xref: /dflybsd-src/sys/kern/kern_descrip.c (revision e6f30c11b835a7878a0ca02133e6bbb9abfad4ab)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
72  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
73  * $DragonFly: src/sys/kern/kern_descrip.c,v 1.45 2005/06/22 19:58:44 dillon Exp $
74  */
75 
76 #include "opt_compat.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/conf.h>
82 #include <sys/filedesc.h>
83 #include <sys/kernel.h>
84 #include <sys/sysctl.h>
85 #include <sys/vnode.h>
86 #include <sys/proc.h>
87 #include <sys/nlookup.h>
88 #include <sys/file.h>
89 #include <sys/stat.h>
90 #include <sys/filio.h>
91 #include <sys/fcntl.h>
92 #include <sys/unistd.h>
93 #include <sys/resourcevar.h>
94 #include <sys/event.h>
95 #include <sys/kern_syscall.h>
96 #include <sys/kcore.h>
97 #include <sys/kinfo.h>
98 
99 #include <vm/vm.h>
100 #include <vm/vm_extern.h>
101 
102 #include <sys/thread2.h>
103 #include <sys/file2.h>
104 
105 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
106 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
107 		     "file desc to leader structures");
108 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
109 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
110 
111 static	 d_open_t  fdopen;
112 #define NUMFDESC 64
113 
114 #define CDEV_MAJOR 22
115 static struct cdevsw fildesc_cdevsw = {
116 	/* name */	"FD",
117 	/* maj */	CDEV_MAJOR,
118 	/* flags */	0,
119 	/* port */      NULL,
120 	/* clone */	NULL,
121 
122 	/* open */	fdopen,
123 	/* close */	noclose,
124 	/* read */	noread,
125 	/* write */	nowrite,
126 	/* ioctl */	noioctl,
127 	/* poll */	nopoll,
128 	/* mmap */	nommap,
129 	/* strategy */	nostrategy,
130 	/* dump */	nodump,
131 	/* psize */	nopsize
132 };
133 
134 static int badfo_readwrite (struct file *fp, struct uio *uio,
135     struct ucred *cred, int flags, struct thread *td);
136 static int badfo_ioctl (struct file *fp, u_long com, caddr_t data,
137     struct thread *td);
138 static int badfo_poll (struct file *fp, int events,
139     struct ucred *cred, struct thread *td);
140 static int badfo_kqfilter (struct file *fp, struct knote *kn);
141 static int badfo_stat (struct file *fp, struct stat *sb, struct thread *td);
142 static int badfo_close (struct file *fp, struct thread *td);
143 
144 /*
145  * Descriptor management.
146  */
147 struct filelist filehead;	/* head of list of open files */
148 int nfiles;			/* actual number of open files */
149 extern int cmask;
150 
151 /*
152  * System calls on descriptors.
153  */
154 /* ARGSUSED */
155 int
156 getdtablesize(struct getdtablesize_args *uap)
157 {
158 	struct proc *p = curproc;
159 
160 	uap->sysmsg_result =
161 	    min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
162 	return (0);
163 }
164 
165 /*
166  * Duplicate a file descriptor to a particular value.
167  *
168  * note: keep in mind that a potential race condition exists when closing
169  * descriptors from a shared descriptor table (via rfork).
170  */
171 /* ARGSUSED */
172 int
173 dup2(struct dup2_args *uap)
174 {
175 	int error;
176 
177 	error = kern_dup(DUP_FIXED, uap->from, uap->to, uap->sysmsg_fds);
178 
179 	return (error);
180 }
181 
182 /*
183  * Duplicate a file descriptor.
184  */
185 /* ARGSUSED */
186 int
187 dup(struct dup_args *uap)
188 {
189 	int error;
190 
191 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, uap->sysmsg_fds);
192 
193 	return (error);
194 }
195 
196 int
197 kern_fcntl(int fd, int cmd, union fcntl_dat *dat)
198 {
199 	struct thread *td = curthread;
200 	struct proc *p = td->td_proc;
201 	struct filedesc *fdp = p->p_fd;
202 	struct file *fp;
203 	char *pop;
204 	struct vnode *vp;
205 	u_int newmin;
206 	int tmp, error, flg = F_POSIX;
207 
208 	KKASSERT(p);
209 
210 	if ((unsigned)fd >= fdp->fd_nfiles ||
211 	    (fp = fdp->fd_files[fd].fp) == NULL)
212 		return (EBADF);
213 	pop = &fdp->fd_files[fd].fileflags;
214 
215 	switch (cmd) {
216 	case F_DUPFD:
217 		newmin = dat->fc_fd;
218 		if (newmin >= p->p_rlimit[RLIMIT_NOFILE].rlim_cur ||
219 		    newmin > maxfilesperproc)
220 			return (EINVAL);
221 		error = kern_dup(DUP_VARIABLE, fd, newmin, &dat->fc_fd);
222 		return (error);
223 
224 	case F_GETFD:
225 		dat->fc_cloexec = (*pop & UF_EXCLOSE) ? FD_CLOEXEC : 0;
226 		return (0);
227 
228 	case F_SETFD:
229 		*pop = (*pop &~ UF_EXCLOSE) |
230 		    (dat->fc_cloexec & FD_CLOEXEC ? UF_EXCLOSE : 0);
231 		return (0);
232 
233 	case F_GETFL:
234 		dat->fc_flags = OFLAGS(fp->f_flag);
235 		return (0);
236 
237 	case F_SETFL:
238 		fhold(fp);
239 		fp->f_flag &= ~FCNTLFLAGS;
240 		fp->f_flag |= FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
241 		tmp = fp->f_flag & FNONBLOCK;
242 		error = fo_ioctl(fp, FIONBIO, (caddr_t)&tmp, td);
243 		if (error) {
244 			fdrop(fp, td);
245 			return (error);
246 		}
247 		tmp = fp->f_flag & FASYNC;
248 		error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp, td);
249 		if (!error) {
250 			fdrop(fp, td);
251 			return (0);
252 		}
253 		fp->f_flag &= ~FNONBLOCK;
254 		tmp = 0;
255 		fo_ioctl(fp, FIONBIO, (caddr_t)&tmp, td);
256 		fdrop(fp, td);
257 		return (error);
258 
259 	case F_GETOWN:
260 		fhold(fp);
261 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner, td);
262 		fdrop(fp, td);
263 		return(error);
264 
265 	case F_SETOWN:
266 		fhold(fp);
267 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner, td);
268 		fdrop(fp, td);
269 		return(error);
270 
271 	case F_SETLKW:
272 		flg |= F_WAIT;
273 		/* Fall into F_SETLK */
274 
275 	case F_SETLK:
276 		if (fp->f_type != DTYPE_VNODE)
277 			return (EBADF);
278 		vp = (struct vnode *)fp->f_data;
279 
280 		/*
281 		 * copyin/lockop may block
282 		 */
283 		fhold(fp);
284 		if (dat->fc_flock.l_whence == SEEK_CUR)
285 			dat->fc_flock.l_start += fp->f_offset;
286 
287 		switch (dat->fc_flock.l_type) {
288 		case F_RDLCK:
289 			if ((fp->f_flag & FREAD) == 0) {
290 				error = EBADF;
291 				break;
292 			}
293 			p->p_leader->p_flag |= P_ADVLOCK;
294 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
295 			    &dat->fc_flock, flg);
296 			break;
297 		case F_WRLCK:
298 			if ((fp->f_flag & FWRITE) == 0) {
299 				error = EBADF;
300 				break;
301 			}
302 			p->p_leader->p_flag |= P_ADVLOCK;
303 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
304 			    &dat->fc_flock, flg);
305 			break;
306 		case F_UNLCK:
307 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
308 				&dat->fc_flock, F_POSIX);
309 			break;
310 		default:
311 			error = EINVAL;
312 			break;
313 		}
314 		/* Check for race with close */
315 		if ((unsigned) fd >= fdp->fd_nfiles ||
316 		    fp != fdp->fd_files[fd].fp) {
317 			dat->fc_flock.l_whence = SEEK_SET;
318 			dat->fc_flock.l_start = 0;
319 			dat->fc_flock.l_len = 0;
320 			dat->fc_flock.l_type = F_UNLCK;
321 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
322 					   F_UNLCK, &dat->fc_flock, F_POSIX);
323 		}
324 		fdrop(fp, td);
325 		return(error);
326 
327 	case F_GETLK:
328 		if (fp->f_type != DTYPE_VNODE)
329 			return (EBADF);
330 		vp = (struct vnode *)fp->f_data;
331 		/*
332 		 * copyin/lockop may block
333 		 */
334 		fhold(fp);
335 		if (dat->fc_flock.l_type != F_RDLCK &&
336 		    dat->fc_flock.l_type != F_WRLCK &&
337 		    dat->fc_flock.l_type != F_UNLCK) {
338 			fdrop(fp, td);
339 			return (EINVAL);
340 		}
341 		if (dat->fc_flock.l_whence == SEEK_CUR)
342 			dat->fc_flock.l_start += fp->f_offset;
343 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
344 			    &dat->fc_flock, F_POSIX);
345 		fdrop(fp, td);
346 		return(error);
347 	default:
348 		return (EINVAL);
349 	}
350 	/* NOTREACHED */
351 }
352 
353 /*
354  * The file control system call.
