xref: /dflybsd-src/sys/kern/kern_descrip.c (revision ae788f37fe53d5d1ca1e12a184a662192caad3c5)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
72  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
73  * $DragonFly: src/sys/kern/kern_descrip.c,v 1.79 2008/08/31 13:18:28 aggelos Exp $
74  */
75 
76 #include "opt_compat.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/conf.h>
82 #include <sys/device.h>
83 #include <sys/file.h>
84 #include <sys/filedesc.h>
85 #include <sys/kernel.h>
86 #include <sys/sysctl.h>
87 #include <sys/vnode.h>
88 #include <sys/proc.h>
89 #include <sys/nlookup.h>
90 #include <sys/file.h>
91 #include <sys/stat.h>
92 #include <sys/filio.h>
93 #include <sys/fcntl.h>
94 #include <sys/unistd.h>
95 #include <sys/resourcevar.h>
96 #include <sys/event.h>
97 #include <sys/kern_syscall.h>
98 #include <sys/kcore.h>
99 #include <sys/kinfo.h>
100 #include <sys/un.h>
101 
102 #include <vm/vm.h>
103 #include <vm/vm_extern.h>
104 
105 #include <sys/thread2.h>
106 #include <sys/file2.h>
107 #include <sys/spinlock2.h>
108 
109 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
110 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
111 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
112 static int checkfpclosed(struct filedesc *fdp, int fd, struct file *fp);
113 static void ffree(struct file *fp);
114 
115 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
116 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
117 		     "file desc to leader structures");
118 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
119 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
120 
121 static	 d_open_t  fdopen;
122 #define NUMFDESC 64
123 
124 #define CDEV_MAJOR 22
125 static struct dev_ops fildesc_ops = {
126 	{ "FD", CDEV_MAJOR, 0 },
127 	.d_open =	fdopen,
128 };
129 
130 /*
131  * Descriptor management.
132  */
133 static struct filelist filehead = LIST_HEAD_INITIALIZER(&filehead);
134 static struct spinlock filehead_spin = SPINLOCK_INITIALIZER(&filehead_spin);
135 static int nfiles;		/* actual number of open files */
136 extern int cmask;
137 
138 /*
139  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
140  *
141  * MPSAFE - must be called with fdp->fd_spin exclusively held
142  */
143 static __inline
144 void
145 fdfixup_locked(struct filedesc *fdp, int fd)
146 {
147 	if (fd < fdp->fd_freefile) {
148 	       fdp->fd_freefile = fd;
149 	}
150 	while (fdp->fd_lastfile >= 0 &&
151 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
152 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
153 	) {
154 		--fdp->fd_lastfile;
155 	}
156 }
157 
158 /*
159  * System calls on descriptors.
160  *
161  * MPSAFE
162  */
163 int
164 sys_getdtablesize(struct getdtablesize_args *uap)
165 {
166 	struct proc *p = curproc;
167 	struct plimit *limit = p->p_limit;
168 
169 	spin_lock_rd(&limit->p_spin);
170 	uap->sysmsg_result =
171 	    min((int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
172 	spin_unlock_rd(&limit->p_spin);
173 	return (0);
174 }
175 
176 /*
177  * Duplicate a file descriptor to a particular value.
178  *
179  * note: keep in mind that a potential race condition exists when closing
180  * descriptors from a shared descriptor table (via rfork).
181  *
182  * MPSAFE
183  */
184 int
185 sys_dup2(struct dup2_args *uap)
186 {
187 	int error;
188 	int fd = 0;
189 
190 	error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
191 	uap->sysmsg_fds[0] = fd;
192 
193 	return (error);
194 }
195 
196 /*
197  * Duplicate a file descriptor.
198  *
199  * MPSAFE
200  */
201 int
202 sys_dup(struct dup_args *uap)
203 {
204 	int error;
205 	int fd = 0;
206 
207 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
208 	uap->sysmsg_fds[0] = fd;
209 
210 	return (error);
211 }
212 
213 /*
214  * MPALMOSTSAFE - acquires mplock for fp operations
215  */
216 int
217 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
218 {
219 	struct thread *td = curthread;
220 	struct proc *p = td->td_proc;
221 	struct file *fp;
222 	struct vnode *vp;
223 	u_int newmin;
224 	u_int oflags;
225 	u_int nflags;
226 	int tmp, error, flg = F_POSIX;
227 
228 	KKASSERT(p);
229 
230 	/*
231 	 * Operations on file descriptors that do not require a file pointer.
232 	 */
233 	switch (cmd) {
234 	case F_GETFD:
235 		error = fgetfdflags(p->p_fd, fd, &tmp);
236 		if (error == 0)
237 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
238 		return (error);
239 
240 	case F_SETFD:
241 		if (dat->fc_cloexec & FD_CLOEXEC)
242 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
243 		else
244 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
245 		return (error);
246 	case F_DUPFD:
247 		newmin = dat->fc_fd;
248 		error = kern_dup(DUP_VARIABLE, fd, newmin, &dat->fc_fd);
249 		return (error);
250 	default:
251 		break;
252 	}
253 
254 	/*
255 	 * Operations on file pointers
256 	 */
257 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
258 		return (EBADF);
259 
260 	get_mplock();
261 	switch (cmd) {
262 	case F_GETFL:
263 		dat->fc_flags = OFLAGS(fp->f_flag);
264 		error = 0;
265 		break;
266 
267 	case F_SETFL:
268 		oflags = fp->f_flag;
269 		nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
270 		nflags |= oflags & ~FCNTLFLAGS;
271 
272 		error = 0;
273 		if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
274 			error = EINVAL;
275 		if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
276 			tmp = nflags & FASYNC;
277 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp,
278 					 cred, NULL);
279 		}
280 		if (error == 0)
281 			fp->f_flag = nflags;
282 		break;
283 
284 	case F_GETOWN:
285 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner,
286 				 cred, NULL);
287 		break;
288 
289 	case F_SETOWN:
290 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner,
291 				 cred, NULL);
292 		break;
293 
294 	case F_SETLKW:
295 		flg |= F_WAIT;
296 		/* Fall into F_SETLK */
297 
298 	case F_SETLK:
299 		if (fp->f_type != DTYPE_VNODE) {
300 			error = EBADF;
301 			break;
302 		}
303 		vp = (struct vnode *)fp->f_data;
304 
305 		/*
306 		 * copyin/lockop may block
307 		 */
308 		if (dat->fc_flock.l_whence == SEEK_CUR)
309 			dat->fc_flock.l_start += fp->f_offset;
310 
311 		switch (dat->fc_flock.l_type) {
312 		case F_RDLCK:
313 			if ((fp->f_flag & FREAD) == 0) {
314 				error = EBADF;
315 				break;
316 			}
317 			p->p_leader->p_flag |= P_ADVLOCK;
318 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
319 			    &dat->fc_flock, flg);
320 			break;
321 		case F_WRLCK:
322 			if ((fp->f_flag & FWRITE) == 0) {
323 				error = EBADF;
324 				break;
325 			}
326 			p->p_leader->p_flag |= P_ADVLOCK;
327 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
328 			    &dat->fc_flock, flg);
329 			break;
330 		case F_UNLCK:
331 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
332 				&dat->fc_flock, F_POSIX);
333 			break;
334 		default:
335 			error = EINVAL;
336 			break;
337 		}
338 
339 		/*
340 		 * It is possible to race a close() on the descriptor while
341 		 * we were blocked getting the lock.  If this occurs the
342 		 * close might not have caught the lock.
343 		 */
344 		if (checkfpclosed(p->p_fd, fd, fp)) {
345 			dat->fc_flock.l_whence = SEEK_SET;
346 			dat->fc_flock.l_start = 0;
347 			dat->fc_flock.l_len = 0;
348 			dat->fc_flock.l_type = F_UNLCK;
349 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
350 					   F_UNLCK, &dat->fc_flock, F_POSIX);
351 		}
352 		break;
353 
354 	case F_GETLK:
355 		if (fp->f_type != DTYPE_VNODE) {
356 			error = EBADF;
357 			break;
358 		}
359 		vp = (struct vnode *)fp->f_data;
360 		/*
361 		 * copyin/lockop may block
362 		 */
363 		if (dat->fc_flock.l_type != F_RDLCK &&
364 		    dat->fc_flock.l_type != F_WRLCK &&
365 		    dat->fc_flock.l_type != F_UNLCK) {
366 			error = EINVAL;
367 			break;
368 		}
369 		if (dat->fc_flock.l_whence == SEEK_CUR)
370 			dat->fc_flock.l_start += fp->f_offset;
371 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
372 			    &dat->fc_flock, F_POSIX);
373 		break;
374 	default:
375 		error = EINVAL;
376 		break;
377 	}
378 	rel_mplock();
379 
380 	fdrop(fp);
381 	return (error);
382 }
383 
384 /*
385  * The file control system call.
386  *
387  * MPSAFE
388  */
389 int
390 sys_fcntl(struct fcntl_args *uap)
391 {
392 	union fcntl_dat dat;
393 	int error;
394 
395 	switch (uap->cmd) {
396 	case F_DUPFD:
397 		dat.fc_fd = uap->arg;
398 		break;
399 	case F_SETFD:
400 		dat.fc_cloexec = uap->arg;
401 		break;
402 	case F_SETFL:
403 		dat.fc_flags = uap->arg;
404 		break;
405 	case F_SETOWN:
406 		dat.fc_owner = uap->arg;
407 		break;
408 	case F_SETLKW:
409 	case F_SETLK:
410 	case F_GETLK:
411 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
412 			       sizeof(struct flock));
413 		if (error)
414 			return (error);
415 		break;
416 	}
417 
418 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curproc->p_ucred);
419 
420 	if (error == 0) {
421 		switch (uap->cmd) {
422 		case F_DUPFD:
423 			uap->sysmsg_result = dat.fc_fd;
424 			break;
425 		case F_GETFD:
426 			uap->sysmsg_result = dat.fc_cloexec;
427 			break;
428 		case F_GETFL:
429 			uap->sysmsg_result = dat.fc_flags;
430 			break;
431 		case F_GETOWN:
432 			uap->sysmsg_result = dat.fc_owner;
433 		case F_GETLK:
434 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
435 			    sizeof(struct flock));
436 			break;
437 		}
438 	}
439 
440 	return (error);
441 }
442 
443 /*
444  * Common code for dup, dup2, and fcntl(F_DUPFD).
445  *
446  * The type flag can be either DUP_FIXED or DUP_VARIABLE.  DUP_FIXED tells
447  * kern_dup() to destructively dup over an existing file descriptor if new
448  * is already open.  DUP_VARIABLE tells kern_dup() to find the lowest
449  * unused file descriptor that is greater than or equal to new.
