xref: /dflybsd-src/sys/kern/kern_event.c (revision 2192e32eabfeca69947bbc94e2f4061a24451eb2)
1 /*-
2  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_event.c,v 1.2.2.10 2004/04/04 07:03:14 cperciva Exp $
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/proc.h>
33 #include <sys/malloc.h>
34 #include <sys/unistd.h>
35 #include <sys/file.h>
36 #include <sys/lock.h>
37 #include <sys/fcntl.h>
38 #include <sys/queue.h>
39 #include <sys/event.h>
40 #include <sys/eventvar.h>
41 #include <sys/protosw.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/sysproto.h>
47 #include <sys/thread.h>
48 #include <sys/uio.h>
49 #include <sys/signalvar.h>
50 #include <sys/filio.h>
51 #include <sys/ktr.h>
52 
53 #include <sys/thread2.h>
54 #include <sys/file2.h>
55 #include <sys/mplock2.h>
56 
57 #define EVENT_REGISTER	1
58 #define EVENT_PROCESS	2
59 
60 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
61 
62 struct kevent_copyin_args {
63 	struct kevent_args	*ka;
64 	int			pchanges;
65 };
66 
67 #define KNOTE_CACHE_MAX		8
68 
69 struct knote_cache_list {
70 	struct klist		knote_cache;
71 	int			knote_cache_cnt;
72 } __cachealign;
73 
74 static int	kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
75 		    struct knote *marker);
76 static int 	kqueue_read(struct file *fp, struct uio *uio,
77 		    struct ucred *cred, int flags);
78 static int	kqueue_write(struct file *fp, struct uio *uio,
79 		    struct ucred *cred, int flags);
80 static int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
81 		    struct ucred *cred, struct sysmsg *msg);
82 static int 	kqueue_kqfilter(struct file *fp, struct knote *kn);
83 static int 	kqueue_stat(struct file *fp, struct stat *st,
84 		    struct ucred *cred);
85 static int 	kqueue_close(struct file *fp);
86 static void	kqueue_wakeup(struct kqueue *kq);
87 static int	filter_attach(struct knote *kn);
88 static int	filter_event(struct knote *kn, long hint);
89 
90 /*
91  * MPSAFE
92  */
93 static struct fileops kqueueops = {
94 	.fo_read = kqueue_read,
95 	.fo_write = kqueue_write,
96 	.fo_ioctl = kqueue_ioctl,
97 	.fo_kqfilter = kqueue_kqfilter,
98 	.fo_stat = kqueue_stat,
99 	.fo_close = kqueue_close,
100 	.fo_shutdown = nofo_shutdown
101 };
102 
103 static void 	knote_attach(struct knote *kn);
104 static void 	knote_drop(struct knote *kn);
105 static void	knote_detach_and_drop(struct knote *kn);
106 static void 	knote_enqueue(struct knote *kn);
107 static void 	knote_dequeue(struct knote *kn);
108 static struct 	knote *knote_alloc(void);
109 static void 	knote_free(struct knote *kn);
110 
111 static void	filt_kqdetach(struct knote *kn);
112 static int	filt_kqueue(struct knote *kn, long hint);
113 static int	filt_procattach(struct knote *kn);
114 static void	filt_procdetach(struct knote *kn);
115 static int	filt_proc(struct knote *kn, long hint);
116 static int	filt_fileattach(struct knote *kn);
117 static void	filt_timerexpire(void *knx);
118 static int	filt_timerattach(struct knote *kn);
119 static void	filt_timerdetach(struct knote *kn);
120 static int	filt_timer(struct knote *kn, long hint);
121 static int	filt_userattach(struct knote *kn);
122 static void	filt_userdetach(struct knote *kn);
123 static int	filt_user(struct knote *kn, long hint);
124 static void	filt_usertouch(struct knote *kn, struct kevent *kev,
125 				u_long type);
126 
127 static struct filterops file_filtops =
128 	{ FILTEROP_ISFD | FILTEROP_MPSAFE, filt_fileattach, NULL, NULL };
129 static struct filterops kqread_filtops =
130 	{ FILTEROP_ISFD | FILTEROP_MPSAFE, NULL, filt_kqdetach, filt_kqueue };
131 static struct filterops proc_filtops =
132 	{ 0, filt_procattach, filt_procdetach, filt_proc };
133 static struct filterops timer_filtops =
134 	{ FILTEROP_MPSAFE, filt_timerattach, filt_timerdetach, filt_timer };
135 static struct filterops user_filtops =
136 	{ FILTEROP_MPSAFE, filt_userattach, filt_userdetach, filt_user };
137 
138 static int 		kq_ncallouts = 0;
139 static int 		kq_calloutmax = (4 * 1024);
140 SYSCTL_INT(_kern, OID_AUTO, kq_calloutmax, CTLFLAG_RW,
141     &kq_calloutmax, 0, "Maximum number of callouts allocated for kqueue");
142 static int		kq_checkloop = 1000000;
143 SYSCTL_INT(_kern, OID_AUTO, kq_checkloop, CTLFLAG_RW,
144     &kq_checkloop, 0, "Maximum number of loops for kqueue scan");
145 
146 #define KNOTE_ACTIVATE(kn) do { 					\
147 	kn->kn_status |= KN_ACTIVE;					\
148 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
149 		knote_enqueue(kn);					\
150 } while(0)
151 
152 #define	KN_HASHSIZE		64		/* XXX should be tunable */
153 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
154 
155 extern struct filterops aio_filtops;
156 extern struct filterops sig_filtops;
157 
158 /*
159  * Table for for all system-defined filters.
160  */
161 static struct filterops *sysfilt_ops[] = {
162 	&file_filtops,			/* EVFILT_READ */
163 	&file_filtops,			/* EVFILT_WRITE */
164 	&aio_filtops,			/* EVFILT_AIO */
165 	&file_filtops,			/* EVFILT_VNODE */
166 	&proc_filtops,			/* EVFILT_PROC */
167 	&sig_filtops,			/* EVFILT_SIGNAL */
168 	&timer_filtops,			/* EVFILT_TIMER */
169 	&file_filtops,			/* EVFILT_EXCEPT */
170 	&user_filtops,			/* EVFILT_USER */
171 };
172 
173 static struct knote_cache_list	knote_cache_lists[MAXCPU];
174 
175 /*
176  * Acquire a knote, return non-zero on success, 0 on failure.
177  *
178  * If we cannot acquire the knote we sleep and return 0.  The knote
179  * may be stale on return in this case and the caller must restart
180  * whatever loop they are in.
181  *
182  * Related kq token must be held.
183  */
184 static __inline int
185 knote_acquire(struct knote *kn)
186 {
187 	if (kn->kn_status & KN_PROCESSING) {
188 		kn->kn_status |= KN_WAITING | KN_REPROCESS;
189 		tsleep(kn, 0, "kqepts", hz);
190 		/* knote may be stale now */
191 		return(0);
192 	}
193 	kn->kn_status |= KN_PROCESSING;
194 	return(1);
195 }
196 
197 /*
198  * Release an acquired knote, clearing KN_PROCESSING and handling any
199  * KN_REPROCESS events.
200  *
201  * Caller must be holding the related kq token
202  *
203  * Non-zero is returned if the knote is destroyed or detached.
