdown
89 };
90 
91 static void 	knote_attach(struct knote *kn);
92 static void 	knote_drop(struct knote *kn);
93 static void 	knote_enqueue(struct knote *kn);
94 static void 	knote_dequeue(struct knote *kn);
95 static void 	knote_init(void);
96 static struct 	knote *knote_alloc(void);
97 static void 	knote_free(struct knote *kn);
98 
99 static void	filt_kqdetach(struct knote *kn);
100 static int	filt_kqueue(struct knote *kn, long hint);
101 static int	filt_procattach(struct knote *kn);
102 static void	filt_procdetach(struct knote *kn);
103 static int	filt_proc(struct knote *kn, long hint);
104 static int	filt_fileattach(struct knote *kn);
105 static void	filt_timerexpire(void *knx);
106 static int	filt_timerattach(struct knote *kn);
107 static void	filt_timerdetach(struct knote *kn);
108 static int	filt_timer(struct knote *kn, long hint);
109 
110 static struct filterops file_filtops =
111 	{ 1, filt_fileattach, NULL, NULL };
112 static struct filterops kqread_filtops =
113 	{ 1, NULL, filt_kqdetach, filt_kqueue };
114 static struct filterops proc_filtops =
115 	{ 0, filt_procattach, filt_procdetach, filt_proc };
116 static struct filterops timer_filtops =
117 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
118 
119 static vm_zone_t	knote_zone;
120 static int 		kq_ncallouts = 0;
121 static int 		kq_calloutmax = (4 * 1024);
122 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
123     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
124 
125 #define KNOTE_ACTIVATE(kn) do { 					\
126 	kn->kn_status |= KN_ACTIVE;					\
127 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
128 		knote_enqueue(kn);					\
129 } while(0)
130 
131 #define	KN_HASHSIZE		64		/* XXX should be tunable */
132 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
133 
134 extern struct filterops aio_filtops;
135 extern struct filterops sig_filtops;
136 
137 /*
138  * Table for for all system-defined filters.
139  */
140 static struct filterops *sysfilt_ops[] = {
141 	&file_filtops,			/* EVFILT_READ */
142 	&file_filtops,			/* EVFILT_WRITE */
143 	&aio_filtops,			/* EVFILT_AIO */
144 	&file_filtops,			/* EVFILT_VNODE */
145 	&proc_filtops,			/* EVFILT_PROC */
146 	&sig_filtops,			/* EVFILT_SIGNAL */
147 	&timer_filtops,			/* EVFILT_TIMER */
148 };
149 
150 static int
151 filt_fileattach(struct knote *kn)
152 {
153 	return (fo_kqfilter(kn->kn_fp, kn));
154 }
155 
156 /*
157  * MPALMOSTSAFE - acquires mplock
158  */
159 static int
160 kqueue_kqfilter(struct file *fp, struct knote *kn)
161 {
162 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
163 
164 	get_mplock();
165 	if (kn->kn_filter != EVFILT_READ) {
166 		rel_mplock();
167 		return (1);
168 	}
169 
170 	kn->kn_fop = &kqread_filtops;
171 	SLIST_INSERT_HEAD(&kq->kq_sel.si_note, kn, kn_selnext);
172 	rel_mplock();
173 	return (0);
174 }
175 
176 static void
177 filt_kqdetach(struct knote *kn)
178 {
179 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
180 
181 	SLIST_REMOVE(&kq->kq_sel.si_note, kn, knote, kn_selnext);
182 }
183 
184 /*ARGSUSED*/
185 static int
186 filt_kqueue(struct knote *kn, long hint)
187 {
188 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
189 
190 	kn->kn_data = kq->kq_count;
191 	return (kn->kn_data > 0);
192 }
193 
194 static int
195 filt_procattach(struct knote *kn)
196 {
197 	struct proc *p;
198 	int immediate;
199 
200 	immediate = 0;
201 	lwkt_gettoken(&proc_token);
202 	p = pfind(kn->kn_id);
203 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
204 		p = zpfind(kn->kn_id);
205 		immediate = 1;
206 	}
207 	if (p == NULL) {
208 		lwkt_reltoken(&proc_token);
209 		return (ESRCH);
210 	}
211 	if (!PRISON_CHECK(curthread->td_ucred, p->p_ucred)) {
212 		lwkt_reltoken(&proc_token);
213 		return (EACCES);
214 	}
215 
216 	kn->kn_ptr.p_proc = p;
217 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
218 
219 	/*
220 	 * internal flag indicating registration done by kernel
221 	 */
222 	if (kn->kn_flags & EV_FLAG1) {
223 		kn->kn_data = kn->kn_sdata;		/* ppid */
224 		kn->kn_fflags = NOTE_CHILD;
225 		kn->kn_flags &= ~EV_FLAG1;
226 	}
227 
228 	/* XXX lock the proc here while adding to the list? */
229 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
230 
231 	/*
232 	 * Immediately activate any exit notes if the target process is a
233 	 * zombie.  This is necessary to handle the case where the target
234 	 * process, e.g. a child, dies before the kevent is registered.