450  *
451  * MPSAFE
452  */
453 int
454 kern_dup(enum dup_type type, int old, int new, int *res)
455 {
456 	struct thread *td = curthread;
457 	struct proc *p = td->td_proc;
458 	struct filedesc *fdp = p->p_fd;
459 	struct file *fp;
460 	struct file *delfp;
461 	int oldflags;
462 	int holdleaders;
463 	int error, newfd;
464 
465 	/*
466 	 * Verify that we have a valid descriptor to dup from and
467 	 * possibly to dup to.
468 	 */
469 retry:
470 	spin_lock_wr(&fdp->fd_spin);
471 	if (new < 0 || new > p->p_rlimit[RLIMIT_NOFILE].rlim_cur ||
472 	    new >= maxfilesperproc) {
473 		spin_unlock_wr(&fdp->fd_spin);
474 		return (EINVAL);
475 	}
476 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
477 		spin_unlock_wr(&fdp->fd_spin);
478 		return (EBADF);
479 	}
480 	if (type == DUP_FIXED && old == new) {
481 		*res = new;
482 		spin_unlock_wr(&fdp->fd_spin);
483 		return (0);
484 	}
485 	fp = fdp->fd_files[old].fp;
486 	oldflags = fdp->fd_files[old].fileflags;
487 	fhold(fp);	/* MPSAFE - can be called with a spinlock held */
488 
489 	/*
490 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
491 	 * if the requested descriptor is beyond the current table size.
492 	 *
493 	 * This can block.  Retry if the source descriptor no longer matches
494 	 * or if our expectation in the expansion case races.
495 	 *
496 	 * If we are not expanding or allocating a new decriptor, then reset
497 	 * the target descriptor to a reserved state so we have a uniform
498 	 * setup for the next code block.
499 	 */
500 	if (type == DUP_VARIABLE || new >= fdp->fd_nfiles) {
501 		spin_unlock_wr(&fdp->fd_spin);
502 		error = fdalloc(p, new, &newfd);
503 		spin_lock_wr(&fdp->fd_spin);
504 		if (error) {
505 			spin_unlock_wr(&fdp->fd_spin);
506 			fdrop(fp);
507 			return (error);
508 		}
509 		/*
510 		 * Check for ripout
511 		 */
512 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
513 			fsetfd_locked(fdp, NULL, newfd);
514 			spin_unlock_wr(&fdp->fd_spin);
515 			fdrop(fp);
516 			goto retry;
517 		}
518 		/*
519 		 * Check for expansion race
520 		 */
521 		if (type != DUP_VARIABLE && new != newfd) {
522 			fsetfd_locked(fdp, NULL, newfd);
523 			spin_unlock_wr(&fdp->fd_spin);
524 			fdrop(fp);
525 			goto retry;
526 		}
527 		/*
528 		 * Check for ripout, newfd reused old (this case probably
529 		 * can't occur).
530 		 */
531 		if (old == newfd) {
532 			fsetfd_locked(fdp, NULL, newfd);
533 			spin_unlock_wr(&fdp->fd_spin);
534 			fdrop(fp);
535 			goto retry;
536 		}
537 		new = newfd;
538 		delfp = NULL;
539 	} else {
540 		if (fdp->fd_files[new].reserved) {
541 			spin_unlock_wr(&fdp->fd_spin);
542 			fdrop(fp);
543 			kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
544 			tsleep(fdp, 0, "fdres", hz);
545 			goto retry;
546 		}
547 
548 		/*
549 		 * If the target descriptor was never allocated we have
550 		 * to allocate it.  If it was we have to clean out the
551 		 * old descriptor.  delfp inherits the ref from the
552 		 * descriptor table.
553 		 */
554 		delfp = fdp->fd_files[new].fp;
555 		fdp->fd_files[new].fp = NULL;
556 		fdp->fd_files[new].reserved = 1;
557 		if (delfp == NULL) {
558 			fdreserve_locked(fdp, new, 1);
559 			if (new > fdp->fd_lastfile)
560 				fdp->fd_lastfile = new;
561 		}
562 
563 	}
564 
565 	/*
566 	 * NOTE: still holding an exclusive spinlock
567 	 */
568 
569 	/*
570 	 * If a descriptor is being overwritten we may hve to tell
571 	 * fdfree() to sleep to ensure that all relevant process
572 	 * leaders can be traversed in closef().
573 	 */
574 	if (delfp != NULL && p->p_fdtol != NULL) {
575 		fdp->fd_holdleaderscount++;
576 		holdleaders = 1;
577 	} else {
578 		holdleaders = 0;
579 	}
580 	KASSERT(delfp == NULL || type == DUP_FIXED,
581 		("dup() picked an open file"));
582 
583 	/*
584 	 * Duplicate the source descriptor, update lastfile.  If the new
585 	 * descriptor was not allocated and we aren't replacing an existing
586 	 * descriptor we have to mark the descriptor as being in use.
587 	 *
588 	 * The fd_files[] array inherits fp's hold reference.
589 	 */
590 	fsetfd_locked(fdp, fp, new);
591 	fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
592 	spin_unlock_wr(&fdp->fd_spin);
593 	fdrop(fp);
594 	*res = new;
595 
596 	/*
597 	 * If we dup'd over a valid file, we now own the reference to it
598 	 * and must dispose of it using closef() semantics (as if a
599 	 * close() were performed on it).
600 	 */
601 	if (delfp) {
602 		closef(delfp, p);
603 		if (holdleaders) {
604 			spin_lock_wr(&fdp->fd_spin);
605 			fdp->fd_holdleaderscount--;
606 			if (fdp->fd_holdleaderscount == 0 &&
607 			    fdp->fd_holdleaderswakeup != 0) {
608 				fdp->fd_holdleaderswakeup = 0;
609 				spin_unlock_wr(&fdp->fd_spin);
610 				wakeup(&fdp->fd_holdleaderscount);
611 			} else {
612 				spin_unlock_wr(&fdp->fd_spin);
613 			}
614 		}
615 	}
616 	return (0);
617 }
618 
619 /*
620  * If sigio is on the list associated with a process or process group,
621  * disable signalling from the device, remove sigio from the list and
622  * free sigio.
623  */
624 void
625 funsetown(struct sigio *sigio)
626 {
627 	if (sigio == NULL)
628 		return;
629 	crit_enter();
630 	*(sigio->sio_myref) = NULL;
631 	crit_exit();
632 	if (sigio->sio_pgid < 0) {
633 		SLIST_REMOVE(&sigio->sio_pgrp->pg_sigiolst, sigio,
634 			     sigio, sio_pgsigio);
635 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
636 		SLIST_REMOVE(&sigio->sio_proc->p_sigiolst, sigio,
637 			     sigio, sio_pgsigio);
638 	}
639 	crfree(sigio->sio_ucred);
640 	kfree(sigio, M_SIGIO);
641 }
642 
643 /* Free a list of sigio structures. */
644 void
645 funsetownlst(struct sigiolst *sigiolst)
646 {
647 	struct sigio *sigio;
648 
649 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
650 		funsetown(sigio);
651 }
652 
653 /*
654  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
655  *
656  * After permission checking, add a sigio structure to the sigio list for
657  * the process or process group.
658  */
659 int
660 fsetown(pid_t pgid, struct sigio **sigiop)
661 {
662 	struct proc *proc;
663 	struct pgrp *pgrp;
664 	struct sigio *sigio;
665 
666 	if (pgid == 0) {
667 		funsetown(*sigiop);
668 		return (0);
669 	}
670 	if (pgid > 0) {
671 		proc = pfind(pgid);
672 		if (proc == NULL)
673 			return (ESRCH);
674 
675 		/*
676 		 * Policy - Don't allow a process to FSETOWN a process
677 		 * in another session.
678 		 *
679 		 * Remove this test to allow maximum flexibility or
680 		 * restrict FSETOWN to the current process or process
681 		 * group for maximum safety.
682 		 */
683 		if (proc->p_session != curproc->p_session)
684 			return (EPERM);
685 
686 		pgrp = NULL;
687 	} else /* if (pgid < 0) */ {
688 		pgrp = pgfind(-pgid);
689 		if (pgrp == NULL)
690 			return (ESRCH);
691 
692 		/*
693 		 * Policy - Don't allow a process to FSETOWN a process
694 		 * in another session.
695 		 *
696 		 * Remove this test to allow maximum flexibility or
697 		 * restrict FSETOWN to the current process or process
698 		 * group for maximum safety.
699 		 */
700 		if (pgrp->pg_session != curproc->p_session)
701 			return (EPERM);
702 
703 		proc = NULL;
704 	}
705 	funsetown(*sigiop);
706 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
707 	if (pgid > 0) {
708 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
709 		sigio->sio_proc = proc;
710 	} else {
711 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
712 		sigio->sio_pgrp = pgrp;
713 	}
714 	sigio->sio_pgid = pgid;
715 	sigio->sio_ucred = crhold(curproc->p_ucred);
716 	/* It would be convenient if p_ruid was in ucred. */
717 	sigio->sio_ruid = curproc->p_ucred->cr_ruid;
718 	sigio->sio_myref = sigiop;
719 	crit_enter();
720 	*sigiop = sigio;
721 	crit_exit();
722 	return (0);
723 }
724 
725 /*
726  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
727  */
728 pid_t
729 fgetown(struct sigio *sigio)
730 {
731 	return (sigio != NULL ? sigio->sio_pgid : 0);
732 }
733 
734 /*
735  * Close many file descriptors.
736  *
737  * MPSAFE
738  */
739 int
740 sys_closefrom(struct closefrom_args *uap)
741 {
742 	return(kern_closefrom(uap->fd));
743 }
744 
745 /*
746  * Close all file descriptors greater then or equal to fd
747  *
748  * MPSAFE
749  */
750 int
751 kern_closefrom(int fd)
752 {
753 	struct thread *td = curthread;
754 	struct proc *p = td->td_proc;
755 	struct filedesc *fdp;
756 
757 	KKASSERT(p);
758 	fdp = p->p_fd;
759 
760 	if (fd < 0)
761 		return (EINVAL);
762 
763 	/*
764 	 * NOTE: This function will skip unassociated descriptors and
765 	 * reserved descriptors that have not yet been assigned.
766 	 * fd_lastfile can change as a side effect of kern_close().
767 	 */
768 	spin_lock_wr(&fdp->fd_spin);
769 	while (fd <= fdp->fd_lastfile) {
770 		if (fdp->fd_files[fd].fp != NULL) {
771 			spin_unlock_wr(&fdp->fd_spin);
772 			/* ok if this races another close */
773 			if (kern_close(fd) == EINTR)
774 				return (EINTR);
775 			spin_lock_wr(&fdp->fd_spin);
776 		}
777 		++fd;
778 	}
779 	spin_unlock_wr(&fdp->fd_spin);
780 	return (0);
781 }
782 
783 /*
784  * Close a file descriptor.
