1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 69 */ 70 71 #include "opt_ntp.h" 72 #include "opt_ifpoll.h" 73 #include "opt_pctrack.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/callout.h> 78 #include <sys/kernel.h> 79 #include <sys/kinfo.h> 80 #include <sys/proc.h> 81 #include <sys/malloc.h> 82 #include <sys/resource.h> 83 #include <sys/resourcevar.h> 84 #include <sys/signalvar.h> 85 #include <sys/timex.h> 86 #include <sys/timepps.h> 87 #include <sys/upmap.h> 88 #include <vm/vm.h> 89 #include <sys/lock.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_extern.h> 93 #include <sys/sysctl.h> 94 95 #include <sys/thread2.h> 96 #include <sys/mplock2.h> 97 98 #include <machine/cpu.h> 99 #include <machine/limits.h> 100 #include <machine/smp.h> 101 #include <machine/cpufunc.h> 102 #include <machine/specialreg.h> 103 #include <machine/clock.h> 104 105 #ifdef GPROF 106 #include <sys/gmon.h> 107 #endif 108 109 #ifdef IFPOLL_ENABLE 110 extern void ifpoll_init_pcpu(int); 111 #endif 112 113 #ifdef DEBUG_PCTRACK 114 static void do_pctrack(struct intrframe *frame, int which); 115 #endif 116 117 static void initclocks (void *dummy); 118 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 119 120 /* 121 * Some of these don't belong here, but it's easiest to concentrate them. 122 * Note that cpu_time counts in microseconds, but most userland programs 123 * just compare relative times against the total by delta. 124 */ 125 struct kinfo_cputime cputime_percpu[MAXCPU]; 126 #ifdef DEBUG_PCTRACK 127 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 128 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 129 #endif 130 131 static int 132 sysctl_cputime(SYSCTL_HANDLER_ARGS) 133 { 134 int cpu, error = 0; 135 size_t size = sizeof(struct kinfo_cputime); 136 137 for (cpu = 0; cpu < ncpus; ++cpu) { 138 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size))) 139 break; 140 } 141 142 return (error); 143 } 144 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 145 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 146 147 static int 148 sysctl_cp_time(SYSCTL_HANDLER_ARGS) 149 { 150 long cpu_states[5] = {0}; 151 int cpu, error = 0; 152 size_t size = sizeof(cpu_states); 153 154 for (cpu = 0; cpu < ncpus; ++cpu) { 155 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user; 156 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice; 157 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys; 158 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr; 159 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle; 160 } 161 162 error = SYSCTL_OUT(req, cpu_states, size); 163 164 return (error); 165 } 166 167 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 168 sysctl_cp_time, "LU", "CPU time statistics"); 169 170 /* 171 * boottime is used to calculate the 'real' uptime. Do not confuse this with 172 * microuptime(). microtime() is not drift compensated. The real uptime 173 * with compensation is nanotime() - bootime. boottime is recalculated 174 * whenever the real time is set based on the compensated elapsed time 175 * in seconds (gd->gd_time_seconds). 176 * 177 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 178 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 179 * the real time. 180 * 181 * WARNING! time_second can backstep on time corrections. Also, unlike 182 * time second, time_uptime is not a "real" time_t (seconds 183 * since the Epoch) but seconds since booting. 184 */ 185 struct timespec boottime; /* boot time (realtime) for reference only */ 186 time_t time_second; /* read-only 'passive' realtime in seconds */ 187 time_t time_uptime; /* read-only 'passive' uptime in seconds */ 188 189 /* 190 * basetime is used to calculate the compensated real time of day. The 191 * basetime can be modified on a per-tick basis by the adjtime(), 192 * ntp_adjtime(), and sysctl-based time correction APIs. 193 * 194 * Note that frequency corrections can also be made by adjusting 195 * gd_cpuclock_base. 196 * 197 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 198 * used on both SMP and UP systems to avoid MP races between cpu's and 199 * interrupt races on UP systems. 