204  */
205 static __inline void
206 knote_release(struct knote *kn)
207 {
208 	while (kn->kn_status & KN_REPROCESS) {
209 		kn->kn_status &= ~KN_REPROCESS;
210 		if (kn->kn_status & KN_WAITING) {
211 			kn->kn_status &= ~KN_WAITING;
212 			wakeup(kn);
213 		}
214 		if (kn->kn_status & KN_DELETING) {
215 			knote_detach_and_drop(kn);
216 			return;
217 			/* NOT REACHED */
218 		}
219 		if (filter_event(kn, 0))
220 			KNOTE_ACTIVATE(kn);
221 	}
222 	kn->kn_status &= ~KN_PROCESSING;
223 	/* kn should not be accessed anymore */
224 }
225 
226 static int
227 filt_fileattach(struct knote *kn)
228 {
229 	return (fo_kqfilter(kn->kn_fp, kn));
230 }
231 
232 /*
233  * MPSAFE
234  */
235 static int
236 kqueue_kqfilter(struct file *fp, struct knote *kn)
237 {
238 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
239 
240 	if (kn->kn_filter != EVFILT_READ)
241 		return (EOPNOTSUPP);
242 
243 	kn->kn_fop = &kqread_filtops;
244 	knote_insert(&kq->kq_kqinfo.ki_note, kn);
245 	return (0);
246 }
247 
248 static void
249 filt_kqdetach(struct knote *kn)
250 {
251 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
252 
253 	knote_remove(&kq->kq_kqinfo.ki_note, kn);
254 }
255 
256 /*ARGSUSED*/
257 static int
258 filt_kqueue(struct knote *kn, long hint)
259 {
260 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
261 
262 	kn->kn_data = kq->kq_count;
263 	return (kn->kn_data > 0);
264 }
265 
266 static int
267 filt_procattach(struct knote *kn)
268 {
269 	struct proc *p;
270 	int immediate;
271 
272 	immediate = 0;
273 	p = pfind(kn->kn_id);
274 	if (p == NULL && (kn->kn_sfflags & NOTE_EXIT)) {
275 		p = zpfind(kn->kn_id);
276 		immediate = 1;
277 	}
278 	if (p == NULL) {
279 		return (ESRCH);
280 	}
281 	if (!PRISON_CHECK(curthread->td_ucred, p->p_ucred)) {
282 		if (p)
283 			PRELE(p);
284 		return (EACCES);
285 	}
286 
287 	lwkt_gettoken(&p->p_token);
288 	kn->kn_ptr.p_proc = p;
289 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
290 
291 	/*
292 	 * internal flag indicating registration done by kernel
293 	 */
294 	if (kn->kn_flags & EV_FLAG1) {
295 		kn->kn_data = kn->kn_sdata;		/* ppid */
296 		kn->kn_fflags = NOTE_CHILD;
297 		kn->kn_flags &= ~EV_FLAG1;
298 	}
299 
300 	knote_insert(&p->p_klist, kn);
301 
302 	/*
303 	 * Immediately activate any exit notes if the target process is a
304 	 * zombie.  This is necessary to handle the case where the target
305 	 * process, e.g. a child, dies before the kevent is negistered.
306 	 */
307 	if (immediate && filt_proc(kn, NOTE_EXIT))
308 		KNOTE_ACTIVATE(kn);
309 	lwkt_reltoken(&p->p_token);
310 	PRELE(p);
311 
312 	return (0);
313 }
314 
315 /*
316  * The knote may be attached to a different process, which may exit,
317  * leaving nothing for the knote to be attached to.  So when the process
318  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
319  * it will be deleted when read out.  However, as part of the knote deletion,
320  * this routine is called, so a check is needed to avoid actually performing
321  * a detach, because the original process does not exist any more.
322  */
323 static void
324 filt_procdetach(struct knote *kn)
325 {
326 	struct proc *p;
327 
328 	if (kn->kn_status & KN_DETACHED)
329 		return;
330 	p = kn->kn_ptr.p_proc;
331 	knote_remove(&p->p_klist, kn);
332 }
333 
334 static int
335 filt_proc(struct knote *kn, long hint)
336 {
337 	u_int event;
338 
339 	/*
340 	 * mask off extra data
341 	 */
342 	event = (u_int)hint & NOTE_PCTRLMASK;
343 
344 	/*
345 	 * if the user is interested in this event, record it.
346 	 */
347 	if (kn->kn_sfflags & event)
348 		kn->kn_fflags |= event;
349 
350 	/*
351 	 * Process is gone, so flag the event as finished.  Detach the
352 	 * knote from the process now because the process will be poof,
353 	 * gone later on.
354 	 */
355 	if (event == NOTE_EXIT) {
356 		struct proc *p = kn->kn_ptr.p_proc;
357 		if ((kn->kn_status & KN_DETACHED) == 0) {
358 			PHOLD(p);
359 			knote_remove(&p->p_klist, kn);
360 			kn->kn_status |= KN_DETACHED;
361 			kn->kn_data = p->p_xstat;
362 			kn->kn_ptr.p_proc = NULL;
363 			PRELE(p);
364 		}
365 		kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT);
366 		return (1);
367 	}
368 
369 	/*
370 	 * process forked, and user wants to track the new process,
371 	 * so attach a new knote to it, and immediately report an
372 	 * event with the parent's pid.
373 	 */
374 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
375 		struct kevent kev;
376 		int error;
377 
378 		/*
379 		 * register knote with new process.
380 		 */
381 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
382 		kev.filter = kn->kn_filter;
383 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
384 		kev.fflags = kn->kn_sfflags;
385 		kev.data = kn->kn_id;			/* parent */
386 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
387 		error = kqueue_register(kn->kn_kq, &kev);
388 		if (error)
389 			kn->kn_fflags |= NOTE_TRACKERR;
390 	}
391 
392 	return (kn->kn_fflags != 0);
393 }
394 
395 static void
396 filt_timerreset(struct knote *kn)
397 {
398 	struct callout *calloutp;
399 	struct timeval tv;
400 	int tticks;
401 
402 	tv.tv_sec = kn->kn_sdata / 1000;
403 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
404 	tticks = tvtohz_high(&tv);
405 	calloutp = (struct callout *)kn->kn_hook;
406 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
407 }
408 
409 /*
410  * The callout interlocks with callout_terminate() but can still
411  * race a deletion so if KN_DELETING is set we just don't touch
412  * the knote.
413  */
414 static void
415 filt_timerexpire(void *knx)
416 {
417 	struct knote *kn = knx;
418 	struct kqueue *kq = kn->kn_kq;
419 
420 	lwkt_getpooltoken(kq);
421 
422 	/*
423 	 * Open knote_acquire(), since we can't sleep in callout,
424 	 * however, we do need to record this expiration.
425 	 */
426 	kn->kn_data++;
427 	if (kn->kn_status & KN_PROCESSING) {
428 		kn->kn_status |= KN_REPROCESS;
429 		if ((kn->kn_status & KN_DELETING) == 0 &&
430 		    (kn->kn_flags & EV_ONESHOT) == 0)
431 			filt_timerreset(kn);
432 		lwkt_relpooltoken(kq);
433 		return;
434 	}
435 	KASSERT((kn->kn_status & KN_DELETING) == 0,
436 	    ("acquire a deleting knote %#x", kn->kn_status));
437 	kn->kn_status |= KN_PROCESSING;
438 
439 	KNOTE_ACTIVATE(kn);
440 	if ((kn->kn_flags & EV_ONESHOT) == 0)
441 		filt_timerreset(kn);
442 
443 	knote_release(kn);
444 
445 	lwkt_relpooltoken(kq);
446 }
447 
448 /*
449  * data contains amount of time to sleep, in milliseconds
450  */
451 static int
452 filt_timerattach(struct knote *kn)
453 {
454 	struct callout *calloutp;
455 	int prev_ncallouts;
456 
457 	prev_ncallouts = atomic_fetchadd_int(&kq_ncallouts, 1);
458 	if (prev_ncallouts >= kq_calloutmax) {
459 		atomic_subtract_int(&kq_ncallouts, 1);
460 		kn->kn_hook = NULL;
461 		return (ENOMEM);
462 	}
463 
464 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
465 	calloutp = kmalloc(sizeof(*calloutp), M_KQUEUE, M_WAITOK);
466 	callout_init_mp(calloutp);
467 	kn->kn_hook = (caddr_t)calloutp;
468 
469 	filt_timerreset(kn);
470 	return (0);
471 }
472 
473 /*
474  * This function is called with the knote flagged locked but it is
475  * still possible to race a callout event due to the callback blocking.
476  * We must call callout_terminate() instead of callout_stop() to deal
477  * with the race.