785  *
786  * MPSAFE
787  */
788 int
789 sys_close(struct close_args *uap)
790 {
791 	return(kern_close(uap->fd));
792 }
793 
794 /*
795  * MPALMOSTSAFE - acquires mplock around knote_fdclose() calls
796  */
797 int
798 kern_close(int fd)
799 {
800 	struct thread *td = curthread;
801 	struct proc *p = td->td_proc;
802 	struct filedesc *fdp;
803 	struct file *fp;
804 	int error;
805 	int holdleaders;
806 
807 	KKASSERT(p);
808 	fdp = p->p_fd;
809 
810 	spin_lock_wr(&fdp->fd_spin);
811 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
812 		spin_unlock_wr(&fdp->fd_spin);
813 		return (EBADF);
814 	}
815 	holdleaders = 0;
816 	if (p->p_fdtol != NULL) {
817 		/*
818 		 * Ask fdfree() to sleep to ensure that all relevant
819 		 * process leaders can be traversed in closef().
820 		 */
821 		fdp->fd_holdleaderscount++;
822 		holdleaders = 1;
823 	}
824 
825 	/*
826 	 * we now hold the fp reference that used to be owned by the descriptor
827 	 * array.
828 	 */
829 	spin_unlock_wr(&fdp->fd_spin);
830 	if (fd < fdp->fd_knlistsize) {
831 		get_mplock();
832 		if (fd < fdp->fd_knlistsize)
833 			knote_fdclose(p, fd);
834 		rel_mplock();
835 	}
836 	error = closef(fp, p);
837 	if (holdleaders) {
838 		spin_lock_wr(&fdp->fd_spin);
839 		fdp->fd_holdleaderscount--;
840 		if (fdp->fd_holdleaderscount == 0 &&
841 		    fdp->fd_holdleaderswakeup != 0) {
842 			fdp->fd_holdleaderswakeup = 0;
843 			spin_unlock_wr(&fdp->fd_spin);
844 			wakeup(&fdp->fd_holdleaderscount);
845 		} else {
846 			spin_unlock_wr(&fdp->fd_spin);
847 		}
848 	}
849 	return (error);
850 }
851 
852 /*
853  * shutdown_args(int fd, int how)
854  */
855 int
856 kern_shutdown(int fd, int how)
857 {
858 	struct thread *td = curthread;
859 	struct proc *p = td->td_proc;
860 	struct file *fp;
861 	int error;
862 
863 	KKASSERT(p);
864 
865 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
866 		return (EBADF);
867 	error = fo_shutdown(fp, how);
868 	fdrop(fp);
869 
870 	return (error);
871 }
872 
873 int
874 sys_shutdown(struct shutdown_args *uap)
875 {
876 	int error;
877 
878 	error = kern_shutdown(uap->s, uap->how);
879 
880 	return (error);
881 }
882 
883 /*
884  * MPSAFE
885  */
886 int
887 kern_fstat(int fd, struct stat *ub)
888 {
889 	struct thread *td = curthread;
890 	struct proc *p = td->td_proc;
891 	struct file *fp;
892 	int error;
893 
894 	KKASSERT(p);
895 
896 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
897 		return (EBADF);
898 	error = fo_stat(fp, ub, p->p_ucred);
899 	fdrop(fp);
900 
901 	return (error);
902 }
903 
904 /*
905  * Return status information about a file descriptor.
906  *
907  * MPSAFE
908  */
909 int
910 sys_fstat(struct fstat_args *uap)
911 {
912 	struct stat st;
913 	int error;
914 
915 	error = kern_fstat(uap->fd, &st);
916 
917 	if (error == 0)
918 		error = copyout(&st, uap->sb, sizeof(st));
919 	return (error);
920 }
921 
922 /*
923  * Return pathconf information about a file descriptor.
924  */
925 /* ARGSUSED */
926 int
927 sys_fpathconf(struct fpathconf_args *uap)
928 {
929 	struct thread *td = curthread;
930 	struct proc *p = td->td_proc;
931 	struct file *fp;
932 	struct vnode *vp;
933 	int error = 0;
934 
935 	KKASSERT(p);
936 
937 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
938 		return (EBADF);
939 
940 	switch (fp->f_type) {
941 	case DTYPE_PIPE:
942 	case DTYPE_SOCKET:
943 		if (uap->name != _PC_PIPE_BUF) {
944 			error = EINVAL;
945 		} else {
946 			uap->sysmsg_result = PIPE_BUF;
947 			error = 0;
948 		}
949 		break;
950 	case DTYPE_FIFO:
951 	case DTYPE_VNODE:
952 		vp = (struct vnode *)fp->f_data;
953 		error = VOP_PATHCONF(vp, uap->name, &uap->sysmsg_reg);
954 		break;
955 	default:
956 		error = EOPNOTSUPP;
957 		break;
958 	}
959 	fdrop(fp);
960 	return(error);
961 }
962 
963 static int fdexpand;
964 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0, "");
965 
966 /*
967  * Grow the file table so it can hold through descriptor (want).
968  *
969  * The fdp's spinlock must be held exclusively on entry and may be held
970  * exclusively on return.  The spinlock may be cycled by the routine.
971  *
972  * MPSAFE
973  */
974 static void
975 fdgrow_locked(struct filedesc *fdp, int want)
976 {
977 	struct fdnode *newfiles;
978 	struct fdnode *oldfiles;
979 	int nf, extra;
980 
981 	nf = fdp->fd_nfiles;
982 	do {
983 		/* nf has to be of the form 2^n - 1 */
984 		nf = 2 * nf + 1;
985 	} while (nf <= want);
986 
987 	spin_unlock_wr(&fdp->fd_spin);
988 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
989 	spin_lock_wr(&fdp->fd_spin);
990 
991 	/*
992 	 * We could have raced another extend while we were not holding
993 	 * the spinlock.
994 	 */
995 	if (fdp->fd_nfiles >= nf) {
996 		spin_unlock_wr(&fdp->fd_spin);
997 		kfree(newfiles, M_FILEDESC);
998 		spin_lock_wr(&fdp->fd_spin);
999 		return;
1000 	}
1001 	/*
1002 	 * Copy the existing ofile and ofileflags arrays
1003 	 * and zero the new portion of each array.
1004 	 */
1005 	extra = nf - fdp->fd_nfiles;
1006 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1007 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1008 
1009 	oldfiles = fdp->fd_files;
1010 	fdp->fd_files = newfiles;
1011 	fdp->fd_nfiles = nf;
1012 
1013 	if (oldfiles != fdp->fd_builtin_files) {
1014 		spin_unlock_wr(&fdp->fd_spin);
1015 		kfree(oldfiles, M_FILEDESC);
1016 		spin_lock_wr(&fdp->fd_spin);
1017 	}
1018 	fdexpand++;
1019 }
1020 
1021 /*
1022  * Number of nodes in right subtree, including the root.
1023  */
1024 static __inline int
1025 right_subtree_size(int n)
1026 {
1027 	return (n ^ (n | (n + 1)));
1028 }
1029 
1030 /*
1031  * Bigger ancestor.
1032  */
1033 static __inline int
1034 right_ancestor(int n)
1035 {
1036 	return (n | (n + 1));
1037 }
1038 
1039 /*
1040  * Smaller ancestor.
1041  */
1042 static __inline int
1043 left_ancestor(int n)
1044 {
1045 	return ((n & (n + 1)) - 1);
1046 }
1047 
1048 /*
1049  * Traverse the in-place binary tree buttom-up adjusting the allocation
1050  * count so scans can determine where free descriptors are located.
1051  *
1052  * MPSAFE - caller must be holding an exclusive spinlock on fdp
1053  */
1054 static
1055 void
1056 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1057 {
1058 	while (fd >= 0) {
1059 		fdp->fd_files[fd].allocated += incr;
1060 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1061 		fd = left_ancestor(fd);
1062 	}
1063 }
1064 
1065 /*
1066  * Reserve a file descriptor for the process.  If no error occurs, the
1067  * caller MUST at some point call fsetfd() or assign a file pointer
1068  * or dispose of the reservation.
1069  *
1070  * MPSAFE
1071  */
1072 int
1073 fdalloc(struct proc *p, int want, int *result)
1074 {
1075 	struct filedesc *fdp = p->p_fd;
1076 	int fd, rsize, rsum, node, lim;
1077 
1078 	spin_lock_rd(&p->p_limit->p_spin);
1079 	lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
1080 	spin_unlock_rd(&p->p_limit->p_spin);
1081 	if (want >= lim)
1082 		return (EMFILE);
1083 	spin_lock_wr(&fdp->fd_spin);
1084 	if (want >= fdp->fd_nfiles)
1085 		fdgrow_locked(fdp, want);
1086 
1087 	/*
1088 	 * Search for a free descriptor starting at the higher
1089 	 * of want or fd_freefile.  If that fails, consider
1090 	 * expanding the ofile array.
1091 	 *
1092 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1093 	 * count.  If we happen to see a value of 0 then we can shortcut
1094 	 * our search.  Otherwise we run through through the tree going
1095 	 * down branches we know have free descriptor(s) until we hit a
1096 	 * leaf node.  The leaf node will be free but will not necessarily
1097 	 * have an allocated field of 0.
1098 	 */
1099 retry:
1100 	/* move up the tree looking for a subtree with a free node */
1101 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1102 	     fd = right_ancestor(fd)) {
1103 		if (fdp->fd_files[fd].allocated == 0)
1104 			goto found;
1105 
1106 		rsize = right_subtree_size(fd);
1107 		if (fdp->fd_files[fd].allocated == rsize)
1108 			continue;	/* right subtree full */
1109 
1110 		/*
1111 		 * Free fd is in the right subtree of the tree rooted at fd.
1112 		 * Call that subtree R.  Look for the smallest (leftmost)
1113 		 * subtree of R with an unallocated fd: continue moving
1114 		 * down the left branch until encountering a full left
1115 		 * subtree, then move to the right.
1116 		 */
1117 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1118 			node = fd + rsize;
1119 			rsum += fdp->fd_files[node].allocated;
1120 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1121 				fd = node;	/* move to the right */
1122 				if (fdp->fd_files[node].allocated == 0)
1123 					goto found;
1124 				rsum = 0;
1125 			}
1126 		}
1127 		goto found;
1128 	}
1129 
1130 	/*
1131 	 * No space in current array.  Expand?