235 	 */
236 	if (immediate && filt_proc(kn, NOTE_EXIT))
237 		KNOTE_ACTIVATE(kn);
238 	lwkt_reltoken(&proc_token);
239 
240 	return (0);
241 }
242 
243 /*
244  * The knote may be attached to a different process, which may exit,
245  * leaving nothing for the knote to be attached to.  So when the process
246  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
247  * it will be deleted when read out.  However, as part of the knote deletion,
248  * this routine is called, so a check is needed to avoid actually performing
249  * a detach, because the original process does not exist any more.
250  */
251 static void
252 filt_procdetach(struct knote *kn)
253 {
254 	struct proc *p;
255 
256 	if (kn->kn_status & KN_DETACHED)
257 		return;
258 	/* XXX locking?  this might modify another process. */
259 	p = kn->kn_ptr.p_proc;
260 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
261 }
262 
263 static int
264 filt_proc(struct knote *kn, long hint)
265 {
266 	u_int event;
267 
268 	/*
269 	 * mask off extra data
270 	 */
271 	event = (u_int)hint & NOTE_PCTRLMASK;
272 
273 	/*
274 	 * if the user is interested in this event, record it.
275 	 */
276 	if (kn->kn_sfflags & event)
277 		kn->kn_fflags |= event;
278 
279 	/*
280 	 * Process is gone, so flag the event as finished.  Detach the
281 	 * knote from the process now because the process will be poof,
282 	 * gone later on.
283 	 */
284 	if (event == NOTE_EXIT) {
285 		struct proc *p = kn->kn_ptr.p_proc;
286 		if ((kn->kn_status & KN_DETACHED) == 0) {
287 			SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
288 			kn->kn_status |= KN_DETACHED;
289 			kn->kn_data = p->p_xstat;
290 			kn->kn_ptr.p_proc = NULL;
291 		}
292 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
293 		return (1);
294 	}
295 
296 	/*
297 	 * process forked, and user wants to track the new process,
298 	 * so attach a new knote to it, and immediately report an
299 	 * event with the parent's pid.
300 	 */
301 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
302 		struct kevent kev;
303 		int error;
304 
305 		/*
306 		 * register knote with new process.