478  */
479 static void
480 filt_timerdetach(struct knote *kn)
481 {
482 	struct callout *calloutp;
483 
484 	calloutp = (struct callout *)kn->kn_hook;
485 	callout_terminate(calloutp);
486 	kfree(calloutp, M_KQUEUE);
487 	atomic_subtract_int(&kq_ncallouts, 1);
488 }
489 
490 static int
491 filt_timer(struct knote *kn, long hint)
492 {
493 
494 	return (kn->kn_data != 0);
495 }
496 
497 /*
498  * EVFILT_USER
499  */
500 static int
501 filt_userattach(struct knote *kn)
502 {
503 	kn->kn_hook = NULL;
504 	if (kn->kn_fflags & NOTE_TRIGGER)
505 		kn->kn_ptr.hookid = 1;
506 	else
507 		kn->kn_ptr.hookid = 0;
508 	return 0;
509 }
510 
511 static void
512 filt_userdetach(struct knote *kn)
513 {
514 	/* nothing to do */
515 }
516 
517 static int
518 filt_user(struct knote *kn, long hint)
519 {
520 	return (kn->kn_ptr.hookid);
521 }
522 
523 static void
524 filt_usertouch(struct knote *kn, struct kevent *kev, u_long type)
525 {
526 	u_int ffctrl;
527 
528 	switch (type) {
529 	case EVENT_REGISTER:
530 		if (kev->fflags & NOTE_TRIGGER)
531 			kn->kn_ptr.hookid = 1;
532 
533 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
534 		kev->fflags &= NOTE_FFLAGSMASK;
535 		switch (ffctrl) {
536 		case NOTE_FFNOP:
537 			break;
538 
539 		case NOTE_FFAND:
540 			kn->kn_sfflags &= kev->fflags;
541 			break;
542 
543 		case NOTE_FFOR:
544 			kn->kn_sfflags |= kev->fflags;
545 			break;
546 
547 		case NOTE_FFCOPY:
548 			kn->kn_sfflags = kev->fflags;
549 			break;
550 
551 		default:
552 			/* XXX Return error? */
553 			break;
554 		}
555 		kn->kn_sdata = kev->data;
556 
557 		/*
558 		 * This is not the correct use of EV_CLEAR in an event
559 		 * modification, it should have been passed as a NOTE instead.
560 		 * But we need to maintain compatibility with Apple & FreeBSD.
561 		 *
562 		 * Note however that EV_CLEAR can still be used when doing
563 		 * the initial registration of the event and works as expected
564 		 * (clears the event on reception).
565 		 */
566 		if (kev->flags & EV_CLEAR) {
567 			kn->kn_ptr.hookid = 0;
568 			kn->kn_data = 0;
569 			kn->kn_fflags = 0;
570 		}
571 		break;
572 
573         case EVENT_PROCESS:
574 		*kev = kn->kn_kevent;
575 		kev->fflags = kn->kn_sfflags;
576 		kev->data = kn->kn_sdata;
577 		if (kn->kn_flags & EV_CLEAR) {
578 			kn->kn_ptr.hookid = 0;
579 			/* kn_data, kn_fflags handled by parent */
580 		}
581 		break;
582 
583 	default:
584 		panic("filt_usertouch() - invalid type (%ld)", type);
585 		break;
586 	}
587 }
588 
589 /*
590  * Initialize a kqueue.
591  *
592  * NOTE: The lwp/proc code initializes a kqueue for select/poll ops.
593  *
594  * MPSAFE
595  */
596 void
597 kqueue_init(struct kqueue *kq, struct filedesc *fdp)
598 {
599 	TAILQ_INIT(&kq->kq_knpend);
600 	TAILQ_INIT(&kq->kq_knlist);
601 	kq->kq_count = 0;
602 	kq->kq_fdp = fdp;
603 	SLIST_INIT(&kq->kq_kqinfo.ki_note);
604 }
605 
606 /*
607  * Terminate a kqueue.  Freeing the actual kq itself is left up to the
608  * caller (it might be embedded in a lwp so we don't do it here).
609  *
610  * The kq's knlist must be completely eradicated so block on any
611  * processing races.
612  */
613 void
614 kqueue_terminate(struct kqueue *kq)
615 {
616 	struct lwkt_token *tok;
617 	struct knote *kn;
618 
619 	tok = lwkt_token_pool_lookup(kq);
620 	lwkt_gettoken(tok);
621 	while ((kn = TAILQ_FIRST(&kq->kq_knlist)) != NULL) {
622 		if (knote_acquire(kn))
623 			knote_detach_and_drop(kn);
624 	}
625 	lwkt_reltoken(tok);
626 
627 	if (kq->kq_knhash) {
628 		hashdestroy(kq->kq_knhash, M_KQUEUE, kq->kq_knhashmask);
629 		kq->kq_knhash = NULL;
630 		kq->kq_knhashmask = 0;
631 	}
632 }
633 
634 /*
635  * MPSAFE
636  */
637 int
638 sys_kqueue(struct kqueue_args *uap)
639 {
640 	struct thread *td = curthread;
641 	struct kqueue *kq;
642 	struct file *fp;
643 	int fd, error;
644 
645 	error = falloc(td->td_lwp, &fp, &fd);
646 	if (error)
647 		return (error);
648 	fp->f_flag = FREAD | FWRITE;
649 	fp->f_type = DTYPE_KQUEUE;
650 	fp->f_ops = &kqueueops;
651 
652 	kq = kmalloc(sizeof(struct kqueue), M_KQUEUE, M_WAITOK | M_ZERO);
653 	kqueue_init(kq, td->td_proc->p_fd);
654 	fp->f_data = kq;
655 
656 	fsetfd(kq->kq_fdp, fp, fd);
657 	uap->sysmsg_result = fd;
658 	fdrop(fp);
659 	return (error);
660 }
661 
662 /*
663  * Copy 'count' items into the destination list pointed to by uap->eventlist.
664  */
665 static int
666 kevent_copyout(void *arg, struct kevent *kevp, int count, int *res)
667 {
668 	struct kevent_copyin_args *kap;
669 	int error;
670 
671 	kap = (struct kevent_copyin_args *)arg;
672 
673 	error = copyout(kevp, kap->ka->eventlist, count * sizeof(*kevp));
674 	if (error == 0) {
675 		kap->ka->eventlist += count;
676 		*res += count;
677 	} else {
678 		*res = -1;
679 	}
680 
681 	return (error);
682 }
683 
684 /*
685  * Copy at most 'max' items from the list pointed to by kap->changelist,
686  * return number of items in 'events'.
687  */
688 static int
689 kevent_copyin(void *arg, struct kevent *kevp, int max, int *events)
690 {
691 	struct kevent_copyin_args *kap;
692 	int error, count;
693 
694 	kap = (struct kevent_copyin_args *)arg;
695 
696 	count = min(kap->ka->nchanges - kap->pchanges, max);
697 	error = copyin(kap->ka->changelist, kevp, count * sizeof *kevp);
698 	if (error == 0) {
699 		kap->ka->changelist += count;
700 		kap->pchanges += count;
701 		*events = count;
702 	}
703 
704 	return (error);
705 }
706 
707 /*
708  * MPSAFE
709  */
710 int
711 kern_kevent(struct kqueue *kq, int nevents, int *res, void *uap,
712 	    k_copyin_fn kevent_copyinfn, k_copyout_fn kevent_copyoutfn,
713 	    struct timespec *tsp_in)
714 {
715 	struct kevent *kevp;
716 	struct timespec *tsp, ats;
717 	int i, n, total, error, nerrors = 0;
718 	int lres;
719 	int limit = kq_checkloop;
720 	struct kevent kev[KQ_NEVENTS];
721 	struct knote marker;
722 	struct lwkt_token *tok;
723 
724 	if (tsp_in == NULL || tsp_in->tv_sec || tsp_in->tv_nsec)
725 		atomic_set_int(&curthread->td_mpflags, TDF_MP_BATCH_DEMARC);
726 
727 	tsp = tsp_in;
728 	*res = 0;
729 
730 	for (;;) {
731 		n = 0;
732 		error = kevent_copyinfn(uap, kev, KQ_NEVENTS, &n);
733 		if (error)
734 			return error;
735 		if (n == 0)
736 			break;
737 		for (i = 0; i < n; i++) {
738 			kevp = &kev[i];
739 			kevp->flags &= ~EV_SYSFLAGS;
740 			error = kqueue_register(kq, kevp);
741 
742 			/*
743 			 * If a registration returns an error we
744 			 * immediately post the error.  The kevent()
745 			 * call itself will fail with the error if
746 			 * no space is available for posting.