1132 	 */
1133 	if (fdp->fd_nfiles >= lim) {
1134 		spin_unlock_wr(&fdp->fd_spin);
1135 		return (EMFILE);
1136 	}
1137 	fdgrow_locked(fdp, want);
1138 	goto retry;
1139 
1140 found:
1141 	KKASSERT(fd < fdp->fd_nfiles);
1142 	if (fd > fdp->fd_lastfile)
1143 		fdp->fd_lastfile = fd;
1144 	if (want <= fdp->fd_freefile)
1145 		fdp->fd_freefile = fd;
1146 	*result = fd;
1147 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1148 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1149 	fdp->fd_files[fd].fileflags = 0;
1150 	fdp->fd_files[fd].reserved = 1;
1151 	fdreserve_locked(fdp, fd, 1);
1152 	spin_unlock_wr(&fdp->fd_spin);
1153 	return (0);
1154 }
1155 
1156 /*
1157  * Check to see whether n user file descriptors
1158  * are available to the process p.
1159  *
1160  * MPSAFE
1161  */
1162 int
1163 fdavail(struct proc *p, int n)
1164 {
1165 	struct filedesc *fdp = p->p_fd;
1166 	struct fdnode *fdnode;
1167 	int i, lim, last;
1168 
1169 	spin_lock_rd(&p->p_limit->p_spin);
1170 	lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
1171 	spin_unlock_rd(&p->p_limit->p_spin);
1172 
1173 	spin_lock_rd(&fdp->fd_spin);
1174 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1175 		spin_unlock_rd(&fdp->fd_spin);
1176 		return (1);
1177 	}
1178 	last = min(fdp->fd_nfiles, lim);
1179 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1180 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1181 		if (fdnode->fp == NULL && --n <= 0) {
1182 			spin_unlock_rd(&fdp->fd_spin);
1183 			return (1);
1184 		}
1185 	}
1186 	spin_unlock_rd(&fdp->fd_spin);
1187 	return (0);
1188 }
1189 
1190 /*
1191  * Revoke open descriptors referencing (f_data, f_type)
1192  *
1193  * Any revoke executed within a prison is only able to
1194  * revoke descriptors for processes within that prison.
1195  *
1196  * Returns 0 on success or an error code.
1197  */
1198 struct fdrevoke_info {
1199 	void *data;
1200 	short type;
1201 	short unused;
1202 	int count;
1203 	int intransit;
1204 	struct ucred *cred;
1205 	struct file *nfp;
1206 };
1207 
1208 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1209 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1210 
1211 int
1212 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1213 {
1214 	struct fdrevoke_info info;
1215 	int error;
1216 
1217 	bzero(&info, sizeof(info));
1218 	info.data = f_data;
1219 	info.type = f_type;
1220 	info.cred = cred;
1221 	error = falloc(NULL, &info.nfp, NULL);
1222 	if (error)
1223 		return (error);
1224 
1225 	/*
1226 	 * Scan the file pointer table once.  dups do not dup file pointers,
1227 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1228 	 * being revoked.
1229 	 */
1230 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1231 
1232 	/*
1233 	 * If any fps were marked track down the related descriptors
1234 	 * and close them.  Any dup()s at this point will notice
1235 	 * the FREVOKED already set in the fp and do the right thing.
1236 	 *
1237 	 * Any fps with non-zero msgcounts (aka sent over a unix-domain
1238 	 * socket) bumped the intransit counter and will require a
1239 	 * scan.  Races against fps leaving the socket are closed by
1240 	 * the socket code checking for FREVOKED.
1241 	 */
1242 	if (info.count)
1243 		allproc_scan(fdrevoke_proc_callback, &info);
1244 	if (info.intransit)
1245 		unp_revoke_gc(info.nfp);
1246 	fdrop(info.nfp);
1247 	return(0);
1248 }
1249 
1250 /*
1251  * Locate matching file pointers directly.
1252  */
1253 static int
1254 fdrevoke_check_callback(struct file *fp, void *vinfo)
1255 {
1256 	struct fdrevoke_info *info = vinfo;
1257 
1258 	/*
1259 	 * File pointers already flagged for revokation are skipped.
1260 	 */
1261 	if (fp->f_flag & FREVOKED)
1262 		return(0);
1263 
1264 	/*
1265 	 * If revoking from a prison file pointers created outside of
1266 	 * that prison, or file pointers without creds, cannot be revoked.
1267 	 */
1268 	if (info->cred->cr_prison &&
1269 	    (fp->f_cred == NULL ||
1270 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1271 		return(0);
1272 	}
1273 
1274 	/*
1275 	 * If the file pointer matches then mark it for revocation.  The
1276 	 * flag is currently only used by unp_revoke_gc().
1277 	 *
1278 	 * info->count is a heuristic and can race in a SMP environment.
1279 	 */
1280 	if (info->data == fp->f_data && info->type == fp->f_type) {
1281 		atomic_set_int(&fp->f_flag, FREVOKED);
1282 		info->count += fp->f_count;
1283 		if (fp->f_msgcount)
1284 			++info->intransit;
1285 	}
1286 	return(0);
1287 }
1288 
1289 /*
1290  * Locate matching file pointers via process descriptor tables.
1291  */
1292 static int
1293 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1294 {
1295 	struct fdrevoke_info *info = vinfo;
1296 	struct filedesc *fdp;
1297 	struct file *fp;
1298 	int n;
1299 
1300 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1301 		return(0);
1302 	if (info->cred->cr_prison &&
1303 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1304 		return(0);
1305 	}
1306 
1307 	/*
1308 	 * If the controlling terminal of the process matches the
1309 	 * vnode being revoked we clear the controlling terminal.
1310 	 *
1311 	 * The normal spec_close() may not catch this because it
1312 	 * uses curproc instead of p.
1313 	 */
1314 	if (p->p_session && info->type == DTYPE_VNODE &&
1315 	    info->data == p->p_session->s_ttyvp) {
1316 		p->p_session->s_ttyvp = NULL;
1317 		vrele(info->data);
1318 	}
1319 
1320 	/*
1321 	 * Softref the fdp to prevent it from being destroyed
1322 	 */
1323 	spin_lock_wr(&p->p_spin);
1324 	if ((fdp = p->p_fd) == NULL) {
1325 		spin_unlock_wr(&p->p_spin);
1326 		return(0);
1327 	}
1328 	atomic_add_int(&fdp->fd_softrefs, 1);
1329 	spin_unlock_wr(&p->p_spin);
1330 
1331 	/*
1332 	 * Locate and close any matching file descriptors.
1333 	 */
1334 	spin_lock_wr(&fdp->fd_spin);
1335 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1336 		if ((fp = fdp->fd_files[n].fp) == NULL)
1337 			continue;
1338 		if (fp->f_flag & FREVOKED) {
1339 			fhold(info->nfp);
1340 			fdp->fd_files[n].fp = info->nfp;
1341 			spin_unlock_wr(&fdp->fd_spin);
1342 			closef(fp, p);
1343 			spin_lock_wr(&fdp->fd_spin);
1344 			--info->count;
1345 		}
1346 	}
1347 	spin_unlock_wr(&fdp->fd_spin);
1348 	atomic_subtract_int(&fdp->fd_softrefs, 1);
1349 	return(0);
1350 }
1351 
1352 /*
1353  * falloc:
1354  *	Create a new open file structure and reserve a file decriptor
1355  *	for the process that refers to it.
1356  *
1357  *	Root creds are checked using p, or assumed if p is NULL.  If
1358  *	resultfd is non-NULL then p must also be non-NULL.  No file
1359  *	descriptor is reserved if resultfd is NULL.
1360  *
1361  *	A file pointer with a refcount of 1 is returned.  Note that the
1362  *	file pointer is NOT associated with the descriptor.  If falloc
1363  *	returns success, fsetfd() MUST be called to either associate the
1364  *	file pointer or clear the reservation.
1365  *
1366  * MPSAFE
1367  */
1368 int
1369 falloc(struct proc *p, struct file **resultfp, int *resultfd)
1370 {
1371 	static struct timeval lastfail;
1372 	static int curfail;
1373 	struct file *fp;
1374 	int error;
1375 
1376 	fp = NULL;
1377 
1378 	/*
1379 	 * Handle filetable full issues and root overfill.
1380 	 */
1381 	if (nfiles >= maxfiles - maxfilesrootres &&
1382 	    ((p && p->p_ucred->cr_ruid != 0) || nfiles >= maxfiles)) {
1383 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1384 			kprintf("kern.maxfiles limit exceeded by uid %d, please see tuning(7).\n",
1385 				(p ? p->p_ucred->cr_ruid : -1));
1386 		}
1387 		error = ENFILE;
1388 		goto done;
1389 	}
1390 
1391 	/*
1392 	 * Allocate a new file descriptor.
1393 	 */
1394 	fp = kmalloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1395 	spin_init(&fp->f_spin);
1396 	fp->f_count = 1;
1397 	fp->f_ops = &badfileops;
1398 	fp->f_seqcount = 1;
1399 	if (p)
1400 		fp->f_cred = crhold(p->p_ucred);
1401 	else
1402 		fp->f_cred = crhold(proc0.p_ucred);
1403 	spin_lock_wr(&filehead_spin);
1404 	nfiles++;
1405 	LIST_INSERT_HEAD(&filehead, fp, f_list);
1406 	spin_unlock_wr(&filehead_spin);
1407 	if (resultfd) {
1408 		if ((error = fdalloc(p, 0, resultfd)) != 0) {
1409 			fdrop(fp);
1410 			fp = NULL;
1411 		}
1412 	} else {
1413 		error = 0;
1414 	}
1415 done:
1416 	*resultfp = fp;
1417 	return (error);
1418 }
1419 
1420 /*
1421  * MPSAFE
1422  */
1423 static
1424 int
1425 checkfpclosed(struct filedesc *fdp, int fd, struct file *fp)
1426 {
1427 	int error;
1428 
1429 	spin_lock_rd(&fdp->fd_spin);
1430 	if ((unsigned) fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1431 		error = EBADF;
1432 	else
1433 		error = 0;
1434 	spin_unlock_rd(&fdp->fd_spin);
1435 	return (error);
1436 }
1437 
1438 /*
1439  * Associate a file pointer with a previously reserved file descriptor.
1440  * This function always succeeds.
1441  *
1442  * If fp is NULL, the file descriptor is returned to the pool.