200 */ 201 #define BASETIME_ARYSIZE 16 202 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 203 static struct timespec basetime[BASETIME_ARYSIZE]; 204 static volatile int basetime_index; 205 206 static int 207 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 208 { 209 struct timespec *bt; 210 int error; 211 int index; 212 213 /* 214 * Because basetime data and index may be updated by another cpu, 215 * a load fence is required to ensure that the data we read has 216 * not been speculatively read relative to a possibly updated index. 217 */ 218 index = basetime_index; 219 cpu_lfence(); 220 bt = &basetime[index]; 221 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 222 return (error); 223 } 224 225 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 226 &boottime, timespec, "System boottime"); 227 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 228 sysctl_get_basetime, "S,timespec", "System basetime"); 229 230 static void hardclock(systimer_t info, int, struct intrframe *frame); 231 static void statclock(systimer_t info, int, struct intrframe *frame); 232 static void schedclock(systimer_t info, int, struct intrframe *frame); 233 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 234 235 int ticks; /* system master ticks at hz */ 236 int clocks_running; /* tsleep/timeout clocks operational */ 237 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 238 int64_t nsec_acc; /* accumulator */ 239 int sched_ticks; /* global schedule clock ticks */ 240 241 /* NTPD time correction fields */ 242 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 243 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 244 int64_t ntp_delta; /* one-time correction in nsec */ 245 int64_t ntp_big_delta = 1000000000; 246 int32_t ntp_tick_delta; /* current adjustment rate */ 247 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 248 time_t ntp_leap_second; /* time of next leap second */ 249 int ntp_leap_insert; /* whether to insert or remove a second */ 250 251 /* 252 * Finish initializing clock frequencies and start all clocks running. 253 */ 254 /* ARGSUSED*/ 255 static void 256 initclocks(void *dummy) 257 { 258 /*psratio = profhz / stathz;*/ 259 initclocks_pcpu(); 260 clocks_running = 1; 261 if (kpmap) { 262 kpmap->tsc_freq = (uint64_t)tsc_frequency; 263 kpmap->tick_freq = hz; 264 } 265 } 266 267 /* 268 * Called on a per-cpu basis from the idle thread bootstrap on each cpu 269 * during SMP initialization. 270 * 271 * This routine is called concurrently during low-level SMP initialization 272 * and may not block in any way. Meaning, among other things, we can't 273 * acquire any tokens. 274 */ 275 void 276 initclocks_pcpu(void) 277 { 278 struct globaldata *gd = mycpu; 279 280 crit_enter(); 281 if (gd->gd_cpuid == 0) { 282 gd->gd_time_seconds = 1; 283 gd->gd_cpuclock_base = sys_cputimer->count(); 284 } else { 285 /* XXX */ 286 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 287 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 288 } 289 290 systimer_intr_enable(); 291 292 crit_exit(); 293 } 294 295 /* 296 * This routine is called on just the BSP, just after SMP initialization 297 * completes to * finish initializing any clocks that might contend/block 298 * (e.g. like on a token). We can't do this in initclocks_pcpu() because 299 * that function is called from the idle thread bootstrap for each cpu and 300 * not allowed to block at all. 301 */ 302 static 303 void 304 initclocks_other(void *dummy) 305 { 306 struct globaldata *ogd = mycpu; 307 struct globaldata *gd; 308 int n; 309 310 for (n = 0; n < ncpus; ++n) { 311 lwkt_setcpu_self(globaldata_find(n)); 312 gd = mycpu; 313 314 /* 315 * Use a non-queued periodic systimer to prevent multiple 316 * ticks from building up if the sysclock jumps forward 317 * (8254 gets reset). The sysclock will never jump backwards. 318 * Our time sync is based on the actual sysclock, not the 319 * ticks count. 320 */ 321 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, 322 NULL, hz); 323 systimer_init_periodic_nq(&gd->gd_statclock, statclock, 324 NULL, stathz); 325 /* XXX correct the frequency for scheduler / estcpu tests */ 326 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock, 327 NULL, ESTCPUFREQ); 328 #ifdef IFPOLL_ENABLE 329 ifpoll_init_pcpu(gd->gd_cpuid); 330 #endif 331 } 332 lwkt_setcpu_self(ogd); 333 } 334 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL) 335 336 /* 337 * This sets the current real time of day. Timespecs are in seconds and 338 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 339 * instead we adjust basetime so basetime + gd_* results in the current 340 * time of day. This way the gd_* fields are guaranteed to represent 341 * a monotonically increasing 'uptime' value. 