xref: /dflybsd-src/sys/kern/kern_clock.c (revision f92fae3f378c099365aa8c389f681ba1ebba5e74)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
68  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
69  */
70 
71 #include "opt_ntp.h"
72 #include "opt_ifpoll.h"
73 #include "opt_pctrack.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/callout.h>
78 #include <sys/kernel.h>
79 #include <sys/kinfo.h>
80 #include <sys/proc.h>
81 #include <sys/malloc.h>
82 #include <sys/resource.h>
83 #include <sys/resourcevar.h>
84 #include <sys/signalvar.h>
85 #include <sys/timex.h>
86 #include <sys/timepps.h>
87 #include <sys/upmap.h>
88 #include <vm/vm.h>
89 #include <sys/lock.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_extern.h>
93 #include <sys/sysctl.h>
94 
95 #include <sys/thread2.h>
96 #include <sys/mplock2.h>
97 
98 #include <machine/cpu.h>
99 #include <machine/limits.h>
100 #include <machine/smp.h>
101 #include <machine/cpufunc.h>
102 #include <machine/specialreg.h>
103 #include <machine/clock.h>
104 
105 #ifdef GPROF
106 #include <sys/gmon.h>
107 #endif
108 
109 #ifdef IFPOLL_ENABLE
110 extern void ifpoll_init_pcpu(int);
111 #endif
112 
113 #ifdef DEBUG_PCTRACK
114 static void do_pctrack(struct intrframe *frame, int which);
115 #endif
116 
117 static void initclocks (void *dummy);
118 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
119 
120 /*
121  * Some of these don't belong here, but it's easiest to concentrate them.
122  * Note that cpu_time counts in microseconds, but most userland programs
123  * just compare relative times against the total by delta.
124  */
125 struct kinfo_cputime cputime_percpu[MAXCPU];
126 #ifdef DEBUG_PCTRACK
127 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
128 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
129 #endif
130 
131 static int
132 sysctl_cputime(SYSCTL_HANDLER_ARGS)
133 {
134 	int cpu, error = 0;
135 	size_t size = sizeof(struct kinfo_cputime);
136 
137 	for (cpu = 0; cpu < ncpus; ++cpu) {
138 		if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
139 			break;
140 	}
141 
142 	return (error);
143 }
144 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
145 	sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
146 
147 static int
148 sysctl_cp_time(SYSCTL_HANDLER_ARGS)
149 {
150 	long cpu_states[5] = {0};
151 	int cpu, error = 0;
152 	size_t size = sizeof(cpu_states);
153 
154 	for (cpu = 0; cpu < ncpus; ++cpu) {
155 		cpu_states[CP_USER] += cputime_percpu[cpu].cp_user;
156 		cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice;
157 		cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys;
158 		cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr;
159 		cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle;
160 	}
161 
162 	error = SYSCTL_OUT(req, cpu_states, size);
163 
164 	return (error);
165 }
166 
167 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
168 	sysctl_cp_time, "LU", "CPU time statistics");
169 
170 /*
171  * boottime is used to calculate the 'real' uptime.  Do not confuse this with
172  * microuptime().  microtime() is not drift compensated.  The real uptime
173  * with compensation is nanotime() - bootime.  boottime is recalculated
174  * whenever the real time is set based on the compensated elapsed time
175  * in seconds (gd->gd_time_seconds).
176  *
177  * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
178  * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
179  * the real time.
180  *
181  * WARNING! time_second can backstep on time corrections. Also, unlike
182  *          time second, time_uptime is not a "real" time_t (seconds
183  *          since the Epoch) but seconds since booting.
184  */
185 struct timespec boottime;	/* boot time (realtime) for reference only */
186 time_t time_second;		/* read-only 'passive' realtime in seconds */
187 time_t time_uptime;		/* read-only 'passive' uptime in seconds */
188 
189 /*
190  * basetime is used to calculate the compensated real time of day.  The
191  * basetime can be modified on a per-tick basis by the adjtime(),
192  * ntp_adjtime(), and sysctl-based time correction APIs.
193  *
194  * Note that frequency corrections can also be made by adjusting
195  * gd_cpuclock_base.
196  *
197  * basetime is a tail-chasing FIFO, updated only by cpu #0.  The FIFO is
198  * used on both SMP and UP systems to avoid MP races between cpu's and
199  * interrupt races on UP systems.
200  */
201 #define BASETIME_ARYSIZE	16
202 #define BASETIME_ARYMASK	(BASETIME_ARYSIZE - 1)
203 static struct timespec basetime[BASETIME_ARYSIZE];
204 static volatile int basetime_index;
205 
206 static int
207 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
208 {
209 	struct timespec *bt;
210 	int error;
211 	int index;
212 
213 	/*
214 	 * Because basetime data and index may be updated by another cpu,
215 	 * a load fence is required to ensure that the data we read has
216 	 * not been speculatively read relative to a possibly updated index.
217 	 */
218 	index = basetime_index;
219 	cpu_lfence();
220 	bt = &basetime[index];
221 	error = SYSCTL_OUT(req, bt, sizeof(*bt));
222 	return (error);
223 }
224 
225 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
226     &boottime, timespec, "System boottime");
227 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
228     sysctl_get_basetime, "S,timespec", "System basetime");
229 
230 static void hardclock(systimer_t info, int, struct intrframe *frame);
231 static void statclock(systimer_t info, int, struct intrframe *frame);
232 static void schedclock(systimer_t info, int, struct intrframe *frame);
233 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
234 
235 int	ticks;			/* system master ticks at hz */
236 int	clocks_running;		/* tsleep/timeout clocks operational */
237 int64_t	nsec_adj;		/* ntpd per-tick adjustment in nsec << 32 */
238 int64_t	nsec_acc;		/* accumulator */
239 int	sched_ticks;		/* global schedule clock ticks */
240 
241 /* NTPD time correction fields */
242 int64_t	ntp_tick_permanent;	/* per-tick adjustment in nsec << 32 */
243 int64_t	ntp_tick_acc;		/* accumulator for per-tick adjustment */
244 int64_t	ntp_delta;		/* one-time correction in nsec */
245 int64_t ntp_big_delta = 1000000000;
246 int32_t	ntp_tick_delta;		/* current adjustment rate */
247 int32_t	ntp_default_tick_delta;	/* adjustment rate for ntp_delta */
248 time_t	ntp_leap_second;	/* time of next leap second */
249 int	ntp_leap_insert;	/* whether to insert or remove a second */
250 
251 /*
252  * Finish initializing clock frequencies and start all clocks running.