1443  */
1444 
1445 /*
1446  * MPSAFE (exclusive spinlock must be held on call)
1447  */
1448 static void
1449 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1450 {
1451 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
1452 	KKASSERT(fdp->fd_files[fd].reserved != 0);
1453 	if (fp) {
1454 		fhold(fp);
1455 		fdp->fd_files[fd].fp = fp;
1456 		fdp->fd_files[fd].reserved = 0;
1457 		if (fp->f_type == DTYPE_KQUEUE) {
1458 			if (fdp->fd_knlistsize < 0)
1459 				fdp->fd_knlistsize = 0;
1460 		}
1461 	} else {
1462 		fdp->fd_files[fd].reserved = 0;
1463 		fdreserve_locked(fdp, fd, -1);
1464 		fdfixup_locked(fdp, fd);
1465 	}
1466 }
1467 
1468 /*
1469  * MPSAFE
1470  */
1471 void
1472 fsetfd(struct proc *p, struct file *fp, int fd)
1473 {
1474 	struct filedesc *fdp = p->p_fd;
1475 
1476 	spin_lock_wr(&fdp->fd_spin);
1477 	fsetfd_locked(fdp, fp, fd);
1478 	spin_unlock_wr(&fdp->fd_spin);
1479 }
1480 
1481 /*
1482  * MPSAFE (exclusive spinlock must be held on call)
1483  */
1484 static
1485 struct file *
1486 funsetfd_locked(struct filedesc *fdp, int fd)
1487 {
1488 	struct file *fp;
1489 
1490 	if ((unsigned)fd >= fdp->fd_nfiles)
1491 		return (NULL);
1492 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1493 		return (NULL);
1494 	fdp->fd_files[fd].fp = NULL;
1495 	fdp->fd_files[fd].fileflags = 0;
1496 
1497 	fdreserve_locked(fdp, fd, -1);
1498 	fdfixup_locked(fdp, fd);
1499 	return(fp);
1500 }
1501 
1502 /*
1503  * MPSAFE
1504  */
1505 int
1506 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1507 {
1508 	int error;
1509 
1510 	spin_lock_rd(&fdp->fd_spin);
1511 	if (((u_int)fd) >= fdp->fd_nfiles) {
1512 		error = EBADF;
1513 	} else if (fdp->fd_files[fd].fp == NULL) {
1514 		error = EBADF;
1515 	} else {
1516 		*flagsp = fdp->fd_files[fd].fileflags;
1517 		error = 0;
1518 	}
1519 	spin_unlock_rd(&fdp->fd_spin);
1520 	return (error);
1521 }
1522 
1523 /*
1524  * MPSAFE
1525  */
1526 int
1527 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1528 {
1529 	int error;
1530 
1531 	spin_lock_wr(&fdp->fd_spin);
1532 	if (((u_int)fd) >= fdp->fd_nfiles) {
1533 		error = EBADF;
1534 	} else if (fdp->fd_files[fd].fp == NULL) {
1535 		error = EBADF;
1536 	} else {
1537 		fdp->fd_files[fd].fileflags |= add_flags;
1538 		error = 0;
1539 	}
1540 	spin_unlock_wr(&fdp->fd_spin);
1541 	return (error);
1542 }
1543 
1544 /*
1545  * MPSAFE
1546  */
1547 int
1548 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1549 {
1550 	int error;
1551 
1552 	spin_lock_wr(&fdp->fd_spin);
1553 	if (((u_int)fd) >= fdp->fd_nfiles) {
1554 		error = EBADF;
1555 	} else if (fdp->fd_files[fd].fp == NULL) {
1556 		error = EBADF;
1557 	} else {
1558 		fdp->fd_files[fd].fileflags &= ~rem_flags;
1559 		error = 0;
1560 	}
1561 	spin_unlock_wr(&fdp->fd_spin);
1562 	return (error);
1563 }
1564 
1565 void
1566 fsetcred(struct file *fp, struct ucred *cr)
1567 {
1568 	crhold(cr);
1569 	crfree(fp->f_cred);
1570 	fp->f_cred = cr;
1571 }
1572 
1573 /*
1574  * Free a file descriptor.
1575  */
1576 static
1577 void
1578 ffree(struct file *fp)
1579 {
1580 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1581 	spin_lock_wr(&filehead_spin);
1582 	LIST_REMOVE(fp, f_list);
1583 	nfiles--;
1584 	spin_unlock_wr(&filehead_spin);
1585 	crfree(fp->f_cred);
1586 	if (fp->f_nchandle.ncp)
1587 	    cache_drop(&fp->f_nchandle);
1588 	kfree(fp, M_FILE);
1589 }
1590 
1591 /*
1592  * called from init_main, initialize filedesc0 for proc0.
1593  */
1594 void
1595 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1596 {
1597 	p0->p_fd = fdp0;
1598 	p0->p_fdtol = NULL;
1599 	fdp0->fd_refcnt = 1;
1600 	fdp0->fd_cmask = cmask;
1601 	fdp0->fd_files = fdp0->fd_builtin_files;
1602 	fdp0->fd_nfiles = NDFILE;
1603 	fdp0->fd_lastfile = -1;
1604 	spin_init(&fdp0->fd_spin);
1605 }
1606 
1607 /*
1608  * Build a new filedesc structure.
1609  *
1610  * NOT MPSAFE (vref)
1611  */
1612 struct filedesc *
1613 fdinit(struct proc *p)
1614 {
1615 	struct filedesc *newfdp;
1616 	struct filedesc *fdp = p->p_fd;
1617 
1618 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1619 	spin_lock_rd(&fdp->fd_spin);
1620 	if (fdp->fd_cdir) {
1621 		newfdp->fd_cdir = fdp->fd_cdir;
1622 		vref(newfdp->fd_cdir);
1623 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1624 	}
1625 
1626 	/*
1627 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1628 	 * proc0, but should unconditionally exist in other processes.
1629 	 */
1630 	if (fdp->fd_rdir) {
1631 		newfdp->fd_rdir = fdp->fd_rdir;
1632 		vref(newfdp->fd_rdir);
1633 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1634 	}
1635 	if (fdp->fd_jdir) {
1636 		newfdp->fd_jdir = fdp->fd_jdir;
1637 		vref(newfdp->fd_jdir);
1638 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1639 	}
1640 	spin_unlock_rd(&fdp->fd_spin);
1641 
1642 	/* Create the file descriptor table. */
1643 	newfdp->fd_refcnt = 1;
1644 	newfdp->fd_cmask = cmask;
1645 	newfdp->fd_files = newfdp->fd_builtin_files;
1646 	newfdp->fd_nfiles = NDFILE;
1647 	newfdp->fd_knlistsize = -1;
1648 	newfdp->fd_lastfile = -1;
1649 	spin_init(&newfdp->fd_spin);
1650 
1651 	return (newfdp);
1652 }
1653 
1654 /*
1655  * Share a filedesc structure.
1656  *
1657  * MPSAFE
1658  */
1659 struct filedesc *
1660 fdshare(struct proc *p)
1661 {
1662 	struct filedesc *fdp;
1663 
1664 	fdp = p->p_fd;
1665 	spin_lock_wr(&fdp->fd_spin);
1666 	fdp->fd_refcnt++;
1667 	spin_unlock_wr(&fdp->fd_spin);
1668 	return (fdp);
1669 }
1670 
1671 /*
1672  * Copy a filedesc structure.
1673  *
1674  * MPSAFE
1675  */
1676 struct filedesc *
1677 fdcopy(struct proc *p)
1678 {
1679 	struct filedesc *fdp = p->p_fd;
1680 	struct filedesc *newfdp;
1681 	struct fdnode *fdnode;
1682 	int i;
1683 	int ni;
1684 
1685 	/*
1686 	 * Certain daemons might not have file descriptors.
1687 	 */
1688 	if (fdp == NULL)
1689 		return (NULL);
1690 
1691 	/*
1692 	 * Allocate the new filedesc and fd_files[] array.  This can race
1693 	 * with operations by other threads on the fdp so we have to be
1694 	 * careful.
1695 	 */
1696 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK | M_ZERO);
1697 again:
1698 	spin_lock_rd(&fdp->fd_spin);
1699 	if (fdp->fd_lastfile < NDFILE) {
1700 		newfdp->fd_files = newfdp->fd_builtin_files;
1701 		i = NDFILE;
1702 	} else {
1703 		/*
1704 		 * We have to allocate (N^2-1) entries for our in-place
1705 		 * binary tree.  Allow the table to shrink.
1706 		 */
1707 		i = fdp->fd_nfiles;
1708 		ni = (i - 1) / 2;
1709 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
1710 			i = ni;
1711 			ni = (i - 1) / 2;
1712 		}
1713 		spin_unlock_rd(&fdp->fd_spin);
1714 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1715 					  M_FILEDESC, M_WAITOK | M_ZERO);
1716 
1717 		/*
1718 		 * Check for race, retry
1719 		 */
1720 		spin_lock_rd(&fdp->fd_spin);
1721 		if (i <= fdp->fd_lastfile) {
1722 			spin_unlock_rd(&fdp->fd_spin);
1723 			kfree(newfdp->fd_files, M_FILEDESC);
1724 			goto again;
1725 		}
1726 	}
1727 
1728 	/*
1729 	 * Dup the remaining fields. vref() and cache_hold() can be
1730 	 * safely called while holding the read spinlock on fdp.
1731 	 *
1732 	 * The read spinlock on fdp is still being held.
1733 	 *
1734 	 * NOTE: vref and cache_hold calls for the case where the vnode
1735 	 * or cache entry already has at least one ref may be called
1736 	 * while holding spin locks.
1737 	 */
1738 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1739 		vref(newfdp->fd_cdir);
1740 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1741 	}
1742 	/*
1743 	 * We must check for fd_rdir here, at least for now because
1744 	 * the init process is created before we have access to the
1745 	 * rootvode to take a reference to it.
1746 	 */
1747 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1748 		vref(newfdp->fd_rdir);
1749 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1750 	}
1751 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1752 		vref(newfdp->fd_jdir);
1753 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1754 	}
1755 	newfdp->fd_refcnt = 1;
1756 	newfdp->fd_nfiles = i;
1757 	newfdp->fd_lastfile = fdp->fd_lastfile;
1758 	newfdp->fd_freefile = fdp->fd_freefile;
1759 	newfdp->fd_cmask = fdp->fd_cmask;
1760 	newfdp->fd_knlist = NULL;
1761 	newfdp->fd_knlistsize = -1;
1762 	newfdp->fd_knhash = NULL;
1763 	newfdp->fd_knhashmask = 0;
1764 	spin_init(&newfdp->fd_spin);
1765 
1766 	/*
1767 	 * Copy the descriptor table through (i).  This also copies the
1768 	 * allocation state.   Then go through and ref the file pointers
1769 	 * and clean up any KQ descriptors.
1770 	 *
1771 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
1772 	 * copied files yet we can ignore the return value from funsetfd().
1773 	 *
1774 	 * The read spinlock on fdp is still being held.