307 		 */
308 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
309 		kev.filter = kn->kn_filter;
310 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
311 		kev.fflags = kn->kn_sfflags;
312 		kev.data = kn->kn_id;			/* parent */
313 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
314 		error = kqueue_register(kn->kn_kq, &kev);
315 		if (error)
316 			kn->kn_fflags |= NOTE_TRACKERR;
317 	}
318 
319 	return (kn->kn_fflags != 0);
320 }
321 
322 static void
323 filt_timerexpire(void *knx)
324 {
325 	struct knote *kn = knx;
326 	struct callout *calloutp;
327 	struct timeval tv;
328 	int tticks;
329 
330 	kn->kn_data++;
331 	KNOTE_ACTIVATE(kn);
332 
333 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
334 		tv.tv_sec = kn->kn_sdata / 1000;
335 		tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
336 		tticks = tvtohz_high(&tv);
337 		calloutp = (struct callout *)kn->kn_hook;
338 		callout_reset(calloutp, tticks, filt_timerexpire, kn);
339 	}
340 }
341 
342 /*
343  * data contains amount of time to sleep, in milliseconds
344  */
345 static int
346 filt_timerattach(struct knote *kn)
347 {
348 	struct callout *calloutp;
349 	struct timeval tv;
350 	int tticks;
351 
352 	if (kq_ncallouts >= kq_calloutmax)
353 		return (ENOMEM);
354 	kq_ncallouts++;
355 
356 	tv.tv_sec = kn->kn_sdata / 1000;
357 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
358 	tticks = tvtohz_high(&tv);
359 
360 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
361 	MALLOC(calloutp, struct callout *, sizeof(*calloutp),
362 	    M_KQUEUE, M_WAITOK);
363 	callout_init(calloutp);
364 	kn->kn_hook = (caddr_t)calloutp;
365 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
366 
367 	return (0);
368 }
369 
370 static void
371 filt_timerdetach(struct knote *kn)
372 {
373 	struct callout *calloutp;
374 
375 	calloutp = (struct callout *)kn->kn_hook;
376 	callout_stop(calloutp);
377 	FREE(calloutp, M_KQUEUE);
378 	kq_ncallouts--;
379 }
380 
381 static int
382 filt_timer(struct knote *kn, long hint)
383 {
384 
385 	return (kn->kn_data != 0);
386 }
387 
388 /*
389  * Initialize a kqueue.
390  *
391  * NOTE: The lwp/proc code initializes a kqueue for select/poll ops.
392  *
393  * MPSAFE
394  */
395 void
396 kqueue_init(struct kqueue *kq, struct filedesc *fdp)
397 {
398 	TAILQ_INIT(&kq->kq_knpend);
399 	TAILQ_INIT(&kq->kq_knlist);
400 	kq->kq_fdp = fdp;
401 }
402 
403 /*
404  * Terminate a kqueue.  Freeing the actual kq itself is left up to the
405  * caller (it might be embedded in a lwp so we don't do it here).
406  */
407 void
408 kqueue_terminate(struct kqueue *kq)
409 {
410 	struct knote *kn;
411 	struct klist *list;
412 	int hv;
413 
414 	while ((kn = TAILQ_FIRST(&kq->kq_knlist)) != NULL) {
415 		kn->kn_fop->f_detach(kn);
416 		if (kn->kn_fop->f_isfd) {
417 			list = &kn->kn_fp->f_klist;
418 			SLIST_REMOVE(list, kn, knote, kn_link);
419 			fdrop(kn->kn_fp);
420 			kn->kn_fp = NULL;
421 		} else {
422 			hv = KN_HASH(kn->kn_id, kq->kq_knhashmask);
423 			list = &kq->kq_knhash[hv];
424 			SLIST_REMOVE(list, kn, knote, kn_link);
425 		}
426 		TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink);
427 		if (kn->kn_status & KN_QUEUED)
428 			knote_dequeue(kn);
429 		knote_free(kn);
430 	}
431 
432 	if (kq->kq_knhash) {
433 		kfree(kq->kq_knhash, M_KQUEUE);
434 		kq->kq_knhash = NULL;
435 		kq->kq_knhashmask = 0;
436 	}
437 }
438 
439 /*
440  * MPSAFE
441  */
442 int
443 sys_kqueue(struct kqueue_args *uap)
444 {
445 	struct thread *td = curthread;
446 	struct kqueue *kq;
447 	struct file *fp;
448 	int fd, error;
449 
450 	error = falloc(td->td_lwp, &fp, &fd);
451 	if (error)
452 		return (error);
453 	fp->f_flag = FREAD | FWRITE;
454 	fp->f_type = DTYPE_KQUEUE;
455 	fp->f_ops = &kqueueops;
456 
457 	kq = kmalloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO);
458 	kqueue_init(kq, td->td_proc->p_fd);
459 	fp->f_data = kq;
460 
461 	fsetfd(kq->kq_fdp, fp, fd);
462 	uap->sysmsg_result = fd;
463 	fdrop(fp);
464 	return (error);
465 }
466 
467 /*
468  * Copy 'count' items into the destination list pointed to by uap->eventlist.