342 * 343 * When set_timeofday() is called from userland, the system call forces it 344 * onto cpu #0 since only cpu #0 can update basetime_index. 345 */ 346 void 347 set_timeofday(struct timespec *ts) 348 { 349 struct timespec *nbt; 350 int ni; 351 352 /* 353 * XXX SMP / non-atomic basetime updates 354 */ 355 crit_enter(); 356 ni = (basetime_index + 1) & BASETIME_ARYMASK; 357 nbt = &basetime[ni]; 358 nanouptime(nbt); 359 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 360 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 361 if (nbt->tv_nsec < 0) { 362 nbt->tv_nsec += 1000000000; 363 --nbt->tv_sec; 364 } 365 366 /* 367 * Note that basetime diverges from boottime as the clock drift is 368 * compensated for, so we cannot do away with boottime. When setting 369 * the absolute time of day the drift is 0 (for an instant) and we 370 * can simply assign boottime to basetime. 371 * 372 * Note that nanouptime() is based on gd_time_seconds which is drift 373 * compensated up to a point (it is guaranteed to remain monotonically 374 * increasing). gd_time_seconds is thus our best uptime guess and 375 * suitable for use in the boottime calculation. It is already taken 376 * into account in the basetime calculation above. 377 */ 378 boottime.tv_sec = nbt->tv_sec; 379 ntp_delta = 0; 380 381 /* 382 * We now have a new basetime, make sure all other cpus have it, 383 * then update the index. 384 */ 385 cpu_sfence(); 386 basetime_index = ni; 387 388 crit_exit(); 389 } 390 391 /* 392 * Each cpu has its own hardclock, but we only increments ticks and softticks 393 * on cpu #0. 394 * 395 * NOTE! systimer! the MP lock might not be held here. We can only safely 396 * manipulate objects owned by the current cpu. 397 */ 398 static void 399 hardclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 400 { 401 sysclock_t cputicks; 402 struct proc *p; 403 struct globaldata *gd = mycpu; 404 405 /* 406 * Realtime updates are per-cpu. Note that timer corrections as 407 * returned by microtime() and friends make an additional adjustment 408 * using a system-wise 'basetime', but the running time is always 409 * taken from the per-cpu globaldata area. Since the same clock 410 * is distributing (XXX SMP) to all cpus, the per-cpu timebases 411 * stay in synch. 412 * 413 * Note that we never allow info->time (aka gd->gd_hardclock.time) 414 * to reverse index gd_cpuclock_base, but that it is possible for 415 * it to temporarily get behind in the seconds if something in the 416 * system locks interrupts for a long period of time. Since periodic 417 * timers count events, though everything should resynch again 418 * immediately. 419 */ 420 cputicks = info->time - gd->gd_cpuclock_base; 421 if (cputicks >= sys_cputimer->freq) { 422 ++gd->gd_time_seconds; 423 gd->gd_cpuclock_base += sys_cputimer->freq; 424 if (gd->gd_cpuid == 0) 425 ++time_uptime; /* uncorrected monotonic 1-sec gran */ 426 } 427 428 /* 429 * The system-wide ticks counter and NTP related timedelta/tickdelta 430 * adjustments only occur on cpu #0. NTP adjustments are accomplished 431 * by updating basetime. 432 */ 433 if (gd->gd_cpuid == 0) { 434 struct timespec *nbt; 435 struct timespec nts; 436 int leap; 437 int ni; 438 439 ++ticks; 440 441 #if 0 442 if (tco->tc_poll_pps) 443 tco->tc_poll_pps(tco); 444 #endif 445 446 /* 447 * Calculate the new basetime index. We are in a critical section 448 * on cpu #0 and can safely play with basetime_index. Start 449 * with the current basetime and then make adjustments. 450 */ 451 ni = (basetime_index + 1) & BASETIME_ARYMASK; 452 nbt = &basetime[ni]; 453 *nbt = basetime[basetime_index]; 454 455 /* 456 * Apply adjtime corrections. (adjtime() API) 457 * 458 * adjtime() only runs on cpu #0 so our critical section is 459 * sufficient to access these variables. 