747 			 *
748 			 * Such errors normally bypass the timeout/blocking
749 			 * code.  However, if the copyoutfn function refuses
750 			 * to post the error (see sys_poll()), then we
751 			 * ignore it too.
752 			 */
753 			if (error || (kevp->flags & EV_RECEIPT)) {
754 				kevp->flags = EV_ERROR;
755 				kevp->data = error;
756 				lres = *res;
757 				kevent_copyoutfn(uap, kevp, 1, res);
758 				if (*res < 0) {
759 					return error;
760 				} else if (lres != *res) {
761 					nevents--;
762 					nerrors++;
763 				}
764 			}
765 		}
766 	}
767 	if (nerrors)
768 		return 0;
769 
770 	/*
771 	 * Acquire/wait for events - setup timeout
772 	 */
773 	if (tsp != NULL) {
774 		if (tsp->tv_sec || tsp->tv_nsec) {
775 			getnanouptime(&ats);
776 			timespecadd(tsp, &ats);		/* tsp = target time */
777 		}
778 	}
779 
780 	/*
781 	 * Loop as required.
782 	 *
783 	 * Collect as many events as we can. Sleeping on successive
784 	 * loops is disabled if copyoutfn has incremented (*res).
785 	 *
786 	 * The loop stops if an error occurs, all events have been
787 	 * scanned (the marker has been reached), or fewer than the
788 	 * maximum number of events is found.
789 	 *
790 	 * The copyoutfn function does not have to increment (*res) in
791 	 * order for the loop to continue.
792 	 *
793 	 * NOTE: doselect() usually passes 0x7FFFFFFF for nevents.
794 	 */
795 	total = 0;
796 	error = 0;
797 	marker.kn_filter = EVFILT_MARKER;
798 	marker.kn_status = KN_PROCESSING;
799 	tok = lwkt_token_pool_lookup(kq);
800 	lwkt_gettoken(tok);
801 	TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
802 	lwkt_reltoken(tok);
803 	while ((n = nevents - total) > 0) {
804 		if (n > KQ_NEVENTS)
805 			n = KQ_NEVENTS;
806 
807 		/*
808 		 * If no events are pending sleep until timeout (if any)
809 		 * or an event occurs.
810 		 *
811 		 * After the sleep completes the marker is moved to the
812 		 * end of the list, making any received events available
813 		 * to our scan.
814 		 */
815 		if (kq->kq_count == 0 && *res == 0) {
816 			int timeout;
817 
818 			if (tsp == NULL) {
819 				timeout = 0;
820 			} else if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
821 				error = EWOULDBLOCK;
822 				break;
823 			} else {
824 				struct timespec atx = *tsp;
825 
826 				getnanouptime(&ats);
827 				timespecsub(&atx, &ats);
828 				if (atx.tv_sec < 0) {
829 					error = EWOULDBLOCK;
830 					break;
831 				} else {
832 					timeout = atx.tv_sec > 24 * 60 * 60 ?
833 					    24 * 60 * 60 * hz :
834 					    tstohz_high(&atx);
835 				}
836 			}
837 
838 			lwkt_gettoken(tok);
839 			if (kq->kq_count == 0) {
840 				kq->kq_sleep_cnt++;
841 				error = tsleep(kq, PCATCH, "kqread", timeout);
842 
843 				/* don't restart after signals... */
844 				if (error == ERESTART)
845 					error = EINTR;
846 				if (error) {
847 					lwkt_reltoken(tok);
848 					break;
849 				}
850 
851 				TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
852 				TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker,
853 				    kn_tqe);
854 			}
855 			lwkt_reltoken(tok);
856 		}
857 
858 		/*
859 		 * Process all received events
860 		 * Account for all non-spurious events in our total
861 		 */
862 		i = kqueue_scan(kq, kev, n, &marker);
863 		if (i) {
864 			lres = *res;
865 			error = kevent_copyoutfn(uap, kev, i, res);
866 			total += *res - lres;
867 			if (error)
868 				break;
869 		}
870 		if (limit && --limit == 0)
871 			panic("kqueue: checkloop failed i=%d", i);
872 
873 		/*
874 		 * Normally when fewer events are returned than requested
875 		 * we can stop.  However, if only spurious events were
876 		 * collected the copyout will not bump (*res) and we have
877 		 * to continue.
878 		 */
879 		if (i < n && *res)
880 			break;
881 
882 		/*
883 		 * Deal with an edge case where spurious events can cause
884 		 * a loop to occur without moving the marker.  This can
885 		 * prevent kqueue_scan() from picking up new events which
886 		 * race us.  We must be sure to move the marker for this
887 		 * case.
888 		 *
889 		 * NOTE: We do not want to move the marker if events
890 		 *	 were scanned because normal kqueue operations
891 		 *	 may reactivate events.  Moving the marker in
892 		 *	 that case could result in duplicates for the
893 		 *	 same event.
894 		 */
895 		if (i == 0) {
896 			lwkt_gettoken(tok);
897 			TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
898 			TAILQ_INSERT_TAIL(&kq->kq_knpend, &marker, kn_tqe);
899 			lwkt_reltoken(tok);
900 		}
901 	}
902 	lwkt_gettoken(tok);
903 	TAILQ_REMOVE(&kq->kq_knpend, &marker, kn_tqe);
904 	lwkt_reltoken(tok);
905 
906 	/* Timeouts do not return EWOULDBLOCK. */
907 	if (error == EWOULDBLOCK)
908 		error = 0;
909 	return error;
910 }
911 
912 /*
913  * MPALMOSTSAFE
914  */
915 int
916 sys_kevent(struct kevent_args *uap)
917 {
918 	struct thread *td = curthread;
919 	struct proc *p = td->td_proc;
920 	struct timespec ts, *tsp;
921 	struct kqueue *kq;
922 	struct file *fp = NULL;
923 	struct kevent_copyin_args *kap, ka;
924 	int error;
925 
926 	if (uap->timeout) {
927 		error = copyin(uap->timeout, &ts, sizeof(ts));
928 		if (error)
929 			return (error);
930 		tsp = &ts;
931 	} else {
932 		tsp = NULL;
933 	}
934 	fp = holdfp(p->p_fd, uap->fd, -1);
935 	if (fp == NULL)
936 		return (EBADF);
937 	if (fp->f_type != DTYPE_KQUEUE) {
938 		fdrop(fp);
939 		return (EBADF);
940 	}
941 
942 	kq = (struct kqueue *)fp->f_data;
943 
944 	kap = &ka;
945 	kap->ka = uap;
946 	kap->pchanges = 0;
947 
948 	error = kern_kevent(kq, uap->nevents, &uap->sysmsg_result, kap,
949 			    kevent_copyin, kevent_copyout, tsp);
950 
951 	fdrop(fp);
952 
953 	return (error);
954 }
955 
956 int
957 kqueue_register(struct kqueue *kq, struct kevent *kev)
958 {
959 	struct filedesc *fdp = kq->kq_fdp;
960 	struct klist *list = NULL;
961 	struct filterops *fops;
962 	struct file *fp = NULL;
963 	struct knote *kn = NULL;
964 	struct thread *td;
965 	int error = 0;
966 	struct knote_cache_list *cache_list;
967 
968 	if (kev->filter < 0) {
969 		if (kev->filter + EVFILT_SYSCOUNT < 0)
970 			return (EINVAL);
971 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
972 	} else {
973 		/*
974 		 * XXX
975 		 * filter attach routine is responsible for insuring that
976 		 * the identifier can be attached to it.