469  */
470 static int
471 kevent_copyout(void *arg, struct kevent *kevp, int count)
472 {
473 	struct kevent_args *uap;
474 	int error;
475 
476 	uap = (struct kevent_args *)arg;
477 
478 	error = copyout(kevp, uap->eventlist, count * sizeof *kevp);
479 	if (error == 0)
480 		uap->eventlist += count;
481 	return (error);
482 }
483 
484 /*
485  * Copy 'count' items from the list pointed to by uap->changelist.
486  */
487 static int
488 kevent_copyin(void *arg, struct kevent *kevp, int count)
489 {
490 	struct kevent_args *uap;
491 	int error;
492 
493 	uap = (struct kevent_args *)arg;
494 
495 	error = copyin(uap->changelist, kevp, count * sizeof *kevp);
496 	if (error == 0)
497 		uap->changelist += count;
498 	return (error);
499 }
500 
501 /*
502  * MPALMOSTSAFE
503  */
504 int
505 kern_kevent(int fd, int nchanges, int nevents, struct kevent_args *uap,
506     k_copyin_fn kevent_copyinfn, k_copyout_fn kevent_copyoutfn,
507     struct timespec *tsp_in)
508 {
509 	struct thread *td = curthread;
510 	struct proc *p = td->td_proc;
511 	struct kevent *kevp;
512 	struct kqueue *kq;
513 	struct file *fp = NULL;
514 	struct timespec ts;
515 	struct timespec *tsp;
516 	int i, n, total, nerrors, error;
517 	struct kevent kev[KQ_NEVENTS];
518 
519 	tsp = tsp_in;
520 
521 	fp = holdfp(p->p_fd, fd, -1);
522 	if (fp == NULL)
523 		return (EBADF);
524 	if (fp->f_type != DTYPE_KQUEUE) {
525 		fdrop(fp);
526 		return (EBADF);
527 	}
528 
529 	kq = (struct kqueue *)fp->f_data;
530 	nerrors = 0;
531 
532 	get_mplock();
533 	while (nchanges > 0) {
534 		n = nchanges > KQ_NEVENTS ? KQ_NEVENTS : nchanges;
535 		error = kevent_copyinfn(uap, kev, n);
536 		if (error)
537 			goto done;
538 		for (i = 0; i < n; i++) {
539 			kevp = &kev[i];
540 			kevp->flags &= ~EV_SYSFLAGS;
541 			error = kqueue_register(kq, kevp);
542 			if (error) {
543 				if (nevents != 0) {
544 					kevp->flags = EV_ERROR;
545 					kevp->data = error;
546 					kevent_copyoutfn(uap, kevp, 1);
547 					nevents--;
548 					nerrors++;
549 				} else {
550 					goto done;
551 				}
552 			}
553 		}
554 		nchanges -= n;
555 	}
556 	if (nerrors) {
557         	uap->sysmsg_result = nerrors;
558 		error = 0;
559 		goto done;
560 	}
561 
562 	/*
563 	 * Acquire/wait for events - setup timeout
564 	 */
565 	if (tsp != NULL) {
566 		struct timespec ats;
567 
568 		if (tsp->tv_sec || tsp->tv_nsec) {
569 			nanouptime(&ats);
570 			timespecadd(tsp, &ats);		/* tsp = target time */
571 		}
572 	}
573 
574 	/*
575 	 * Loop as required.
576 	 *
577 	 * Collect as many events as we can.  The timeout on successive
578 	 * loops is disabled (kqueue_scan() becomes non-blocking).