355  */
356 int
357 fcntl(struct fcntl_args *uap)
358 {
359 	union fcntl_dat dat;
360 	int error;
361 
362 	switch (uap->cmd) {
363 	case F_DUPFD:
364 		dat.fc_fd = uap->arg;
365 		break;
366 	case F_SETFD:
367 		dat.fc_cloexec = uap->arg;
368 		break;
369 	case F_SETFL:
370 		dat.fc_flags = uap->arg;
371 		break;
372 	case F_SETOWN:
373 		dat.fc_owner = uap->arg;
374 		break;
375 	case F_SETLKW:
376 	case F_SETLK:
377 	case F_GETLK:
378 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
379 		    sizeof(struct flock));
380 		if (error)
381 			return (error);
382 		break;
383 	}
384 
385 	error = kern_fcntl(uap->fd, uap->cmd, &dat);
386 
387 	if (error == 0) {
388 		switch (uap->cmd) {
389 		case F_DUPFD:
390 			uap->sysmsg_result = dat.fc_fd;
391 			break;
392 		case F_GETFD:
393 			uap->sysmsg_result = dat.fc_cloexec;
394 			break;
395 		case F_GETFL:
396 			uap->sysmsg_result = dat.fc_flags;
397 			break;
398 		case F_GETOWN:
399 			uap->sysmsg_result = dat.fc_owner;
400 		case F_GETLK:
401 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
402 			    sizeof(struct flock));
403 			break;
404 		}
405 	}
406 
407 	return (error);
408 }
409 
410 /*
411  * Common code for dup, dup2, and fcntl(F_DUPFD).
412  *
413  * The type flag can be either DUP_FIXED or DUP_VARIABLE.  DUP_FIXED tells
414  * kern_dup() to destructively dup over an existing file descriptor if new
415  * is already open.  DUP_VARIABLE tells kern_dup() to find the lowest
416  * unused file descriptor that is greater than or equal to new.
417  */
418 int
419 kern_dup(enum dup_type type, int old, int new, int *res)
420 {
421 	struct thread *td = curthread;
422 	struct proc *p = td->td_proc;
423 	struct filedesc *fdp = p->p_fd;
424 	struct file *fp;
425 	struct file *delfp;
426 	int holdleaders;
427 	boolean_t fdalloced = FALSE;
428 	int error, newfd;
429 
430 	/*
431 	 * Verify that we have a valid descriptor to dup from and
432 	 * possibly to dup to.
433 	 */
434 	if (old < 0 || new < 0 || new > p->p_rlimit[RLIMIT_NOFILE].rlim_cur ||
435 	    new >= maxfilesperproc)
436 		return (EBADF);
437 	if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL)
438 		return (EBADF);
439 	if (type == DUP_FIXED && old == new) {
440 		*res = new;
441 		return (0);
442 	}
443 	fp = fdp->fd_files[old].fp;
444 	fhold(fp);
445 
446 	/*
447 	 * Expand the table for the new descriptor if needed.  This may
448 	 * block and drop and reacquire the fidedesc lock.
449 	 */
450 	if (type == DUP_VARIABLE || new >= fdp->fd_nfiles) {
451 		error = fdalloc(p, new, &newfd);
452 		if (error) {
453 			fdrop(fp, td);
454 			return (error);
455 		}
456 		fdalloced = TRUE;
457 	}
458 	if (type == DUP_VARIABLE)
459 		new = newfd;
460 
461 	/*
462 	 * If the old file changed out from under us then treat it as a
463 	 * bad file descriptor.  Userland should do its own locking to
464 	 * avoid this case.
465 	 */
466 	if (fdp->fd_files[old].fp != fp) {
467 		if (fdp->fd_files[new].fp == NULL) {
468 			if (fdalloced)
469 				fdreserve(fdp, newfd, -1);
470 			if (new < fdp->fd_freefile)
471 				fdp->fd_freefile = new;
472 			while (fdp->fd_lastfile > 0 &&
473 			    fdp->fd_files[fdp->fd_lastfile].fp == NULL)
474 				fdp->fd_lastfile--;
475 		}
476 		fdrop(fp, td);
477 		return (EBADF);
478 	}
479 	KASSERT(old != new, ("new fd is same as old"));
480 
481 	/*
482 	 * Save info on the descriptor being overwritten.  We have
483 	 * to do the unmap now, but we cannot close it without
484 	 * introducing an ownership race for the slot.
485 	 */
486 	delfp = fdp->fd_files[new].fp;
487 	if (delfp != NULL && p->p_fdtol != NULL) {
488 		/*
489 		 * Ask fdfree() to sleep to ensure that all relevant
490 		 * process leaders can be traversed in closef().
491 		 */
492 		fdp->fd_holdleaderscount++;
493 		holdleaders = 1;
494 	} else
495 		holdleaders = 0;
496 	KASSERT(delfp == NULL || type == DUP_FIXED,
497 	    ("dup() picked an open file"));
498 #if 0
499 	if (delfp && (fdp->fd_files[new].fileflags & UF_MAPPED))
500 		(void) munmapfd(p, new);
501 #endif
502 
503 	/*
504 	 * Duplicate the source descriptor, update lastfile
505 	 */
506 	if (new > fdp->fd_lastfile)
507 		fdp->fd_lastfile = new;
508 	if (!fdalloced && fdp->fd_files[new].fp == NULL)
509 		fdreserve(fdp, new, 1);
510 	fdp->fd_files[new].fp = fp;
511 	fdp->fd_files[new].fileflags =
512 			fdp->fd_files[old].fileflags & ~UF_EXCLOSE;
513 	*res = new;
514 
515 	/*
516 	 * If we dup'd over a valid file, we now own the reference to it
517 	 * and must dispose of it using closef() semantics (as if a
518 	 * close() were performed on it).
519 	 */
520 	if (delfp) {
521 		(void) closef(delfp, td);
522 		if (holdleaders) {
523 			fdp->fd_holdleaderscount--;
524 			if (fdp->fd_holdleaderscount == 0 &&
525 			    fdp->fd_holdleaderswakeup != 0) {
526 				fdp->fd_holdleaderswakeup = 0;
527 				wakeup(&fdp->fd_holdleaderscount);
528 			}
529 		}
530 	}
531 	return (0);
532 }
533 
534 /*
535  * If sigio is on the list associated with a process or process group,
536  * disable signalling from the device, remove sigio from the list and
537  * free sigio.
538  */
539 void
540 funsetown(struct sigio *sigio)
541 {
542 	if (sigio == NULL)
543 		return;
544 	crit_enter();
545 	*(sigio->sio_myref) = NULL;
546 	crit_exit();
547 	if (sigio->sio_pgid < 0) {
548 		SLIST_REMOVE(&sigio->sio_pgrp->pg_sigiolst, sigio,
549 			     sigio, sio_pgsigio);
550 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
551 		SLIST_REMOVE(&sigio->sio_proc->p_sigiolst, sigio,
552 			     sigio, sio_pgsigio);
553 	}
554 	crfree(sigio->sio_ucred);
555 	free(sigio, M_SIGIO);
556 }
557 
558 /* Free a list of sigio structures. */
559 void
560 funsetownlst(struct sigiolst *sigiolst)
561 {
562 	struct sigio *sigio;
563 
564 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
565 		funsetown(sigio);
566 }
567 
568 /*
569  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
570  *
571  * After permission checking, add a sigio structure to the sigio list for
572  * the process or process group.
