xref: /dflybsd-src/sys/kern/kern_descrip.c (revision 201c8c4447cad562e0a54ebbe0e7ee4e8a0be647)
1 /*
2  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Jeffrey Hsu.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1982, 1986, 1989, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
72  * $FreeBSD: src/sys/kern/kern_descrip.c,v 1.81.2.19 2004/02/28 00:43:31 tegge Exp $
73  * $DragonFly: src/sys/kern/kern_descrip.c,v 1.79 2008/08/31 13:18:28 aggelos Exp $
74  */
75 
76 #include "opt_compat.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/malloc.h>
80 #include <sys/sysproto.h>
81 #include <sys/conf.h>
82 #include <sys/device.h>
83 #include <sys/filedesc.h>
84 #include <sys/kernel.h>
85 #include <sys/sysctl.h>
86 #include <sys/vnode.h>
87 #include <sys/proc.h>
88 #include <sys/nlookup.h>
89 #include <sys/file.h>
90 #include <sys/stat.h>
91 #include <sys/filio.h>
92 #include <sys/fcntl.h>
93 #include <sys/unistd.h>
94 #include <sys/resourcevar.h>
95 #include <sys/event.h>
96 #include <sys/kern_syscall.h>
97 #include <sys/kcore.h>
98 #include <sys/kinfo.h>
99 #include <sys/un.h>
100 
101 #include <vm/vm.h>
102 #include <vm/vm_extern.h>
103 
104 #include <sys/thread2.h>
105 #include <sys/file2.h>
106 #include <sys/spinlock2.h>
107 
108 static void fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd);
109 static void fdreserve_locked (struct filedesc *fdp, int fd0, int incr);
110 static struct file *funsetfd_locked (struct filedesc *fdp, int fd);
111 static int checkfpclosed(struct filedesc *fdp, int fd, struct file *fp);
112 static void ffree(struct file *fp);
113 
114 static MALLOC_DEFINE(M_FILEDESC, "file desc", "Open file descriptor table");
115 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "file desc to leader",
116 		     "file desc to leader structures");
117 MALLOC_DEFINE(M_FILE, "file", "Open file structure");
118 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
119 
120 static	 d_open_t  fdopen;
121 #define NUMFDESC 64
122 
123 #define CDEV_MAJOR 22
124 static struct dev_ops fildesc_ops = {
125 	{ "FD", CDEV_MAJOR, 0 },
126 	.d_open =	fdopen,
127 };
128 
129 static int badfo_readwrite (struct file *fp, struct uio *uio,
130     struct ucred *cred, int flags);
131 static int badfo_ioctl (struct file *fp, u_long com, caddr_t data,
132     struct ucred *cred);
133 static int badfo_poll (struct file *fp, int events, struct ucred *cred);
134 static int badfo_kqfilter (struct file *fp, struct knote *kn);
135 static int badfo_stat (struct file *fp, struct stat *sb, struct ucred *cred);
136 static int badfo_close (struct file *fp);
137 static int badfo_shutdown (struct file *fp, int how);
138 
139 /*
140  * Descriptor management.
141  */
142 static struct filelist filehead = LIST_HEAD_INITIALIZER(&filehead);
143 static struct spinlock filehead_spin = SPINLOCK_INITIALIZER(&filehead_spin);
144 static int nfiles;		/* actual number of open files */
145 extern int cmask;
146 
147 /*
148  * Fixup fd_freefile and fd_lastfile after a descriptor has been cleared.
149  *
150  * MPSAFE - must be called with fdp->fd_spin exclusively held
151  */
152 static __inline
153 void
154 fdfixup_locked(struct filedesc *fdp, int fd)
155 {
156 	if (fd < fdp->fd_freefile) {
157 	       fdp->fd_freefile = fd;
158 	}
159 	while (fdp->fd_lastfile >= 0 &&
160 	       fdp->fd_files[fdp->fd_lastfile].fp == NULL &&
161 	       fdp->fd_files[fdp->fd_lastfile].reserved == 0
162 	) {
163 		--fdp->fd_lastfile;
164 	}
165 }
166 
167 /*
168  * System calls on descriptors.
169  *
170  * MPSAFE
171  */
172 int
173 sys_getdtablesize(struct getdtablesize_args *uap)
174 {
175 	struct proc *p = curproc;
176 	struct plimit *limit = p->p_limit;
177 
178 	spin_lock_rd(&limit->p_spin);
179 	uap->sysmsg_result =
180 	    min((int)limit->pl_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
181 	spin_unlock_rd(&limit->p_spin);
182 	return (0);
183 }
184 
185 /*
186  * Duplicate a file descriptor to a particular value.
187  *
188  * note: keep in mind that a potential race condition exists when closing
189  * descriptors from a shared descriptor table (via rfork).
190  *
191  * MPSAFE
192  */
193 int
194 sys_dup2(struct dup2_args *uap)
195 {
196 	int error;
197 	int fd = 0;
198 
199 	error = kern_dup(DUP_FIXED, uap->from, uap->to, &fd);
200 	uap->sysmsg_fds[0] = fd;
201 
202 	return (error);
203 }
204 
205 /*
206  * Duplicate a file descriptor.
207  *
208  * MPSAFE
209  */
210 int
211 sys_dup(struct dup_args *uap)
212 {
213 	int error;
214 	int fd = 0;
215 
216 	error = kern_dup(DUP_VARIABLE, uap->fd, 0, &fd);
217 	uap->sysmsg_fds[0] = fd;
218 
219 	return (error);
220 }
221 
222 /*
223  * MPALMOSTSAFE - acquires mplock for fp operations
224  */
225 int
226 kern_fcntl(int fd, int cmd, union fcntl_dat *dat, struct ucred *cred)
227 {
228 	struct thread *td = curthread;
229 	struct proc *p = td->td_proc;
230 	struct file *fp;
231 	struct vnode *vp;
232 	u_int newmin;
233 	u_int oflags;
234 	u_int nflags;
235 	int tmp, error, flg = F_POSIX;
236 
237 	KKASSERT(p);
238 
239 	/*
240 	 * Operations on file descriptors that do not require a file pointer.
241 	 */
242 	switch (cmd) {
243 	case F_GETFD:
244 		error = fgetfdflags(p->p_fd, fd, &tmp);
245 		if (error == 0)
246 			dat->fc_cloexec = (tmp & UF_EXCLOSE) ? FD_CLOEXEC : 0;
247 		return (error);
248 
249 	case F_SETFD:
250 		if (dat->fc_cloexec & FD_CLOEXEC)
251 			error = fsetfdflags(p->p_fd, fd, UF_EXCLOSE);
252 		else
253 			error = fclrfdflags(p->p_fd, fd, UF_EXCLOSE);
254 		return (error);
255 	case F_DUPFD:
256 		newmin = dat->fc_fd;
257 		error = kern_dup(DUP_VARIABLE, fd, newmin, &dat->fc_fd);
258 		return (error);
259 	default:
260 		break;
261 	}
262 
263 	/*
264 	 * Operations on file pointers
265 	 */
266 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
267 		return (EBADF);
268 
269 	get_mplock();
270 	switch (cmd) {
271 	case F_GETFL:
272 		dat->fc_flags = OFLAGS(fp->f_flag);
273 		error = 0;
274 		break;
275 
276 	case F_SETFL:
277 		oflags = fp->f_flag;
278 		nflags = FFLAGS(dat->fc_flags & ~O_ACCMODE) & FCNTLFLAGS;
279 		nflags |= oflags & ~FCNTLFLAGS;
280 
281 		error = 0;
282 		if (((nflags ^ oflags) & O_APPEND) && (oflags & FAPPENDONLY))
283 			error = EINVAL;
284 		if (error == 0 && ((nflags ^ oflags) & FASYNC)) {
285 			tmp = nflags & FASYNC;
286 			error = fo_ioctl(fp, FIOASYNC, (caddr_t)&tmp, cred);
287 		}
288 		if (error == 0)
289 			fp->f_flag = nflags;
290 		break;
291 
292 	case F_GETOWN:
293 		error = fo_ioctl(fp, FIOGETOWN, (caddr_t)&dat->fc_owner, cred);
294 		break;
295 
296 	case F_SETOWN:
297 		error = fo_ioctl(fp, FIOSETOWN, (caddr_t)&dat->fc_owner, cred);
298 		break;
299 
300 	case F_SETLKW:
301 		flg |= F_WAIT;
302 		/* Fall into F_SETLK */
303 
304 	case F_SETLK:
305 		if (fp->f_type != DTYPE_VNODE) {
306 			error = EBADF;
307 			break;
308 		}
309 		vp = (struct vnode *)fp->f_data;
310 
311 		/*
312 		 * copyin/lockop may block
313 		 */
314 		if (dat->fc_flock.l_whence == SEEK_CUR)
315 			dat->fc_flock.l_start += fp->f_offset;
316 
317 		switch (dat->fc_flock.l_type) {
318 		case F_RDLCK:
319 			if ((fp->f_flag & FREAD) == 0) {
320 				error = EBADF;
321 				break;
322 			}
323 			p->p_leader->p_flag |= P_ADVLOCK;
324 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
325 			    &dat->fc_flock, flg);
326 			break;
327 		case F_WRLCK:
328 			if ((fp->f_flag & FWRITE) == 0) {
329 				error = EBADF;
330 				break;
331 			}
332 			p->p_leader->p_flag |= P_ADVLOCK;
333 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
334 			    &dat->fc_flock, flg);
335 			break;
336 		case F_UNLCK:
337 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
338 				&dat->fc_flock, F_POSIX);
339 			break;
340 		default:
341 			error = EINVAL;
342 			break;
343 		}
344 
345 		/*
346 		 * It is possible to race a close() on the descriptor while
347 		 * we were blocked getting the lock.  If this occurs the
348 		 * close might not have caught the lock.
349 		 */
350 		if (checkfpclosed(p->p_fd, fd, fp)) {
351 			dat->fc_flock.l_whence = SEEK_SET;
352 			dat->fc_flock.l_start = 0;
353 			dat->fc_flock.l_len = 0;
354 			dat->fc_flock.l_type = F_UNLCK;
355 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
356 					   F_UNLCK, &dat->fc_flock, F_POSIX);
357 		}
358 		break;
359 
360 	case F_GETLK:
361 		if (fp->f_type != DTYPE_VNODE) {
362 			error = EBADF;
363 			break;
364 		}
365 		vp = (struct vnode *)fp->f_data;
366 		/*
367 		 * copyin/lockop may block
368 		 */
369 		if (dat->fc_flock.l_type != F_RDLCK &&
370 		    dat->fc_flock.l_type != F_WRLCK &&
371 		    dat->fc_flock.l_type != F_UNLCK) {
372 			error = EINVAL;
373 			break;
374 		}
375 		if (dat->fc_flock.l_whence == SEEK_CUR)
376 			dat->fc_flock.l_start += fp->f_offset;
377 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK,
378 			    &dat->fc_flock, F_POSIX);
379 		break;
380 	default:
381 		error = EINVAL;
382 		break;
383 	}
384 	rel_mplock();
385 
386 	fdrop(fp);
387 	return (error);
388 }
389 
390 /*
391  * The file control system call.