977 		 */
978 		return (EINVAL);
979 	}
980 
981 	if (fops->f_flags & FILTEROP_ISFD) {
982 		/* validate descriptor */
983 		fp = holdfp(fdp, kev->ident, -1);
984 		if (fp == NULL)
985 			return (EBADF);
986 	}
987 
988 	cache_list = &knote_cache_lists[mycpuid];
989 	if (SLIST_EMPTY(&cache_list->knote_cache)) {
990 		struct knote *new_kn;
991 
992 		new_kn = knote_alloc();
993 		SLIST_INSERT_HEAD(&cache_list->knote_cache, new_kn, kn_link);
994 		cache_list->knote_cache_cnt++;
995 	}
996 
997 	td = curthread;
998 	lwkt_getpooltoken(kq);
999 
1000 	/*
1001 	 * Make sure that only one thread can register event on this kqueue,
1002 	 * so that we would not suffer any race, even if the registration
1003 	 * blocked, i.e. kq token was released, and the kqueue was shared
1004 	 * between threads (this should be rare though).
1005 	 */
1006 	while (__predict_false(kq->kq_regtd != NULL && kq->kq_regtd != td)) {
1007 		kq->kq_state |= KQ_REGWAIT;
1008 		tsleep(&kq->kq_regtd, 0, "kqreg", 0);
1009 	}
1010 	if (__predict_false(kq->kq_regtd != NULL)) {
1011 		/* Recursive calling of kqueue_register() */
1012 		td = NULL;
1013 	} else {
1014 		/* Owner of the kq_regtd, i.e. td != NULL */
1015 		kq->kq_regtd = td;
1016 	}
1017 
1018 	if (fp != NULL) {
1019 		list = &fp->f_klist;
1020 	} else if (kq->kq_knhashmask) {
1021 		list = &kq->kq_knhash[
1022 		    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
1023 	}
1024 	if (list != NULL) {
1025 		lwkt_getpooltoken(list);
1026 again:
1027 		SLIST_FOREACH(kn, list, kn_link) {
1028 			if (kn->kn_kq == kq &&
1029 			    kn->kn_filter == kev->filter &&
1030 			    kn->kn_id == kev->ident) {
1031 				if (knote_acquire(kn) == 0)
1032 					goto again;
1033 				break;
1034 			}
1035 		}
1036 		lwkt_relpooltoken(list);
1037 	}
1038 
1039 	/*
1040 	 * NOTE: At this point if kn is non-NULL we will have acquired
1041 	 *	 it and set KN_PROCESSING.
1042 	 */
1043 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
1044 		error = ENOENT;
1045 		goto done;
1046 	}
1047 
1048 	/*
1049 	 * kn now contains the matching knote, or NULL if no match
1050 	 */
1051 	if (kev->flags & EV_ADD) {
1052 		if (kn == NULL) {
1053 			kn = SLIST_FIRST(&cache_list->knote_cache);
1054 			if (kn == NULL) {
1055 				kn = knote_alloc();
1056 			} else {
1057 				SLIST_REMOVE_HEAD(&cache_list->knote_cache,
1058 				    kn_link);
1059 				cache_list->knote_cache_cnt--;
1060 			}
1061 			kn->kn_fp = fp;
1062 			kn->kn_kq = kq;
1063 			kn->kn_fop = fops;
1064 
1065 			/*
1066 			 * apply reference count to knote structure, and
1067 			 * do not release it at the end of this routine.
1068 			 */
1069 			fp = NULL;
1070 
1071 			kn->kn_sfflags = kev->fflags;
1072 			kn->kn_sdata = kev->data;
1073 			kev->fflags = 0;
1074 			kev->data = 0;
1075 			kn->kn_kevent = *kev;
1076 
1077 			/*
1078 			 * KN_PROCESSING prevents the knote from getting
1079 			 * ripped out from under us while we are trying
1080 			 * to attach it, in case the attach blocks.
1081 			 */
1082 			kn->kn_status = KN_PROCESSING;
1083 			knote_attach(kn);
1084 			if ((error = filter_attach(kn)) != 0) {
1085 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1086 				knote_drop(kn);
1087 				goto done;
1088 			}
1089 
1090 			/*
1091 			 * Interlock against close races which either tried
1092 			 * to remove our knote while we were blocked or missed
1093 			 * it entirely prior to our attachment.  We do not
1094 			 * want to end up with a knote on a closed descriptor.
1095 			 */
1096 			if ((fops->f_flags & FILTEROP_ISFD) &&
1097 			    checkfdclosed(fdp, kev->ident, kn->kn_fp)) {
1098 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1099 			}
1100 		} else {
1101 			/*
1102 			 * The user may change some filter values after the
1103 			 * initial EV_ADD, but doing so will not reset any
1104 			 * filter which have already been triggered.
1105 			 */
1106 			KKASSERT(kn->kn_status & KN_PROCESSING);
1107 			if (fops == &user_filtops) {
1108 				filt_usertouch(kn, kev, EVENT_REGISTER);
1109 			} else {
1110 				kn->kn_sfflags = kev->fflags;
1111 				kn->kn_sdata = kev->data;
1112 				kn->kn_kevent.udata = kev->udata;
1113 			}
1114 		}
1115 
1116 		/*
1117 		 * Execute the filter event to immediately activate the
1118 		 * knote if necessary.  If reprocessing events are pending
1119 		 * due to blocking above we do not run the filter here
1120 		 * but instead let knote_release() do it.  Otherwise we
1121 		 * might run the filter on a deleted event.
1122 		 */
1123 		if ((kn->kn_status & KN_REPROCESS) == 0) {
1124 			if (filter_event(kn, 0))
1125 				KNOTE_ACTIVATE(kn);
1126 		}
1127 	} else if (kev->flags & EV_DELETE) {
1128 		/*
1129 		 * Delete the existing knote
1130 		 */
1131 		knote_detach_and_drop(kn);
1132 		goto done;
1133 	} else {
1134 		/*
1135 		 * Modify an existing event.
1136 		 *
1137 		 * The user may change some filter values after the
1138 		 * initial EV_ADD, but doing so will not reset any
1139 		 * filter which have already been triggered.
1140 		 */
1141 		KKASSERT(kn->kn_status & KN_PROCESSING);
1142 		if (fops == &user_filtops) {
1143 			filt_usertouch(kn, kev, EVENT_REGISTER);
1144 		} else {
1145 			kn->kn_sfflags = kev->fflags;
1146 			kn->kn_sdata = kev->data;
1147 			kn->kn_kevent.udata = kev->udata;
1148 		}
1149 
1150 		/*
1151 		 * Execute the filter event to immediately activate the
1152 		 * knote if necessary.  If reprocessing events are pending
1153 		 * due to blocking above we do not run the filter here
1154 		 * but instead let knote_release() do it.  Otherwise we
1155 		 * might run the filter on a deleted event.
1156 		 */
1157 		if ((kn->kn_status & KN_REPROCESS) == 0) {
1158 			if (filter_event(kn, 0))
1159 				KNOTE_ACTIVATE(kn);
1160 		}
1161 	}
1162 
1163 	/*
1164 	 * Disablement does not deactivate a knote here.
1165 	 */
1166 	if ((kev->flags & EV_DISABLE) &&
1167 	    ((kn->kn_status & KN_DISABLED) == 0)) {
1168 		kn->kn_status |= KN_DISABLED;
1169 	}
1170 
1171 	/*
1172 	 * Re-enablement may have to immediately enqueue an active knote.
1173 	 */
1174 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
1175 		kn->kn_status &= ~KN_DISABLED;
1176 		if ((kn->kn_status & KN_ACTIVE) &&
1177 		    ((kn->kn_status & KN_QUEUED) == 0)) {
1178 			knote_enqueue(kn);
1179 		}
1180 	}
1181 
1182 	/*
1183 	 * Handle any required reprocessing
1184 	 */
1185 	knote_release(kn);
1186 	/* kn may be invalid now */
1187 
1188 done:
1189 	if (td != NULL) { /* Owner of the kq_regtd */
1190 		kq->kq_regtd = NULL;
1191 		if (__predict_false(kq->kq_state & KQ_REGWAIT)) {
1192 			kq->kq_state &= ~KQ_REGWAIT;
1193 			wakeup(&kq->kq_regtd);
1194 		}
1195 	}
1196 	lwkt_relpooltoken(kq);
1197 	if (fp != NULL)
1198 		fdrop(fp);
1199 	return (error);
1200 }
1201 
1202 /*
1203  * Scan the kqueue, return the number of active events placed in kevp up
1204  * to count.