1775 	 */
1776 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1777 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1778 		fdnode = &newfdp->fd_files[i];
1779 		if (fdnode->reserved) {
1780 			fdreserve_locked(newfdp, i, -1);
1781 			fdnode->reserved = 0;
1782 			fdfixup_locked(newfdp, i);
1783 		} else if (fdnode->fp) {
1784 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1785 				(void)funsetfd_locked(newfdp, i);
1786 			} else {
1787 				fhold(fdnode->fp);
1788 			}
1789 		}
1790 	}
1791 	spin_unlock_rd(&fdp->fd_spin);
1792 	return (newfdp);
1793 }
1794 
1795 /*
1796  * Release a filedesc structure.
1797  *
1798  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1799  */
1800 void
1801 fdfree(struct proc *p, struct filedesc *repl)
1802 {
1803 	struct filedesc *fdp;
1804 	struct fdnode *fdnode;
1805 	int i;
1806 	struct filedesc_to_leader *fdtol;
1807 	struct file *fp;
1808 	struct vnode *vp;
1809 	struct flock lf;
1810 
1811 	/*
1812 	 * Certain daemons might not have file descriptors.
1813 	 */
1814 	fdp = p->p_fd;
1815 	if (fdp == NULL) {
1816 		p->p_fd = repl;
1817 		return;
1818 	}
1819 
1820 	/*
1821 	 * Severe messing around to follow.
1822 	 */
1823 	spin_lock_wr(&fdp->fd_spin);
1824 
1825 	/* Check for special need to clear POSIX style locks */
1826 	fdtol = p->p_fdtol;
1827 	if (fdtol != NULL) {
1828 		KASSERT(fdtol->fdl_refcount > 0,
1829 			("filedesc_to_refcount botch: fdl_refcount=%d",
1830 			 fdtol->fdl_refcount));
1831 		if (fdtol->fdl_refcount == 1 &&
1832 		    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1833 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
1834 				fdnode = &fdp->fd_files[i];
1835 				if (fdnode->fp == NULL ||
1836 				    fdnode->fp->f_type != DTYPE_VNODE) {
1837 					continue;
1838 				}
1839 				fp = fdnode->fp;
1840 				fhold(fp);
1841 				spin_unlock_wr(&fdp->fd_spin);
1842 
1843 				lf.l_whence = SEEK_SET;
1844 				lf.l_start = 0;
1845 				lf.l_len = 0;
1846 				lf.l_type = F_UNLCK;
1847 				vp = (struct vnode *)fp->f_data;
1848 				(void) VOP_ADVLOCK(vp,
1849 						   (caddr_t)p->p_leader,
1850 						   F_UNLCK,
1851 						   &lf,
1852 						   F_POSIX);
1853 				fdrop(fp);
1854 				spin_lock_wr(&fdp->fd_spin);
1855 			}
1856 		}
1857 	retry:
1858 		if (fdtol->fdl_refcount == 1) {
1859 			if (fdp->fd_holdleaderscount > 0 &&
1860 			    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1861 				/*
1862 				 * close() or do_dup() has cleared a reference
1863 				 * in a shared file descriptor table.
1864 				 */
1865 				fdp->fd_holdleaderswakeup = 1;
1866 				ssleep(&fdp->fd_holdleaderscount,
1867 				       &fdp->fd_spin, 0, "fdlhold", 0);
1868 				goto retry;
1869 			}
1870 			if (fdtol->fdl_holdcount > 0) {
1871 				/*
1872 				 * Ensure that fdtol->fdl_leader
1873 				 * remains valid in closef().
1874 				 */
1875 				fdtol->fdl_wakeup = 1;
1876 				ssleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
1877 				goto retry;
1878 			}
1879 		}
1880 		fdtol->fdl_refcount--;
1881 		if (fdtol->fdl_refcount == 0 &&
1882 		    fdtol->fdl_holdcount == 0) {
1883 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
1884 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
1885 		} else {
1886 			fdtol = NULL;
1887 		}
1888 		p->p_fdtol = NULL;
1889 		if (fdtol != NULL) {
1890 			spin_unlock_wr(&fdp->fd_spin);
1891 			kfree(fdtol, M_FILEDESC_TO_LEADER);
1892 			spin_lock_wr(&fdp->fd_spin);
1893 		}
1894 	}
1895 	if (--fdp->fd_refcnt > 0) {
1896 		spin_unlock_wr(&fdp->fd_spin);
1897 		spin_lock_wr(&p->p_spin);
1898 		p->p_fd = repl;
1899 		spin_unlock_wr(&p->p_spin);
1900 		return;
1901 	}
1902 
1903 	/*
1904 	 * Even though we are the last reference to the structure allproc
1905 	 * scans may still reference the structure.  Maintain proper
1906 	 * locks until we can replace p->p_fd.
1907 	 *
1908 	 * Also note that kqueue's closef still needs to reference the
1909 	 * fdp via p->p_fd, so we have to close the descriptors before
1910 	 * we replace p->p_fd.
1911 	 */
1912 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
1913 		if (fdp->fd_files[i].fp) {
1914 			fp = funsetfd_locked(fdp, i);
1915 			if (fp) {
1916 				spin_unlock_wr(&fdp->fd_spin);
1917 				closef(fp, p);
1918 				spin_lock_wr(&fdp->fd_spin);
1919 			}
1920 		}
1921 	}
1922 	spin_unlock_wr(&fdp->fd_spin);
1923 
1924 	/*
1925 	 * Interlock against an allproc scan operations (typically frevoke).
1926 	 */
1927 	spin_lock_wr(&p->p_spin);
1928 	p->p_fd = repl;
1929 	spin_unlock_wr(&p->p_spin);
1930 
1931 	/*
1932 	 * Wait for any softrefs to go away.  This race rarely occurs so
1933 	 * we can use a non-critical-path style poll/sleep loop.  The
1934 	 * race only occurs against allproc scans.
1935 	 *
1936 	 * No new softrefs can occur with the fdp disconnected from the
1937 	 * process.
1938 	 */
1939 	if (fdp->fd_softrefs) {
1940 		kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
1941 		while (fdp->fd_softrefs)
1942 			tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
1943 	}
1944 
1945 	if (fdp->fd_files != fdp->fd_builtin_files)
1946 		kfree(fdp->fd_files, M_FILEDESC);
1947 	if (fdp->fd_cdir) {
1948 		cache_drop(&fdp->fd_ncdir);
1949 		vrele(fdp->fd_cdir);
1950 	}
1951 	if (fdp->fd_rdir) {
1952 		cache_drop(&fdp->fd_nrdir);
1953 		vrele(fdp->fd_rdir);
1954 	}
1955 	if (fdp->fd_jdir) {
1956 		cache_drop(&fdp->fd_njdir);
1957 		vrele(fdp->fd_jdir);
1958 	}
1959 	if (fdp->fd_knlist)
1960 		kfree(fdp->fd_knlist, M_KQUEUE);
1961 	if (fdp->fd_knhash)
1962 		kfree(fdp->fd_knhash, M_KQUEUE);
1963 	kfree(fdp, M_FILEDESC);
1964 }
1965 
1966 /*
1967  * Retrieve and reference the file pointer associated with a descriptor.
1968  *
1969  * MPSAFE
1970  */
1971 struct file *
1972 holdfp(struct filedesc *fdp, int fd, int flag)
1973 {
1974 	struct file* fp;
1975 
1976 	spin_lock_rd(&fdp->fd_spin);
1977 	if (((u_int)fd) >= fdp->fd_nfiles) {
1978 		fp = NULL;
1979 		goto done;
1980 	}
1981 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1982 		goto done;
1983 	if ((fp->f_flag & flag) == 0 && flag != -1) {
1984 		fp = NULL;
1985 		goto done;
1986 	}
1987 	fhold(fp);
1988 done:
1989 	spin_unlock_rd(&fdp->fd_spin);
1990 	return (fp);
1991 }
1992 
1993 /*
1994  * holdsock() - load the struct file pointer associated
1995  * with a socket into *fpp.  If an error occurs, non-zero
1996  * will be returned and *fpp will be set to NULL.
1997  *
1998  * MPSAFE
1999  */
2000 int
2001 holdsock(struct filedesc *fdp, int fd, struct file **fpp)
2002 {
2003 	struct file *fp;
2004 	int error;
2005 
2006 	spin_lock_rd(&fdp->fd_spin);
2007 	if ((unsigned)fd >= fdp->fd_nfiles) {
2008 		error = EBADF;
2009 		fp = NULL;
2010 		goto done;
2011 	}
2012 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2013 		error = EBADF;
2014 		goto done;
2015 	}
2016 	if (fp->f_type != DTYPE_SOCKET) {
2017 		error = ENOTSOCK;
2018 		goto done;
2019 	}
2020 	fhold(fp);
2021 	error = 0;
2022 done:
2023 	spin_unlock_rd(&fdp->fd_spin);
2024 	*fpp = fp;
2025 	return (error);
2026 }
2027 
2028 /*
2029  * Convert a user file descriptor to a held file pointer.
2030  *
2031  * MPSAFE
2032  */
2033 int
2034 holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
2035 {
2036 	struct file *fp;
2037 	int error;
2038 
2039 	spin_lock_rd(&fdp->fd_spin);
2040 	if ((unsigned)fd >= fdp->fd_nfiles) {
2041 		error = EBADF;
2042 		fp = NULL;
2043 		goto done;
2044 	}
2045 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2046 		error = EBADF;
2047 		goto done;
2048 	}
2049 	if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2050 		fp = NULL;
2051 		error = EINVAL;
2052 		goto done;
2053 	}
2054 	fhold(fp);
2055 	error = 0;
2056 done:
2057 	spin_unlock_rd(&fdp->fd_spin);
2058 	*fpp = fp;
2059 	return (error);
2060 }
2061 
2062 /*
2063  * For setugid programs, we don't want to people to use that setugidness
2064  * to generate error messages which write to a file which otherwise would
2065  * otherwise be off-limits to the process.
2066  *
2067  * This is a gross hack to plug the hole.  A better solution would involve
2068  * a special vop or other form of generalized access control mechanism.  We
2069  * go ahead and just reject all procfs file systems accesses as dangerous.
2070  *
2071  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2072  * sufficient.  We also don't for check setugidness since we know we are.
2073  */
2074 static int
2075 is_unsafe(struct file *fp)
2076 {
2077 	if (fp->f_type == DTYPE_VNODE &&
2078 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2079 		return (1);
2080 	return (0);
2081 }
2082 
2083 /*
2084  * Make this setguid thing safe, if at all possible.