253  */
254 /* ARGSUSED*/
255 static void
256 initclocks(void *dummy)
257 {
258 	/*psratio = profhz / stathz;*/
259 	initclocks_pcpu();
260 	clocks_running = 1;
261 	if (kpmap) {
262 	    kpmap->tsc_freq = (uint64_t)tsc_frequency;
263 	    kpmap->tick_freq = hz;
264 	}
265 }
266 
267 /*
268  * Called on a per-cpu basis from the idle thread bootstrap on each cpu
269  * during SMP initialization.
270  *
271  * This routine is called concurrently during low-level SMP initialization
272  * and may not block in any way.  Meaning, among other things, we can't
273  * acquire any tokens.
274  */
275 void
276 initclocks_pcpu(void)
277 {
278 	struct globaldata *gd = mycpu;
279 
280 	crit_enter();
281 	if (gd->gd_cpuid == 0) {
282 	    gd->gd_time_seconds = 1;
283 	    gd->gd_cpuclock_base = sys_cputimer->count();
284 	} else {
285 	    /* XXX */
286 	    gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
287 	    gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
288 	}
289 
290 	systimer_intr_enable();
291 
292 	crit_exit();
293 }
294 
295 /*
296  * This routine is called on just the BSP, just after SMP initialization
297  * completes to * finish initializing any clocks that might contend/block
298  * (e.g. like on a token).  We can't do this in initclocks_pcpu() because
299  * that function is called from the idle thread bootstrap for each cpu and
300  * not allowed to block at all.
301  */
302 static
303 void
304 initclocks_other(void *dummy)
305 {
306 	struct globaldata *ogd = mycpu;
307 	struct globaldata *gd;
308 	int n;
309 
310 	for (n = 0; n < ncpus; ++n) {
311 		lwkt_setcpu_self(globaldata_find(n));
312 		gd = mycpu;
313 
314 		/*
315 		 * Use a non-queued periodic systimer to prevent multiple
316 		 * ticks from building up if the sysclock jumps forward
317 		 * (8254 gets reset).  The sysclock will never jump backwards.
318 		 * Our time sync is based on the actual sysclock, not the
319 		 * ticks count.
320 		 */
321 		systimer_init_periodic_nq(&gd->gd_hardclock, hardclock,
322 					  NULL, hz);
323 		systimer_init_periodic_nq(&gd->gd_statclock, statclock,
324 					  NULL, stathz);
325 		/* XXX correct the frequency for scheduler / estcpu tests */
326 		systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
327 					  NULL, ESTCPUFREQ);
328 #ifdef IFPOLL_ENABLE
329 		ifpoll_init_pcpu(gd->gd_cpuid);
330 #endif
331 	}
332 	lwkt_setcpu_self(ogd);
333 }
334 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL)
335 
336 /*
337  * This sets the current real time of day.  Timespecs are in seconds and
338  * nanoseconds.  We do not mess with gd_time_seconds and gd_cpuclock_base,
339  * instead we adjust basetime so basetime + gd_* results in the current
340  * time of day.  This way the gd_* fields are guaranteed to represent
341  * a monotonically increasing 'uptime' value.
342  *
343  * When set_timeofday() is called from userland, the system call forces it
344  * onto cpu #0 since only cpu #0 can update basetime_index.
345  */
346 void
347 set_timeofday(struct timespec *ts)
348 {
349 	struct timespec *nbt;
350 	int ni;
351 
352 	/*
353 	 * XXX SMP / non-atomic basetime updates
354 	 */
355 	crit_enter();
356 	ni = (basetime_index + 1) & BASETIME_ARYMASK;
357 	nbt = &basetime[ni];
358 	nanouptime(nbt);
359 	nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
360 	nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
361 	if (nbt->tv_nsec < 0) {
362 	    nbt->tv_nsec += 1000000000;
363 	    --nbt->tv_sec;
364 	}
365 
366 	/*
367 	 * Note that basetime diverges from boottime as the clock drift is
368 	 * compensated for, so we cannot do away with boottime.  When setting
369 	 * the absolute time of day the drift is 0 (for an instant) and we
370 	 * can simply assign boottime to basetime.
371 	 *
372 	 * Note that nanouptime() is based on gd_time_seconds which is drift
373 	 * compensated up to a point (it is guaranteed to remain monotonically
374 	 * increasing).  gd_time_seconds is thus our best uptime guess and
375 	 * suitable for use in the boottime calculation.  It is already taken
376 	 * into account in the basetime calculation above.
377 	 */
378 	boottime.tv_sec = nbt->tv_sec;
379 	ntp_delta = 0;
380 
381 	/*
382 	 * We now have a new basetime, make sure all other cpus have it,
383 	 * then update the index.
384 	 */
385 	cpu_sfence();
386 	basetime_index = ni;
387 
388 	crit_exit();
389 }
390 
391 /*
392  * Each cpu has its own hardclock, but we only increments ticks and softticks
393  * on cpu #0.
394  *
395  * NOTE! systimer! the MP lock might not be held here.  We can only safely
396  * manipulate objects owned by the current cpu.
397  */
398 static void
399 hardclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
400 {
401 	sysclock_t cputicks;
402 	struct proc *p;
403 	struct globaldata *gd = mycpu;
404 
405 	/*
406 	 * Realtime updates are per-cpu.  Note that timer corrections as
407 	 * returned by microtime() and friends make an additional adjustment
408 	 * using a system-wise 'basetime', but the running time is always
409 	 * taken from the per-cpu globaldata area.  Since the same clock
410 	 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
411 	 * stay in synch.
412 	 *
413 	 * Note that we never allow info->time (aka gd->gd_hardclock.time)
414 	 * to reverse index gd_cpuclock_base, but that it is possible for
415 	 * it to temporarily get behind in the seconds if something in the
416 	 * system locks interrupts for a long period of time.  Since periodic
417 	 * timers count events, though everything should resynch again
418 	 * immediately.