573  */
574 int
575 fsetown(pid_t pgid, struct sigio **sigiop)
576 {
577 	struct proc *proc;
578 	struct pgrp *pgrp;
579 	struct sigio *sigio;
580 
581 	if (pgid == 0) {
582 		funsetown(*sigiop);
583 		return (0);
584 	}
585 	if (pgid > 0) {
586 		proc = pfind(pgid);
587 		if (proc == NULL)
588 			return (ESRCH);
589 
590 		/*
591 		 * Policy - Don't allow a process to FSETOWN a process
592 		 * in another session.
593 		 *
594 		 * Remove this test to allow maximum flexibility or
595 		 * restrict FSETOWN to the current process or process
596 		 * group for maximum safety.
597 		 */
598 		if (proc->p_session != curproc->p_session)
599 			return (EPERM);
600 
601 		pgrp = NULL;
602 	} else /* if (pgid < 0) */ {
603 		pgrp = pgfind(-pgid);
604 		if (pgrp == NULL)
605 			return (ESRCH);
606 
607 		/*
608 		 * Policy - Don't allow a process to FSETOWN a process
609 		 * in another session.
610 		 *
611 		 * Remove this test to allow maximum flexibility or
612 		 * restrict FSETOWN to the current process or process
613 		 * group for maximum safety.
614 		 */
615 		if (pgrp->pg_session != curproc->p_session)
616 			return (EPERM);
617 
618 		proc = NULL;
619 	}
620 	funsetown(*sigiop);
621 	sigio = malloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
622 	if (pgid > 0) {
623 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
624 		sigio->sio_proc = proc;
625 	} else {
626 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
627 		sigio->sio_pgrp = pgrp;
628 	}
629 	sigio->sio_pgid = pgid;
630 	sigio->sio_ucred = crhold(curproc->p_ucred);
631 	/* It would be convenient if p_ruid was in ucred. */
632 	sigio->sio_ruid = curproc->p_ucred->cr_ruid;
633 	sigio->sio_myref = sigiop;
634 	crit_enter();
635 	*sigiop = sigio;
636 	crit_exit();
637 	return (0);
638 }
639 
640 /*
641  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
642  */
643 pid_t
644 fgetown(struct sigio *sigio)
645 {
646 	return (sigio != NULL ? sigio->sio_pgid : 0);
647 }
648 
649 /*
650  * Close many file descriptors.
651  */
652 /* ARGSUSED */
653 
654 int
655 closefrom(struct closefrom_args *uap)
656 {
657 	return(kern_closefrom(uap->fd));
658 }
659 
660 int
661 kern_closefrom(int fd)
662 {
663 	struct thread *td = curthread;
664 	struct proc *p = td->td_proc;
665 	struct filedesc *fdp;
666 
667 	KKASSERT(p);
668 	fdp = p->p_fd;
669 
670 	if (fd < 0 || fd > fdp->fd_lastfile)
671 		return (0);
672 
673 	do {
674 		if (kern_close(fdp->fd_lastfile) == EINTR)
675 			return (EINTR);
676 	} while (fdp->fd_lastfile > fd);
677 
678 	return (0);
679 }
680 
681 /*
682  * Close a file descriptor.
683  */
684 /* ARGSUSED */
685 
686 int
687 close(struct close_args *uap)
688 {
689 	return(kern_close(uap->fd));
690 }
691 
692 int
693 kern_close(int fd)
694 {
695 	struct thread *td = curthread;
696 	struct proc *p = td->td_proc;
697 	struct filedesc *fdp;
698 	struct file *fp;
699 	int error;
700 	int holdleaders;
701 
702 	KKASSERT(p);
703 	fdp = p->p_fd;
704 
705 	if ((unsigned)fd >= fdp->fd_nfiles ||
706 	    (fp = fdp->fd_files[fd].fp) == NULL)
707 		return (EBADF);
708 #if 0
709 	if (fdp->fd_files[fd].fileflags & UF_MAPPED)
710 		(void) munmapfd(p, fd);
711 #endif
712 	funsetfd(fdp, fd);
713 	holdleaders = 0;
714 	if (p->p_fdtol != NULL) {
715 		/*
716 		 * Ask fdfree() to sleep to ensure that all relevant
717 		 * process leaders can be traversed in closef().
718 		 */
719 		fdp->fd_holdleaderscount++;
720 		holdleaders = 1;
721 	}
722 
723 	/*
724 	 * we now hold the fp reference that used to be owned by the descriptor
725 	 * array.
726 	 */
727 	while (fdp->fd_lastfile > 0 && fdp->fd_files[fdp->fd_lastfile].fp == NULL)
728 		fdp->fd_lastfile--;
729 	if (fd < fdp->fd_knlistsize)
730 		knote_fdclose(p, fd);
731 	error = closef(fp, td);
732 	if (holdleaders) {
733 		fdp->fd_holdleaderscount--;
734 		if (fdp->fd_holdleaderscount == 0 &&
735 		    fdp->fd_holdleaderswakeup != 0) {
736 			fdp->fd_holdleaderswakeup = 0;
737 			wakeup(&fdp->fd_holdleaderscount);
738 		}
739 	}
740 	return (error);
741 }
742 
743 int
744 kern_fstat(int fd, struct stat *ub)
745 {
746 	struct thread *td = curthread;
747 	struct proc *p = td->td_proc;
748 	struct filedesc *fdp;
749 	struct file *fp;
750 	int error;
751 
752 	KKASSERT(p);
753 
754 	fdp = p->p_fd;
755 	if ((unsigned)fd >= fdp->fd_nfiles ||
756 	    (fp = fdp->fd_files[fd].fp) == NULL)
757 		return (EBADF);
758 	fhold(fp);
759 	error = fo_stat(fp, ub, td);
760 	fdrop(fp, td);
761 
762 	return (error);
763 }
764 
765 /*
766  * Return status information about a file descriptor.
767  */
768 int
769 fstat(struct fstat_args *uap)
770 {
771 	struct stat st;
772 	int error;
773 
774 	error = kern_fstat(uap->fd, &st);
775 
776 	if (error == 0)
777 		error = copyout(&st, uap->sb, sizeof(st));
778 	return (error);
779 }
780 
781 /*
782  * XXX: This is for source compatibility with NetBSD.  Probably doesn't
783  * belong here.
784  */
785 int
786 nfstat(struct nfstat_args *uap)
787 {
788 	struct stat st;
789 	struct nstat nst;
790 	int error;
791 
792 	error = kern_fstat(uap->fd, &st);
793 
794 	if (error == 0) {
795 		cvtnstat(&st, &nst);
796 		error = copyout(&nst, uap->sb, sizeof (nst));
797 	}
798 	return (error);
799 }
800 
801 /*
802  * Return pathconf information about a file descriptor.
803  */
804 /* ARGSUSED */
805 int
806 fpathconf(struct fpathconf_args *uap)
807 {
808 	struct thread *td = curthread;
809 	struct proc *p = td->td_proc;
810 	struct filedesc *fdp;
811 	struct file *fp;
812 	struct vnode *vp;
813 	int error = 0;
814 
815 	KKASSERT(p);
816 	fdp = p->p_fd;
817 	if ((unsigned)uap->fd >= fdp->fd_nfiles ||
818 	    (fp = fdp->fd_files[uap->fd].fp) == NULL)
819 		return (EBADF);
820 
821 	fhold(fp);
822 
823 	switch (fp->f_type) {
824 	case DTYPE_PIPE:
825 	case DTYPE_SOCKET:
826 		if (uap->name != _PC_PIPE_BUF) {
827 			error = EINVAL;
828 		} else {
829 			uap->sysmsg_result = PIPE_BUF;
830 			error = 0;
831 		}
832 		break;
833 	case DTYPE_FIFO:
834 	case DTYPE_VNODE:
835 		vp = (struct vnode *)fp->f_data;
836 		error = VOP_PATHCONF(vp, uap->name, uap->sysmsg_fds);
837 		break;
838 	default:
839 		error = EOPNOTSUPP;
840 		break;
841 	}
842 	fdrop(fp, td);
843 	return(error);
844 }
845 
846 static int fdexpand;
847 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0, "");
848 
849 static void
850 fdgrow(struct filedesc *fdp, int want)
851 {
852 	struct fdnode *newfiles;
853 	struct fdnode *oldfiles;
854 	int nf, extra;
855 
856 	nf = fdp->fd_nfiles;
857 	do {
858 		/* nf has to be of the form 2^n - 1 */
859 		nf = 2 * nf + 1;
860 	} while (nf <= want);
861 
862 	newfiles = malloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
863 
864 	/*
865 	 * deal with file-table extend race that might have occured
866 	 * when malloc was blocked.