579 	 */
580 	total = 0;
581 	error = 0;
582 	while ((n = nevents - total) > 0) {
583 		if (n > KQ_NEVENTS)
584 			n = KQ_NEVENTS;
585 		i = kqueue_scan(kq, kev, n, tsp, &error);
586 		if (i == 0)
587 			break;
588 		error = kevent_copyoutfn(uap, kev, i);
589 		total += i;
590 		if (error || i != n)
591 			break;
592 		tsp = &ts;		/* successive loops non-blocking */
593 		tsp->tv_sec = 0;
594 		tsp->tv_nsec = 0;
595 	}
596 	uap->sysmsg_result = total;
597 done:
598 	rel_mplock();
599 	if (fp != NULL)
600 		fdrop(fp);
601 	return (error);
602 }
603 
604 /*
605  * MPALMOSTSAFE
606  */
607 int
608 sys_kevent(struct kevent_args *uap)
609 {
610 	struct timespec ts, *tsp;
611 	int error;
612 
613 	if (uap->timeout) {
614 		error = copyin(uap->timeout, &ts, sizeof(ts));
615 		if (error)
616 			return (error);
617 		tsp = &ts;
618 	} else {
619 		tsp = NULL;
620 	}
621 
622 	error = kern_kevent(uap->fd, uap->nchanges, uap->nevents,
623 	    uap, kevent_copyin, kevent_copyout, tsp);
624 
625 	return (error);
626 }
627 
628 int
629 kqueue_register(struct kqueue *kq, struct kevent *kev)
630 {
631 	struct filedesc *fdp = kq->kq_fdp;
632 	struct filterops *fops;
633 	struct file *fp = NULL;
634 	struct knote *kn = NULL;
635 	int error = 0;
636 
637 	if (kev->filter < 0) {
638 		if (kev->filter + EVFILT_SYSCOUNT < 0)
639 			return (EINVAL);
640 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
641 	} else {
642 		/*
643 		 * XXX
644 		 * filter attach routine is responsible for insuring that
645 		 * the identifier can be attached to it.
646 		 */
647 		kprintf("unknown filter: %d\n", kev->filter);
648 		return (EINVAL);
649 	}
650 
651 	if (fops->f_isfd) {
652 		/* validate descriptor */
653 		fp = holdfp(fdp, kev->ident, -1);
654 		if (fp == NULL)
655 			return (EBADF);
656 
657 		SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
658 			if (kn->kn_kq == kq &&
659 			    kn->kn_filter == kev->filter &&
660 			    kn->kn_id == kev->ident) {
661 				break;
662 			}
663 		}
664 	} else {
665 		if (kq->kq_knhashmask) {
666 			struct klist *list;
667 
668 			list = &kq->kq_knhash[
669 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
670 			SLIST_FOREACH(kn, list, kn_link) {
671 				if (kn->kn_id == kev->ident &&
672 				    kn->kn_filter == kev->filter)
673 					break;
674 			}
675 		}
676 	}
677 
678 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
679 		error = ENOENT;
680 		goto done;
681 	}
682 
683 	/*
684 	 * kn now contains the matching knote, or NULL if no match
685 	 */
686 	if (kev->flags & EV_ADD) {
687 		if (kn == NULL) {
688 			kn = knote_alloc();
689 			if (kn == NULL) {
690 				error = ENOMEM;
691 				goto done;
692 			}
693 			kn->kn_fp = fp;
694 			kn->kn_kq = kq;
695 			kn->kn_fop = fops;
696 
697 			/*
698 			 * apply reference count to knote structure, and
699 			 * do not release it at the end of this routine.
700 			 */
701 			fp = NULL;
702 
703 			kn->kn_sfflags = kev->fflags;
704 			kn->kn_sdata = kev->data;
705 			kev->fflags = 0;
706 			kev->data = 0;
707 			kn->kn_kevent = *kev;
708 
709 			knote_attach(kn);
710 			if ((error = fops->f_attach(kn)) != 0) {
711 				knote_drop(kn);
712 				goto done;
713 			}
714 		} else {
715 			/*
716 			 * The user may change some filter values after the
717 			 * initial EV_ADD, but doing so will not reset any
718 			 * filter which have already been triggered.