392  *
393  * MPSAFE
394  */
395 int
396 sys_fcntl(struct fcntl_args *uap)
397 {
398 	union fcntl_dat dat;
399 	int error;
400 
401 	switch (uap->cmd) {
402 	case F_DUPFD:
403 		dat.fc_fd = uap->arg;
404 		break;
405 	case F_SETFD:
406 		dat.fc_cloexec = uap->arg;
407 		break;
408 	case F_SETFL:
409 		dat.fc_flags = uap->arg;
410 		break;
411 	case F_SETOWN:
412 		dat.fc_owner = uap->arg;
413 		break;
414 	case F_SETLKW:
415 	case F_SETLK:
416 	case F_GETLK:
417 		error = copyin((caddr_t)uap->arg, &dat.fc_flock,
418 			       sizeof(struct flock));
419 		if (error)
420 			return (error);
421 		break;
422 	}
423 
424 	error = kern_fcntl(uap->fd, uap->cmd, &dat, curproc->p_ucred);
425 
426 	if (error == 0) {
427 		switch (uap->cmd) {
428 		case F_DUPFD:
429 			uap->sysmsg_result = dat.fc_fd;
430 			break;
431 		case F_GETFD:
432 			uap->sysmsg_result = dat.fc_cloexec;
433 			break;
434 		case F_GETFL:
435 			uap->sysmsg_result = dat.fc_flags;
436 			break;
437 		case F_GETOWN:
438 			uap->sysmsg_result = dat.fc_owner;
439 		case F_GETLK:
440 			error = copyout(&dat.fc_flock, (caddr_t)uap->arg,
441 			    sizeof(struct flock));
442 			break;
443 		}
444 	}
445 
446 	return (error);
447 }
448 
449 /*
450  * Common code for dup, dup2, and fcntl(F_DUPFD).
451  *
452  * The type flag can be either DUP_FIXED or DUP_VARIABLE.  DUP_FIXED tells
453  * kern_dup() to destructively dup over an existing file descriptor if new
454  * is already open.  DUP_VARIABLE tells kern_dup() to find the lowest
455  * unused file descriptor that is greater than or equal to new.
456  *
457  * MPSAFE
458  */
459 int
460 kern_dup(enum dup_type type, int old, int new, int *res)
461 {
462 	struct thread *td = curthread;
463 	struct proc *p = td->td_proc;
464 	struct filedesc *fdp = p->p_fd;
465 	struct file *fp;
466 	struct file *delfp;
467 	int oldflags;
468 	int holdleaders;
469 	int error, newfd;
470 
471 	/*
472 	 * Verify that we have a valid descriptor to dup from and
473 	 * possibly to dup to.
474 	 */
475 retry:
476 	spin_lock_wr(&fdp->fd_spin);
477 	if (new < 0 || new > p->p_rlimit[RLIMIT_NOFILE].rlim_cur ||
478 	    new >= maxfilesperproc) {
479 		spin_unlock_wr(&fdp->fd_spin);
480 		return (EINVAL);
481 	}
482 	if ((unsigned)old >= fdp->fd_nfiles || fdp->fd_files[old].fp == NULL) {
483 		spin_unlock_wr(&fdp->fd_spin);
484 		return (EBADF);
485 	}
486 	if (type == DUP_FIXED && old == new) {
487 		*res = new;
488 		spin_unlock_wr(&fdp->fd_spin);
489 		return (0);
490 	}
491 	fp = fdp->fd_files[old].fp;
492 	oldflags = fdp->fd_files[old].fileflags;
493 	fhold(fp);	/* MPSAFE - can be called with a spinlock held */
494 
495 	/*
496 	 * Allocate a new descriptor if DUP_VARIABLE, or expand the table
497 	 * if the requested descriptor is beyond the current table size.
498 	 *
499 	 * This can block.  Retry if the source descriptor no longer matches
500 	 * or if our expectation in the expansion case races.
501 	 *
502 	 * If we are not expanding or allocating a new decriptor, then reset
503 	 * the target descriptor to a reserved state so we have a uniform
504 	 * setup for the next code block.
505 	 */
506 	if (type == DUP_VARIABLE || new >= fdp->fd_nfiles) {
507 		spin_unlock_wr(&fdp->fd_spin);
508 		error = fdalloc(p, new, &newfd);
509 		spin_lock_wr(&fdp->fd_spin);
510 		if (error) {
511 			spin_unlock_wr(&fdp->fd_spin);
512 			fdrop(fp);
513 			return (error);
514 		}
515 		/*
516 		 * Check for ripout
517 		 */
518 		if (old >= fdp->fd_nfiles || fdp->fd_files[old].fp != fp) {
519 			fsetfd_locked(fdp, NULL, newfd);
520 			spin_unlock_wr(&fdp->fd_spin);
521 			fdrop(fp);
522 			goto retry;
523 		}
524 		/*
525 		 * Check for expansion race
526 		 */
527 		if (type != DUP_VARIABLE && new != newfd) {
528 			fsetfd_locked(fdp, NULL, newfd);
529 			spin_unlock_wr(&fdp->fd_spin);
530 			fdrop(fp);
531 			goto retry;
532 		}
533 		/*
534 		 * Check for ripout, newfd reused old (this case probably
535 		 * can't occur).
536 		 */
537 		if (old == newfd) {
538 			fsetfd_locked(fdp, NULL, newfd);
539 			spin_unlock_wr(&fdp->fd_spin);
540 			fdrop(fp);
541 			goto retry;
542 		}
543 		new = newfd;
544 		delfp = NULL;
545 	} else {
546 		if (fdp->fd_files[new].reserved) {
547 			spin_unlock_wr(&fdp->fd_spin);
548 			fdrop(fp);
549 			kprintf("Warning: dup(): target descriptor %d is reserved, waiting for it to be resolved\n", new);
550 			tsleep(fdp, 0, "fdres", hz);
551 			goto retry;
552 		}
553 
554 		/*
555 		 * If the target descriptor was never allocated we have
556 		 * to allocate it.  If it was we have to clean out the
557 		 * old descriptor.  delfp inherits the ref from the
558 		 * descriptor table.
559 		 */
560 		delfp = fdp->fd_files[new].fp;
561 		fdp->fd_files[new].fp = NULL;
562 		fdp->fd_files[new].reserved = 1;
563 		if (delfp == NULL) {
564 			fdreserve_locked(fdp, new, 1);
565 			if (new > fdp->fd_lastfile)
566 				fdp->fd_lastfile = new;
567 		}
568 
569 	}
570 
571 	/*
572 	 * NOTE: still holding an exclusive spinlock
573 	 */
574 
575 	/*
576 	 * If a descriptor is being overwritten we may hve to tell
577 	 * fdfree() to sleep to ensure that all relevant process
578 	 * leaders can be traversed in closef().
579 	 */
580 	if (delfp != NULL && p->p_fdtol != NULL) {
581 		fdp->fd_holdleaderscount++;
582 		holdleaders = 1;
583 	} else {
584 		holdleaders = 0;
585 	}
586 	KASSERT(delfp == NULL || type == DUP_FIXED,
587 		("dup() picked an open file"));
588 
589 	/*
590 	 * Duplicate the source descriptor, update lastfile.  If the new
591 	 * descriptor was not allocated and we aren't replacing an existing
592 	 * descriptor we have to mark the descriptor as being in use.
593 	 *
594 	 * The fd_files[] array inherits fp's hold reference.
595 	 */
596 	fsetfd_locked(fdp, fp, new);
597 	fdp->fd_files[new].fileflags = oldflags & ~UF_EXCLOSE;
598 	spin_unlock_wr(&fdp->fd_spin);
599 	fdrop(fp);
600 	*res = new;
601 
602 	/*
603 	 * If we dup'd over a valid file, we now own the reference to it
604 	 * and must dispose of it using closef() semantics (as if a
605 	 * close() were performed on it).
606 	 */
607 	if (delfp) {
608 		closef(delfp, p);
609 		if (holdleaders) {
610 			spin_lock_wr(&fdp->fd_spin);
611 			fdp->fd_holdleaderscount--;
612 			if (fdp->fd_holdleaderscount == 0 &&
613 			    fdp->fd_holdleaderswakeup != 0) {
614 				fdp->fd_holdleaderswakeup = 0;
615 				spin_unlock_wr(&fdp->fd_spin);
616 				wakeup(&fdp->fd_holdleaderscount);
617 			} else {
618 				spin_unlock_wr(&fdp->fd_spin);
619 			}
620 		}
621 	}
622 	return (0);
623 }
624 
625 /*
626  * If sigio is on the list associated with a process or process group,
627  * disable signalling from the device, remove sigio from the list and
628  * free sigio.
629  */
630 void
631 funsetown(struct sigio *sigio)
632 {
633 	if (sigio == NULL)
634 		return;
635 	crit_enter();
636 	*(sigio->sio_myref) = NULL;
637 	crit_exit();
638 	if (sigio->sio_pgid < 0) {
639 		SLIST_REMOVE(&sigio->sio_pgrp->pg_sigiolst, sigio,
640 			     sigio, sio_pgsigio);
641 	} else /* if ((*sigiop)->sio_pgid > 0) */ {
642 		SLIST_REMOVE(&sigio->sio_proc->p_sigiolst, sigio,
643 			     sigio, sio_pgsigio);
644 	}
645 	crfree(sigio->sio_ucred);
646 	kfree(sigio, M_SIGIO);
647 }
648 
649 /* Free a list of sigio structures. */
650 void
651 funsetownlst(struct sigiolst *sigiolst)
652 {
653 	struct sigio *sigio;
654 
655 	while ((sigio = SLIST_FIRST(sigiolst)) != NULL)
656 		funsetown(sigio);
657 }
658 
659 /*
660  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
661  *
662  * After permission checking, add a sigio structure to the sigio list for
663  * the process or process group.
664  */
665 int
666 fsetown(pid_t pgid, struct sigio **sigiop)
667 {
668 	struct proc *proc;
669 	struct pgrp *pgrp;
670 	struct sigio *sigio;
671 
672 	if (pgid == 0) {
673 		funsetown(*sigiop);
674 		return (0);
675 	}
676 	if (pgid > 0) {
677 		proc = pfind(pgid);
678 		if (proc == NULL)
679 			return (ESRCH);
680 
681 		/*
682 		 * Policy - Don't allow a process to FSETOWN a process
683 		 * in another session.
684 		 *
685 		 * Remove this test to allow maximum flexibility or
686 		 * restrict FSETOWN to the current process or process
687 		 * group for maximum safety.
688 		 */
689 		if (proc->p_session != curproc->p_session)
690 			return (EPERM);
691 
692 		pgrp = NULL;
693 	} else /* if (pgid < 0) */ {
694 		pgrp = pgfind(-pgid);
695 		if (pgrp == NULL)
696 			return (ESRCH);
697 
698 		/*
699 		 * Policy - Don't allow a process to FSETOWN a process
700 		 * in another session.
701 		 *
702 		 * Remove this test to allow maximum flexibility or
703 		 * restrict FSETOWN to the current process or process
704 		 * group for maximum safety.
705 		 */
706 		if (pgrp->pg_session != curproc->p_session)
707 			return (EPERM);
708 
709 		proc = NULL;
710 	}
711 	funsetown(*sigiop);
712 	sigio = kmalloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
713 	if (pgid > 0) {
714 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
715 		sigio->sio_proc = proc;
716 	} else {
717 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
718 		sigio->sio_pgrp = pgrp;
719 	}
720 	sigio->sio_pgid = pgid;
721 	sigio->sio_ucred = crhold(curproc->p_ucred);
722 	/* It would be convenient if p_ruid was in ucred. */
723 	sigio->sio_ruid = curproc->p_ucred->cr_ruid;
724 	sigio->sio_myref = sigiop;
725 	crit_enter();
726 	*sigiop = sigio;
727 	crit_exit();
728 	return (0);
729 }
730 
731 /*
732  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
733  */
734 pid_t
735 fgetown(struct sigio *sigio)
736 {
737 	return (sigio != NULL ? sigio->sio_pgid : 0);
738 }
739 
740 /*
741  * Close many file descriptors.
742  *
743  * MPSAFE
744  */
745 int
746 sys_closefrom(struct closefrom_args *uap)
747 {
748 	return(kern_closefrom(uap->fd));
749 }
750 
751 /*
752  * Close all file descriptors greater then or equal to fd
753  *
754  * MPSAFE
755  */
756 int
757 kern_closefrom(int fd)
758 {
759 	struct thread *td = curthread;
760 	struct proc *p = td->td_proc;
761 	struct filedesc *fdp;
762 
763 	KKASSERT(p);
764 	fdp = p->p_fd;
765 
766 	if (fd < 0)
767 		return (EINVAL);
768 
769 	/*
770 	 * NOTE: This function will skip unassociated descriptors and
771 	 * reserved descriptors that have not yet been assigned.