867 	 */
868 	if (fdp->fd_nfiles >= nf) {
869 		free(newfiles, M_FILEDESC);
870 		return;
871 	}
872 	/*
873 	 * Copy the existing ofile and ofileflags arrays
874 	 * and zero the new portion of each array.
875 	 */
876 	extra = nf - fdp->fd_nfiles;
877 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
878 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
879 
880 	oldfiles = fdp->fd_files;
881 	fdp->fd_files = newfiles;
882 	fdp->fd_nfiles = nf;
883 
884 	if (oldfiles != fdp->fd_builtin_files)
885 		free(oldfiles, M_FILEDESC);
886 	fdexpand++;
887 }
888 
889 /*
890  * Number of nodes in right subtree, including the root.
891  */
892 static __inline int
893 right_subtree_size(int n)
894 {
895 	return (n ^ (n | (n + 1)));
896 }
897 
898 /*
899  * Bigger ancestor.
900  */
901 static __inline int
902 right_ancestor(int n)
903 {
904 	return (n | (n + 1));
905 }
906 
907 /*
908  * Smaller ancestor.
909  */
910 static __inline int
911 left_ancestor(int n)
912 {
913 	return ((n & (n + 1)) - 1);
914 }
915 
916 void
917 fdreserve(struct filedesc *fdp, int fd, int incr)
918 {
919 	while (fd >= 0) {
920 		fdp->fd_files[fd].allocated += incr;
921 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
922 		fd = left_ancestor(fd);
923 	}
924 }
925 
926 /*
927  * Allocate a file descriptor for the process.
928  */
929 int
930 fdalloc(struct proc *p, int want, int *result)
931 {
932 	struct filedesc *fdp = p->p_fd;
933 	int fd, rsize, rsum, node, lim;
934 
935 	lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
936 	if (want >= lim)
937 		return (EMFILE);
938 	if (want >= fdp->fd_nfiles)
939 		fdgrow(fdp, want);
940 
941 	/*
942 	 * Search for a free descriptor starting at the higher
943 	 * of want or fd_freefile.  If that fails, consider
944 	 * expanding the ofile array.
945 	 */
946 retry:
947 	/* move up the tree looking for a subtree with a free node */
948 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
949 	     fd = right_ancestor(fd)) {
950 		if (fdp->fd_files[fd].allocated == 0)
951 			goto found;
952 
953 		rsize = right_subtree_size(fd);
954 		if (fdp->fd_files[fd].allocated == rsize)
955 			continue;	/* right subtree full */
956 
957 		/*
958 		 * Free fd is in the right subtree of the tree rooted at fd.
959 		 * Call that subtree R.  Look for the smallest (leftmost)
960 		 * subtree of R with an unallocated fd: continue moving
961 		 * down the left branch until encountering a full left
962 		 * subtree, then move to the right.
963 		 */
964 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
965 			node = fd + rsize;
966 			rsum += fdp->fd_files[node].allocated;
967 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
968 				fd = node;	/* move to the right */
969 				if (fdp->fd_files[node].allocated == 0)
970 					goto found;
971 				rsum = 0;
972 			}
973 		}
974 		goto found;
975 	}
976 
977 	/*
978 	 * No space in current array.  Expand?
979 	 */
980 	if (fdp->fd_nfiles >= lim)
981 		return (EMFILE);
982 	fdgrow(fdp, want);
983 	goto retry;
984 
985 found:
986 	KKASSERT(fd < fdp->fd_nfiles);
987 	fdp->fd_files[fd].fileflags = 0;
988 	if (fd > fdp->fd_lastfile)
989 		fdp->fd_lastfile = fd;
990 	if (want <= fdp->fd_freefile)
991 		fdp->fd_freefile = fd;
992 	*result = fd;
993 	KKASSERT(fdp->fd_files[fd].fp == NULL);
994 	fdreserve(fdp, fd, 1);
995 	return (0);
996 }
997 
998 /*
999  * Check to see whether n user file descriptors
1000  * are available to the process p.
1001  */
1002 int
1003 fdavail(struct proc *p, int n)
1004 {
1005 	struct filedesc *fdp = p->p_fd;
1006 	struct fdnode *fdnode;
1007 	int i, lim, last;
1008 
1009 	lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
1010 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0)
1011 		return (1);
1012 
1013 	last = min(fdp->fd_nfiles, lim);
1014 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1015 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1016 		if (fdnode->fp == NULL && --n <= 0)
1017 			return (1);
1018 	}
1019 	return (0);
1020 }
1021 
1022 /*
1023  * falloc:
1024  *	Create a new open file structure and allocate a file decriptor
1025  *	for the process that refers to it.  If p is NULL, no descriptor
1026  *	is allocated and the file pointer is returned unassociated with
1027  *	any process.  resultfd is only used if p is not NULL and may
1028  *	separately be NULL indicating that you don't need the returned fd.
1029  *
1030  *	A held file pointer is returned.  If a descriptor has been allocated
1031  *	an additional hold on the fp will be made due to the fd_files[]
1032  *	reference.
1033  */
1034 int
1035 falloc(struct proc *p, struct file **resultfp, int *resultfd)
1036 {
1037 	static struct timeval lastfail;
1038 	static int curfail;
1039 	struct file *fp;
1040 	int error;
1041 
1042 	fp = NULL;
1043 
1044 	/*
1045 	 * Handle filetable full issues and root overfill.
1046 	 */
1047 	if (nfiles >= maxfiles - maxfilesrootres &&
1048 	    ((p && p->p_ucred->cr_ruid != 0) || nfiles >= maxfiles)) {
1049 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1050 			printf("kern.maxfiles limit exceeded by uid %d, please see tuning(7).\n",
1051 				(p ? p->p_ucred->cr_ruid : -1));
1052 		}
1053 		error = ENFILE;
1054 		goto done;
1055 	}
1056 
1057 	/*
1058 	 * Allocate a new file descriptor.
1059 	 */
1060 	nfiles++;
1061 	fp = malloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1062 	fp->f_count = 1;
1063 	fp->f_ops = &badfileops;
1064 	fp->f_seqcount = 1;
1065 	if (p)
1066 		fp->f_cred = crhold(p->p_ucred);
1067 	else
1068 		fp->f_cred = crhold(proc0.p_ucred);
1069 	LIST_INSERT_HEAD(&filehead, fp, f_list);
1070 	if (resultfd) {
1071 		if ((error = fsetfd(p, fp, resultfd)) != 0) {
1072 			fdrop(fp, p->p_thread);
1073 			fp = NULL;
1074 		}
1075 	} else {
1076 		error = 0;
1077 	}
1078 done:
1079 	*resultfp = fp;
1080 	return (error);
1081 }
1082 
1083 /*
1084  * Associate a file pointer with a file descriptor.  On success the fp
1085  * will have an additional ref representing the fd_files[] association.