719 			 */
720 			kn->kn_sfflags = kev->fflags;
721 			kn->kn_sdata = kev->data;
722 			kn->kn_kevent.udata = kev->udata;
723 		}
724 
725 		crit_enter();
726 		if (kn->kn_fop->f_event(kn, 0))
727 			KNOTE_ACTIVATE(kn);
728 		crit_exit();
729 	} else if (kev->flags & EV_DELETE) {
730 		kn->kn_fop->f_detach(kn);
731 		knote_drop(kn);
732 		goto done;
733 	}
734 
735 	if ((kev->flags & EV_DISABLE) &&
736 	    ((kn->kn_status & KN_DISABLED) == 0)) {
737 		crit_enter();
738 		kn->kn_status |= KN_DISABLED;
739 		crit_exit();
740 	}
741 
742 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
743 		crit_enter();
744 		kn->kn_status &= ~KN_DISABLED;
745 		if ((kn->kn_status & KN_ACTIVE) &&
746 		    ((kn->kn_status & KN_QUEUED) == 0))
747 			knote_enqueue(kn);
748 		crit_exit();
749 	}
750 
751 done:
752 	if (fp != NULL)
753 		fdrop(fp);
754 	return (error);
755 }
756 
757 /*
758  * Scan the kqueue, blocking if necessary until the target time is reached.
759  * If tsp is NULL we block indefinitely.  If tsp->ts_secs/nsecs are both
760  * 0 we do not block at all.
761  */
762 static int
763 kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
764 	    struct timespec *tsp, int *errorp)
765 {
766 	struct knote *kn, marker;
767 	int total;
768 
769 	total = 0;
770 again:
771 	crit_enter();
772 	if (kq->kq_count == 0) {
773 		if (tsp == NULL) {
774 			kq->kq_state |= KQ_SLEEP;
775 			*errorp = tsleep(kq, PCATCH, "kqread", 0);
776 		} else if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
777 			*errorp = EWOULDBLOCK;
778 		} else {
779 			struct timespec ats;
780 			struct timespec atx = *tsp;
781 			int timeout;
782 
783 			nanouptime(&ats);
784 			timespecsub(&atx, &ats);
785 			if (ats.tv_sec < 0) {
786 				*errorp = EWOULDBLOCK;
787 			} else {
788 				timeout = atx.tv_sec > 24 * 60 * 60 ?
789 					24 * 60 * 60 * hz : tstohz_high(&atx);
790 				kq->kq_state |= KQ_SLEEP;
791 				*errorp = tsleep(kq, PCATCH, "kqread", timeout);
792 			}
793 		}
794 		crit_exit();
795 		if (*errorp == 0)
796 			goto again;
797 		/* don't restart after signals... */
798 		if (*errorp == ERESTART)
799 			*errorp = EINTR;
800 		else if (*errorp == EWOULDBLOCK)
801 			*errorp = 0;
802 		goto done;
803 	}
804 
805 	/*
806 	 * Collect events.  Continuous mode events may get recycled
807 	 * past the marker so we stop when we hit it unless no events
808 	 * have been collected.
809 	 */
810 	TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
811 	while (count) {
812 		kn = TAILQ_FIRST(&kq->kq_knpend);
813 		if (kn == &marker)
814 			break;
815 		TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
816 		if (kn->kn_status & KN_DISABLED) {
817 			kn->kn_status &= ~KN_QUEUED;
818 			kq->kq_count--;
819 			continue;
820 		}
821 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
822 		    kn->kn_fop->f_event(kn, 0) == 0) {
823 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
824 			kq->kq_count--;
825 			continue;
826 		}
827 		*kevp++ = kn->kn_kevent;
828 		++total;
829 		--count;
830 
831 		/*
832 		 * Post-event action on the note
833 		 */
834 		if (kn->kn_flags & EV_ONESHOT) {
835 			kn->kn_status &= ~KN_QUEUED;
836 			kq->kq_count--;
837 			crit_exit();
838 			kn->kn_fop->f_detach(kn);
839 			knote_drop(kn);
840 			crit_enter();
841 		} else if (kn->kn_flags & EV_CLEAR) {
842 			kn->kn_data = 0;
843 			kn->kn_fflags = 0;
844 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
845 			kq->kq_count--;
846 		} else {
847 			TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
848 		}
849 	}
850 	TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
851 	crit_exit();
852 	if (total == 0)
853 		goto again;
854 done:
855 	return (total);
856 }
857 
858 /*
859  * XXX
860  * This could be expanded to call kqueue_scan, if desired.