772 	 * fd_lastfile can change as a side effect of kern_close().
773 	 */
774 	spin_lock_wr(&fdp->fd_spin);
775 	while (fd <= fdp->fd_lastfile) {
776 		if (fdp->fd_files[fd].fp != NULL) {
777 			spin_unlock_wr(&fdp->fd_spin);
778 			/* ok if this races another close */
779 			if (kern_close(fd) == EINTR)
780 				return (EINTR);
781 			spin_lock_wr(&fdp->fd_spin);
782 		}
783 		++fd;
784 	}
785 	spin_unlock_wr(&fdp->fd_spin);
786 	return (0);
787 }
788 
789 /*
790  * Close a file descriptor.
791  *
792  * MPSAFE
793  */
794 int
795 sys_close(struct close_args *uap)
796 {
797 	return(kern_close(uap->fd));
798 }
799 
800 /*
801  * MPALMOSTSAFE - acquires mplock around knote_fdclose() calls
802  */
803 int
804 kern_close(int fd)
805 {
806 	struct thread *td = curthread;
807 	struct proc *p = td->td_proc;
808 	struct filedesc *fdp;
809 	struct file *fp;
810 	int error;
811 	int holdleaders;
812 
813 	KKASSERT(p);
814 	fdp = p->p_fd;
815 
816 	spin_lock_wr(&fdp->fd_spin);
817 	if ((fp = funsetfd_locked(fdp, fd)) == NULL) {
818 		spin_unlock_wr(&fdp->fd_spin);
819 		return (EBADF);
820 	}
821 	holdleaders = 0;
822 	if (p->p_fdtol != NULL) {
823 		/*
824 		 * Ask fdfree() to sleep to ensure that all relevant
825 		 * process leaders can be traversed in closef().
826 		 */
827 		fdp->fd_holdleaderscount++;
828 		holdleaders = 1;
829 	}
830 
831 	/*
832 	 * we now hold the fp reference that used to be owned by the descriptor
833 	 * array.
834 	 */
835 	spin_unlock_wr(&fdp->fd_spin);
836 	if (fd < fdp->fd_knlistsize) {
837 		get_mplock();
838 		if (fd < fdp->fd_knlistsize)
839 			knote_fdclose(p, fd);
840 		rel_mplock();
841 	}
842 	error = closef(fp, p);
843 	if (holdleaders) {
844 		spin_lock_wr(&fdp->fd_spin);
845 		fdp->fd_holdleaderscount--;
846 		if (fdp->fd_holdleaderscount == 0 &&
847 		    fdp->fd_holdleaderswakeup != 0) {
848 			fdp->fd_holdleaderswakeup = 0;
849 			spin_unlock_wr(&fdp->fd_spin);
850 			wakeup(&fdp->fd_holdleaderscount);
851 		} else {
852 			spin_unlock_wr(&fdp->fd_spin);
853 		}
854 	}
855 	return (error);
856 }
857 
858 /*
859  * shutdown_args(int fd, int how)
860  */
861 int
862 kern_shutdown(int fd, int how)
863 {
864 	struct thread *td = curthread;
865 	struct proc *p = td->td_proc;
866 	struct file *fp;
867 	int error;
868 
869 	KKASSERT(p);
870 
871 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
872 		return (EBADF);
873 	error = fo_shutdown(fp, how);
874 	fdrop(fp);
875 
876 	return (error);
877 }
878 
879 int
880 sys_shutdown(struct shutdown_args *uap)
881 {
882 	int error;
883 
884 	error = kern_shutdown(uap->s, uap->how);
885 
886 	return (error);
887 }
888 
889 int
890 kern_fstat(int fd, struct stat *ub)
891 {
892 	struct thread *td = curthread;
893 	struct proc *p = td->td_proc;
894 	struct file *fp;
895 	int error;
896 
897 	KKASSERT(p);
898 
899 	if ((fp = holdfp(p->p_fd, fd, -1)) == NULL)
900 		return (EBADF);
901 	error = fo_stat(fp, ub, p->p_ucred);
902 	fdrop(fp);
903 
904 	return (error);
905 }
906 
907 /*
908  * Return status information about a file descriptor.
909  */
910 int
911 sys_fstat(struct fstat_args *uap)
912 {
913 	struct stat st;
914 	int error;
915 
916 	error = kern_fstat(uap->fd, &st);
917 
918 	if (error == 0)
919 		error = copyout(&st, uap->sb, sizeof(st));
920 	return (error);
921 }
922 
923 /*
924  * Return pathconf information about a file descriptor.
925  */
926 /* ARGSUSED */
927 int
928 sys_fpathconf(struct fpathconf_args *uap)
929 {
930 	struct thread *td = curthread;
931 	struct proc *p = td->td_proc;
932 	struct file *fp;
933 	struct vnode *vp;
934 	int error = 0;
935 
936 	KKASSERT(p);
937 
938 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
939 		return (EBADF);
940 
941 	switch (fp->f_type) {
942 	case DTYPE_PIPE:
943 	case DTYPE_SOCKET:
944 		if (uap->name != _PC_PIPE_BUF) {
945 			error = EINVAL;
946 		} else {
947 			uap->sysmsg_result = PIPE_BUF;
948 			error = 0;
949 		}
950 		break;
951 	case DTYPE_FIFO:
952 	case DTYPE_VNODE:
953 		vp = (struct vnode *)fp->f_data;
954 		error = VOP_PATHCONF(vp, uap->name, uap->sysmsg_fds);
955 		break;
956 	default:
957 		error = EOPNOTSUPP;
958 		break;
959 	}
960 	fdrop(fp);
961 	return(error);
962 }
963 
964 static int fdexpand;
965 SYSCTL_INT(_debug, OID_AUTO, fdexpand, CTLFLAG_RD, &fdexpand, 0, "");
966 
967 /*
968  * Grow the file table so it can hold through descriptor (want).
969  *
970  * The fdp's spinlock must be held exclusively on entry and may be held
971  * exclusively on return.  The spinlock may be cycled by the routine.
972  *
973  * MPSAFE
974  */
975 static void
976 fdgrow_locked(struct filedesc *fdp, int want)
977 {
978 	struct fdnode *newfiles;
979 	struct fdnode *oldfiles;
980 	int nf, extra;
981 
982 	nf = fdp->fd_nfiles;
983 	do {
984 		/* nf has to be of the form 2^n - 1 */
985 		nf = 2 * nf + 1;
986 	} while (nf <= want);
987 
988 	spin_unlock_wr(&fdp->fd_spin);
989 	newfiles = kmalloc(nf * sizeof(struct fdnode), M_FILEDESC, M_WAITOK);
990 	spin_lock_wr(&fdp->fd_spin);
991 
992 	/*
993 	 * We could have raced another extend while we were not holding
994 	 * the spinlock.
995 	 */
996 	if (fdp->fd_nfiles >= nf) {
997 		spin_unlock_wr(&fdp->fd_spin);
998 		kfree(newfiles, M_FILEDESC);
999 		spin_lock_wr(&fdp->fd_spin);
1000 		return;
1001 	}
1002 	/*
1003 	 * Copy the existing ofile and ofileflags arrays
1004 	 * and zero the new portion of each array.
1005 	 */
1006 	extra = nf - fdp->fd_nfiles;
1007 	bcopy(fdp->fd_files, newfiles, fdp->fd_nfiles * sizeof(struct fdnode));
1008 	bzero(&newfiles[fdp->fd_nfiles], extra * sizeof(struct fdnode));
1009 
1010 	oldfiles = fdp->fd_files;
1011 	fdp->fd_files = newfiles;
1012 	fdp->fd_nfiles = nf;
1013 
1014 	if (oldfiles != fdp->fd_builtin_files) {
1015 		spin_unlock_wr(&fdp->fd_spin);
1016 		kfree(oldfiles, M_FILEDESC);
1017 		spin_lock_wr(&fdp->fd_spin);
1018 	}
1019 	fdexpand++;
1020 }
1021 
1022 /*
1023  * Number of nodes in right subtree, including the root.
1024  */
1025 static __inline int
1026 right_subtree_size(int n)
1027 {
1028 	return (n ^ (n | (n + 1)));
1029 }
1030 
1031 /*
1032  * Bigger ancestor.
1033  */
1034 static __inline int
1035 right_ancestor(int n)
1036 {
1037 	return (n | (n + 1));
1038 }
1039 
1040 /*
1041  * Smaller ancestor.
1042  */
1043 static __inline int
1044 left_ancestor(int n)
1045 {
1046 	return ((n & (n + 1)) - 1);
1047 }
1048 
1049 /*
1050  * Traverse the in-place binary tree buttom-up adjusting the allocation
1051  * count so scans can determine where free descriptors are located.
1052  *
1053  * MPSAFE - caller must be holding an exclusive spinlock on fdp
1054  */
1055 static
1056 void
1057 fdreserve_locked(struct filedesc *fdp, int fd, int incr)
1058 {
1059 	while (fd >= 0) {
1060 		fdp->fd_files[fd].allocated += incr;
1061 		KKASSERT(fdp->fd_files[fd].allocated >= 0);
1062 		fd = left_ancestor(fd);
1063 	}
1064 }
1065 
1066 /*
1067  * Reserve a file descriptor for the process.  If no error occurs, the
1068  * caller MUST at some point call fsetfd() or assign a file pointer
1069  * or dispose of the reservation.
1070  *
1071  * MPSAFE
1072  */
1073 int
1074 fdalloc(struct proc *p, int want, int *result)
1075 {
1076 	struct filedesc *fdp = p->p_fd;
1077 	int fd, rsize, rsum, node, lim;
1078 
1079 	spin_lock_rd(&p->p_limit->p_spin);
1080 	lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
1081 	spin_unlock_rd(&p->p_limit->p_spin);
1082 	if (want >= lim)
1083 		return (EMFILE);
1084 	spin_lock_wr(&fdp->fd_spin);
1085 	if (want >= fdp->fd_nfiles)
1086 		fdgrow_locked(fdp, want);
1087 
1088 	/*
1089 	 * Search for a free descriptor starting at the higher
1090 	 * of want or fd_freefile.  If that fails, consider
1091 	 * expanding the ofile array.
1092 	 *
1093 	 * NOTE! the 'allocated' field is a cumulative recursive allocation
1094 	 * count.  If we happen to see a value of 0 then we can shortcut
1095 	 * our search.  Otherwise we run through through the tree going
1096 	 * down branches we know have free descriptor(s) until we hit a
1097 	 * leaf node.  The leaf node will be free but will not necessarily
1098 	 * have an allocated field of 0.
1099 	 */
1100 retry:
1101 	/* move up the tree looking for a subtree with a free node */
1102 	for (fd = max(want, fdp->fd_freefile); fd < min(fdp->fd_nfiles, lim);
1103 	     fd = right_ancestor(fd)) {
1104 		if (fdp->fd_files[fd].allocated == 0)
1105 			goto found;
1106 
1107 		rsize = right_subtree_size(fd);
1108 		if (fdp->fd_files[fd].allocated == rsize)
1109 			continue;	/* right subtree full */
1110 
1111 		/*
1112 		 * Free fd is in the right subtree of the tree rooted at fd.
1113 		 * Call that subtree R.  Look for the smallest (leftmost)
1114 		 * subtree of R with an unallocated fd: continue moving
1115 		 * down the left branch until encountering a full left
1116 		 * subtree, then move to the right.
1117 		 */
1118 		for (rsum = 0, rsize /= 2; rsize > 0; rsize /= 2) {
1119 			node = fd + rsize;
1120 			rsum += fdp->fd_files[node].allocated;
1121 			if (fdp->fd_files[fd].allocated == rsum + rsize) {
1122 				fd = node;	/* move to the right */
1123 				if (fdp->fd_files[node].allocated == 0)
1124 					goto found;
1125 				rsum = 0;
1126 			}
1127 		}
1128 		goto found;
1129 	}
1130 
1131 	/*
1132 	 * No space in current array.  Expand?