1205  *
1206  * Continuous mode events may get recycled, do not continue scanning past
1207  * marker unless no events have been collected.
1208  */
1209 static int
1210 kqueue_scan(struct kqueue *kq, struct kevent *kevp, int count,
1211             struct knote *marker)
1212 {
1213         struct knote *kn, local_marker;
1214         int total;
1215 
1216 	total = 0;
1217 	local_marker.kn_filter = EVFILT_MARKER;
1218 	local_marker.kn_status = KN_PROCESSING;
1219 
1220 	lwkt_getpooltoken(kq);
1221 
1222 	/*
1223 	 * Collect events.
1224 	 */
1225 	TAILQ_INSERT_HEAD(&kq->kq_knpend, &local_marker, kn_tqe);
1226 	while (count) {
1227 		kn = TAILQ_NEXT(&local_marker, kn_tqe);
1228 		if (kn->kn_filter == EVFILT_MARKER) {
1229 			/* Marker reached, we are done */
1230 			if (kn == marker)
1231 				break;
1232 
1233 			/* Move local marker past some other threads marker */
1234 			kn = TAILQ_NEXT(kn, kn_tqe);
1235 			TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
1236 			TAILQ_INSERT_BEFORE(kn, &local_marker, kn_tqe);
1237 			continue;
1238 		}
1239 
1240 		/*
1241 		 * We can't skip a knote undergoing processing, otherwise
1242 		 * we risk not returning it when the user process expects
1243 		 * it should be returned.  Sleep and retry.
1244 		 */
1245 		if (knote_acquire(kn) == 0)
1246 			continue;
1247 
1248 		/*
1249 		 * Remove the event for processing.
1250 		 *
1251 		 * WARNING!  We must leave KN_QUEUED set to prevent the
1252 		 *	     event from being KNOTE_ACTIVATE()d while
1253 		 *	     the queue state is in limbo, in case we
1254 		 *	     block.
1255 		 */
1256 		TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1257 		kq->kq_count--;
1258 
1259 		/*
1260 		 * We have to deal with an extremely important race against
1261 		 * file descriptor close()s here.  The file descriptor can
1262 		 * disappear MPSAFE, and there is a small window of
1263 		 * opportunity between that and the call to knote_fdclose().
1264 		 *
1265 		 * If we hit that window here while doselect or dopoll is
1266 		 * trying to delete a spurious event they will not be able
1267 		 * to match up the event against a knote and will go haywire.
1268 		 */
1269 		if ((kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1270 		    checkfdclosed(kq->kq_fdp, kn->kn_kevent.ident, kn->kn_fp)) {
1271 			kn->kn_status |= KN_DELETING | KN_REPROCESS;
1272 		}
1273 
1274 		if (kn->kn_status & KN_DISABLED) {
1275 			/*
1276 			 * If disabled we ensure the event is not queued
1277 			 * but leave its active bit set.  On re-enablement
1278 			 * the event may be immediately triggered.
1279 			 */
1280 			kn->kn_status &= ~KN_QUEUED;
1281 		} else if ((kn->kn_flags & EV_ONESHOT) == 0 &&
1282 			   (kn->kn_status & KN_DELETING) == 0 &&
1283 			   filter_event(kn, 0) == 0) {
1284 			/*
1285 			 * If not running in one-shot mode and the event
1286 			 * is no longer present we ensure it is removed
1287 			 * from the queue and ignore it.
1288 			 */
1289 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1290 		} else {
1291 			/*
1292 			 * Post the event
1293 			 */
1294 			if (kn->kn_fop == &user_filtops)
1295 				filt_usertouch(kn, kevp, EVENT_PROCESS);
1296 			else
1297 				*kevp = kn->kn_kevent;
1298 			++kevp;
1299 			++total;
1300 			--count;
1301 
1302 			if (kn->kn_flags & EV_ONESHOT) {
1303 				kn->kn_status &= ~KN_QUEUED;
1304 				kn->kn_status |= KN_DELETING | KN_REPROCESS;
1305 			} else {
1306 				if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
1307 					if (kn->kn_flags & EV_CLEAR) {
1308 						kn->kn_data = 0;
1309 						kn->kn_fflags = 0;
1310 					}
1311 					if (kn->kn_flags & EV_DISPATCH) {
1312 						kn->kn_status |= KN_DISABLED;
1313 					}
1314 					kn->kn_status &= ~(KN_QUEUED |
1315 							   KN_ACTIVE);
1316 				} else {
1317 					TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1318 					kq->kq_count++;
1319 				}
1320 			}
1321 		}
1322 
1323 		/*
1324 		 * Handle any post-processing states
1325 		 */
1326 		knote_release(kn);
1327 	}
1328 	TAILQ_REMOVE(&kq->kq_knpend, &local_marker, kn_tqe);
1329 
1330 	lwkt_relpooltoken(kq);
1331 	return (total);
1332 }
1333 
1334 /*
1335  * XXX
1336  * This could be expanded to call kqueue_scan, if desired.
1337  *
1338  * MPSAFE
1339  */
1340 static int
1341 kqueue_read(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1342 {
1343 	return (ENXIO);
1344 }
1345 
1346 /*
1347  * MPSAFE
1348  */
1349 static int
1350 kqueue_write(struct file *fp, struct uio *uio, struct ucred *cred, int flags)
1351 {
1352 	return (ENXIO);
1353 }
1354 
1355 /*
1356  * MPALMOSTSAFE
1357  */
1358 static int
1359 kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
1360 	     struct ucred *cred, struct sysmsg *msg)
1361 {
1362 	struct lwkt_token *tok;
1363 	struct kqueue *kq;
1364 	int error;
1365 
1366 	kq = (struct kqueue *)fp->f_data;
1367 	tok = lwkt_token_pool_lookup(kq);
1368 	lwkt_gettoken(tok);
1369 
1370 	switch(com) {
1371 	case FIOASYNC:
1372 		if (*(int *)data)
1373 			kq->kq_state |= KQ_ASYNC;
1374 		else
1375 			kq->kq_state &= ~KQ_ASYNC;
1376 		error = 0;
1377 		break;
1378 	case FIOSETOWN:
1379 		error = fsetown(*(int *)data, &kq->kq_sigio);
1380 		break;
1381 	default:
1382 		error = ENOTTY;
1383 		break;
1384 	}
1385 	lwkt_reltoken(tok);
1386 	return (error);
1387 }
1388 
1389 /*
1390  * MPSAFE
1391  */
1392 static int
1393 kqueue_stat(struct file *fp, struct stat *st, struct ucred *cred)
1394 {
1395 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1396 
1397 	bzero((void *)st, sizeof(*st));
1398 	st->st_size = kq->kq_count;
1399 	st->st_blksize = sizeof(struct kevent);
1400 	st->st_mode = S_IFIFO;
1401 	return (0);
1402 }
1403 
1404 /*
1405  * MPSAFE
1406  */
1407 static int
1408 kqueue_close(struct file *fp)
1409 {
1410 	struct kqueue *kq = (struct kqueue *)fp->f_data;
1411 
1412 	kqueue_terminate(kq);
1413 
1414 	fp->f_data = NULL;
1415 	funsetown(&kq->kq_sigio);
1416 
1417 	kfree(kq, M_KQUEUE);
1418 	return (0);
1419 }
1420 
1421 static void
1422 kqueue_wakeup(struct kqueue *kq)
1423 {
1424 	if (kq->kq_sleep_cnt) {
1425 		if (kq->kq_sleep_cnt == 1)
1426 			wakeup_one(kq);
1427 		else
1428 			wakeup(kq);
1429 		kq->kq_sleep_cnt = 0;
1430 	}
1431 	KNOTE(&kq->kq_kqinfo.ki_note, 0);
1432 }
1433 
1434 /*
1435  * Calls filterops f_attach function, acquiring mplock if filter is not
1436  * marked as FILTEROP_MPSAFE.