1086  */
1087 int
1088 fsetfd(struct proc *p, struct file *fp, int *resultfd)
1089 {
1090 	int fd, error;
1091 
1092 	fd = -1;
1093 	if ((error = fdalloc(p, 0, &fd)) == 0) {
1094 		fhold(fp);
1095 		p->p_fd->fd_files[fd].fp = fp;
1096 	}
1097 	*resultfd = fd;
1098 	return (0);
1099 }
1100 
1101 void
1102 funsetfd(struct filedesc *fdp, int fd)
1103 {
1104 	fdp->fd_files[fd].fp = NULL;
1105 	fdp->fd_files[fd].fileflags = 0;
1106 	fdreserve(fdp, fd, -1);
1107 	if (fd < fdp->fd_freefile)
1108 		fdp->fd_freefile = fd;
1109 }
1110 
1111 void
1112 fsetcred(struct file *fp, struct ucred *cr)
1113 {
1114 	crhold(cr);
1115 	crfree(fp->f_cred);
1116 	fp->f_cred = cr;
1117 }
1118 
1119 /*
1120  * Free a file descriptor.
1121  */
1122 void
1123 ffree(struct file *fp)
1124 {
1125 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1126 	LIST_REMOVE(fp, f_list);
1127 	crfree(fp->f_cred);
1128 	if (fp->f_ncp) {
1129 	    cache_drop(fp->f_ncp);
1130 	    fp->f_ncp = NULL;
1131 	}
1132 	nfiles--;
1133 	free(fp, M_FILE);
1134 }
1135 
1136 /*
1137  * Build a new filedesc structure.
1138  */
1139 struct filedesc *
1140 fdinit(struct proc *p)
1141 {
1142 	struct filedesc *newfdp;
1143 	struct filedesc *fdp = p->p_fd;
1144 
1145 	newfdp = malloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1146 	if (fdp->fd_cdir) {
1147 		newfdp->fd_cdir = fdp->fd_cdir;
1148 		vref(newfdp->fd_cdir);
1149 		newfdp->fd_ncdir = cache_hold(fdp->fd_ncdir);
1150 	}
1151 
1152 	/*
1153 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1154 	 * proc0, but should unconditionally exist in other processes.
1155 	 */
1156 	if (fdp->fd_rdir) {
1157 		newfdp->fd_rdir = fdp->fd_rdir;
1158 		vref(newfdp->fd_rdir);
1159 		newfdp->fd_nrdir = cache_hold(fdp->fd_nrdir);
1160 	}
1161 	if (fdp->fd_jdir) {
1162 		newfdp->fd_jdir = fdp->fd_jdir;
1163 		vref(newfdp->fd_jdir);
1164 		newfdp->fd_njdir = cache_hold(fdp->fd_njdir);
1165 	}
1166 
1167 	/* Create the file descriptor table. */
1168 	newfdp->fd_refcnt = 1;
1169 	newfdp->fd_cmask = cmask;
1170 	newfdp->fd_files = newfdp->fd_builtin_files;
1171 	newfdp->fd_nfiles = NDFILE;
1172 	newfdp->fd_knlistsize = -1;
1173 
1174 	return (newfdp);
1175 }
1176 
1177 /*
1178  * Share a filedesc structure.
1179  */
1180 struct filedesc *
1181 fdshare(struct proc *p)
1182 {
1183 	p->p_fd->fd_refcnt++;
1184 	return (p->p_fd);
1185 }
1186 
1187 /*
1188  * Copy a filedesc structure.
1189  */
1190 struct filedesc *
1191 fdcopy(struct proc *p)
1192 {
1193 	struct filedesc *newfdp, *fdp = p->p_fd;
1194 	struct fdnode *fdnode;
1195 	int i;
1196 
1197 	/* Certain daemons might not have file descriptors. */
1198 	if (fdp == NULL)
1199 		return (NULL);
1200 
1201 	newfdp = malloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK);
1202 	*newfdp = *fdp;
1203 	if (newfdp->fd_cdir) {
1204 		vref(newfdp->fd_cdir);
1205 		newfdp->fd_ncdir = cache_hold(newfdp->fd_ncdir);
1206 	}
1207 	/*
1208 	 * We must check for fd_rdir here, at least for now because
1209 	 * the init process is created before we have access to the
1210 	 * rootvode to take a reference to it.
1211 	 */
1212 	if (newfdp->fd_rdir) {
1213 		vref(newfdp->fd_rdir);
1214 		newfdp->fd_nrdir = cache_hold(newfdp->fd_nrdir);
1215 	}
1216 	if (newfdp->fd_jdir) {
1217 		vref(newfdp->fd_jdir);
1218 		newfdp->fd_njdir = cache_hold(newfdp->fd_njdir);
1219 	}
1220 	newfdp->fd_refcnt = 1;
1221 
1222 	/*
1223 	 * If the number of open files fits in the internal arrays
1224 	 * of the open file structure, use them, otherwise allocate
1225 	 * additional memory for the number of descriptors currently
1226 	 * in use.
1227 	 */
1228 	if (newfdp->fd_lastfile < NDFILE) {
1229 		newfdp->fd_files = newfdp->fd_builtin_files;
1230 		i = NDFILE;
1231 	} else {
1232 		/*
1233 		 * Compute the smallest file table size
1234 		 * for the file descriptors currently in use,
1235 		 * allowing the table to shrink.
1236 		 */
1237 		i = newfdp->fd_nfiles;
1238 		while ((i-1)/2 > newfdp->fd_lastfile && (i-1)/2 > NDFILE)
1239 			i = (i-1)/2;
1240 		newfdp->fd_files = malloc(i * sizeof(struct fdnode),
1241 					  M_FILEDESC, M_WAITOK);
1242 	}
1243 	newfdp->fd_nfiles = i;
1244 
1245 	if (fdp->fd_files != fdp->fd_builtin_files ||
1246 	    newfdp->fd_files != newfdp->fd_builtin_files
1247 	) {
1248 		bcopy(fdp->fd_files, newfdp->fd_files,
1249 		      i * sizeof(struct fdnode));
1250 	}
1251 
1252 	/*
1253 	 * kq descriptors cannot be copied.
1254 	 */
1255 	if (newfdp->fd_knlistsize != -1) {
1256 		fdnode = &newfdp->fd_files[newfdp->fd_lastfile];
1257 		for (i = newfdp->fd_lastfile; i >= 0; i--, fdnode--) {
1258 			if (fdnode->fp != NULL && fdnode->fp->f_type == DTYPE_KQUEUE)
1259 				funsetfd(newfdp, i);	/* nulls out *fpp */
1260 			if (fdnode->fp == NULL && i == newfdp->fd_lastfile && i > 0)
1261 				newfdp->fd_lastfile--;
1262 		}
1263 		newfdp->fd_knlist = NULL;
1264 		newfdp->fd_knlistsize = -1;
1265 		newfdp->fd_knhash = NULL;
1266 		newfdp->fd_knhashmask = 0;
1267 	}
1268 
1269 	fdnode = newfdp->fd_files;
1270 	for (i = newfdp->fd_lastfile; i-- >= 0; fdnode++) {
1271 		if (fdnode->fp != NULL)
1272 			fhold(fdnode->fp);
1273 	}
1274 	return (newfdp);
1275 }
1276 
1277 /*
1278  * Release a filedesc structure.
1279  */
1280 void
1281 fdfree(struct proc *p)
1282 {
1283 	struct thread *td = p->p_thread;
1284 	struct filedesc *fdp = p->p_fd;
1285 	struct fdnode *fdnode;
1286 	int i;
1287 	struct filedesc_to_leader *fdtol;
1288 	struct file *fp;
1289 	struct vnode *vp;
1290 	struct flock lf;
1291 
1292 	/* Certain daemons might not have file descriptors. */
1293 	if (fdp == NULL)
1294 		return;
1295 
1296 	/* Check for special need to clear POSIX style locks */
1297 	fdtol = p->p_fdtol;
1298 	if (fdtol != NULL) {
1299 		KASSERT(fdtol->fdl_refcount > 0,
1300 			("filedesc_to_refcount botch: fdl_refcount=%d",
1301 			 fdtol->fdl_refcount));
1302 		if (fdtol->fdl_refcount == 1 &&
1303 		    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1304 			i = 0;
1305 			fdnode = fdp->fd_files;
1306 			for (i = 0; i <= fdp->fd_lastfile; i++, fdnode++) {
1307 				if (fdnode->fp == NULL ||
1308 				    fdnode->fp->f_type != DTYPE_VNODE)
1309 					continue;
1310 				fp = fdnode->fp;
1311 				fhold(fp);
1312 				lf.l_whence = SEEK_SET;
1313 				lf.l_start = 0;
1314 				lf.l_len = 0;
1315 				lf.l_type = F_UNLCK;
1316 				vp = (struct vnode *)fp->f_data;
1317 				(void) VOP_ADVLOCK(vp,
1318 						   (caddr_t)p->p_leader,
1319 						   F_UNLCK,
1320 						   &lf,
1321 						   F_POSIX);
1322 				fdrop(fp, p->p_thread);
1323 				/* reload due to possible reallocation */
1324 				fdnode = &fdp->fd_files[i];
1325 			}
1326 		}
1327 	retry:
1328 		if (fdtol->fdl_refcount == 1) {
1329 			if (fdp->fd_holdleaderscount > 0 &&
1330 			    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1331 				/*
1332 				 * close() or do_dup() has cleared a reference
1333 				 * in a shared file descriptor table.