1133 	 */
1134 	if (fdp->fd_nfiles >= lim) {
1135 		spin_unlock_wr(&fdp->fd_spin);
1136 		return (EMFILE);
1137 	}
1138 	fdgrow_locked(fdp, want);
1139 	goto retry;
1140 
1141 found:
1142 	KKASSERT(fd < fdp->fd_nfiles);
1143 	if (fd > fdp->fd_lastfile)
1144 		fdp->fd_lastfile = fd;
1145 	if (want <= fdp->fd_freefile)
1146 		fdp->fd_freefile = fd;
1147 	*result = fd;
1148 	KKASSERT(fdp->fd_files[fd].fp == NULL);
1149 	KKASSERT(fdp->fd_files[fd].reserved == 0);
1150 	fdp->fd_files[fd].fileflags = 0;
1151 	fdp->fd_files[fd].reserved = 1;
1152 	fdreserve_locked(fdp, fd, 1);
1153 	spin_unlock_wr(&fdp->fd_spin);
1154 	return (0);
1155 }
1156 
1157 /*
1158  * Check to see whether n user file descriptors
1159  * are available to the process p.
1160  *
1161  * MPSAFE
1162  */
1163 int
1164 fdavail(struct proc *p, int n)
1165 {
1166 	struct filedesc *fdp = p->p_fd;
1167 	struct fdnode *fdnode;
1168 	int i, lim, last;
1169 
1170 	spin_lock_rd(&p->p_limit->p_spin);
1171 	lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfilesperproc);
1172 	spin_unlock_rd(&p->p_limit->p_spin);
1173 
1174 	spin_lock_rd(&fdp->fd_spin);
1175 	if ((i = lim - fdp->fd_nfiles) > 0 && (n -= i) <= 0) {
1176 		spin_unlock_rd(&fdp->fd_spin);
1177 		return (1);
1178 	}
1179 	last = min(fdp->fd_nfiles, lim);
1180 	fdnode = &fdp->fd_files[fdp->fd_freefile];
1181 	for (i = last - fdp->fd_freefile; --i >= 0; ++fdnode) {
1182 		if (fdnode->fp == NULL && --n <= 0) {
1183 			spin_unlock_rd(&fdp->fd_spin);
1184 			return (1);
1185 		}
1186 	}
1187 	spin_unlock_rd(&fdp->fd_spin);
1188 	return (0);
1189 }
1190 
1191 /*
1192  * Revoke open descriptors referencing (f_data, f_type)
1193  *
1194  * Any revoke executed within a prison is only able to
1195  * revoke descriptors for processes within that prison.
1196  *
1197  * Returns 0 on success or an error code.
1198  */
1199 struct fdrevoke_info {
1200 	void *data;
1201 	short type;
1202 	short unused;
1203 	int count;
1204 	int intransit;
1205 	struct ucred *cred;
1206 	struct file *nfp;
1207 };
1208 
1209 static int fdrevoke_check_callback(struct file *fp, void *vinfo);
1210 static int fdrevoke_proc_callback(struct proc *p, void *vinfo);
1211 
1212 int
1213 fdrevoke(void *f_data, short f_type, struct ucred *cred)
1214 {
1215 	struct fdrevoke_info info;
1216 	int error;
1217 
1218 	bzero(&info, sizeof(info));
1219 	info.data = f_data;
1220 	info.type = f_type;
1221 	info.cred = cred;
1222 	error = falloc(NULL, &info.nfp, NULL);
1223 	if (error)
1224 		return (error);
1225 
1226 	/*
1227 	 * Scan the file pointer table once.  dups do not dup file pointers,
1228 	 * only descriptors, so there is no leak.  Set FREVOKED on the fps
1229 	 * being revoked.
1230 	 */
1231 	allfiles_scan_exclusive(fdrevoke_check_callback, &info);
1232 
1233 	/*
1234 	 * If any fps were marked track down the related descriptors
1235 	 * and close them.  Any dup()s at this point will notice
1236 	 * the FREVOKED already set in the fp and do the right thing.
1237 	 *
1238 	 * Any fps with non-zero msgcounts (aka sent over a unix-domain
1239 	 * socket) bumped the intransit counter and will require a
1240 	 * scan.  Races against fps leaving the socket are closed by
1241 	 * the socket code checking for FREVOKED.
1242 	 */
1243 	if (info.count)
1244 		allproc_scan(fdrevoke_proc_callback, &info);
1245 	if (info.intransit)
1246 		unp_revoke_gc(info.nfp);
1247 	fdrop(info.nfp);
1248 	return(0);
1249 }
1250 
1251 /*
1252  * Locate matching file pointers directly.
1253  */
1254 static int
1255 fdrevoke_check_callback(struct file *fp, void *vinfo)
1256 {
1257 	struct fdrevoke_info *info = vinfo;
1258 
1259 	/*
1260 	 * File pointers already flagged for revokation are skipped.
1261 	 */
1262 	if (fp->f_flag & FREVOKED)
1263 		return(0);
1264 
1265 	/*
1266 	 * If revoking from a prison file pointers created outside of
1267 	 * that prison, or file pointers without creds, cannot be revoked.
1268 	 */
1269 	if (info->cred->cr_prison &&
1270 	    (fp->f_cred == NULL ||
1271 	     info->cred->cr_prison != fp->f_cred->cr_prison)) {
1272 		return(0);
1273 	}
1274 
1275 	/*
1276 	 * If the file pointer matches then mark it for revocation.  The
1277 	 * flag is currently only used by unp_revoke_gc().
1278 	 *
1279 	 * info->count is a heuristic and can race in a SMP environment.
1280 	 */
1281 	if (info->data == fp->f_data && info->type == fp->f_type) {
1282 		atomic_set_int(&fp->f_flag, FREVOKED);
1283 		info->count += fp->f_count;
1284 		if (fp->f_msgcount)
1285 			++info->intransit;
1286 	}
1287 	return(0);
1288 }
1289 
1290 /*
1291  * Locate matching file pointers via process descriptor tables.
1292  */
1293 static int
1294 fdrevoke_proc_callback(struct proc *p, void *vinfo)
1295 {
1296 	struct fdrevoke_info *info = vinfo;
1297 	struct filedesc *fdp;
1298 	struct file *fp;
1299 	int n;
1300 
1301 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
1302 		return(0);
1303 	if (info->cred->cr_prison &&
1304 	    info->cred->cr_prison != p->p_ucred->cr_prison) {
1305 		return(0);
1306 	}
1307 
1308 	/*
1309 	 * If the controlling terminal of the process matches the
1310 	 * vnode being revoked we clear the controlling terminal.
1311 	 *
1312 	 * The normal spec_close() may not catch this because it
1313 	 * uses curproc instead of p.
1314 	 */
1315 	if (p->p_session && info->type == DTYPE_VNODE &&
1316 	    info->data == p->p_session->s_ttyvp) {
1317 		p->p_session->s_ttyvp = NULL;
1318 		vrele(info->data);
1319 	}
1320 
1321 	/*
1322 	 * Softref the fdp to prevent it from being destroyed
1323 	 */
1324 	spin_lock_wr(&p->p_spin);
1325 	if ((fdp = p->p_fd) == NULL) {
1326 		spin_unlock_wr(&p->p_spin);
1327 		return(0);
1328 	}
1329 	atomic_add_int(&fdp->fd_softrefs, 1);
1330 	spin_unlock_wr(&p->p_spin);
1331 
1332 	/*
1333 	 * Locate and close any matching file descriptors.
1334 	 */
1335 	spin_lock_wr(&fdp->fd_spin);
1336 	for (n = 0; n < fdp->fd_nfiles; ++n) {
1337 		if ((fp = fdp->fd_files[n].fp) == NULL)
1338 			continue;
1339 		if (fp->f_flag & FREVOKED) {
1340 			fhold(info->nfp);
1341 			fdp->fd_files[n].fp = info->nfp;
1342 			spin_unlock_wr(&fdp->fd_spin);
1343 			closef(fp, p);
1344 			spin_lock_wr(&fdp->fd_spin);
1345 			--info->count;
1346 		}
1347 	}
1348 	spin_unlock_wr(&fdp->fd_spin);
1349 	atomic_subtract_int(&fdp->fd_softrefs, 1);
1350 	return(0);
1351 }
1352 
1353 /*
1354  * falloc:
1355  *	Create a new open file structure and reserve a file decriptor
1356  *	for the process that refers to it.
1357  *
1358  *	Root creds are checked using p, or assumed if p is NULL.  If
1359  *	resultfd is non-NULL then p must also be non-NULL.  No file
1360  *	descriptor is reserved if resultfd is NULL.
1361  *
1362  *	A file pointer with a refcount of 1 is returned.  Note that the
1363  *	file pointer is NOT associated with the descriptor.  If falloc
1364  *	returns success, fsetfd() MUST be called to either associate the
1365  *	file pointer or clear the reservation.
1366  *
1367  * MPSAFE
1368  */
1369 int
1370 falloc(struct proc *p, struct file **resultfp, int *resultfd)
1371 {
1372 	static struct timeval lastfail;
1373 	static int curfail;
1374 	struct file *fp;
1375 	int error;
1376 
1377 	fp = NULL;
1378 
1379 	/*
1380 	 * Handle filetable full issues and root overfill.
1381 	 */
1382 	if (nfiles >= maxfiles - maxfilesrootres &&
1383 	    ((p && p->p_ucred->cr_ruid != 0) || nfiles >= maxfiles)) {
1384 		if (ppsratecheck(&lastfail, &curfail, 1)) {
1385 			kprintf("kern.maxfiles limit exceeded by uid %d, please see tuning(7).\n",
1386 				(p ? p->p_ucred->cr_ruid : -1));
1387 		}
1388 		error = ENFILE;
1389 		goto done;
1390 	}
1391 
1392 	/*
1393 	 * Allocate a new file descriptor.
1394 	 */
1395 	fp = kmalloc(sizeof(struct file), M_FILE, M_WAITOK | M_ZERO);
1396 	spin_init(&fp->f_spin);
1397 	fp->f_count = 1;
1398 	fp->f_ops = &badfileops;
1399 	fp->f_seqcount = 1;
1400 	if (p)
1401 		fp->f_cred = crhold(p->p_ucred);
1402 	else
1403 		fp->f_cred = crhold(proc0.p_ucred);
1404 	spin_lock_wr(&filehead_spin);
1405 	nfiles++;
1406 	LIST_INSERT_HEAD(&filehead, fp, f_list);
1407 	spin_unlock_wr(&filehead_spin);
1408 	if (resultfd) {
1409 		if ((error = fdalloc(p, 0, resultfd)) != 0) {
1410 			fdrop(fp);
1411 			fp = NULL;
1412 		}
1413 	} else {
1414 		error = 0;
1415 	}
1416 done:
1417 	*resultfp = fp;
1418 	return (error);
1419 }
1420 
1421 /*
1422  * MPSAFE
1423  */
1424 static
1425 int
1426 checkfpclosed(struct filedesc *fdp, int fd, struct file *fp)
1427 {
1428 	int error;
1429 
1430 	spin_lock_rd(&fdp->fd_spin);
1431 	if ((unsigned) fd >= fdp->fd_nfiles || fp != fdp->fd_files[fd].fp)
1432 		error = EBADF;
1433 	else
1434 		error = 0;
1435 	spin_unlock_rd(&fdp->fd_spin);
1436 	return (error);
1437 }
1438 
1439 /*
1440  * Associate a file pointer with a previously reserved file descriptor.
1441  * This function always succeeds.
1442  *
1443  * If fp is NULL, the file descriptor is returned to the pool.