1437  *
1438  * Caller must be holding the related kq token
1439  */
1440 static int
1441 filter_attach(struct knote *kn)
1442 {
1443 	int ret;
1444 
1445 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1446 		ret = kn->kn_fop->f_attach(kn);
1447 	} else {
1448 		get_mplock();
1449 		ret = kn->kn_fop->f_attach(kn);
1450 		rel_mplock();
1451 	}
1452 	return (ret);
1453 }
1454 
1455 /*
1456  * Detach the knote and drop it, destroying the knote.
1457  *
1458  * Calls filterops f_detach function, acquiring mplock if filter is not
1459  * marked as FILTEROP_MPSAFE.
1460  *
1461  * Caller must be holding the related kq token
1462  */
1463 static void
1464 knote_detach_and_drop(struct knote *kn)
1465 {
1466 	kn->kn_status |= KN_DELETING | KN_REPROCESS;
1467 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1468 		kn->kn_fop->f_detach(kn);
1469 	} else {
1470 		get_mplock();
1471 		kn->kn_fop->f_detach(kn);
1472 		rel_mplock();
1473 	}
1474 	knote_drop(kn);
1475 }
1476 
1477 /*
1478  * Calls filterops f_event function, acquiring mplock if filter is not
1479  * marked as FILTEROP_MPSAFE.
1480  *
1481  * If the knote is in the middle of being created or deleted we cannot
1482  * safely call the filter op.
1483  *
1484  * Caller must be holding the related kq token
1485  */
1486 static int
1487 filter_event(struct knote *kn, long hint)
1488 {
1489 	int ret;
1490 
1491 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
1492 		ret = kn->kn_fop->f_event(kn, hint);
1493 	} else {
1494 		get_mplock();
1495 		ret = kn->kn_fop->f_event(kn, hint);
1496 		rel_mplock();
1497 	}
1498 	return (ret);
1499 }
1500 
1501 /*
1502  * Walk down a list of knotes, activating them if their event has triggered.
1503  *
1504  * If we encounter any knotes which are undergoing processing we just mark
1505  * them for reprocessing and do not try to [re]activate the knote.  However,
1506  * if a hint is being passed we have to wait and that makes things a bit
1507  * sticky.
1508  */
1509 void
1510 knote(struct klist *list, long hint)
1511 {
1512 	struct knote *kn, marker;
1513 
1514 	marker.kn_filter = EVFILT_MARKER;
1515 	marker.kn_status = KN_PROCESSING;
1516 
1517 	lwkt_getpooltoken(list);
1518 	if (SLIST_EMPTY(list)) {
1519 		lwkt_relpooltoken(list);
1520 		return;
1521 	}
1522 
1523 	SLIST_INSERT_HEAD(list, &marker, kn_next);
1524 	while ((kn = SLIST_NEXT(&marker, kn_next)) != NULL) {
1525 		struct kqueue *kq;
1526 		int last_knote = 0;
1527 
1528 		if (kn->kn_filter == EVFILT_MARKER) {
1529 			/* Skip marker */
1530 			SLIST_REMOVE(list, &marker, knote, kn_next);
1531 			if (SLIST_NEXT(kn, kn_next) == NULL)
1532 				goto done;
1533 			SLIST_INSERT_AFTER(kn, &marker, kn_next);
1534 			continue;
1535 		}
1536 
1537 		kq = kn->kn_kq;
1538 		lwkt_getpooltoken(kq);
1539 
1540 		if (kn != SLIST_NEXT(&marker, kn_next) || kn->kn_kq != kq) {
1541 			/*
1542 			 * Don't move the marker; check the knote after
1543 			 * the marker again.
1544 			 */
1545 			lwkt_relpooltoken(kq);
1546 			continue;
1547 		}
1548 
1549 		if (kn->kn_status & KN_PROCESSING) {
1550 			/*
1551 			 * Someone else is processing the knote, ask the
1552 			 * other thread to reprocess it and don't mess
1553 			 * with it otherwise.
1554 			 */
1555 			if (hint == 0) {
1556 				/*
1557 				 * Move the marker w/ the kq token, so that
1558 				 * this knote will not be ripped behind our
1559 				 * back.
1560 				 */
1561 				SLIST_REMOVE(list, &marker, knote, kn_next);
1562 				if (SLIST_NEXT(kn, kn_next) != NULL)
1563 					SLIST_INSERT_AFTER(kn, &marker, kn_next);
1564 				else
1565 					last_knote = 1;
1566 				kn->kn_status |= KN_REPROCESS;
1567 				lwkt_relpooltoken(kq);
1568 
1569 				if (last_knote)
1570 					goto done;
1571 				continue;
1572 			}
1573 
1574 			/*
1575 			 * If the hint is non-zero we have to wait or risk
1576 			 * losing the state the caller is trying to update.
1577 			 */
1578 			kn->kn_status |= KN_WAITING | KN_REPROCESS;
1579 			tsleep(kn, 0, "knotec", hz);
1580 
1581 			/*
1582 			 * Don't move the marker; check this knote again,
1583 			 * hopefully it is still after the marker.  Or it
1584 			 * was deleted and we would check the next knote.
1585 			 */
1586 			lwkt_relpooltoken(kq);
1587 			continue;
1588 		}
1589 
1590 		/*
1591 		 * Become the reprocessing master ourselves.
1592 		 */
1593 		KASSERT((kn->kn_status & KN_DELETING) == 0,
1594 		    ("acquire a deleting knote %#x", kn->kn_status));
1595 		kn->kn_status |= KN_PROCESSING;
1596 
1597 		/* Move the marker */
1598 		SLIST_REMOVE(list, &marker, knote, kn_next);
1599 		if (SLIST_NEXT(kn, kn_next) != NULL)
1600 			SLIST_INSERT_AFTER(kn, &marker, kn_next);
1601 		else
1602 			last_knote = 1;
1603 
1604 		/*
1605 		 * If hint is non-zero running the event is mandatory
1606 		 * so do it whether reprocessing is set or not.
1607 		 */
1608 		if (filter_event(kn, hint))
1609 			KNOTE_ACTIVATE(kn);
1610 
1611 		knote_release(kn);
1612 		lwkt_relpooltoken(kq);
1613 
1614 		if (last_knote)
1615 			goto done;
1616 	}
1617 	SLIST_REMOVE(list, &marker, knote, kn_next);
1618 done:
1619 	lwkt_relpooltoken(list);
1620 }
1621 
1622 /*
1623  * Insert knote at head of klist.
1624  *
1625  * This function may only be called via a filter function and thus
1626  * kq_token should already be held and marked for processing.
1627  */
1628 void
1629 knote_insert(struct klist *klist, struct knote *kn)
1630 {
1631 	lwkt_getpooltoken(klist);
1632 	KKASSERT(kn->kn_status & KN_PROCESSING);
1633 	SLIST_INSERT_HEAD(klist, kn, kn_next);
1634 	lwkt_relpooltoken(klist);
1635 }
1636 
1637 /*
1638  * Remove knote from a klist
1639  *
1640  * This function may only be called via a filter function and thus
1641  * kq_token should already be held and marked for processing.