1334 				 */
1335 				fdp->fd_holdleaderswakeup = 1;
1336 				tsleep(&fdp->fd_holdleaderscount,
1337 				       0, "fdlhold", 0);
1338 				goto retry;
1339 			}
1340 			if (fdtol->fdl_holdcount > 0) {
1341 				/*
1342 				 * Ensure that fdtol->fdl_leader
1343 				 * remains valid in closef().
1344 				 */
1345 				fdtol->fdl_wakeup = 1;
1346 				tsleep(fdtol, 0, "fdlhold", 0);
1347 				goto retry;
1348 			}
1349 		}
1350 		fdtol->fdl_refcount--;
1351 		if (fdtol->fdl_refcount == 0 &&
1352 		    fdtol->fdl_holdcount == 0) {
1353 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
1354 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
1355 		} else
1356 			fdtol = NULL;
1357 		p->p_fdtol = NULL;
1358 		if (fdtol != NULL)
1359 			free(fdtol, M_FILEDESC_TO_LEADER);
1360 	}
1361 	if (--fdp->fd_refcnt > 0)
1362 		return;
1363 	/*
1364 	 * we are the last reference to the structure, we can
1365 	 * safely assume it will not change out from under us.
1366 	 */
1367 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
1368 		if (fdp->fd_files[i].fp)
1369 			closef(fdp->fd_files[i].fp, td);
1370 	}
1371 	if (fdp->fd_files != fdp->fd_builtin_files)
1372 		free(fdp->fd_files, M_FILEDESC);
1373 	if (fdp->fd_cdir) {
1374 		cache_drop(fdp->fd_ncdir);
1375 		vrele(fdp->fd_cdir);
1376 	}
1377 	if (fdp->fd_rdir) {
1378 		cache_drop(fdp->fd_nrdir);
1379 		vrele(fdp->fd_rdir);
1380 	}
1381 	if (fdp->fd_jdir) {
1382 		cache_drop(fdp->fd_njdir);
1383 		vrele(fdp->fd_jdir);
1384 	}
1385 	if (fdp->fd_knlist)
1386 		free(fdp->fd_knlist, M_KQUEUE);
1387 	if (fdp->fd_knhash)
1388 		free(fdp->fd_knhash, M_KQUEUE);
1389 	free(fdp, M_FILEDESC);
1390 }
1391 
1392 /*
1393  * For setugid programs, we don't want to people to use that setugidness
1394  * to generate error messages which write to a file which otherwise would
1395  * otherwise be off-limits to the process.
1396  *
1397  * This is a gross hack to plug the hole.  A better solution would involve
1398  * a special vop or other form of generalized access control mechanism.  We
1399  * go ahead and just reject all procfs file systems accesses as dangerous.
1400  *
1401  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
1402  * sufficient.  We also don't for check setugidness since we know we are.
1403  */
1404 static int
1405 is_unsafe(struct file *fp)
1406 {
1407 	if (fp->f_type == DTYPE_VNODE &&
1408 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
1409 		return (1);
1410 	return (0);
1411 }
1412 
1413 /*
1414  * Make this setguid thing safe, if at all possible.
1415  */
1416 void
1417 setugidsafety(struct proc *p)
1418 {
1419 	struct thread *td = p->p_thread;
1420 	struct filedesc *fdp = p->p_fd;
1421 	int i;
1422 
1423 	/* Certain daemons might not have file descriptors. */
1424 	if (fdp == NULL)
1425 		return;
1426 
1427 	/*
1428 	 * note: fdp->fd_files may be reallocated out from under us while
1429 	 * we are blocked in a close.  Be careful!
1430 	 */
1431 	for (i = 0; i <= fdp->fd_lastfile; i++) {
1432 		if (i > 2)
1433 			break;
1434 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
1435 			struct file *fp;
1436 
1437 #if 0
1438 			if ((fdp->fd_files[i].fileflags & UF_MAPPED) != 0)
1439 				(void) munmapfd(p, i);
1440 #endif
1441 			if (i < fdp->fd_knlistsize)
1442 				knote_fdclose(p, i);
1443 			/*
1444 			 * NULL-out descriptor prior to close to avoid
1445 			 * a race while close blocks.
1446 			 */
1447 			fp = fdp->fd_files[i].fp;
1448 			funsetfd(fdp, i);
1449 			closef(fp, td);
1450 		}
1451 	}
1452 	while (fdp->fd_lastfile > 0 && fdp->fd_files[fdp->fd_lastfile].fp == NULL)
1453 		fdp->fd_lastfile--;
1454 }
1455 
1456 /*
1457  * Close any files on exec?
1458  */
1459 void
1460 fdcloseexec(struct proc *p)
1461 {
1462 	struct thread *td = p->p_thread;
1463 	struct filedesc *fdp = p->p_fd;
1464 	int i;
1465 
1466 	/* Certain daemons might not have file descriptors. */
1467 	if (fdp == NULL)
1468 		return;
1469 
1470 	/*
1471 	 * We cannot cache fd_files since operations may block and rip
1472 	 * them out from under us.
1473 	 */
1474 	for (i = 0; i <= fdp->fd_lastfile; i++) {
1475 		if (fdp->fd_files[i].fp != NULL &&
1476 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
1477 			struct file *fp;
1478 
1479 #if 0
1480 			if (fdp->fd_files[i].fileflags & UF_MAPPED)
1481 				(void) munmapfd(p, i);
1482 #endif
1483 			if (i < fdp->fd_knlistsize)
1484 				knote_fdclose(p, i);
1485 			/*
1486 			 * NULL-out descriptor prior to close to avoid
1487 			 * a race while close blocks.
1488 			 */
1489 			fp = fdp->fd_files[i].fp;
1490 			funsetfd(fdp, i);
1491 			closef(fp, td);
1492 		}
1493 	}
1494 	while (fdp->fd_lastfile > 0 && fdp->fd_files[fdp->fd_lastfile].fp == NULL)
1495 		fdp->fd_lastfile--;
1496 }
1497 
1498 /*
1499  * It is unsafe for set[ug]id processes to be started with file
1500  * descriptors 0..2 closed, as these descriptors are given implicit
1501  * significance in the Standard C library.  fdcheckstd() will create a
1502  * descriptor referencing /dev/null for each of stdin, stdout, and
1503  * stderr that is not already open.
1504  */
1505 int
1506 fdcheckstd(struct proc *p)
1507 {
1508 	struct thread *td = p->p_thread;
1509 	struct nlookupdata nd;
1510 	struct filedesc *fdp;
1511 	struct file *fp;
1512 	register_t retval;
1513 	int fd, i, error, flags, devnull;
1514 
1515        fdp = p->p_fd;
1516        if (fdp == NULL)
1517                return (0);
1518        devnull = -1;
1519        error = 0;
1520        for (i = 0; i < 3; i++) {
1521 		if (fdp->fd_files[i].fp != NULL)
1522 			continue;
1523 		if (devnull < 0) {
1524 			if ((error = falloc(p, &fp, NULL)) != 0)
1525 				break;
1526 
1527 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
1528 						NLC_FOLLOW|NLC_LOCKVP);
1529 			flags = FREAD | FWRITE;
1530 			if (error == 0)
1531 				error = vn_open(&nd, fp, flags, 0);
1532 			if (error == 0)
1533 				error = fsetfd(p, fp, &fd);
1534 			fdrop(fp, td);
1535 			nlookup_done(&nd);
1536 			if (error)
1537 				break;
1538 			KKASSERT(i == fd);
1539 			devnull = fd;
1540 		} else {
1541 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
1542 			if (error != 0)
1543 				break;
1544 		}
1545        }
1546        return (error);
1547 }
1548 
1549 /*
1550  * Internal form of close.