1444  */
1445 
1446 /*
1447  * MPSAFE (exclusive spinlock must be held on call)
1448  */
1449 static void
1450 fsetfd_locked(struct filedesc *fdp, struct file *fp, int fd)
1451 {
1452 	KKASSERT((unsigned)fd < fdp->fd_nfiles);
1453 	KKASSERT(fdp->fd_files[fd].reserved != 0);
1454 	if (fp) {
1455 		fhold(fp);
1456 		fdp->fd_files[fd].fp = fp;
1457 		fdp->fd_files[fd].reserved = 0;
1458 		if (fp->f_type == DTYPE_KQUEUE) {
1459 			if (fdp->fd_knlistsize < 0)
1460 				fdp->fd_knlistsize = 0;
1461 		}
1462 	} else {
1463 		fdp->fd_files[fd].reserved = 0;
1464 		fdreserve_locked(fdp, fd, -1);
1465 		fdfixup_locked(fdp, fd);
1466 	}
1467 }
1468 
1469 /*
1470  * MPSAFE
1471  */
1472 void
1473 fsetfd(struct proc *p, struct file *fp, int fd)
1474 {
1475 	struct filedesc *fdp = p->p_fd;
1476 
1477 	spin_lock_wr(&fdp->fd_spin);
1478 	fsetfd_locked(fdp, fp, fd);
1479 	spin_unlock_wr(&fdp->fd_spin);
1480 }
1481 
1482 /*
1483  * MPSAFE (exclusive spinlock must be held on call)
1484  */
1485 static
1486 struct file *
1487 funsetfd_locked(struct filedesc *fdp, int fd)
1488 {
1489 	struct file *fp;
1490 
1491 	if ((unsigned)fd >= fdp->fd_nfiles)
1492 		return (NULL);
1493 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1494 		return (NULL);
1495 	fdp->fd_files[fd].fp = NULL;
1496 	fdp->fd_files[fd].fileflags = 0;
1497 
1498 	fdreserve_locked(fdp, fd, -1);
1499 	fdfixup_locked(fdp, fd);
1500 	return(fp);
1501 }
1502 
1503 /*
1504  * MPSAFE
1505  */
1506 int
1507 fgetfdflags(struct filedesc *fdp, int fd, int *flagsp)
1508 {
1509 	int error;
1510 
1511 	spin_lock_rd(&fdp->fd_spin);
1512 	if (((u_int)fd) >= fdp->fd_nfiles) {
1513 		error = EBADF;
1514 	} else if (fdp->fd_files[fd].fp == NULL) {
1515 		error = EBADF;
1516 	} else {
1517 		*flagsp = fdp->fd_files[fd].fileflags;
1518 		error = 0;
1519 	}
1520 	spin_unlock_rd(&fdp->fd_spin);
1521 	return (error);
1522 }
1523 
1524 /*
1525  * MPSAFE
1526  */
1527 int
1528 fsetfdflags(struct filedesc *fdp, int fd, int add_flags)
1529 {
1530 	int error;
1531 
1532 	spin_lock_wr(&fdp->fd_spin);
1533 	if (((u_int)fd) >= fdp->fd_nfiles) {
1534 		error = EBADF;
1535 	} else if (fdp->fd_files[fd].fp == NULL) {
1536 		error = EBADF;
1537 	} else {
1538 		fdp->fd_files[fd].fileflags |= add_flags;
1539 		error = 0;
1540 	}
1541 	spin_unlock_wr(&fdp->fd_spin);
1542 	return (error);
1543 }
1544 
1545 /*
1546  * MPSAFE
1547  */
1548 int
1549 fclrfdflags(struct filedesc *fdp, int fd, int rem_flags)
1550 {
1551 	int error;
1552 
1553 	spin_lock_wr(&fdp->fd_spin);
1554 	if (((u_int)fd) >= fdp->fd_nfiles) {
1555 		error = EBADF;
1556 	} else if (fdp->fd_files[fd].fp == NULL) {
1557 		error = EBADF;
1558 	} else {
1559 		fdp->fd_files[fd].fileflags &= ~rem_flags;
1560 		error = 0;
1561 	}
1562 	spin_unlock_wr(&fdp->fd_spin);
1563 	return (error);
1564 }
1565 
1566 void
1567 fsetcred(struct file *fp, struct ucred *cr)
1568 {
1569 	crhold(cr);
1570 	crfree(fp->f_cred);
1571 	fp->f_cred = cr;
1572 }
1573 
1574 /*
1575  * Free a file descriptor.
1576  */
1577 static
1578 void
1579 ffree(struct file *fp)
1580 {
1581 	KASSERT((fp->f_count == 0), ("ffree: fp_fcount not 0!"));
1582 	spin_lock_wr(&filehead_spin);
1583 	LIST_REMOVE(fp, f_list);
1584 	nfiles--;
1585 	spin_unlock_wr(&filehead_spin);
1586 	crfree(fp->f_cred);
1587 	if (fp->f_nchandle.ncp)
1588 	    cache_drop(&fp->f_nchandle);
1589 	kfree(fp, M_FILE);
1590 }
1591 
1592 /*
1593  * called from init_main, initialize filedesc0 for proc0.
1594  */
1595 void
1596 fdinit_bootstrap(struct proc *p0, struct filedesc *fdp0, int cmask)
1597 {
1598 	p0->p_fd = fdp0;
1599 	p0->p_fdtol = NULL;
1600 	fdp0->fd_refcnt = 1;
1601 	fdp0->fd_cmask = cmask;
1602 	fdp0->fd_files = fdp0->fd_builtin_files;
1603 	fdp0->fd_nfiles = NDFILE;
1604 	fdp0->fd_lastfile = -1;
1605 	spin_init(&fdp0->fd_spin);
1606 }
1607 
1608 /*
1609  * Build a new filedesc structure.
1610  *
1611  * NOT MPSAFE (vref)
1612  */
1613 struct filedesc *
1614 fdinit(struct proc *p)
1615 {
1616 	struct filedesc *newfdp;
1617 	struct filedesc *fdp = p->p_fd;
1618 
1619 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK|M_ZERO);
1620 	spin_lock_rd(&fdp->fd_spin);
1621 	if (fdp->fd_cdir) {
1622 		newfdp->fd_cdir = fdp->fd_cdir;
1623 		vref(newfdp->fd_cdir);
1624 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1625 	}
1626 
1627 	/*
1628 	 * rdir may not be set in e.g. proc0 or anything vm_fork'd off of
1629 	 * proc0, but should unconditionally exist in other processes.
1630 	 */
1631 	if (fdp->fd_rdir) {
1632 		newfdp->fd_rdir = fdp->fd_rdir;
1633 		vref(newfdp->fd_rdir);
1634 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1635 	}
1636 	if (fdp->fd_jdir) {
1637 		newfdp->fd_jdir = fdp->fd_jdir;
1638 		vref(newfdp->fd_jdir);
1639 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1640 	}
1641 	spin_unlock_rd(&fdp->fd_spin);
1642 
1643 	/* Create the file descriptor table. */
1644 	newfdp->fd_refcnt = 1;
1645 	newfdp->fd_cmask = cmask;
1646 	newfdp->fd_files = newfdp->fd_builtin_files;
1647 	newfdp->fd_nfiles = NDFILE;
1648 	newfdp->fd_knlistsize = -1;
1649 	newfdp->fd_lastfile = -1;
1650 	spin_init(&newfdp->fd_spin);
1651 
1652 	return (newfdp);
1653 }
1654 
1655 /*
1656  * Share a filedesc structure.
1657  *
1658  * MPSAFE
1659  */
1660 struct filedesc *
1661 fdshare(struct proc *p)
1662 {
1663 	struct filedesc *fdp;
1664 
1665 	fdp = p->p_fd;
1666 	spin_lock_wr(&fdp->fd_spin);
1667 	fdp->fd_refcnt++;
1668 	spin_unlock_wr(&fdp->fd_spin);
1669 	return (fdp);
1670 }
1671 
1672 /*
1673  * Copy a filedesc structure.
1674  *
1675  * MPSAFE
1676  */
1677 struct filedesc *
1678 fdcopy(struct proc *p)
1679 {
1680 	struct filedesc *fdp = p->p_fd;
1681 	struct filedesc *newfdp;
1682 	struct fdnode *fdnode;
1683 	int i;
1684 	int ni;
1685 
1686 	/*
1687 	 * Certain daemons might not have file descriptors.
1688 	 */
1689 	if (fdp == NULL)
1690 		return (NULL);
1691 
1692 	/*
1693 	 * Allocate the new filedesc and fd_files[] array.  This can race
1694 	 * with operations by other threads on the fdp so we have to be
1695 	 * careful.
1696 	 */
1697 	newfdp = kmalloc(sizeof(struct filedesc), M_FILEDESC, M_WAITOK | M_ZERO);
1698 again:
1699 	spin_lock_rd(&fdp->fd_spin);
1700 	if (fdp->fd_lastfile < NDFILE) {
1701 		newfdp->fd_files = newfdp->fd_builtin_files;
1702 		i = NDFILE;
1703 	} else {
1704 		/*
1705 		 * We have to allocate (N^2-1) entries for our in-place
1706 		 * binary tree.  Allow the table to shrink.
1707 		 */
1708 		i = fdp->fd_nfiles;
1709 		ni = (i - 1) / 2;
1710 		while (ni > fdp->fd_lastfile && ni > NDFILE) {
1711 			i = ni;
1712 			ni = (i - 1) / 2;
1713 		}
1714 		spin_unlock_rd(&fdp->fd_spin);
1715 		newfdp->fd_files = kmalloc(i * sizeof(struct fdnode),
1716 					  M_FILEDESC, M_WAITOK | M_ZERO);
1717 
1718 		/*
1719 		 * Check for race, retry
1720 		 */
1721 		spin_lock_rd(&fdp->fd_spin);
1722 		if (i <= fdp->fd_lastfile) {
1723 			spin_unlock_rd(&fdp->fd_spin);
1724 			kfree(newfdp->fd_files, M_FILEDESC);
1725 			goto again;
1726 		}
1727 	}
1728 
1729 	/*
1730 	 * Dup the remaining fields. vref() and cache_hold() can be
1731 	 * safely called while holding the read spinlock on fdp.
1732 	 *
1733 	 * The read spinlock on fdp is still being held.
1734 	 *
1735 	 * NOTE: vref and cache_hold calls for the case where the vnode
1736 	 * or cache entry already has at least one ref may be called
1737 	 * while holding spin locks.
1738 	 */
1739 	if ((newfdp->fd_cdir = fdp->fd_cdir) != NULL) {
1740 		vref(newfdp->fd_cdir);
1741 		cache_copy(&fdp->fd_ncdir, &newfdp->fd_ncdir);
1742 	}
1743 	/*
1744 	 * We must check for fd_rdir here, at least for now because
1745 	 * the init process is created before we have access to the
1746 	 * rootvode to take a reference to it.
1747 	 */
1748 	if ((newfdp->fd_rdir = fdp->fd_rdir) != NULL) {
1749 		vref(newfdp->fd_rdir);
1750 		cache_copy(&fdp->fd_nrdir, &newfdp->fd_nrdir);
1751 	}
1752 	if ((newfdp->fd_jdir = fdp->fd_jdir) != NULL) {
1753 		vref(newfdp->fd_jdir);
1754 		cache_copy(&fdp->fd_njdir, &newfdp->fd_njdir);
1755 	}
1756 	newfdp->fd_refcnt = 1;
1757 	newfdp->fd_nfiles = i;
1758 	newfdp->fd_lastfile = fdp->fd_lastfile;
1759 	newfdp->fd_freefile = fdp->fd_freefile;
1760 	newfdp->fd_cmask = fdp->fd_cmask;
1761 	newfdp->fd_knlist = NULL;
1762 	newfdp->fd_knlistsize = -1;
1763 	newfdp->fd_knhash = NULL;
1764 	newfdp->fd_knhashmask = 0;
1765 	spin_init(&newfdp->fd_spin);
1766 
1767 	/*
1768 	 * Copy the descriptor table through (i).  This also copies the
1769 	 * allocation state.   Then go through and ref the file pointers
1770 	 * and clean up any KQ descriptors.
1771 	 *
1772 	 * kq descriptors cannot be copied.  Since we haven't ref'd the
1773 	 * copied files yet we can ignore the return value from funsetfd().