2085  *
2086  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2087  */
2088 void
2089 setugidsafety(struct proc *p)
2090 {
2091 	struct filedesc *fdp = p->p_fd;
2092 	int i;
2093 
2094 	/* Certain daemons might not have file descriptors. */
2095 	if (fdp == NULL)
2096 		return;
2097 
2098 	/*
2099 	 * note: fdp->fd_files may be reallocated out from under us while
2100 	 * we are blocked in a close.  Be careful!
2101 	 */
2102 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2103 		if (i > 2)
2104 			break;
2105 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2106 			struct file *fp;
2107 
2108 			if (i < fdp->fd_knlistsize)
2109 				knote_fdclose(p, i);
2110 			/*
2111 			 * NULL-out descriptor prior to close to avoid
2112 			 * a race while close blocks.
2113 			 */
2114 			if ((fp = funsetfd_locked(fdp, i)) != NULL)
2115 				closef(fp, p);
2116 		}
2117 	}
2118 }
2119 
2120 /*
2121  * Close any files on exec?
2122  *
2123  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2124  */
2125 void
2126 fdcloseexec(struct proc *p)
2127 {
2128 	struct filedesc *fdp = p->p_fd;
2129 	int i;
2130 
2131 	/* Certain daemons might not have file descriptors. */
2132 	if (fdp == NULL)
2133 		return;
2134 
2135 	/*
2136 	 * We cannot cache fd_files since operations may block and rip
2137 	 * them out from under us.
2138 	 */
2139 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2140 		if (fdp->fd_files[i].fp != NULL &&
2141 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2142 			struct file *fp;
2143 
2144 			if (i < fdp->fd_knlistsize)
2145 				knote_fdclose(p, i);
2146 			/*
2147 			 * NULL-out descriptor prior to close to avoid
2148 			 * a race while close blocks.
2149 			 */
2150 			if ((fp = funsetfd_locked(fdp, i)) != NULL)
2151 				closef(fp, p);
2152 		}
2153 	}
2154 }
2155 
2156 /*
2157  * It is unsafe for set[ug]id processes to be started with file
2158  * descriptors 0..2 closed, as these descriptors are given implicit
2159  * significance in the Standard C library.  fdcheckstd() will create a
2160  * descriptor referencing /dev/null for each of stdin, stdout, and
2161  * stderr that is not already open.
2162  *
2163  * NOT MPSAFE - calls falloc, vn_open, etc
2164  */
2165 int
2166 fdcheckstd(struct proc *p)
2167 {
2168 	struct nlookupdata nd;
2169 	struct filedesc *fdp;
2170 	struct file *fp;
2171 	int retval;
2172 	int i, error, flags, devnull;
2173 
2174 	fdp = p->p_fd;
2175 	if (fdp == NULL)
2176 		return (0);
2177 	devnull = -1;
2178 	error = 0;
2179 	for (i = 0; i < 3; i++) {
2180 		if (fdp->fd_files[i].fp != NULL)
2181 			continue;
2182 		if (devnull < 0) {
2183 			if ((error = falloc(p, &fp, &devnull)) != 0)
2184 				break;
2185 
2186 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2187 						NLC_FOLLOW|NLC_LOCKVP);
2188 			flags = FREAD | FWRITE;
2189 			if (error == 0)
2190 				error = vn_open(&nd, fp, flags, 0);
2191 			if (error == 0)
2192 				fsetfd(p, fp, devnull);
2193 			else
2194 				fsetfd(p, NULL, devnull);
2195 			fdrop(fp);
2196 			nlookup_done(&nd);
2197 			if (error)
2198 				break;
2199 			KKASSERT(i == devnull);
2200 		} else {
2201 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2202 			if (error != 0)
2203 				break;
2204 		}
2205 	}
2206 	return (error);
2207 }
2208 
2209 /*
2210  * Internal form of close.
2211  * Decrement reference count on file structure.
2212  * Note: td and/or p may be NULL when closing a file
2213  * that was being passed in a message.
2214  *
2215  * MPALMOSTSAFE - acquires mplock for VOP operations
2216  */
2217 int
2218 closef(struct file *fp, struct proc *p)
2219 {
2220 	struct vnode *vp;
2221 	struct flock lf;
2222 	struct filedesc_to_leader *fdtol;
2223 
2224 	if (fp == NULL)
2225 		return (0);
2226 
2227 	/*
2228 	 * POSIX record locking dictates that any close releases ALL
2229 	 * locks owned by this process.  This is handled by setting
2230 	 * a flag in the unlock to free ONLY locks obeying POSIX
2231 	 * semantics, and not to free BSD-style file locks.
2232 	 * If the descriptor was in a message, POSIX-style locks
2233 	 * aren't passed with the descriptor.
2234 	 */
2235 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2236 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2237 	) {
2238 		get_mplock();
2239 		if ((p->p_leader->p_flag & P_ADVLOCK) != 0) {
2240 			lf.l_whence = SEEK_SET;
2241 			lf.l_start = 0;
2242 			lf.l_len = 0;
2243 			lf.l_type = F_UNLCK;
2244 			vp = (struct vnode *)fp->f_data;
2245 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2246 					   &lf, F_POSIX);
2247 		}
2248 		fdtol = p->p_fdtol;
2249 		if (fdtol != NULL) {
2250 			/*
2251 			 * Handle special case where file descriptor table
2252 			 * is shared between multiple process leaders.
2253 			 */
2254 			for (fdtol = fdtol->fdl_next;
2255 			     fdtol != p->p_fdtol;
2256 			     fdtol = fdtol->fdl_next) {
2257 				if ((fdtol->fdl_leader->p_flag &
2258 				     P_ADVLOCK) == 0)
2259 					continue;
2260 				fdtol->fdl_holdcount++;
2261 				lf.l_whence = SEEK_SET;
2262 				lf.l_start = 0;
2263 				lf.l_len = 0;
2264 				lf.l_type = F_UNLCK;
2265 				vp = (struct vnode *)fp->f_data;
2266 				(void) VOP_ADVLOCK(vp,
2267 						   (caddr_t)fdtol->fdl_leader,
2268 						   F_UNLCK, &lf, F_POSIX);
2269 				fdtol->fdl_holdcount--;
2270 				if (fdtol->fdl_holdcount == 0 &&
2271 				    fdtol->fdl_wakeup != 0) {
2272 					fdtol->fdl_wakeup = 0;
2273 					wakeup(fdtol);
2274 				}
2275 			}
2276 		}
2277 		rel_mplock();
2278 	}
2279 	return (fdrop(fp));
2280 }
2281 
2282 /*
2283  * MPSAFE
2284  *
2285  * fhold() can only be called if f_count is already at least 1 (i.e. the
2286  * caller of fhold() already has a reference to the file pointer in some
2287  * manner or other).
2288  *
2289  * f_count is not spin-locked.  Instead, atomic ops are used for
2290  * incrementing, decrementing, and handling the 1->0 transition.
2291  */
2292 void
2293 fhold(struct file *fp)
2294 {
2295 	atomic_add_int(&fp->f_count, 1);
2296 }
2297 
2298 /*
2299  * fdrop() - drop a reference to a descriptor
2300  *
2301  * MPALMOSTSAFE - acquires mplock for final close sequence
2302  */
2303 int
2304 fdrop(struct file *fp)
2305 {
2306 	struct flock lf;
2307 	struct vnode *vp;
2308 	int error;
2309 
2310 	/*
2311 	 * A combined fetch and subtract is needed to properly detect
2312 	 * 1->0 transitions, otherwise two cpus dropping from a ref
2313 	 * count of 2 might both try to run the 1->0 code.
2314 	 */
2315 	if (atomic_fetchadd_int(&fp->f_count, -1) > 1)
2316 		return (0);
2317 
2318 	get_mplock();
2319 
2320 	/*
2321 	 * The last reference has gone away, we own the fp structure free
2322 	 * and clear.
2323 	 */
2324 	if (fp->f_count < 0)
2325 		panic("fdrop: count < 0");
2326 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2327 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2328 	) {
2329 		lf.l_whence = SEEK_SET;
2330 		lf.l_start = 0;
2331 		lf.l_len = 0;
2332 		lf.l_type = F_UNLCK;
2333 		vp = (struct vnode *)fp->f_data;
2334 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2335 	}
2336 	if (fp->f_ops != &badfileops)
2337 		error = fo_close(fp);
2338 	else
2339 		error = 0;
2340 	ffree(fp);
2341 	rel_mplock();
2342 	return (error);
2343 }
2344 
2345 /*
2346  * Apply an advisory lock on a file descriptor.
2347  *
2348  * Just attempt to get a record lock of the requested type on
2349  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2350  */
2351 int
2352 sys_flock(struct flock_args *uap)
2353 {
2354 	struct proc *p = curproc;
2355 	struct file *fp;
2356 	struct vnode *vp;
2357 	struct flock lf;
2358 	int error;
2359 
2360 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2361 		return (EBADF);
2362 	if (fp->f_type != DTYPE_VNODE) {
2363 		error = EOPNOTSUPP;
2364 		goto done;
2365 	}
2366 	vp = (struct vnode *)fp->f_data;
2367 	lf.l_whence = SEEK_SET;
2368 	lf.l_start = 0;
2369 	lf.l_len = 0;
2370 	if (uap->how & LOCK_UN) {
2371 		lf.l_type = F_UNLCK;
2372 		fp->f_flag &= ~FHASLOCK;
2373 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2374 		goto done;
2375 	}
2376 	if (uap->how & LOCK_EX)
2377 		lf.l_type = F_WRLCK;
2378 	else if (uap->how & LOCK_SH)
2379 		lf.l_type = F_RDLCK;
2380 	else {
2381 		error = EBADF;
2382 		goto done;
2383 	}
2384 	fp->f_flag |= FHASLOCK;
2385 	if (uap->how & LOCK_NB)
2386 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2387 	else
2388 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2389 done:
2390 	fdrop(fp);
2391 	return (error);
2392 }
2393 
2394 /*
2395  * File Descriptor pseudo-device driver (/dev/fd/).
2396  *
2397  * Opening minor device N dup()s the file (if any) connected to file
2398  * descriptor N belonging to the calling process.  Note that this driver
2399  * consists of only the ``open()'' routine, because all subsequent
2400  * references to this file will be direct to the other driver.
2401  */
2402 /* ARGSUSED */
2403 static int
2404 fdopen(struct dev_open_args *ap)
2405 {
2406 	thread_t td = curthread;
2407 
2408 	KKASSERT(td->td_lwp != NULL);
2409 
2410 	/*
2411 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2412 	 * the file descriptor being sought for duplication. The error
2413 	 * return ensures that the vnode for this device will be released
2414 	 * by vn_open. Open will detect this special error and take the
2415 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2416 	 * will simply report the error.
2417 	 */
2418 	td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2419 	return (ENODEV);
2420 }
2421 
2422 /*
2423  * The caller has reserved the file descriptor dfd for us.  On success we
2424  * must fsetfd() it.  On failure the caller will clean it up.