419 	 */
420 	cputicks = info->time - gd->gd_cpuclock_base;
421 	if (cputicks >= sys_cputimer->freq) {
422 		++gd->gd_time_seconds;
423 		gd->gd_cpuclock_base += sys_cputimer->freq;
424 		if (gd->gd_cpuid == 0)
425 			++time_uptime;	/* uncorrected monotonic 1-sec gran */
426 	}
427 
428 	/*
429 	 * The system-wide ticks counter and NTP related timedelta/tickdelta
430 	 * adjustments only occur on cpu #0.  NTP adjustments are accomplished
431 	 * by updating basetime.
432 	 */
433 	if (gd->gd_cpuid == 0) {
434 	    struct timespec *nbt;
435 	    struct timespec nts;
436 	    int leap;
437 	    int ni;
438 
439 	    ++ticks;
440 
441 #if 0
442 	    if (tco->tc_poll_pps)
443 		tco->tc_poll_pps(tco);
444 #endif
445 
446 	    /*
447 	     * Calculate the new basetime index.  We are in a critical section
448 	     * on cpu #0 and can safely play with basetime_index.  Start
449 	     * with the current basetime and then make adjustments.
450 	     */
451 	    ni = (basetime_index + 1) & BASETIME_ARYMASK;
452 	    nbt = &basetime[ni];
453 	    *nbt = basetime[basetime_index];
454 
455 	    /*
456 	     * Apply adjtime corrections.  (adjtime() API)
457 	     *
458 	     * adjtime() only runs on cpu #0 so our critical section is
459 	     * sufficient to access these variables.
460 	     */
461 	    if (ntp_delta != 0) {
462 		nbt->tv_nsec += ntp_tick_delta;
463 		ntp_delta -= ntp_tick_delta;
464 		if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
465 		    (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
466 			ntp_tick_delta = ntp_delta;
467  		}
468  	    }
469 
470 	    /*
471 	     * Apply permanent frequency corrections.  (sysctl API)
472 	     */
473 	    if (ntp_tick_permanent != 0) {
474 		ntp_tick_acc += ntp_tick_permanent;
475 		if (ntp_tick_acc >= (1LL << 32)) {
476 		    nbt->tv_nsec += ntp_tick_acc >> 32;
477 		    ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
478 		} else if (ntp_tick_acc <= -(1LL << 32)) {
479 		    /* Negate ntp_tick_acc to avoid shifting the sign bit. */
480 		    nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
481 		    ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
482 		}
483  	    }
484 
485 	    if (nbt->tv_nsec >= 1000000000) {
486 		    nbt->tv_sec++;
487 		    nbt->tv_nsec -= 1000000000;
488 	    } else if (nbt->tv_nsec < 0) {
489 		    nbt->tv_sec--;
490 		    nbt->tv_nsec += 1000000000;
491 	    }
492 
493 	    /*
494 	     * Another per-tick compensation.  (for ntp_adjtime() API)
495 	     */
496 	    if (nsec_adj != 0) {
497 		nsec_acc += nsec_adj;
498 		if (nsec_acc >= 0x100000000LL) {
499 		    nbt->tv_nsec += nsec_acc >> 32;
500 		    nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
501 		} else if (nsec_acc <= -0x100000000LL) {
502 		    nbt->tv_nsec -= -nsec_acc >> 32;
503 		    nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
504 		}
505 		if (nbt->tv_nsec >= 1000000000) {
506 		    nbt->tv_nsec -= 1000000000;
507 		    ++nbt->tv_sec;
508 		} else if (nbt->tv_nsec < 0) {
509 		    nbt->tv_nsec += 1000000000;
510 		    --nbt->tv_sec;
511 		}
512 	    }
513 
514 	    /************************************************************
515 	     *			LEAP SECOND CORRECTION			*
516 	     ************************************************************
517 	     *
518 	     * Taking into account all the corrections made above, figure
519 	     * out the new real time.  If the seconds field has changed
520 	     * then apply any pending leap-second corrections.
521 	     */
522 	    getnanotime_nbt(nbt, &nts);
523 
524 	    if (time_second != nts.tv_sec) {
525 		/*
526 		 * Apply leap second (sysctl API).  Adjust nts for changes
527 		 * so we do not have to call getnanotime_nbt again.
528 		 */
529 		if (ntp_leap_second) {
530 		    if (ntp_leap_second == nts.tv_sec) {
531 			if (ntp_leap_insert) {
532 			    nbt->tv_sec++;
533 			    nts.tv_sec++;
534 			} else {
535 			    nbt->tv_sec--;
536 			    nts.tv_sec--;
537 			}
538 			ntp_leap_second--;
539 		    }
540 		}
541 
542 		/*
543 		 * Apply leap second (ntp_adjtime() API), calculate a new
544 		 * nsec_adj field.  ntp_update_second() returns nsec_adj
545 		 * as a per-second value but we need it as a per-tick value.
546 		 */
547 		leap = ntp_update_second(time_second, &nsec_adj);
548 		nsec_adj /= hz;
549 		nbt->tv_sec += leap;
550 		nts.tv_sec += leap;
551 
552 		/*
553 		 * Update the time_second 'approximate time' global.
554 		 */
555 		time_second = nts.tv_sec;
556 	    }
557 
558 	    /*
559 	     * Finally, our new basetime is ready to go live!
560 	     */
561 	    cpu_sfence();
562 	    basetime_index = ni;
563 
564 	    /*
565 	     * Update kpmap on each tick.  TS updates are integrated with
566 	     * fences and upticks allowing userland to read the data
567 	     * deterministically.
568 	     */
569 	    if (kpmap) {
570 		int w;
571 
572 		w = (kpmap->upticks + 1) & 1;
573 		getnanouptime(&kpmap->ts_uptime[w]);
574 		getnanotime(&kpmap->ts_realtime[w]);
575 		cpu_sfence();
576 		++kpmap->upticks;
577 		cpu_sfence();
578 	    }
579 	}
580 
581 	/*
582 	 * lwkt thread scheduler fair queueing
583 	 */
584 	lwkt_schedulerclock(curthread);
585 
586 	/*
587 	 * softticks are handled for all cpus
588 	 */
589 	hardclock_softtick(gd);
590 
591 	/*
592 	 * ITimer handling is per-tick, per-cpu.