1774 	 *
1775 	 * The read spinlock on fdp is still being held.
1776 	 */
1777 	bcopy(fdp->fd_files, newfdp->fd_files, i * sizeof(struct fdnode));
1778 	for (i = 0 ; i < newfdp->fd_nfiles; ++i) {
1779 		fdnode = &newfdp->fd_files[i];
1780 		if (fdnode->reserved) {
1781 			fdreserve_locked(newfdp, i, -1);
1782 			fdnode->reserved = 0;
1783 			fdfixup_locked(newfdp, i);
1784 		} else if (fdnode->fp) {
1785 			if (fdnode->fp->f_type == DTYPE_KQUEUE) {
1786 				(void)funsetfd_locked(newfdp, i);
1787 			} else {
1788 				fhold(fdnode->fp);
1789 			}
1790 		}
1791 	}
1792 	spin_unlock_rd(&fdp->fd_spin);
1793 	return (newfdp);
1794 }
1795 
1796 /*
1797  * Release a filedesc structure.
1798  *
1799  * NOT MPSAFE (MPSAFE for refs > 1, but the final cleanup code is not MPSAFE)
1800  */
1801 void
1802 fdfree(struct proc *p, struct filedesc *repl)
1803 {
1804 	struct filedesc *fdp;
1805 	struct fdnode *fdnode;
1806 	int i;
1807 	struct filedesc_to_leader *fdtol;
1808 	struct file *fp;
1809 	struct vnode *vp;
1810 	struct flock lf;
1811 
1812 	/*
1813 	 * Certain daemons might not have file descriptors.
1814 	 */
1815 	fdp = p->p_fd;
1816 	if (fdp == NULL) {
1817 		p->p_fd = repl;
1818 		return;
1819 	}
1820 
1821 	/*
1822 	 * Severe messing around to follow.
1823 	 */
1824 	spin_lock_wr(&fdp->fd_spin);
1825 
1826 	/* Check for special need to clear POSIX style locks */
1827 	fdtol = p->p_fdtol;
1828 	if (fdtol != NULL) {
1829 		KASSERT(fdtol->fdl_refcount > 0,
1830 			("filedesc_to_refcount botch: fdl_refcount=%d",
1831 			 fdtol->fdl_refcount));
1832 		if (fdtol->fdl_refcount == 1 &&
1833 		    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1834 			for (i = 0; i <= fdp->fd_lastfile; ++i) {
1835 				fdnode = &fdp->fd_files[i];
1836 				if (fdnode->fp == NULL ||
1837 				    fdnode->fp->f_type != DTYPE_VNODE) {
1838 					continue;
1839 				}
1840 				fp = fdnode->fp;
1841 				fhold(fp);
1842 				spin_unlock_wr(&fdp->fd_spin);
1843 
1844 				lf.l_whence = SEEK_SET;
1845 				lf.l_start = 0;
1846 				lf.l_len = 0;
1847 				lf.l_type = F_UNLCK;
1848 				vp = (struct vnode *)fp->f_data;
1849 				(void) VOP_ADVLOCK(vp,
1850 						   (caddr_t)p->p_leader,
1851 						   F_UNLCK,
1852 						   &lf,
1853 						   F_POSIX);
1854 				fdrop(fp);
1855 				spin_lock_wr(&fdp->fd_spin);
1856 			}
1857 		}
1858 	retry:
1859 		if (fdtol->fdl_refcount == 1) {
1860 			if (fdp->fd_holdleaderscount > 0 &&
1861 			    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
1862 				/*
1863 				 * close() or do_dup() has cleared a reference
1864 				 * in a shared file descriptor table.
1865 				 */
1866 				fdp->fd_holdleaderswakeup = 1;
1867 				msleep(&fdp->fd_holdleaderscount,
1868 				       &fdp->fd_spin, 0, "fdlhold", 0);
1869 				goto retry;
1870 			}
1871 			if (fdtol->fdl_holdcount > 0) {
1872 				/*
1873 				 * Ensure that fdtol->fdl_leader
1874 				 * remains valid in closef().
1875 				 */
1876 				fdtol->fdl_wakeup = 1;
1877 				msleep(fdtol, &fdp->fd_spin, 0, "fdlhold", 0);
1878 				goto retry;
1879 			}
1880 		}
1881 		fdtol->fdl_refcount--;
1882 		if (fdtol->fdl_refcount == 0 &&
1883 		    fdtol->fdl_holdcount == 0) {
1884 			fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
1885 			fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
1886 		} else {
1887 			fdtol = NULL;
1888 		}
1889 		p->p_fdtol = NULL;
1890 		if (fdtol != NULL) {
1891 			spin_unlock_wr(&fdp->fd_spin);
1892 			kfree(fdtol, M_FILEDESC_TO_LEADER);
1893 			spin_lock_wr(&fdp->fd_spin);
1894 		}
1895 	}
1896 	if (--fdp->fd_refcnt > 0) {
1897 		spin_unlock_wr(&fdp->fd_spin);
1898 		spin_lock_wr(&p->p_spin);
1899 		p->p_fd = repl;
1900 		spin_unlock_wr(&p->p_spin);
1901 		return;
1902 	}
1903 
1904 	/*
1905 	 * Even though we are the last reference to the structure allproc
1906 	 * scans may still reference the structure.  Maintain proper
1907 	 * locks until we can replace p->p_fd.
1908 	 *
1909 	 * Also note that kqueue's closef still needs to reference the
1910 	 * fdp via p->p_fd, so we have to close the descriptors before
1911 	 * we replace p->p_fd.
1912 	 */
1913 	for (i = 0; i <= fdp->fd_lastfile; ++i) {
1914 		if (fdp->fd_files[i].fp) {
1915 			fp = funsetfd_locked(fdp, i);
1916 			if (fp) {
1917 				spin_unlock_wr(&fdp->fd_spin);
1918 				closef(fp, p);
1919 				spin_lock_wr(&fdp->fd_spin);
1920 			}
1921 		}
1922 	}
1923 	spin_unlock_wr(&fdp->fd_spin);
1924 
1925 	/*
1926 	 * Interlock against an allproc scan operations (typically frevoke).
1927 	 */
1928 	spin_lock_wr(&p->p_spin);
1929 	p->p_fd = repl;
1930 	spin_unlock_wr(&p->p_spin);
1931 
1932 	/*
1933 	 * Wait for any softrefs to go away.  This race rarely occurs so
1934 	 * we can use a non-critical-path style poll/sleep loop.  The
1935 	 * race only occurs against allproc scans.
1936 	 *
1937 	 * No new softrefs can occur with the fdp disconnected from the
1938 	 * process.
1939 	 */
1940 	if (fdp->fd_softrefs) {
1941 		kprintf("pid %d: Warning, fdp race avoided\n", p->p_pid);
1942 		while (fdp->fd_softrefs)
1943 			tsleep(&fdp->fd_softrefs, 0, "fdsoft", 1);
1944 	}
1945 
1946 	if (fdp->fd_files != fdp->fd_builtin_files)
1947 		kfree(fdp->fd_files, M_FILEDESC);
1948 	if (fdp->fd_cdir) {
1949 		cache_drop(&fdp->fd_ncdir);
1950 		vrele(fdp->fd_cdir);
1951 	}
1952 	if (fdp->fd_rdir) {
1953 		cache_drop(&fdp->fd_nrdir);
1954 		vrele(fdp->fd_rdir);
1955 	}
1956 	if (fdp->fd_jdir) {
1957 		cache_drop(&fdp->fd_njdir);
1958 		vrele(fdp->fd_jdir);
1959 	}
1960 	if (fdp->fd_knlist)
1961 		kfree(fdp->fd_knlist, M_KQUEUE);
1962 	if (fdp->fd_knhash)
1963 		kfree(fdp->fd_knhash, M_KQUEUE);
1964 	kfree(fdp, M_FILEDESC);
1965 }
1966 
1967 /*
1968  * Retrieve and reference the file pointer associated with a descriptor.
1969  *
1970  * MPSAFE
1971  */
1972 struct file *
1973 holdfp(struct filedesc *fdp, int fd, int flag)
1974 {
1975 	struct file* fp;
1976 
1977 	spin_lock_rd(&fdp->fd_spin);
1978 	if (((u_int)fd) >= fdp->fd_nfiles) {
1979 		fp = NULL;
1980 		goto done;
1981 	}
1982 	if ((fp = fdp->fd_files[fd].fp) == NULL)
1983 		goto done;
1984 	if ((fp->f_flag & flag) == 0 && flag != -1) {
1985 		fp = NULL;
1986 		goto done;
1987 	}
1988 	fhold(fp);
1989 done:
1990 	spin_unlock_rd(&fdp->fd_spin);
1991 	return (fp);
1992 }
1993 
1994 /*
1995  * holdsock() - load the struct file pointer associated
1996  * with a socket into *fpp.  If an error occurs, non-zero
1997  * will be returned and *fpp will be set to NULL.
1998  *
1999  * MPSAFE
2000  */
2001 int
2002 holdsock(struct filedesc *fdp, int fd, struct file **fpp)
2003 {
2004 	struct file *fp;
2005 	int error;
2006 
2007 	spin_lock_rd(&fdp->fd_spin);
2008 	if ((unsigned)fd >= fdp->fd_nfiles) {
2009 		error = EBADF;
2010 		fp = NULL;
2011 		goto done;
2012 	}
2013 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2014 		error = EBADF;
2015 		goto done;
2016 	}
2017 	if (fp->f_type != DTYPE_SOCKET) {
2018 		error = ENOTSOCK;
2019 		goto done;
2020 	}
2021 	fhold(fp);
2022 	error = 0;
2023 done:
2024 	spin_unlock_rd(&fdp->fd_spin);
2025 	*fpp = fp;
2026 	return (error);
2027 }
2028 
2029 /*
2030  * Convert a user file descriptor to a held file pointer.
2031  *
2032  * MPSAFE
2033  */
2034 int
2035 holdvnode(struct filedesc *fdp, int fd, struct file **fpp)
2036 {
2037 	struct file *fp;
2038 	int error;
2039 
2040 	spin_lock_rd(&fdp->fd_spin);
2041 	if ((unsigned)fd >= fdp->fd_nfiles) {
2042 		error = EBADF;
2043 		fp = NULL;
2044 		goto done;
2045 	}
2046 	if ((fp = fdp->fd_files[fd].fp) == NULL) {
2047 		error = EBADF;
2048 		goto done;
2049 	}
2050 	if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
2051 		fp = NULL;
2052 		error = EINVAL;
2053 		goto done;
2054 	}
2055 	fhold(fp);
2056 	error = 0;
2057 done:
2058 	spin_unlock_rd(&fdp->fd_spin);
2059 	*fpp = fp;
2060 	return (error);
2061 }
2062 
2063 /*
2064  * For setugid programs, we don't want to people to use that setugidness
2065  * to generate error messages which write to a file which otherwise would
2066  * otherwise be off-limits to the process.
2067  *
2068  * This is a gross hack to plug the hole.  A better solution would involve
2069  * a special vop or other form of generalized access control mechanism.  We
2070  * go ahead and just reject all procfs file systems accesses as dangerous.
2071  *
2072  * Since setugidsafety calls this only for fd 0, 1 and 2, this check is
2073  * sufficient.  We also don't for check setugidness since we know we are.
2074  */
2075 static int
2076 is_unsafe(struct file *fp)
2077 {
2078 	if (fp->f_type == DTYPE_VNODE &&
2079 	    ((struct vnode *)(fp->f_data))->v_tag == VT_PROCFS)
2080 		return (1);
2081 	return (0);
2082 }
2083 
2084 /*
2085  * Make this setguid thing safe, if at all possible.
2086  *
2087  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2088  */
2089 void
2090 setugidsafety(struct proc *p)
2091 {
2092 	struct filedesc *fdp = p->p_fd;
2093 	int i;
2094 
2095 	/* Certain daemons might not have file descriptors. */
2096 	if (fdp == NULL)
2097 		return;
2098 
2099 	/*
2100 	 * note: fdp->fd_files may be reallocated out from under us while
2101 	 * we are blocked in a close.  Be careful!