1642  */
1643 void
1644 knote_remove(struct klist *klist, struct knote *kn)
1645 {
1646 	lwkt_getpooltoken(klist);
1647 	KKASSERT(kn->kn_status & KN_PROCESSING);
1648 	SLIST_REMOVE(klist, kn, knote, kn_next);
1649 	lwkt_relpooltoken(klist);
1650 }
1651 
1652 void
1653 knote_assume_knotes(struct kqinfo *src, struct kqinfo *dst,
1654 		    struct filterops *ops, void *hook)
1655 {
1656 	struct knote *kn, marker;
1657 	int has_note;
1658 
1659 	marker.kn_filter = EVFILT_MARKER;
1660 	marker.kn_status = KN_PROCESSING;
1661 
1662 	lwkt_getpooltoken(&src->ki_note);
1663 	if (SLIST_EMPTY(&src->ki_note)) {
1664 		lwkt_relpooltoken(&src->ki_note);
1665 		return;
1666 	}
1667 	lwkt_getpooltoken(&dst->ki_note);
1668 
1669 restart:
1670 	has_note = 0;
1671 	SLIST_INSERT_HEAD(&src->ki_note, &marker, kn_next);
1672 	while ((kn = SLIST_NEXT(&marker, kn_next)) != NULL) {
1673 		struct kqueue *kq;
1674 
1675 		if (kn->kn_filter == EVFILT_MARKER) {
1676 			/* Skip marker */
1677 			SLIST_REMOVE(&src->ki_note, &marker, knote, kn_next);
1678 			SLIST_INSERT_AFTER(kn, &marker, kn_next);
1679 			continue;
1680 		}
1681 
1682 		kq = kn->kn_kq;
1683 		lwkt_getpooltoken(kq);
1684 
1685 		if (kn != SLIST_NEXT(&marker, kn_next) || kn->kn_kq != kq) {
1686 			/*
1687 			 * Don't move the marker; check the knote after
1688 			 * the marker again.
1689 			 */
1690 			lwkt_relpooltoken(kq);
1691 			continue;
1692 		}
1693 
1694 		/* Move marker */
1695 		SLIST_REMOVE(&src->ki_note, &marker, knote, kn_next);
1696 		SLIST_INSERT_AFTER(kn, &marker, kn_next);
1697 
1698 		has_note = 1;
1699 		if (knote_acquire(kn)) {
1700 			knote_remove(&src->ki_note, kn);
1701 			kn->kn_fop = ops;
1702 			kn->kn_hook = hook;
1703 			knote_insert(&dst->ki_note, kn);
1704 			knote_release(kn);
1705 			/* kn may be invalid now */
1706 		}
1707 		lwkt_relpooltoken(kq);
1708 	}
1709 	SLIST_REMOVE(&src->ki_note, &marker, knote, kn_next);
1710 	if (has_note) {
1711 		/* Keep draining, until nothing left */
1712 		goto restart;
1713 	}
1714 
1715 	lwkt_relpooltoken(&dst->ki_note);
1716 	lwkt_relpooltoken(&src->ki_note);
1717 }
1718 
1719 /*
1720  * Remove all knotes referencing a specified fd
1721  */
1722 void
1723 knote_fdclose(struct file *fp, struct filedesc *fdp, int fd)
1724 {
1725 	struct kqueue *kq;
1726 	struct knote *kn;
1727 	struct knote *kntmp;
1728 
1729 	lwkt_getpooltoken(&fp->f_klist);
1730 restart:
1731 	SLIST_FOREACH(kn, &fp->f_klist, kn_link) {
1732 		if (kn->kn_kq->kq_fdp == fdp && kn->kn_id == fd) {
1733 			kq = kn->kn_kq;
1734 			lwkt_getpooltoken(kq);
1735 
1736 			/* temporary verification hack */
1737 			SLIST_FOREACH(kntmp, &fp->f_klist, kn_link) {
1738 				if (kn == kntmp)
1739 					break;
1740 			}
1741 			if (kn != kntmp || kn->kn_kq->kq_fdp != fdp ||
1742 			    kn->kn_id != fd || kn->kn_kq != kq) {
1743 				lwkt_relpooltoken(kq);
1744 				goto restart;
1745 			}
1746 			if (knote_acquire(kn))
1747 				knote_detach_and_drop(kn);
1748 			lwkt_relpooltoken(kq);
1749 			goto restart;
1750 		}
1751 	}
1752 	lwkt_relpooltoken(&fp->f_klist);
1753 }
1754 
1755 /*
1756  * Low level attach function.
1757  *
1758  * The knote should already be marked for processing.
1759  * Caller must hold the related kq token.
1760  */
1761 static void
1762 knote_attach(struct knote *kn)
1763 {
1764 	struct klist *list;
1765 	struct kqueue *kq = kn->kn_kq;
1766 
1767 	if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1768 		KKASSERT(kn->kn_fp);
1769 		list = &kn->kn_fp->f_klist;
1770 	} else {
1771 		if (kq->kq_knhashmask == 0)
1772 			kq->kq_knhash = hashinit(KN_HASHSIZE, M_KQUEUE,
1773 						 &kq->kq_knhashmask);
1774 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1775 	}
1776 	lwkt_getpooltoken(list);
1777 	SLIST_INSERT_HEAD(list, kn, kn_link);
1778 	lwkt_relpooltoken(list);
1779 	TAILQ_INSERT_HEAD(&kq->kq_knlist, kn, kn_kqlink);
1780 }
1781 
1782 /*
1783  * Low level drop function.
1784  *
1785  * The knote should already be marked for processing.
1786  * Caller must hold the related kq token.
1787  */
1788 static void
1789 knote_drop(struct knote *kn)
1790 {
1791 	struct kqueue *kq;
1792 	struct klist *list;
1793 
1794 	kq = kn->kn_kq;
1795 
1796 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
1797 		list = &kn->kn_fp->f_klist;
1798 	else
1799 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1800 
1801 	lwkt_getpooltoken(list);
1802 	SLIST_REMOVE(list, kn, knote, kn_link);
1803 	lwkt_relpooltoken(list);
1804 	TAILQ_REMOVE(&kq->kq_knlist, kn, kn_kqlink);
1805 	if (kn->kn_status & KN_QUEUED)
1806 		knote_dequeue(kn);
1807 	if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
1808 		fdrop(kn->kn_fp);
1809 		kn->kn_fp = NULL;
1810 	}
1811 	knote_free(kn);
1812 }
1813 
1814 /*
1815  * Low level enqueue function.
1816  *
1817  * The knote should already be marked for processing.
1818  * Caller must be holding the kq token
1819  */
1820 static void
1821 knote_enqueue(struct knote *kn)
1822 {
1823 	struct kqueue *kq = kn->kn_kq;
1824 
1825 	KASSERT((kn->kn_status & KN_QUEUED) == 0, ("knote already queued"));
1826 	TAILQ_INSERT_TAIL(&kq->kq_knpend, kn, kn_tqe);
1827 	kn->kn_status |= KN_QUEUED;
1828 	++kq->kq_count;
1829 
1830 	/*
1831 	 * Send SIGIO on request (typically set up as a mailbox signal)
1832 	 */
1833 	if (kq->kq_sigio && (kq->kq_state & KQ_ASYNC) && kq->kq_count == 1)
1834 		pgsigio(kq->kq_sigio, SIGIO, 0);
1835 
1836 	kqueue_wakeup(kq);
1837 }
1838 
1839 /*
1840  * Low level dequeue function.
1841  *
1842  * The knote should already be marked for processing.
1843  * Caller must be holding the kq token
1844  */
1845 static void
1846 knote_dequeue(struct knote *kn)
1847 {
1848 	struct kqueue *kq = kn->kn_kq;
1849 
1850 	KASSERT(kn->kn_status & KN_QUEUED, ("knote not queued"));
1851 	TAILQ_REMOVE(&kq->kq_knpend, kn, kn_tqe);
1852 	kn->kn_status &= ~KN_QUEUED;
1853 	kq->kq_count--;
1854 }
1855 
1856 static struct knote *
1857 knote_alloc(void)
1858 {
1859 	return kmalloc(sizeof(struct knote), M_KQUEUE, M_WAITOK);
1860 }
1861 
1862 static void
1863 knote_free(struct knote *kn)
1864 {
1865 	struct knote_cache_list *cache_list;
1866 
1867 	cache_list = &knote_cache_lists[mycpuid];
1868 	if (cache_list->knote_cache_cnt < KNOTE_CACHE_MAX) {
1869 		SLIST_INSERT_HEAD(&cache_list->knote_cache, kn, kn_link);
1870 		cache_list->knote_cache_cnt++;
1871 		return;
1872 	}
1873 	kfree(kn, M_KQUEUE);
1874 }
1875