1551  * Decrement reference count on file structure.
1552  * Note: td and/or p may be NULL when closing a file
1553  * that was being passed in a message.
1554  */
1555 int
1556 closef(struct file *fp, struct thread *td)
1557 {
1558 	struct vnode *vp;
1559 	struct flock lf;
1560 	struct filedesc_to_leader *fdtol;
1561 	struct proc *p;
1562 
1563 	if (fp == NULL)
1564 		return (0);
1565 	if (td == NULL) {
1566 		td = curthread;
1567 		p = NULL;		/* allow no proc association */
1568 	} else {
1569 		p = td->td_proc;	/* can also be NULL */
1570 	}
1571 	/*
1572 	 * POSIX record locking dictates that any close releases ALL
1573 	 * locks owned by this process.  This is handled by setting
1574 	 * a flag in the unlock to free ONLY locks obeying POSIX
1575 	 * semantics, and not to free BSD-style file locks.
1576 	 * If the descriptor was in a message, POSIX-style locks
1577 	 * aren't passed with the descriptor.
1578 	 */
1579 	if (p != NULL &&
1580 	    fp->f_type == DTYPE_VNODE) {
1581 		if ((p->p_leader->p_flag & P_ADVLOCK) != 0) {
1582 			lf.l_whence = SEEK_SET;
1583 			lf.l_start = 0;
1584 			lf.l_len = 0;
1585 			lf.l_type = F_UNLCK;
1586 			vp = (struct vnode *)fp->f_data;
1587 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
1588 					   &lf, F_POSIX);
1589 		}
1590 		fdtol = p->p_fdtol;
1591 		if (fdtol != NULL) {
1592 			/*
1593 			 * Handle special case where file descriptor table
1594 			 * is shared between multiple process leaders.
1595 			 */
1596 			for (fdtol = fdtol->fdl_next;
1597 			     fdtol != p->p_fdtol;
1598 			     fdtol = fdtol->fdl_next) {
1599 				if ((fdtol->fdl_leader->p_flag &
1600 				     P_ADVLOCK) == 0)
1601 					continue;
1602 				fdtol->fdl_holdcount++;
1603 				lf.l_whence = SEEK_SET;
1604 				lf.l_start = 0;
1605 				lf.l_len = 0;
1606 				lf.l_type = F_UNLCK;
1607 				vp = (struct vnode *)fp->f_data;
1608 				(void) VOP_ADVLOCK(vp,
1609 						   (caddr_t)p->p_leader,
1610 						   F_UNLCK, &lf, F_POSIX);
1611 				fdtol->fdl_holdcount--;
1612 				if (fdtol->fdl_holdcount == 0 &&
1613 				    fdtol->fdl_wakeup != 0) {
1614 					fdtol->fdl_wakeup = 0;
1615 					wakeup(fdtol);
1616 				}
1617 			}
1618 		}
1619 	}
1620 	return (fdrop(fp, td));
1621 }
1622 
1623 int
1624 fdrop(struct file *fp, struct thread *td)
1625 {
1626 	struct flock lf;
1627 	struct vnode *vp;
1628 	int error;
1629 
1630 	if (--fp->f_count > 0)
1631 		return (0);
1632 	if (fp->f_count < 0)
1633 		panic("fdrop: count < 0");
1634 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE) {
1635 		lf.l_whence = SEEK_SET;
1636 		lf.l_start = 0;
1637 		lf.l_len = 0;
1638 		lf.l_type = F_UNLCK;
1639 		vp = (struct vnode *)fp->f_data;
1640 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, F_FLOCK);
1641 	}
1642 	if (fp->f_ops != &badfileops)
1643 		error = fo_close(fp, td);
1644 	else
1645 		error = 0;
1646 	ffree(fp);
1647 	return (error);
1648 }
1649 
1650 /*
1651  * Apply an advisory lock on a file descriptor.
1652  *
1653  * Just attempt to get a record lock of the requested type on
1654  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
1655  */
1656 /* ARGSUSED */
1657 int
1658 flock(struct flock_args *uap)
1659 {
1660 	struct proc *p = curproc;
1661 	struct filedesc *fdp = p->p_fd;
1662 	struct file *fp;
1663 	struct vnode *vp;
1664 	struct flock lf;
1665 
1666 	if ((unsigned)uap->fd >= fdp->fd_nfiles ||
1667 	    (fp = fdp->fd_files[uap->fd].fp) == NULL)
1668 		return (EBADF);
1669 	if (fp->f_type != DTYPE_VNODE)
1670 		return (EOPNOTSUPP);
1671 	vp = (struct vnode *)fp->f_data;
1672 	lf.l_whence = SEEK_SET;
1673 	lf.l_start = 0;
1674 	lf.l_len = 0;
1675 	if (uap->how & LOCK_UN) {
1676 		lf.l_type = F_UNLCK;
1677 		fp->f_flag &= ~FHASLOCK;
1678 		return (VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, F_FLOCK));
1679 	}
1680 	if (uap->how & LOCK_EX)
1681 		lf.l_type = F_WRLCK;
1682 	else if (uap->how & LOCK_SH)
1683 		lf.l_type = F_RDLCK;
1684 	else
1685 		return (EBADF);
1686 	fp->f_flag |= FHASLOCK;
1687 	if (uap->how & LOCK_NB)
1688 		return (VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_FLOCK));
1689 	return (VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_FLOCK|F_WAIT));
1690 }
1691 
1692 /*
1693  * File Descriptor pseudo-device driver (/dev/fd/).
1694  *
1695  * Opening minor device N dup()s the file (if any) connected to file
1696  * descriptor N belonging to the calling process.  Note that this driver
1697  * consists of only the ``open()'' routine, because all subsequent
1698  * references to this file will be direct to the other driver.
1699  */
1700 /* ARGSUSED */
1701 static int
1702 fdopen(dev_t dev, int mode, int type, struct thread *td)
1703 {
1704 	KKASSERT(td->td_proc != NULL);
1705 
1706 	/*
1707 	 * XXX Kludge: set curproc->p_dupfd to contain the value of the
1708 	 * the file descriptor being sought for duplication. The error
1709 	 * return ensures that the vnode for this device will be released
1710 	 * by vn_open. Open will detect this special error and take the
1711 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
1712 	 * will simply report the error.
1713 	 */
1714 	td->td_proc->p_dupfd = minor(dev);
1715 	return (ENODEV);
1716 }
1717 
1718 /*
1719  * Duplicate the specified descriptor to a free descriptor.
1720  */
1721 int
1722 dupfdopen(struct filedesc *fdp, int indx, int dfd, int mode, int error)
1723 {
1724 	struct file *wfp;
1725 	struct file *fp;
1726 
1727 	/*
1728 	 * If the to-be-dup'd fd number is greater than the allowed number
1729 	 * of file descriptors, or the fd to be dup'd has already been
1730 	 * closed, then reject.
1731 	 */
1732 	if ((u_int)dfd >= fdp->fd_nfiles ||
1733 	    (wfp = fdp->fd_files[dfd].fp) == NULL) {
1734 		return (EBADF);
1735 	}
1736 
1737 	/*
1738 	 * There are two cases of interest here.
1739 	 *
1740 	 * For ENODEV simply dup (dfd) to file descriptor
1741 	 * (indx) and return.
1742 	 *
1743 	 * For ENXIO steal away the file structure from (dfd) and
1744 	 * store it in (indx).  (dfd) is effectively closed by
1745 	 * this operation.
1746 	 *
1747 	 * Any other error code is just returned.
1748 	 */
1749 	switch (error) {
1750 	case ENODEV:
1751 		/*
1752 		 * Check that the mode the file is being opened for is a
1753 		 * subset of the mode of the existing descriptor.