2102 	 */
2103 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2104 		if (i > 2)
2105 			break;
2106 		if (fdp->fd_files[i].fp && is_unsafe(fdp->fd_files[i].fp)) {
2107 			struct file *fp;
2108 
2109 			if (i < fdp->fd_knlistsize)
2110 				knote_fdclose(p, i);
2111 			/*
2112 			 * NULL-out descriptor prior to close to avoid
2113 			 * a race while close blocks.
2114 			 */
2115 			if ((fp = funsetfd_locked(fdp, i)) != NULL)
2116 				closef(fp, p);
2117 		}
2118 	}
2119 }
2120 
2121 /*
2122  * Close any files on exec?
2123  *
2124  * NOT MPSAFE - scans fdp without spinlocks, calls knote_fdclose()
2125  */
2126 void
2127 fdcloseexec(struct proc *p)
2128 {
2129 	struct filedesc *fdp = p->p_fd;
2130 	int i;
2131 
2132 	/* Certain daemons might not have file descriptors. */
2133 	if (fdp == NULL)
2134 		return;
2135 
2136 	/*
2137 	 * We cannot cache fd_files since operations may block and rip
2138 	 * them out from under us.
2139 	 */
2140 	for (i = 0; i <= fdp->fd_lastfile; i++) {
2141 		if (fdp->fd_files[i].fp != NULL &&
2142 		    (fdp->fd_files[i].fileflags & UF_EXCLOSE)) {
2143 			struct file *fp;
2144 
2145 			if (i < fdp->fd_knlistsize)
2146 				knote_fdclose(p, i);
2147 			/*
2148 			 * NULL-out descriptor prior to close to avoid
2149 			 * a race while close blocks.
2150 			 */
2151 			if ((fp = funsetfd_locked(fdp, i)) != NULL)
2152 				closef(fp, p);
2153 		}
2154 	}
2155 }
2156 
2157 /*
2158  * It is unsafe for set[ug]id processes to be started with file
2159  * descriptors 0..2 closed, as these descriptors are given implicit
2160  * significance in the Standard C library.  fdcheckstd() will create a
2161  * descriptor referencing /dev/null for each of stdin, stdout, and
2162  * stderr that is not already open.
2163  *
2164  * NOT MPSAFE - calls falloc, vn_open, etc
2165  */
2166 int
2167 fdcheckstd(struct proc *p)
2168 {
2169 	struct nlookupdata nd;
2170 	struct filedesc *fdp;
2171 	struct file *fp;
2172 	int retval;
2173 	int i, error, flags, devnull;
2174 
2175 	fdp = p->p_fd;
2176 	if (fdp == NULL)
2177 		return (0);
2178 	devnull = -1;
2179 	error = 0;
2180 	for (i = 0; i < 3; i++) {
2181 		if (fdp->fd_files[i].fp != NULL)
2182 			continue;
2183 		if (devnull < 0) {
2184 			if ((error = falloc(p, &fp, &devnull)) != 0)
2185 				break;
2186 
2187 			error = nlookup_init(&nd, "/dev/null", UIO_SYSSPACE,
2188 						NLC_FOLLOW|NLC_LOCKVP);
2189 			flags = FREAD | FWRITE;
2190 			if (error == 0)
2191 				error = vn_open(&nd, fp, flags, 0);
2192 			if (error == 0)
2193 				fsetfd(p, fp, devnull);
2194 			else
2195 				fsetfd(p, NULL, devnull);
2196 			fdrop(fp);
2197 			nlookup_done(&nd);
2198 			if (error)
2199 				break;
2200 			KKASSERT(i == devnull);
2201 		} else {
2202 			error = kern_dup(DUP_FIXED, devnull, i, &retval);
2203 			if (error != 0)
2204 				break;
2205 		}
2206 	}
2207 	return (error);
2208 }
2209 
2210 /*
2211  * Internal form of close.
2212  * Decrement reference count on file structure.
2213  * Note: td and/or p may be NULL when closing a file
2214  * that was being passed in a message.
2215  *
2216  * MPALMOSTSAFE - acquires mplock for VOP operations
2217  */
2218 int
2219 closef(struct file *fp, struct proc *p)
2220 {
2221 	struct vnode *vp;
2222 	struct flock lf;
2223 	struct filedesc_to_leader *fdtol;
2224 
2225 	if (fp == NULL)
2226 		return (0);
2227 
2228 	/*
2229 	 * POSIX record locking dictates that any close releases ALL
2230 	 * locks owned by this process.  This is handled by setting
2231 	 * a flag in the unlock to free ONLY locks obeying POSIX
2232 	 * semantics, and not to free BSD-style file locks.
2233 	 * If the descriptor was in a message, POSIX-style locks
2234 	 * aren't passed with the descriptor.
2235 	 */
2236 	if (p != NULL && fp->f_type == DTYPE_VNODE &&
2237 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2238 	) {
2239 		get_mplock();
2240 		if ((p->p_leader->p_flag & P_ADVLOCK) != 0) {
2241 			lf.l_whence = SEEK_SET;
2242 			lf.l_start = 0;
2243 			lf.l_len = 0;
2244 			lf.l_type = F_UNLCK;
2245 			vp = (struct vnode *)fp->f_data;
2246 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
2247 					   &lf, F_POSIX);
2248 		}
2249 		fdtol = p->p_fdtol;
2250 		if (fdtol != NULL) {
2251 			/*
2252 			 * Handle special case where file descriptor table
2253 			 * is shared between multiple process leaders.
2254 			 */
2255 			for (fdtol = fdtol->fdl_next;
2256 			     fdtol != p->p_fdtol;
2257 			     fdtol = fdtol->fdl_next) {
2258 				if ((fdtol->fdl_leader->p_flag &
2259 				     P_ADVLOCK) == 0)
2260 					continue;
2261 				fdtol->fdl_holdcount++;
2262 				lf.l_whence = SEEK_SET;
2263 				lf.l_start = 0;
2264 				lf.l_len = 0;
2265 				lf.l_type = F_UNLCK;
2266 				vp = (struct vnode *)fp->f_data;
2267 				(void) VOP_ADVLOCK(vp,
2268 						   (caddr_t)fdtol->fdl_leader,
2269 						   F_UNLCK, &lf, F_POSIX);
2270 				fdtol->fdl_holdcount--;
2271 				if (fdtol->fdl_holdcount == 0 &&
2272 				    fdtol->fdl_wakeup != 0) {
2273 					fdtol->fdl_wakeup = 0;
2274 					wakeup(fdtol);
2275 				}
2276 			}
2277 		}
2278 		rel_mplock();
2279 	}
2280 	return (fdrop(fp));
2281 }
2282 
2283 /*
2284  * MPSAFE
2285  *
2286  * fhold() can only be called if f_count is already at least 1 (i.e. the
2287  * caller of fhold() already has a reference to the file pointer in some
2288  * manner or other).
2289  *
2290  * f_count is not spin-locked.  Instead, atomic ops are used for
2291  * incrementing, decrementing, and handling the 1->0 transition.
2292  */
2293 void
2294 fhold(struct file *fp)
2295 {
2296 	atomic_add_int(&fp->f_count, 1);
2297 }
2298 
2299 /*
2300  * fdrop() - drop a reference to a descriptor
2301  *
2302  * MPALMOSTSAFE - acquires mplock for final close sequence
2303  */
2304 int
2305 fdrop(struct file *fp)
2306 {
2307 	struct flock lf;
2308 	struct vnode *vp;
2309 	int error;
2310 
2311 	/*
2312 	 * A combined fetch and subtract is needed to properly detect
2313 	 * 1->0 transitions, otherwise two cpus dropping from a ref
2314 	 * count of 2 might both try to run the 1->0 code.
2315 	 */
2316 	if (atomic_fetchadd_int(&fp->f_count, -1) > 1)
2317 		return (0);
2318 
2319 	get_mplock();
2320 
2321 	/*
2322 	 * The last reference has gone away, we own the fp structure free
2323 	 * and clear.
2324 	 */
2325 	if (fp->f_count < 0)
2326 		panic("fdrop: count < 0");
2327 	if ((fp->f_flag & FHASLOCK) && fp->f_type == DTYPE_VNODE &&
2328 	    (((struct vnode *)fp->f_data)->v_flag & VMAYHAVELOCKS)
2329 	) {
2330 		lf.l_whence = SEEK_SET;
2331 		lf.l_start = 0;
2332 		lf.l_len = 0;
2333 		lf.l_type = F_UNLCK;
2334 		vp = (struct vnode *)fp->f_data;
2335 		(void) VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2336 	}
2337 	if (fp->f_ops != &badfileops)
2338 		error = fo_close(fp);
2339 	else
2340 		error = 0;
2341 	ffree(fp);
2342 	rel_mplock();
2343 	return (error);
2344 }
2345 
2346 /*
2347  * Apply an advisory lock on a file descriptor.
2348  *
2349  * Just attempt to get a record lock of the requested type on
2350  * the entire file (l_whence = SEEK_SET, l_start = 0, l_len = 0).
2351  */
2352 int
2353 sys_flock(struct flock_args *uap)
2354 {
2355 	struct proc *p = curproc;
2356 	struct file *fp;
2357 	struct vnode *vp;
2358 	struct flock lf;
2359 	int error;
2360 
2361 	if ((fp = holdfp(p->p_fd, uap->fd, -1)) == NULL)
2362 		return (EBADF);
2363 	if (fp->f_type != DTYPE_VNODE) {
2364 		error = EOPNOTSUPP;
2365 		goto done;
2366 	}
2367 	vp = (struct vnode *)fp->f_data;
2368 	lf.l_whence = SEEK_SET;
2369 	lf.l_start = 0;
2370 	lf.l_len = 0;
2371 	if (uap->how & LOCK_UN) {
2372 		lf.l_type = F_UNLCK;
2373 		fp->f_flag &= ~FHASLOCK;
2374 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, 0);
2375 		goto done;
2376 	}
2377 	if (uap->how & LOCK_EX)
2378 		lf.l_type = F_WRLCK;
2379 	else if (uap->how & LOCK_SH)
2380 		lf.l_type = F_RDLCK;
2381 	else {
2382 		error = EBADF;
2383 		goto done;
2384 	}
2385 	fp->f_flag |= FHASLOCK;
2386 	if (uap->how & LOCK_NB)
2387 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, 0);
2388 	else
2389 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, F_WAIT);
2390 done:
2391 	fdrop(fp);
2392 	return (error);
2393 }
2394 
2395 /*
2396  * File Descriptor pseudo-device driver (/dev/fd/).
2397  *
2398  * Opening minor device N dup()s the file (if any) connected to file
2399  * descriptor N belonging to the calling process.  Note that this driver
2400  * consists of only the ``open()'' routine, because all subsequent
2401  * references to this file will be direct to the other driver.
2402  */
2403 /* ARGSUSED */
2404 static int
2405 fdopen(struct dev_open_args *ap)
2406 {
2407 	thread_t td = curthread;
2408 
2409 	KKASSERT(td->td_lwp != NULL);
2410 
2411 	/*
2412 	 * XXX Kludge: set curlwp->lwp_dupfd to contain the value of the
2413 	 * the file descriptor being sought for duplication. The error
2414 	 * return ensures that the vnode for this device will be released
2415 	 * by vn_open. Open will detect this special error and take the
2416 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
2417 	 * will simply report the error.
2418 	 */
2419 	td->td_lwp->lwp_dupfd = minor(ap->a_head.a_dev);
2420 	return (ENODEV);
2421 }
2422 
2423 /*
2424  * The caller has reserved the file descriptor dfd for us.  On success we
2425  * must fsetfd() it.  On failure the caller will clean it up.