593 	 *
594 	 * We must acquire the per-process token in order for ksignal()
595 	 * to be non-blocking.  For the moment this requires an AST fault,
596 	 * the ksignal() cannot be safely issued from this hard interrupt.
597 	 *
598 	 * XXX Even the trytoken here isn't right, and itimer operation in
599 	 *     a multi threaded environment is going to be weird at the
600 	 *     very least.
601 	 */
602 	if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) {
603 		crit_enter_hard();
604 		if (p->p_upmap)
605 			++p->p_upmap->runticks;
606 
607 		if (frame && CLKF_USERMODE(frame) &&
608 		    timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
609 		    itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) {
610 			p->p_flags |= P_SIGVTALRM;
611 			need_user_resched();
612 		}
613 		if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
614 		    itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) {
615 			p->p_flags |= P_SIGPROF;
616 			need_user_resched();
617 		}
618 		crit_exit_hard();
619 		lwkt_reltoken(&p->p_token);
620 	}
621 	setdelayed();
622 }
623 
624 /*
625  * The statistics clock typically runs at a 125Hz rate, and is intended
626  * to be frequency offset from the hardclock (typ 100Hz).  It is per-cpu.
627  *
628  * NOTE! systimer! the MP lock might not be held here.  We can only safely
629  * manipulate objects owned by the current cpu.
630  *
631  * The stats clock is responsible for grabbing a profiling sample.
632  * Most of the statistics are only used by user-level statistics programs.
633  * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
634  * p->p_estcpu.
635  *
636  * Like the other clocks, the stat clock is called from what is effectively
637  * a fast interrupt, so the context should be the thread/process that got
638  * interrupted.
639  */
640 static void
641 statclock(systimer_t info, int in_ipi, struct intrframe *frame)
642 {
643 #ifdef GPROF
644 	struct gmonparam *g;
645 	int i;
646 #endif
647 	thread_t td;
648 	struct proc *p;
649 	int bump;
650 	sysclock_t cv;
651 	sysclock_t scv;
652 
653 	/*
654 	 * How big was our timeslice relative to the last time?  Calculate
655 	 * in microseconds.
656 	 *
657 	 * NOTE: Use of microuptime() is typically MPSAFE, but usually not
658 	 *	 during early boot.  Just use the systimer count to be nice
659 	 *	 to e.g. qemu.  The systimer has a better chance of being
660 	 *	 MPSAFE at early boot.
661 	 */
662 	cv = sys_cputimer->count();
663 	scv = mycpu->statint.gd_statcv;
664 	if (scv == 0) {
665 		bump = 1;
666 	} else {
667 		bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32;
668 		if (bump < 0)
669 			bump = 0;
670 		if (bump > 1000000)
671 			bump = 1000000;
672 	}
673 	mycpu->statint.gd_statcv = cv;
674 
675 #if 0
676 	stv = &mycpu->gd_stattv;
677 	if (stv->tv_sec == 0) {
678 	    bump = 1;
679 	} else {
680 	    bump = tv.tv_usec - stv->tv_usec +
681 		(tv.tv_sec - stv->tv_sec) * 1000000;
682 	    if (bump < 0)
683 		bump = 0;
684 	    if (bump > 1000000)
685 		bump = 1000000;
686 	}
687 	*stv = tv;
688 #endif
689 
690 	td = curthread;
691 	p = td->td_proc;
692 
693 	if (frame && CLKF_USERMODE(frame)) {
694 		/*
695 		 * Came from userland, handle user time and deal with
696 		 * possible process.
697 		 */
698 		if (p && (p->p_flags & P_PROFIL))
699 			addupc_intr(p, CLKF_PC(frame), 1);
700 		td->td_uticks += bump;
701 
702 		/*
703 		 * Charge the time as appropriate
704 		 */
705 		if (p && p->p_nice > NZERO)
706 			cpu_time.cp_nice += bump;
707 		else
708 			cpu_time.cp_user += bump;
709 	} else {
710 		int intr_nest = mycpu->gd_intr_nesting_level;
711 
712 		if (in_ipi) {
713 			/*
714 			 * IPI processing code will bump gd_intr_nesting_level
715 			 * up by one, which breaks following CLKF_INTR testing,
716 			 * so we subtract it by one here.
717 			 */
718 			--intr_nest;
719 		}
720 #ifdef GPROF
721 		/*
722 		 * Kernel statistics are just like addupc_intr, only easier.
723 		 */
724 		g = &_gmonparam;
725 		if (g->state == GMON_PROF_ON && frame) {
726 			i = CLKF_PC(frame) - g->lowpc;
727 			if (i < g->textsize) {
728 				i /= HISTFRACTION * sizeof(*g->kcount);
729 				g->kcount[i]++;
730 			}
731 		}
732 #endif
733 
734 #define IS_INTR_RUNNING	((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td))
735 
736 		/*
737 		 * Came from kernel mode, so we were:
738 		 * - handling an interrupt,
739 		 * - doing syscall or trap work on behalf of the current
740 		 *   user process, or
741 		 * - spinning in the idle loop.
742 		 * Whichever it is, charge the time as appropriate.
743 		 * Note that we charge interrupts to the current process,
744 		 * regardless of whether they are ``for'' that process,
745 		 * so that we know how much of its real time was spent
746 		 * in ``non-process'' (i.e., interrupt) work.
747 		 *
748 		 * XXX assume system if frame is NULL.  A NULL frame
749 		 * can occur if ipi processing is done from a crit_exit().
750 		 */
751 		if (IS_INTR_RUNNING)
752 			td->td_iticks += bump;
753 		else
754 			td->td_sticks += bump;
755 
756 		if (IS_INTR_RUNNING) {
757 			/*
758 			 * If we interrupted an interrupt thread, well,
759 			 * count it as interrupt time.
760 			 */
761 #ifdef DEBUG_PCTRACK
762 			if (frame)
763 				do_pctrack(frame, PCTRACK_INT);
764 #endif
765 			cpu_time.cp_intr += bump;
766 		} else {
767 			if (td == &mycpu->gd_idlethread) {
768 				/*
769 				 * Even if the current thread is the idle
770 				 * thread it could be due to token contention
771 				 * in the LWKT scheduler.  Count such as
772 				 * system time.
773 				 */
774 				if (mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK)
775 					cpu_time.cp_sys += bump;
776 				else
777 					cpu_time.cp_idle += bump;
778 			} else {
779 				/*
780 				 * System thread was running.