861  *
862  * MPSAFE
863  */
864 static int
865 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
866 {
867 	return (ENXIO);
868 }
869 
870 /*
871  * MPSAFE
872  */
873 static int
874 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
875 {
876 	return (ENXIO);
877 }
878 
879 /*
880  * MPALMOSTSAFE
881  */
882 static int
883 kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
884 	     struct ucred *cred, struct sysmsg *msg)
885 {
886 	struct kqueue *kq;
887 	int error;
888 
889 	get_mplock();
890 	kq = (struct kqueue *)fp->f_data;
891 
892 	switch(com) {
893 	case FIOASYNC:
894 		if (*(int *)data)
895 			kq->kq_state |= KQ_ASYNC;
896 		else
897 			kq->kq_state &= ~KQ_ASYNC;
898 		error = 0;
899 		break;
900 	case FIOSETOWN:
901 		error = fsetown(*(int *)data, &kq->kq_sigio);
902 		break;
903 	default:
904 		error = ENOTTY;
905 		break;
906 	}
907 	rel_mplock();
908 	return (error);
909 }
910 
911 /*
912  * MPALMOSTSAFE - acquires mplock
913  */
914 static int
915 kqueue_poll(struct file *fp, int events, struct ucred *cred)
916 {
917 	struct kqueue *kq = (struct kqueue *)fp->f_data;
918 	int revents = 0;
919 
920 	get_mplock();
921 	crit_enter();
922         if (events & (POLLIN | POLLRDNORM)) {
923                 if (kq->kq_count) {
924                         revents |= events & (POLLIN | POLLRDNORM);
925 		} else {
926                         selrecord(curthread, &kq->kq_sel);
927 			kq->kq_state |= KQ_SEL;
928 		}
929 	}
930 	crit_exit();
931 	rel_mplock();
932 	return (revents);
933 }
934 
935 /*
936  * MPSAFE
937  */
938 static int
939 kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred)
940 {
941 	struct kqueue *kq = (struct kqueue *)fp->f_data;
942 
943 	bzero((void *)st, sizeof(*st));
944 	st->st_size = kq->kq_count;
945 	st->st_blksize = sizeof(struct kevent);
946 	st->st_mode = S_IFIFO;
947 	return (0);
948 }
949 
950 /*
951  * MPALMOSTSAFE - acquires mplock
952  */
953 static int
954 kqueue_close(struct file *fp)
955 {
956 	struct kqueue *kq = (struct kqueue *)fp->f_data;
957 
958 	get_mplock();
959 
960 	kqueue_terminate(kq);
961 
962 	fp->f_data = NULL;
963 	funsetown(kq->kq_sigio);
964 	rel_mplock();
965 
966 	kfree(kq, M_KQUEUE);
967 	return (0);
968 }
969 
970 static void
971 kqueue_wakeup(struct kqueue *kq)
972 {
973 	if (kq->kq_state & KQ_SLEEP) {
974 		kq->kq_state &= ~KQ_SLEEP;
975 		wakeup(kq);
976 	}
977 	if (kq->kq_state & KQ_SEL) {
978 		kq->kq_state &= ~KQ_SEL;
979 		selwakeup(&kq->kq_sel);
980 	}
981 	KNOTE(&kq->kq_sel.si_note, 0);
982 }
983 
984 /*
985  * walk down a list of knotes, activating them if their event has triggered.