1754 		 */
1755 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag)
1756 			return (EACCES);
1757 		fp = fdp->fd_files[indx].fp;
1758 #if 0
1759 		if (fp && fdp->fd_files[indx].fileflags & UF_MAPPED)
1760 			(void) munmapfd(p, indx);
1761 #endif
1762 		fdp->fd_files[indx].fp = wfp;
1763 		fdp->fd_files[indx].fileflags = fdp->fd_files[dfd].fileflags;
1764 		fhold(wfp);
1765 		if (indx > fdp->fd_lastfile)
1766 			fdp->fd_lastfile = indx;
1767 		/*
1768 		 * we now own the reference to fp that the ofiles[] array
1769 		 * used to own.  Release it.
1770 		 */
1771 		if (fp)
1772 			fdrop(fp, curthread);
1773 		return (0);
1774 
1775 	case ENXIO:
1776 		/*
1777 		 * Steal away the file pointer from dfd, and stuff it into indx.
1778 		 */
1779 		fp = fdp->fd_files[indx].fp;
1780 #if 0
1781 		if (fp && fdp->fd_files[indx].fileflags & UF_MAPPED)
1782 			(void) munmapfd(p, indx);
1783 #endif
1784 		fdp->fd_files[indx].fp = fdp->fd_files[dfd].fp;
1785 		fdp->fd_files[indx].fileflags = fdp->fd_files[dfd].fileflags;
1786 		funsetfd(fdp, dfd);
1787 
1788 		/*
1789 		 * we now own the reference to fp that the files[] array
1790 		 * used to own.  Release it.
1791 		 */
1792 		if (fp)
1793 			fdrop(fp, curthread);
1794 		/*
1795 		 * Complete the clean up of the filedesc structure by
1796 		 * recomputing the various hints.
1797 		 */
1798 		if (indx > fdp->fd_lastfile) {
1799 			fdp->fd_lastfile = indx;
1800 		} else {
1801 			while (fdp->fd_lastfile > 0 &&
1802 			   fdp->fd_files[fdp->fd_lastfile].fp == NULL) {
1803 				fdp->fd_lastfile--;
1804 			}
1805 		}
1806 		return (0);
1807 
1808 	default:
1809 		return (error);
1810 	}
1811 	/* NOTREACHED */
1812 }
1813 
1814 
1815 struct filedesc_to_leader *
1816 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
1817 			 struct proc *leader)
1818 {
1819 	struct filedesc_to_leader *fdtol;
1820 
1821 	fdtol = malloc(sizeof(struct filedesc_to_leader),
1822 			M_FILEDESC_TO_LEADER, M_WAITOK);
1823 	fdtol->fdl_refcount = 1;
1824 	fdtol->fdl_holdcount = 0;
1825 	fdtol->fdl_wakeup = 0;
1826 	fdtol->fdl_leader = leader;
1827 	if (old != NULL) {
1828 		fdtol->fdl_next = old->fdl_next;
1829 		fdtol->fdl_prev = old;
1830 		old->fdl_next = fdtol;
1831 		fdtol->fdl_next->fdl_prev = fdtol;
1832 	} else {
1833 		fdtol->fdl_next = fdtol;
1834 		fdtol->fdl_prev = fdtol;
1835 	}
1836 	return fdtol;
1837 }
1838 
1839 /*
1840  * Get file structures.
1841  */
1842 static int
1843 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
1844 {
1845 	struct kinfo_file kf;
1846 	struct filedesc *fdp;
1847 	struct file *fp;
1848 	struct proc *p;
1849 	int count;
1850 	int error;
1851 	int n;
1852 
1853 	/*
1854 	 * Note: because the number of file descriptors is calculated
1855 	 * in different ways for sizing vs returning the data,
1856 	 * there is information leakage from the first loop.  However,
1857 	 * it is of a similar order of magnitude to the leakage from
1858 	 * global system statistics such as kern.openfiles.
1859 	 *
1860 	 * When just doing a count, note that we cannot just count
1861 	 * the elements and add f_count via the filehead list because
1862 	 * threaded processes share their descriptor table and f_count might
1863 	 * still be '1' in that case.
1864 	 */
1865 	count = 0;
1866 	error = 0;
1867 	LIST_FOREACH(p, &allproc, p_list) {
1868 		if (p->p_stat == SIDL)
1869 			continue;
1870 		if (!PRISON_CHECK(req->td->td_proc->p_ucred, p->p_ucred) != 0)
1871 			continue;
1872 		if ((fdp = p->p_fd) == NULL)
1873 			continue;
1874 		for (n = 0; n < fdp->fd_nfiles; ++n) {
1875 			if ((fp = fdp->fd_files[n].fp) == NULL)
1876 				continue;
1877 			if (req->oldptr == NULL) {
1878 				++count;
1879 			} else {
1880 				kcore_make_file(&kf, fp, p->p_pid,
1881 						p->p_ucred->cr_uid, n);
1882 				error = SYSCTL_OUT(req, &kf, sizeof(kf));
1883 				if (error)
1884 					break;
1885 			}
1886 		}
1887 		if (error)
1888 			break;
1889 	}
1890 
1891 	/*
1892 	 * When just calculating the size, overestimate a bit to try to
1893 	 * prevent system activity from causing the buffer-fill call
1894 	 * to fail later on.
1895 	 */
1896 	if (req->oldptr == NULL) {
1897 		count = (count + 16) + (count / 10);
1898 		error = SYSCTL_OUT(req, NULL, count * sizeof(kf));
1899 	}
1900 	return (error);
1901 }
1902 
1903 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
1904     0, 0, sysctl_kern_file, "S,file", "Entire file table");
1905 
1906 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
1907     &maxfilesperproc, 0, "Maximum files allowed open per process");
1908 
1909 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
1910     &maxfiles, 0, "Maximum number of files");
1911 
1912 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
1913     &maxfilesrootres, 0, "Descriptors reserved for root use");
1914 
1915 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
1916 	&nfiles, 0, "System-wide number of open files");
1917 
1918 static void
1919 fildesc_drvinit(void *unused)
1920 {
1921 	int fd;
1922 
1923 	cdevsw_add(&fildesc_cdevsw, 0, 0);
1924 	for (fd = 0; fd < NUMFDESC; fd++) {
1925 		make_dev(&fildesc_cdevsw, fd,
1926 		    UID_BIN, GID_BIN, 0666, "fd/%d", fd);
1927 	}
1928 	make_dev(&fildesc_cdevsw, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
1929 	make_dev(&fildesc_cdevsw, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
1930 	make_dev(&fildesc_cdevsw, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
1931 }
1932 
1933 struct fileops badfileops = {
1934 	NULL,	/* port */
1935 	NULL,	/* clone */
1936 	badfo_readwrite,
1937 	badfo_readwrite,
1938 	badfo_ioctl,
1939 	badfo_poll,
1940 	badfo_kqfilter,
1941 	badfo_stat,
1942 	badfo_close
1943 };
1944 
1945 static int
1946 badfo_readwrite(
1947 	struct file *fp,
1948 	struct uio *uio,
1949 	struct ucred *cred,
1950 	int flags,
1951 	struct thread *td
1952 ) {
1953 	return (EBADF);
1954 }
1955 
1956 static int
1957 badfo_ioctl(struct file *fp, u_long com, caddr_t data, struct thread *td)
1958 {
1959 	return (EBADF);
1960 }
1961 
1962 static int
1963 badfo_poll(struct file *fp, int events, struct ucred *cred, struct thread *td)
1964 {
1965 	return (0);
1966 }
1967 
1968 static int
1969 badfo_kqfilter(struct file *fp, struct knote *kn)
1970 {
1971 	return (0);
1972 }
1973 
1974 static int
1975 badfo_stat(struct file *fp, struct stat *sb, struct thread *td)
1976 {
1977 	return (EBADF);
1978 }
1979 
1980 static int
1981 badfo_close(struct file *fp, struct thread *td)
1982 {
1983 	return (EBADF);
1984 }
1985 
1986 SYSINIT(fildescdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,
1987 					fildesc_drvinit,NULL)
1988