781 				 */
782 #ifdef DEBUG_PCTRACK
783 				if (frame)
784 					do_pctrack(frame, PCTRACK_SYS);
785 #endif
786 				cpu_time.cp_sys += bump;
787 			}
788 		}
789 
790 #undef IS_INTR_RUNNING
791 	}
792 }
793 
794 #ifdef DEBUG_PCTRACK
795 /*
796  * Sample the PC when in the kernel or in an interrupt.  User code can
797  * retrieve the information and generate a histogram or other output.
798  */
799 
800 static void
801 do_pctrack(struct intrframe *frame, int which)
802 {
803 	struct kinfo_pctrack *pctrack;
804 
805 	pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
806 	pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
807 		(void *)CLKF_PC(frame);
808 	++pctrack->pc_index;
809 }
810 
811 static int
812 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
813 {
814 	struct kinfo_pcheader head;
815 	int error;
816 	int cpu;
817 	int ntrack;
818 
819 	head.pc_ntrack = PCTRACK_SIZE;
820 	head.pc_arysize = PCTRACK_ARYSIZE;
821 
822 	if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
823 		return (error);
824 
825 	for (cpu = 0; cpu < ncpus; ++cpu) {
826 		for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
827 			error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
828 					   sizeof(struct kinfo_pctrack));
829 			if (error)
830 				break;
831 		}
832 		if (error)
833 			break;
834 	}
835 	return (error);
836 }
837 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
838 	sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
839 
840 #endif
841 
842 /*
843  * The scheduler clock typically runs at a 50Hz rate.  NOTE! systimer,
844  * the MP lock might not be held.  We can safely manipulate parts of curproc
845  * but that's about it.
846  *
847  * Each cpu has its own scheduler clock.
848  */
849 static void
850 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
851 {
852 	struct lwp *lp;
853 	struct rusage *ru;
854 	struct vmspace *vm;
855 	long rss;
856 
857 	if ((lp = lwkt_preempted_proc()) != NULL) {
858 		/*
859 		 * Account for cpu time used and hit the scheduler.  Note
860 		 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
861 		 * HERE.
862 		 */
863 		++lp->lwp_cpticks;
864 		usched_schedulerclock(lp, info->periodic, info->time);
865 	} else {
866 		usched_schedulerclock(NULL, info->periodic, info->time);
867 	}
868 	if ((lp = curthread->td_lwp) != NULL) {
869 		/*
870 		 * Update resource usage integrals and maximums.
871 		 */
872 		if ((ru = &lp->lwp_proc->p_ru) &&
873 		    (vm = lp->lwp_proc->p_vmspace) != NULL) {
874 			ru->ru_ixrss += pgtok(vm->vm_tsize);
875 			ru->ru_idrss += pgtok(vm->vm_dsize);
876 			ru->ru_isrss += pgtok(vm->vm_ssize);
877 			if (lwkt_trytoken(&vm->vm_map.token)) {
878 				rss = pgtok(vmspace_resident_count(vm));
879 				if (ru->ru_maxrss < rss)
880 					ru->ru_maxrss = rss;
881 				lwkt_reltoken(&vm->vm_map.token);
882 			}
883 		}
884 	}
885 	/* Increment the global sched_ticks */
886 	if (mycpu->gd_cpuid == 0)
887 		++sched_ticks;
888 }
889 
890 /*
891  * Compute number of ticks for the specified amount of time.  The
892  * return value is intended to be used in a clock interrupt timed
893  * operation and guaranteed to meet or exceed the requested time.
894  * If the representation overflows, return INT_MAX.  The minimum return
895  * value is 1 ticks and the function will average the calculation up.
896  * If any value greater then 0 microseconds is supplied, a value
897  * of at least 2 will be returned to ensure that a near-term clock
898  * interrupt does not cause the timeout to occur (degenerately) early.
899  *
900  * Note that limit checks must take into account microseconds, which is
901  * done simply by using the smaller signed long maximum instead of
902  * the unsigned long maximum.
903  *
904  * If ints have 32 bits, then the maximum value for any timeout in
905  * 10ms ticks is 248 days.
906  */
907 int
908 tvtohz_high(struct timeval *tv)
909 {
910 	int ticks;
911 	long sec, usec;
912 
913 	sec = tv->tv_sec;
914 	usec = tv->tv_usec;
915 	if (usec < 0) {
916 		sec--;
917 		usec += 1000000;
918 	}
919 	if (sec < 0) {
920 #ifdef DIAGNOSTIC
921 		if (usec > 0) {
922 			sec++;
923 			usec -= 1000000;
924 		}
925 		kprintf("tvtohz_high: negative time difference "
926 			"%ld sec %ld usec\n",
927 			sec, usec);
928 #endif
929 		ticks = 1;
930 	} else if (sec <= INT_MAX / hz) {
931 		ticks = (int)(sec * hz +
932 			    ((u_long)usec + (ustick - 1)) / ustick) + 1;
933 	} else {
934 		ticks = INT_MAX;
935 	}
936 	return (ticks);
937 }
938 
939 int
940 tstohz_high(struct timespec *ts)
941 {
942 	int ticks;
943 	long sec, nsec;
944 
945 	sec = ts->tv_sec;
946 	nsec = ts->tv_nsec;
947 	if (nsec < 0) {
948 		sec--;
949 		nsec += 1000000000;
950 	}
951 	if (sec < 0) {
952 #ifdef DIAGNOSTIC
953 		if (nsec > 0) {
954 			sec++;
955 			nsec -= 1000000000;
956 		}
957 		kprintf("tstohz_high: negative time difference "
958 			"%ld sec %ld nsec\n",
959 			sec, nsec);
960 #endif
961 		ticks = 1;
962 	} else if (sec <= INT_MAX / hz) {
963 		ticks = (int)(sec * hz +
964 			    ((u_long)nsec + (nstick - 1)) / nstick) + 1;
965 	} else {
966 		ticks = INT_MAX;
967 	}
968 	return (ticks);
969 }
970 
971 
972 /*
973  * Compute number of ticks for the specified amount of time, erroring on
974  * the side of it being too low to ensure that sleeping the returned number
975  * of ticks will not result in a late return.