2426  *
2427  * NOT MPSAFE - isn't getting spinlocks, possibly other things
2428  */
2429 int
2430 dupfdopen(struct proc *p, int dfd, int sfd, int mode, int error)
2431 {
2432 	struct filedesc *fdp = p->p_fd;
2433 	struct file *wfp;
2434 	struct file *xfp;
2435 	int werror;
2436 
2437 	if ((wfp = holdfp(fdp, sfd, -1)) == NULL)
2438 		return (EBADF);
2439 
2440 	/*
2441 	 * Close a revoke/dup race.  Duping a descriptor marked as revoked
2442 	 * will dup a dummy descriptor instead of the real one.
2443 	 */
2444 	if (wfp->f_flag & FREVOKED) {
2445 		kprintf("Warning: attempt to dup() a revoked descriptor\n");
2446 		fdrop(wfp);
2447 		wfp = NULL;
2448 		werror = falloc(NULL, &wfp, NULL);
2449 		if (werror)
2450 			return (werror);
2451 	}
2452 
2453 	/*
2454 	 * There are two cases of interest here.
2455 	 *
2456 	 * For ENODEV simply dup sfd to file descriptor dfd and return.
2457 	 *
2458 	 * For ENXIO steal away the file structure from sfd and store it
2459 	 * dfd.  sfd is effectively closed by this operation.
2460 	 *
2461 	 * Any other error code is just returned.
2462 	 */
2463 	switch (error) {
2464 	case ENODEV:
2465 		/*
2466 		 * Check that the mode the file is being opened for is a
2467 		 * subset of the mode of the existing descriptor.
2468 		 */
2469 		if (((mode & (FREAD|FWRITE)) | wfp->f_flag) != wfp->f_flag) {
2470 			error = EACCES;
2471 			break;
2472 		}
2473 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2474 		fsetfd(p, wfp, dfd);
2475 		error = 0;
2476 		break;
2477 	case ENXIO:
2478 		/*
2479 		 * Steal away the file pointer from dfd, and stuff it into indx.
2480 		 */
2481 		fdp->fd_files[dfd].fileflags = fdp->fd_files[sfd].fileflags;
2482 		fsetfd(p, wfp, dfd);
2483 		if ((xfp = funsetfd_locked(fdp, sfd)) != NULL)
2484 			fdrop(xfp);
2485 		error = 0;
2486 		break;
2487 	default:
2488 		break;
2489 	}
2490 	fdrop(wfp);
2491 	return (error);
2492 }
2493 
2494 /*
2495  * NOT MPSAFE - I think these refer to a common file descriptor table
2496  * and we need to spinlock that to link fdtol in.
2497  */
2498 struct filedesc_to_leader *
2499 filedesc_to_leader_alloc(struct filedesc_to_leader *old,
2500 			 struct proc *leader)
2501 {
2502 	struct filedesc_to_leader *fdtol;
2503 
2504 	fdtol = kmalloc(sizeof(struct filedesc_to_leader),
2505 			M_FILEDESC_TO_LEADER, M_WAITOK);
2506 	fdtol->fdl_refcount = 1;
2507 	fdtol->fdl_holdcount = 0;
2508 	fdtol->fdl_wakeup = 0;
2509 	fdtol->fdl_leader = leader;
2510 	if (old != NULL) {
2511 		fdtol->fdl_next = old->fdl_next;
2512 		fdtol->fdl_prev = old;
2513 		old->fdl_next = fdtol;
2514 		fdtol->fdl_next->fdl_prev = fdtol;
2515 	} else {
2516 		fdtol->fdl_next = fdtol;
2517 		fdtol->fdl_prev = fdtol;
2518 	}
2519 	return fdtol;
2520 }
2521 
2522 /*
2523  * Scan all file pointers in the system.  The callback is made with
2524  * the master list spinlock held exclusively.
2525  *
2526  * MPSAFE
2527  */
2528 void
2529 allfiles_scan_exclusive(int (*callback)(struct file *, void *), void *data)
2530 {
2531 	struct file *fp;
2532 	int res;
2533 
2534 	spin_lock_wr(&filehead_spin);
2535 	LIST_FOREACH(fp, &filehead, f_list) {
2536 		res = callback(fp, data);
2537 		if (res < 0)
2538 			break;
2539 	}
2540 	spin_unlock_wr(&filehead_spin);
2541 }
2542 
2543 /*
2544  * Get file structures.
2545  *
2546  * NOT MPSAFE - process list scan, SYSCTL_OUT (probably not mpsafe)
2547  */
2548 
2549 struct sysctl_kern_file_info {
2550 	int count;
2551 	int error;
2552 	struct sysctl_req *req;
2553 };
2554 
2555 static int sysctl_kern_file_callback(struct proc *p, void *data);
2556 
2557 static int
2558 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
2559 {
2560 	struct sysctl_kern_file_info info;
2561 
2562 	/*
2563 	 * Note: because the number of file descriptors is calculated
2564 	 * in different ways for sizing vs returning the data,
2565 	 * there is information leakage from the first loop.  However,
2566 	 * it is of a similar order of magnitude to the leakage from
2567 	 * global system statistics such as kern.openfiles.
2568 	 *
2569 	 * When just doing a count, note that we cannot just count
2570 	 * the elements and add f_count via the filehead list because
2571 	 * threaded processes share their descriptor table and f_count might
2572 	 * still be '1' in that case.
2573 	 *
2574 	 * Since the SYSCTL op can block, we must hold the process to
2575 	 * prevent it being ripped out from under us either in the
2576 	 * file descriptor loop or in the greater LIST_FOREACH.  The
2577 	 * process may be in varying states of disrepair.  If the process
2578 	 * is in SZOMB we may have caught it just as it is being removed
2579 	 * from the allproc list, we must skip it in that case to maintain
2580 	 * an unbroken chain through the allproc list.
2581 	 */
2582 	info.count = 0;
2583 	info.error = 0;
2584 	info.req = req;
2585 	allproc_scan(sysctl_kern_file_callback, &info);
2586 
2587 	/*
2588 	 * When just calculating the size, overestimate a bit to try to
2589 	 * prevent system activity from causing the buffer-fill call
2590 	 * to fail later on.
2591 	 */
2592 	if (req->oldptr == NULL) {
2593 		info.count = (info.count + 16) + (info.count / 10);
2594 		info.error = SYSCTL_OUT(req, NULL,
2595 					info.count * sizeof(struct kinfo_file));
2596 	}
2597 	return (info.error);
2598 }
2599 
2600 static int
2601 sysctl_kern_file_callback(struct proc *p, void *data)
2602 {
2603 	struct sysctl_kern_file_info *info = data;
2604 	struct kinfo_file kf;
2605 	struct filedesc *fdp;
2606 	struct file *fp;
2607 	uid_t uid;
2608 	int n;
2609 
2610 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
2611 		return(0);
2612 	if (!PRISON_CHECK(info->req->td->td_proc->p_ucred, p->p_ucred) != 0)
2613 		return(0);
2614 
2615 	/*
2616 	 * Softref the fdp to prevent it from being destroyed
2617 	 */
2618 	spin_lock_wr(&p->p_spin);
2619 	if ((fdp = p->p_fd) == NULL) {
2620 		spin_unlock_wr(&p->p_spin);
2621 		return(0);
2622 	}
2623 	atomic_add_int(&fdp->fd_softrefs, 1);
2624 	spin_unlock_wr(&p->p_spin);
2625 
2626 	/*
2627 	 * The fdp's own spinlock prevents the contents from being
2628 	 * modified.
2629 	 */
2630 	spin_lock_rd(&fdp->fd_spin);
2631 	for (n = 0; n < fdp->fd_nfiles; ++n) {
2632 		if ((fp = fdp->fd_files[n].fp) == NULL)
2633 			continue;
2634 		if (info->req->oldptr == NULL) {
2635 			++info->count;
2636 		} else {
2637 			uid = p->p_ucred ? p->p_ucred->cr_uid : -1;
2638 			kcore_make_file(&kf, fp, p->p_pid, uid, n);
2639 			spin_unlock_rd(&fdp->fd_spin);
2640 			info->error = SYSCTL_OUT(info->req, &kf, sizeof(kf));
2641 			spin_lock_rd(&fdp->fd_spin);
2642 			if (info->error)
2643 				break;
2644 		}
2645 	}
2646 	spin_unlock_rd(&fdp->fd_spin);
2647 	atomic_subtract_int(&fdp->fd_softrefs, 1);
2648 	if (info->error)
2649 		return(-1);
2650 	return(0);
2651 }
2652 
2653 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD,
2654     0, 0, sysctl_kern_file, "S,file", "Entire file table");
2655 
2656 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
2657     &maxfilesperproc, 0, "Maximum files allowed open per process");
2658 
2659 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
2660     &maxfiles, 0, "Maximum number of files");
2661 
2662 SYSCTL_INT(_kern, OID_AUTO, maxfilesrootres, CTLFLAG_RW,
2663     &maxfilesrootres, 0, "Descriptors reserved for root use");
2664 
2665 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
2666 	&nfiles, 0, "System-wide number of open files");
2667 
2668 static void
2669 fildesc_drvinit(void *unused)
2670 {
2671 	int fd;
2672 
2673 	dev_ops_add(&fildesc_ops, 0, 0);
2674 	for (fd = 0; fd < NUMFDESC; fd++) {
2675 		make_dev(&fildesc_ops, fd,
2676 		    UID_BIN, GID_BIN, 0666, "fd/%d", fd);
2677 	}
2678 	make_dev(&fildesc_ops, 0, UID_ROOT, GID_WHEEL, 0666, "stdin");
2679 	make_dev(&fildesc_ops, 1, UID_ROOT, GID_WHEEL, 0666, "stdout");
2680 	make_dev(&fildesc_ops, 2, UID_ROOT, GID_WHEEL, 0666, "stderr");
2681 }
2682 
2683 /*
2684  * MPSAFE
2685  */
2686 struct fileops badfileops = {
2687 	.fo_read = badfo_readwrite,
2688 	.fo_write = badfo_readwrite,
2689 	.fo_ioctl = badfo_ioctl,
2690 	.fo_poll = badfo_poll,
2691 	.fo_kqfilter = badfo_kqfilter,
2692 	.fo_stat = badfo_stat,
2693 	.fo_close = badfo_close,
2694 	.fo_shutdown = badfo_shutdown
2695 };
2696 
2697 /*
2698  * MPSAFE
2699  */
2700 static int
2701 badfo_readwrite(
2702 	struct file *fp,
2703 	struct uio *uio,
2704 	struct ucred *cred,
2705 	int flags
2706 ) {
2707 	return (EBADF);
2708 }
2709 
2710 /*
2711  * MPSAFE
2712  */
2713 static int
2714 badfo_ioctl(struct file *fp, u_long com, caddr_t data, struct ucred *cred)
2715 {
2716 	return (EBADF);
2717 }
2718 
2719 /*
2720  * MPSAFE
2721  */
2722 static int
2723 badfo_poll(struct file *fp, int events, struct ucred *cred)
2724 {
2725 	return (0);
2726 }
2727 
2728 /*
2729  * MPSAFE
2730  */
2731 static int
2732 badfo_kqfilter(struct file *fp, struct knote *kn)
2733 {
2734 	return (0);
2735 }
2736 
2737 static int
2738 badfo_stat(struct file *fp, struct stat *sb, struct ucred *cred)
2739 {
2740 	return (EBADF);
2741 }
2742 
2743 /*
2744  * MPSAFE
2745  */
2746 static int
2747 badfo_close(struct file *fp)
2748 {
2749 	return (EBADF);
2750 }
2751 
2752 /*
2753  * MPSAFE
2754  */
2755 static int
2756 badfo_shutdown(struct file *fp, int how)
2757 {
2758 	return (EBADF);
2759 }
2760 
2761 /*
2762  * MPSAFE
2763  */
2764 int
2765 nofo_shutdown(struct file *fp, int how)
2766 {
2767 	return (EOPNOTSUPP);
2768 }
2769 
2770 SYSINIT(fildescdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,
2771 					fildesc_drvinit,NULL)
2772