986  */
987 void
988 knote(struct klist *list, long hint)
989 {
990 	struct knote *kn;
991 
992 	SLIST_FOREACH(kn, list, kn_selnext)
993 		if (kn->kn_fop->f_event(kn, hint))
994 			KNOTE_ACTIVATE(kn);
995 }
996 
997 /*
998  * remove all knotes from a specified klist
999  */
1000 void
1001 knote_remove(struct klist *list)
1002 {
1003 	struct knote *kn;
1004 
1005 	while ((kn = SLIST_FIRST(list)) != NULL) {
1006 		kn->kn_fop->f_detach(kn);
1007 		knote_drop(kn);
1008 	}
1009 }
1010 
1011 /*
1012  * remove all knotes referencing a specified fd
1013  */
1014 void
1015 knote_fdclose(struct file *fp, struct filedesc *fdp, int fd)
1016 {
1017 	struct knote *kn;
1018 
1019 restart:
1020 	SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
1021 		if (kn->kn_kq->kq_fdp == fdp && kn->kn_id == fd) {
1022 			kn->kn_fop->f_detach(kn);
1023 			knote_drop(kn);
1024 			goto restart;
1025 		}
1026 	}
1027 }
1028 
1029 static void
1030 knote_attach(struct knote *kn)
1031 {
1032 	struct klist *list;
1033 	struct kqueue *kq = kn->kn_kq;
1034 
1035 	if (kn->kn_fop->f_isfd) {
1036 		KKASSERT(kn->kn_fp);
1037 		list = &kn->kn_fp->f_klist;
1038 	} else {
1039 		if (kq->kq_knhashmask == 0)
1040 			kq->kq_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1041 						 &kq->kq_knhashmask);
1042 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1043 	}
1044 	SLIST_INSERT_HEAD(list, kn, kn_link);
1045 	TAILQ_INSERT_HEAD(&kq->kq_knlist, kn, kn_kqlink);
1046 	kn->kn_status = 0;
1047 }
1048 
1049 /*
1050  * should be called outside of a critical section, since we don't want to
1051  * hold a critical section while calling fdrop and free.
1052  */
1053 static void
1054 knote_drop(struct knote *kn)
1055 {
1056 	struct kqueue *kq;
1057 	struct klist *list;
1058 
1059 	kq = kn->kn_kq;
1060 
1061 	if (kn->kn_fop->f_isfd)
1062 		list = &kn->kn_fp->f_klist;
1063 	else
1064 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1065 
1066 	SLIST_REMOVE(list, kn, knote, kn_link);
1067 	TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink);
1068 	if (kn->kn_status & KN_QUEUED)
1069 		knote_dequeue(kn);
1070 	if (kn->kn_fop->f_isfd)
1071 		fdrop(kn->kn_fp);
1072 	knote_free(kn);
1073 }
1074 
1075 
1076 static void
1077 knote_enqueue(struct knote *kn)
1078 {
1079 	struct kqueue *kq = kn->kn_kq;
1080 
1081 	crit_enter();
1082 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1083 
1084 	TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1085 	kn->kn_status |= KN_QUEUED;
1086 	++kq->kq_count;
1087 
1088 	/*
1089 	 * Send SIGIO on request (typically set up as a mailbox signal)
1090 	 */
1091 	if (kq->kq_sigio && (kq->kq_state & KQ_ASYNC) && kq->kq_count == 1)
1092 		pgsigio(kq->kq_sigio, SIGIO, 0);
1093 	crit_exit();
1094 	kqueue_wakeup(kq);
1095 }
1096 
1097 static void
1098 knote_dequeue(struct knote *kn)
1099 {
1100 	struct kqueue *kq = kn->kn_kq;
1101 
1102 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1103 	crit_enter();
1104 
1105 	TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1106 	kn->kn_status &= ~KN_QUEUED;
1107 	kq->kq_count--;
1108 	crit_exit();
1109 }
1110 
1111 static void
1112 knote_init(void)
1113 {
1114 	knote_zone = zinit("KNOTE", sizeof(struct knote), 0, 0, 1);
1115 }
1116 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
1117 
1118 static struct knote *
1119 knote_alloc(void)
1120 {
1121 	return ((struct knote *)zalloc(knote_zone));
1122 }
1123 
1124 static void
1125 knote_free(struct knote *kn)
1126 {
1127 	zfree(knote_zone, kn);
1128 }
1129