976  *
977  * The supplied timeval may not be negative and should be normalized.  A
978  * return value of 0 is possible if the timeval converts to less then
979  * 1 tick.
980  *
981  * If ints have 32 bits, then the maximum value for any timeout in
982  * 10ms ticks is 248 days.
983  */
984 int
985 tvtohz_low(struct timeval *tv)
986 {
987 	int ticks;
988 	long sec;
989 
990 	sec = tv->tv_sec;
991 	if (sec <= INT_MAX / hz)
992 		ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
993 	else
994 		ticks = INT_MAX;
995 	return (ticks);
996 }
997 
998 int
999 tstohz_low(struct timespec *ts)
1000 {
1001 	int ticks;
1002 	long sec;
1003 
1004 	sec = ts->tv_sec;
1005 	if (sec <= INT_MAX / hz)
1006 		ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
1007 	else
1008 		ticks = INT_MAX;
1009 	return (ticks);
1010 }
1011 
1012 /*
1013  * Start profiling on a process.
1014  *
1015  * Kernel profiling passes proc0 which never exits and hence
1016  * keeps the profile clock running constantly.
1017  */
1018 void
1019 startprofclock(struct proc *p)
1020 {
1021 	if ((p->p_flags & P_PROFIL) == 0) {
1022 		p->p_flags |= P_PROFIL;
1023 #if 0	/* XXX */
1024 		if (++profprocs == 1 && stathz != 0) {
1025 			crit_enter();
1026 			psdiv = psratio;
1027 			setstatclockrate(profhz);
1028 			crit_exit();
1029 		}
1030 #endif
1031 	}
1032 }
1033 
1034 /*
1035  * Stop profiling on a process.
1036  *
1037  * caller must hold p->p_token
1038  */
1039 void
1040 stopprofclock(struct proc *p)
1041 {
1042 	if (p->p_flags & P_PROFIL) {
1043 		p->p_flags &= ~P_PROFIL;
1044 #if 0	/* XXX */
1045 		if (--profprocs == 0 && stathz != 0) {
1046 			crit_enter();
1047 			psdiv = 1;
1048 			setstatclockrate(stathz);
1049 			crit_exit();
1050 		}
1051 #endif
1052 	}
1053 }
1054 
1055 /*
1056  * Return information about system clocks.
1057  */
1058 static int
1059 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
1060 {
1061 	struct kinfo_clockinfo clkinfo;
1062 	/*
1063 	 * Construct clockinfo structure.
1064 	 */
1065 	clkinfo.ci_hz = hz;
1066 	clkinfo.ci_tick = ustick;
1067 	clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
1068 	clkinfo.ci_profhz = profhz;
1069 	clkinfo.ci_stathz = stathz ? stathz : hz;
1070 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
1071 }
1072 
1073 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
1074 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
1075 
1076 /*
1077  * We have eight functions for looking at the clock, four for
1078  * microseconds and four for nanoseconds.  For each there is fast
1079  * but less precise version "get{nano|micro}[up]time" which will
1080  * return a time which is up to 1/HZ previous to the call, whereas
1081  * the raw version "{nano|micro}[up]time" will return a timestamp
1082  * which is as precise as possible.  The "up" variants return the
1083  * time relative to system boot, these are well suited for time
1084  * interval measurements.
1085  *
1086  * Each cpu independently maintains the current time of day, so all
1087  * we need to do to protect ourselves from changes is to do a loop
1088  * check on the seconds field changing out from under us.
1089  *
1090  * The system timer maintains a 32 bit count and due to various issues
1091  * it is possible for the calculated delta to occasionally exceed
1092  * sys_cputimer->freq.  If this occurs the sys_cputimer->freq64_nsec
1093  * multiplication can easily overflow, so we deal with the case.  For
1094  * uniformity we deal with the case in the usec case too.
1095  *
1096  * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
1097  */
1098 void
1099 getmicrouptime(struct timeval *tvp)
1100 {
1101 	struct globaldata *gd = mycpu;
1102 	sysclock_t delta;
1103 
1104 	do {
1105 		tvp->tv_sec = gd->gd_time_seconds;
1106 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1107 	} while (tvp->tv_sec != gd->gd_time_seconds);
1108 
1109 	if (delta >= sys_cputimer->freq) {
1110 		tvp->tv_sec += delta / sys_cputimer->freq;
1111 		delta %= sys_cputimer->freq;
1112 	}
1113 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1114 	if (tvp->tv_usec >= 1000000) {
1115 		tvp->tv_usec -= 1000000;
1116 		++tvp->tv_sec;
1117 	}
1118 }
1119 
1120 void
1121 getnanouptime(struct timespec *tsp)
1122 {
1123 	struct globaldata *gd = mycpu;
1124 	sysclock_t delta;
1125 
1126 	do {
1127 		tsp->tv_sec = gd->gd_time_seconds;
1128 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1129 	} while (tsp->tv_sec != gd->gd_time_seconds);
1130 
1131 	if (delta >= sys_cputimer->freq) {
1132 		tsp->tv_sec += delta / sys_cputimer->freq;
1133 		delta %= sys_cputimer->freq;
1134 	}
1135 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1136 }
1137 
1138 void
1139 microuptime(struct timeval *tvp)
1140 {
1141 	struct globaldata *gd = mycpu;