2425  *
2426  * NOT MPSAFE - isn't getting spinlocks, possibly other things
2427  */
2428 int
2429 dupfdopen(struct proc *p, int dfd, int sfd, int mode, int error)
2430 {
2431 	struct filedesc *fdp = p->p_fd;
2432 	struct file *wfp;
2433 	struct file *xfp;
2434 	int werror;
2435 
2436 	if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2437 		return (EBADF);
2438 
2439 	/*
2440 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
2441 	 * will dup a dummy descriptor instead of the real one.
2442 	 */
2443 	if (wfp->f_flag & FREVOKED) {
2444 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
2445 		fdrop(wfp);
2446 		wfp = NULL;
2447 		werror = falloc(NULL, &wfp, NULL);
2448 		if (werror)
2449 			return (werror);
2450 	}
2451 
2452 	/*
2453 	 * There are two cases of interest here.
2454 	 *
2455 	 * For ENODEV simply dup sfd to file descriptor dfd and return.
2456 	 *
2457 	 * For ENXIO steal away the file structure from sfd and store it
2458 	 * dfd.  sfd is effectively closed by this operation.
2459 	 *
2460 	 * Any other error code is just returned.
2461 	 */
2462 	switch (error) {
2463 	case ENODEV:
2464 		/*
2465 		 * Check that the mode the file is being opened for is a
2466 		 * subset of the mode of the existing descriptor.
2467 		 */
2468 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
2469 			error = EACCES;
2470 			break;
2471 		}
2472 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2473 		fsetfd(p, wfp, dfd);
2474 		error = 0;
2475 		break;
2476 	case ENXIO:
2477 		/*
2478 		 * Steal away the file pointer from dfd, and stuff it into indx.
2479 		 */
2480 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2481 		fsetfd(p, wfp, dfd);
2482 		if ((xfp = funsetfd_locked(fdp, sfd)) != NULL)
2483 			fdrop(xfp);
2484 		error = 0;
2485 		break;
2486 	default:
2487 		break;
2488 	}
2489 	fdrop(wfp);
2490 	return (error);
2491 }
2492 
2493 /*
2494  * NOT MPSAFE - I think these refer to a common file descriptor table
2495  * and we need to spinlock that to link fdtol in.
2496  */
2497 struct filedesc_to_leader *
2498 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2499 			 struct proc *leader)
2500 {
2501 	struct filedesc_to_leader *fdtol;
2502 
2503 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2504 			M_FILEDESC_TO_LEADER, M_WAITOK);
2505 	fdtol->fdl_refcount = 1;
2506 	fdtol->fdl_holdcount = 0;
2507 	fdtol->fdl_wakeup = 0;
2508 	fdtol->fdl_leader = leader;
2509 	if (old != NULL) {
2510 		fdtol->fdl_next = old->fdl_next;
2511 		fdtol->fdl_prev = old;
2512 		old->fdl_next = fdtol;
2513 		fdtol->fdl_next->fdl_prev = fdtol;
2514 	} else {
2515 		fdtol->fdl_next = fdtol;
2516 		fdtol->fdl_prev = fdtol;
2517 	}
2518 	return fdtol;
2519 }
2520 
2521 /*
2522  * Scan all file pointers in the system.  The callback is made with
2523  * the master list spinlock held exclusively.
2524  *
2525  * MPSAFE
2526  */
2527 void
2528 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2529 {
2530 	struct file *fp;
2531 	int res;
2532 
2533 	spin_lock_wr(&filehead_spin);
2534 	LIST_FOREACH(fp, &filehead, f_list) {
2535 		res = callback(fp, data);
2536 		if (res < 0)
2537 			break;
2538 	}
2539 	spin_unlock_wr(&filehead_spin);
2540 }
2541 
2542 /*
2543  * Get file structures.
2544  *
2545  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2546  */
2547 
2548 struct sysctl_kern_file_info {
2549 	int count;
2550 	int error;
2551 	struct sysctl_req *req;
2552 };
2553 
2554 static int sysctl_kern_file_callback(struct proc *p, void *data);
2555 
2556 static int
2557 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2558 {
2559 	struct sysctl_kern_file_info info;
2560 
2561 	/*
2562 	 * Note: because the number of file descriptors is calculated
2563 	 * in different ways for sizing vs returning the data,
2564 	 * there is information leakage from the first loop.  However,
2565 	 * it is of a similar order of magnitude to the leakage from
2566 	 * global system statistics such as kern.openfiles.
2567 	 *
2568 	 * When just doing a count, note that we cannot just count
2569 	 * the elements and add f_count via the filehead list because
2570 	 * threaded processes share their descriptor table and f_count might
2571 	 * still be '1' in that case.
2572 	 *
2573 	 * Since the SYSCTL op can block, we must hold the process to
2574 	 * prevent it being ripped out from under us either in the
2575 	 * file descriptor loop or in the greater LIST_FOREACH.  The
2576 	 * process may be in varying states of disrepair.  If the process
2577 	 * is in SZOMB we may have caught it just as it is being removed
2578 	 * from the allproc list, we must skip it in that case to maintain
2579 	 * an unbroken chain through the allproc list.
2580 	 */
2581 	info.count = 0;
2582 	info.error = 0;
2583 	info.req = req;
2584 	allproc_scan(sysctl_kern_file_callback, &info);
2585 
2586 	/*
2587 	 * When just calculating the size, overestimate a bit to try to
2588 	 * prevent system activity from causing the buffer-fill call
2589 	 * to fail later on.
2590 	 */
2591 	if (req->oldptr == NULL) {
2592 		info.count = (info.count + 16) + (info.count / 10);
2593 		info.error = SYSCTL_OUT(req, NULL,
2594 					info.count * sizeof(struct kinfo_file));
2595 	}
2596 	return (info.error);
2597 }
2598 
2599 static int
2600 sysctl_kern_file_callback(struct proc *p, void *data)
2601 {
2602 	struct sysctl_kern_file_info *info = data;
2603 	struct kinfo_file kf;
2604 	struct filedesc *fdp;
2605 	struct file *fp;
2606 	uid_t uid;
2607 	int n;
2608 
2609 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
2610 		return(0);
2611 	if (!PRISON_CHECK(info->req->td->td_proc->p_ucred, p->p_ucred) != 0)
2612 		return(0);
2613 
2614 	/*
2615 	 * Softref the fdp to prevent it from being destroyed
2616 	 */
2617 	spin_lock_wr(&p->p_spin);
2618 	if ((fdp = p->p_fd) == NULL) {
2619 		spin_unlock_wr(&p->p_spin);
2620 		return(0);
2621 	}
2622 	atomic_add_int(&fdp->fd_softrefs, 1);
2623 	spin_unlock_wr(&p->p_spin);
2624 
2625 	/*
2626 	 * The fdp's own spinlock prevents the contents from being
2627 	 * modified.
2628 	 */
2629 	spin_lock_rd(&fdp->fd_spin);
2630 	for (n = 0; n < fdp->fd_nfiles; ++n) {
2631 		if ((fp = fdp->fd_files[n].fp) == NULL)
2632 			continue;
2633 		if (info->req->oldptr == NULL) {
2634 			++info->count;
2635 		} else {
2636 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2637 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
2638 			spin_unlock_rd(&fdp->fd_spin);
2639 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2640 			spin_lock_rd(&fdp->fd_spin);
2641 			if (info->error)
2642 				break;
2643 		}
2644 	}
2645 	spin_unlock_rd(&fdp->fd_spin);
2646 	atomic_subtract_int(&fdp->fd_softrefs, 1);
2647 	if (info->error)
2648 		return(-1);
2649 	return(0);
2650 }
2651 
2652 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2653     0, 0, sysctl_kern_file, "S,file", "Entire file table");
2654 
2655 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2656     &maxfilesperproc, 0, "Maximum files allowed open per process");
2657 
2658 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2659     &maxfiles, 0, "Maximum number of files");
2660 
2661 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2662     &maxfilesrootres, 0, "Descriptors reserved for root use");
2663 
2664 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2665 	&nfiles, 0, "System-wide number of open files");
2666 
2667 static void
2668 fildesc_drvinit(void *unused)
2669 {
2670 	int fd;
2671 
2672 	for (fd = 0; fd < NUMFDESC; fd++) {
2673 		make_dev(&fildesc_ops, fd,
2674 			 UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2675 	}
2676 
2677 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2678 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2679 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2680 }
2681 
2682 /*
2683  * MPSAFE
2684  */
2685 struct fileops badfileops = {
2686 	.fo_read = badfo_readwrite,
2687 	.fo_write = badfo_readwrite,
2688 	.fo_ioctl = badfo_ioctl,
2689 	.fo_poll = badfo_poll,
2690 	.fo_kqfilter = badfo_kqfilter,
2691 	.fo_stat = badfo_stat,
2692 	.fo_close = badfo_close,
2693 	.fo_shutdown = badfo_shutdown
2694 };
2695 
2696 /*
2697  * MPSAFE
2698  */
2699 int
2700 badfo_readwrite(
2701 	struct file *fp,
2702 	struct uio *uio,
2703 	struct ucred *cred,
2704 	int flags
2705 ) {
2706 	return (EBADF);
2707 }
2708 
2709 /*
2710  * MPSAFE
2711  */
2712 int
2713 badfo_ioctl(struct file *fp, u_long com, caddr_t data,
2714 	    struct ucred *cred, struct sysmsg *msgv)
2715 {
2716 	return (EBADF);
2717 }
2718 
2719 /*
2720  * MPSAFE
2721  */
2722 int
2723 badfo_poll(struct file *fp, int events, struct ucred *cred)
2724 {
2725 	return (0);
2726 }
2727 
2728 /*
2729  * MPSAFE
2730  */
2731 int
2732 badfo_kqfilter(struct file *fp, struct knote *kn)
2733 {
2734 	return (0);
2735 }
2736 
2737 int
2738 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2739 {
2740 	return (EBADF);
2741 }
2742 
2743 /*
2744  * MPSAFE
2745  */
2746 int
2747 badfo_close(struct file *fp)
2748 {
2749 	return (EBADF);
2750 }
2751 
2752 /*
2753  * MPSAFE
2754  */
2755 int
2756 badfo_shutdown(struct file *fp, int how)
2757 {
2758 	return (EBADF);
2759 }
2760 
2761 /*
2762  * MPSAFE
2763  */
2764 int
2765 nofo_shutdown(struct file *fp, int how)
2766 {
2767 	return (EOPNOTSUPP);
2768 }
2769 
2770 SYSINIT(fildescdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,
2771 					fildesc_drvinit,NULL)
2772