1142 	sysclock_t delta;
1143 
1144 	do {
1145 		tvp->tv_sec = gd->gd_time_seconds;
1146 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1147 	} while (tvp->tv_sec != gd->gd_time_seconds);
1148 
1149 	if (delta >= sys_cputimer->freq) {
1150 		tvp->tv_sec += delta / sys_cputimer->freq;
1151 		delta %= sys_cputimer->freq;
1152 	}
1153 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1154 }
1155 
1156 void
1157 nanouptime(struct timespec *tsp)
1158 {
1159 	struct globaldata *gd = mycpu;
1160 	sysclock_t delta;
1161 
1162 	do {
1163 		tsp->tv_sec = gd->gd_time_seconds;
1164 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1165 	} while (tsp->tv_sec != gd->gd_time_seconds);
1166 
1167 	if (delta >= sys_cputimer->freq) {
1168 		tsp->tv_sec += delta / sys_cputimer->freq;
1169 		delta %= sys_cputimer->freq;
1170 	}
1171 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1172 }
1173 
1174 /*
1175  * realtime routines
1176  */
1177 void
1178 getmicrotime(struct timeval *tvp)
1179 {
1180 	struct globaldata *gd = mycpu;
1181 	struct timespec *bt;
1182 	sysclock_t delta;
1183 
1184 	do {
1185 		tvp->tv_sec = gd->gd_time_seconds;
1186 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1187 	} while (tvp->tv_sec != gd->gd_time_seconds);
1188 
1189 	if (delta >= sys_cputimer->freq) {
1190 		tvp->tv_sec += delta / sys_cputimer->freq;
1191 		delta %= sys_cputimer->freq;
1192 	}
1193 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1194 
1195 	bt = &basetime[basetime_index];
1196 	tvp->tv_sec += bt->tv_sec;
1197 	tvp->tv_usec += bt->tv_nsec / 1000;
1198 	while (tvp->tv_usec >= 1000000) {
1199 		tvp->tv_usec -= 1000000;
1200 		++tvp->tv_sec;
1201 	}
1202 }
1203 
1204 void
1205 getnanotime(struct timespec *tsp)
1206 {
1207 	struct globaldata *gd = mycpu;
1208 	struct timespec *bt;
1209 	sysclock_t delta;
1210 
1211 	do {
1212 		tsp->tv_sec = gd->gd_time_seconds;
1213 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1214 	} while (tsp->tv_sec != gd->gd_time_seconds);
1215 
1216 	if (delta >= sys_cputimer->freq) {
1217 		tsp->tv_sec += delta / sys_cputimer->freq;
1218 		delta %= sys_cputimer->freq;
1219 	}
1220 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1221 
1222 	bt = &basetime[basetime_index];
1223 	tsp->tv_sec += bt->tv_sec;
1224 	tsp->tv_nsec += bt->tv_nsec;
1225 	while (tsp->tv_nsec >= 1000000000) {
1226 		tsp->tv_nsec -= 1000000000;
1227 		++tsp->tv_sec;
1228 	}
1229 }
1230 
1231 static void
1232 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1233 {
1234 	struct globaldata *gd = mycpu;
1235 	sysclock_t delta;
1236 
1237 	do {
1238 		tsp->tv_sec = gd->gd_time_seconds;
1239 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1240 	} while (tsp->tv_sec != gd->gd_time_seconds);
1241 
1242 	if (delta >= sys_cputimer->freq) {
1243 		tsp->tv_sec += delta / sys_cputimer->freq;
1244 		delta %= sys_cputimer->freq;
1245 	}
1246 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1247 
1248 	tsp->tv_sec += nbt->tv_sec;
1249 	tsp->tv_nsec += nbt->tv_nsec;
1250 	while (tsp->tv_nsec >= 1000000000) {
1251 		tsp->tv_nsec -= 1000000000;
1252 		++tsp->tv_sec;
1253 	}
1254 }
1255 
1256 
1257 void
1258 microtime(struct timeval *tvp)
1259 {
1260 	struct globaldata *gd = mycpu;
1261 	struct timespec *bt;
1262 	sysclock_t delta;
1263 
1264 	do {
1265 		tvp->tv_sec = gd->gd_time_seconds;
1266 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1267 	} while (tvp->tv_sec != gd->gd_time_seconds);
1268 
1269 	if (delta >= sys_cputimer->freq) {
1270 		tvp->tv_sec += delta / sys_cputimer->freq;
1271 		delta %= sys_cputimer->freq;
1272 	}
1273 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1274 
1275 	bt = &basetime[basetime_index];
1276 	tvp->tv_sec += bt->tv_sec;
1277 	tvp->tv_usec += bt->tv_nsec / 1000;
1278 	while (tvp->tv_usec >= 1000000) {
1279 		tvp->tv_usec -= 1000000;
1280 		++tvp->tv_sec;
1281 	}
1282 }
1283 
1284 void
1285 nanotime(struct timespec *tsp)
1286 {
1287 	struct globaldata *gd = mycpu;
1288 	struct timespec *bt;
1289 	sysclock_t delta;
1290 
1291 	do {
1292 		tsp->tv_sec = gd->gd_time_seconds;
1293 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1294 	} while (tsp->tv_sec != gd->gd_time_seconds);
1295 
1296 	if (delta >= sys_cputimer->freq) {
1297 		tsp->tv_sec += delta / sys_cputimer->freq;
1298 		delta %= sys_cputimer->freq;
1299 	}
1300 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1301 
1302 	bt = &basetime[basetime_index];
1303 	tsp->tv_sec += bt->tv_sec;
1304 	tsp->tv_nsec += bt->tv_nsec;
1305 	while (tsp->tv_nsec >= 1000000000) {
1306 		tsp->tv_nsec -= 1000000000;
1307 		++tsp->tv_sec;
1308 	}
1309 }
1310 
1311 /*
1312  * note: this is not exactly synchronized with real time.  To do that we
1313  * would have to do what microtime does and check for a nanoseconds overflow.
1314  */
1315 time_t
1316 get_approximate_time_t(void)
1317 {
1318 	struct globaldata *gd = mycpu;
1319 	struct timespec *bt;
1320 
1321 	bt = &basetime[basetime_index];
1322 	return(gd->gd_time_seconds + bt->tv_sec);
1323 }
1324 
1325 int
1326 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1327 {
1328 	pps_params_t *app;
1329 	struct pps_fetch_args *fapi;
1330 #ifdef PPS_SYNC
1331 	struct pps_kcbind_args *kapi;
1332 #endif
1333 
1334 	switch (cmd) {
1335 	case PPS_IOC_CREATE:
1336 		return (0);
1337 	case PPS_IOC_DESTROY:
1338 		return (0);
1339 	case PPS_IOC_SETPARAMS:
1340 		app = (pps_params_t *)data;
1341 		if (app->mode & ~pps->ppscap)
1342 			return (EINVAL);
1343 		pps->ppsparam = *app;
1344 		return (0);
1345 	case PPS_IOC_GETPARAMS:
1346 		app = (pps_params_t *)data;
1347 		*app = pps->ppsparam;
1348 		app->api_version = PPS_API_VERS_1;
1349 		return (0);
1350 	case PPS_IOC_GETCAP:
1351 		*(int*)data = pps->ppscap;
1352 		return (0);
1353 	case PPS_IOC_FETCH:
1354 		fapi = (struct pps_fetch_args *)data;
1355 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1356 			return (EINVAL);
1357 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1358 			return (EOPNOTSUPP);
1359 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
1360 		fapi->pps_info_buf = pps->ppsinfo;
1361 		return (0);
1362 	case PPS_IOC_KCBIND:
1363 #ifdef PPS_SYNC
1364 		kapi = (struct pps_kcbind_args *)data;
1365 		/* XXX Only root should be able to do this */
1366 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1367 			return (EINVAL);
1368 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1369 			return (EINVAL);
1370 		if (kapi->edge & ~pps->ppscap)
1371 			return (EINVAL);
1372 		pps->kcmode = kapi->edge;
1373 		return (0);
1374 #else
1375 		return (EOPNOTSUPP);
1376 #endif
1377 	default:
1378 		return (ENOTTY);
1379 	}
1380 }
1381 
1382 void
1383 pps_init(struct pps_state *pps)
1384 {
1385 	pps->ppscap |= PPS_TSFMT_TSPEC;
1386 	if (pps->ppscap & PPS_CAPTUREASSERT)
1387 		pps->ppscap |= PPS_OFFSETASSERT;
1388 	if (pps->ppscap & PPS_CAPTURECLEAR)
1389 		pps->ppscap |= PPS_OFFSETCLEAR;
1390 }
1391 
1392 void
1393 pps_event(struct pps_state *pps, sysclock_t count, int event)
1394 {
1395 	struct globaldata *gd;
1396 	struct timespec *tsp;
1397 	struct timespec *osp;
1398 	struct timespec *bt;
1399 	struct timespec ts;
1400 	sysclock_t *pcount;
1401 #ifdef PPS_SYNC
1402 	sysclock_t tcount;
1403 #endif
1404 	sysclock_t delta;
1405 	pps_seq_t *pseq;
1406 	int foff;
1407 #ifdef PPS_SYNC
1408 	int fhard;
1409 #else
1410 	int fhard __unused;
1411 #endif
1412 
1413 	gd = mycpu;
1414 
1415 	/* Things would be easier with arrays... */
1416 	if (event == PPS_CAPTUREASSERT) {
1417 		tsp = &pps->ppsinfo.assert_timestamp;
1418 		osp = &pps->ppsparam.assert_offset;
1419 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1420 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1421 		pcount = &pps->ppscount[0];
1422 		pseq = &pps->ppsinfo.assert_sequence;
1423 	} else {
1424 		tsp = &pps->ppsinfo.clear_timestamp;
1425 		osp = &pps->ppsparam.clear_offset;
1426 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1427 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1428 		pcount = &pps->ppscount[1];
1429 		pseq = &pps->ppsinfo.clear_sequence;
1430 	}
1431 
1432 	/* Nothing really happened */
1433 	if (*pcount == count)
1434 		return;
1435 
1436 	*pcount = count;
1437 
1438 	do {
1439 		ts.tv_sec = gd->gd_time_seconds;
1440 		delta = count - gd->gd_cpuclock_base;
1441 	} while (ts.tv_sec != gd->gd_time_seconds);
1442 
1443 	if (delta >= sys_cputimer->freq) {
1444 		ts.tv_sec += delta / sys_cputimer->freq;
1445 		delta %= sys_cputimer->freq;
1446 	}
1447 	ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1448 	bt = &basetime[basetime_index];
1449 	ts.tv_sec += bt->tv_sec;
1450 	ts.tv_nsec += bt->tv_nsec;
1451 	while (ts.tv_nsec >= 1000000000) {
1452 		ts.tv_nsec -= 1000000000;
1453 		++ts.tv_sec;
1454 	}
1455 
1456 	(*pseq)++;
1457 	*tsp = ts;
1458 
1459 	if (foff) {
1460 		timespecadd(tsp, osp);
1461 		if (tsp->tv_nsec < 0) {
1462 			tsp->tv_nsec += 1000000000;
1463 			tsp->tv_sec -= 1;
1464 		}
1465 	}
1466 #ifdef PPS_SYNC
1467 	if (fhard) {
1468 		/* magic, at its best... */
1469 		tcount = count - pps->ppscount[2];
1470 		pps->ppscount[2] = count;
1471 		if (tcount >= sys_cputimer->freq) {
1472 			delta = (1000000000 * (tcount / sys_cputimer->freq) +
1473 				 sys_cputimer->freq64_nsec *
1474 				 (tcount % sys_cputimer->freq)) >> 32;
1475 		} else {
1476 			delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1477 		}
1478 		hardpps(tsp, delta);
1479 	}
1480 #endif
1481 }
1482 
1483 /*
1484  * Return the tsc target value for a delay of (ns).
1485  *
1486  * Returns -1 if the TSC is not supported.
1487  */
1488 int64_t
1489 tsc_get_target(int ns)
1490 {
1491 #if defined(_RDTSC_SUPPORTED_)
1492 	if (cpu_feature & CPUID_TSC) {
1493 		return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1494 	}
1495 #endif
1496 	return(-1);
1497 }
1498 
1499 /*
1500  * Compare the tsc against the passed target
1501  *
1502  * Returns +1 if the target has been reached
1503  * Returns  0 if the target has not yet been reached
1504  * Returns -1 if the TSC is not supported.
1505  *
1506  * Typical use:		while (tsc_test_target(target) == 0) { ...poll... }
1507  */
1508 int
1509 tsc_test_target(int64_t target)
1510 {
1511 #if defined(_RDTSC_SUPPORTED_)
1512 	if (cpu_feature & CPUID_TSC) {
1513 		if ((int64_t)(target - rdtsc()) <= 0)
1514 			return(1);
1515 		return(0);
1516 	}
1517 #endif
1518 	return(-1);
1519 }
1520 
1521 /*
1522  * Delay the specified number of nanoseconds using the tsc.  This function
1523  * returns immediately if the TSC is not supported.  At least one cpu_pause()
1524  * will be issued.
1525  */
1526 void
1527 tsc_delay(int ns)
1528 {
1529 	int64_t clk;
1530 
1531 	clk = tsc_get_target(ns);
1532 	cpu_pause();
1533 	while (tsc_test_target(clk) == 0)
1534 		cpu_pause();
1535 }
1536