460 */ 461 if (ntp_delta != 0) { 462 nbt->tv_nsec += ntp_tick_delta; 463 ntp_delta -= ntp_tick_delta; 464 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 465 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 466 ntp_tick_delta = ntp_delta; 467 } 468 } 469 470 /* 471 * Apply permanent frequency corrections. (sysctl API) 472 */ 473 if (ntp_tick_permanent != 0) { 474 ntp_tick_acc += ntp_tick_permanent; 475 if (ntp_tick_acc >= (1LL << 32)) { 476 nbt->tv_nsec += ntp_tick_acc >> 32; 477 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 478 } else if (ntp_tick_acc <= -(1LL << 32)) { 479 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 480 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 481 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 482 } 483 } 484 485 if (nbt->tv_nsec >= 1000000000) { 486 nbt->tv_sec++; 487 nbt->tv_nsec -= 1000000000; 488 } else if (nbt->tv_nsec < 0) { 489 nbt->tv_sec--; 490 nbt->tv_nsec += 1000000000; 491 } 492 493 /* 494 * Another per-tick compensation. (for ntp_adjtime() API) 495 */ 496 if (nsec_adj != 0) { 497 nsec_acc += nsec_adj; 498 if (nsec_acc >= 0x100000000LL) { 499 nbt->tv_nsec += nsec_acc >> 32; 500 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 501 } else if (nsec_acc <= -0x100000000LL) { 502 nbt->tv_nsec -= -nsec_acc >> 32; 503 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 504 } 505 if (nbt->tv_nsec >= 1000000000) { 506 nbt->tv_nsec -= 1000000000; 507 ++nbt->tv_sec; 508 } else if (nbt->tv_nsec < 0) { 509 nbt->tv_nsec += 1000000000; 510 --nbt->tv_sec; 511 } 512 } 513 514 /************************************************************ 515 * LEAP SECOND CORRECTION * 516 ************************************************************ 517 * 518 * Taking into account all the corrections made above, figure 519 * out the new real time. If the seconds field has changed 520 * then apply any pending leap-second corrections. 521 */ 522 getnanotime_nbt(nbt, &nts); 523 524 if (time_second != nts.tv_sec) { 525 /* 526 * Apply leap second (sysctl API). Adjust nts for changes 527 * so we do not have to call getnanotime_nbt again. 528 */ 529 if (ntp_leap_second) { 530 if (ntp_leap_second == nts.tv_sec) { 531 if (ntp_leap_insert) { 532 nbt->tv_sec++; 533 nts.tv_sec++; 534 } else { 535 nbt->tv_sec--; 536 nts.tv_sec--; 537 } 538 ntp_leap_second--; 539 } 540 } 541 542 /* 543 * Apply leap second (ntp_adjtime() API), calculate a new 544 * nsec_adj field. ntp_update_second() returns nsec_adj 545 * as a per-second value but we need it as a per-tick value. 546 */ 547 leap = ntp_update_second(time_second, &nsec_adj); 548 nsec_adj /= hz; 549 nbt->tv_sec += leap; 550 nts.tv_sec += leap; 551 552 /* 553 * Update the time_second 'approximate time' global. 554 */ 555 time_second = nts.tv_sec; 556 } 557 558 /* 559 * Finally, our new basetime is ready to go live! 560 */ 561 cpu_sfence(); 562 basetime_index = ni; 563 564 /* 565 * Update kpmap on each tick. TS updates are integrated with 566 * fences and upticks allowing userland to read the data 567 * deterministically. 568 */ 569 if (kpmap) { 570 int w; 571 572 w = (kpmap->upticks + 1) & 1; 573 getnanouptime(&kpmap->ts_uptime[w]); 574 getnanotime(&kpmap->ts_realtime[w]); 575 cpu_sfence(); 576 ++kpmap->upticks; 577 cpu_sfence(); 578 } 579 } 580 581 /* 582 * lwkt thread scheduler fair queueing 583 */ 584 lwkt_schedulerclock(curthread); 585 586 /* 587 * softticks are handled for all cpus 588 */ 589 hardclock_softtick(gd); 590 591 /* 592 * ITimer handling is per-tick, per-cpu. 593 * 594 * We must acquire the per-process token in order for ksignal() 595 * to be non-blocking. For the moment this requires an AST fault, 596 * the ksignal() cannot be safely issued from this hard interrupt. 597 * 598 * XXX Even the trytoken here isn't right, and itimer operation in 599 * a multi threaded environment is going to be weird at the 600 * very least. 601 */ 602 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) { 603 crit_enter_hard(); 604 if (p->p_upmap) 605 ++p->p_upmap->runticks; 606 607 if (frame && CLKF_USERMODE(frame) && 608 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 609 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) { 610 p->p_flags |= P_SIGVTALRM; 611 need_user_resched(); 612 } 613 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 614 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) { 615 p->p_flags |= P_SIGPROF; 616 need_user_resched(); 617 } 618 crit_exit_hard(); 619 lwkt_reltoken(&p->p_token); 620 } 621 setdelayed(); 622 } 623 624 /* 625 * The statistics clock typically runs at a 125Hz rate, and is intended 626 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 627 * 628 * NOTE! systimer! the MP lock might not be held here. We can only safely 629 * manipulate objects owned by the current cpu. 630 * 631 * The stats clock is responsible for grabbing a profiling sample. 632 * Most of the statistics are only used by user-level statistics programs. 633 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 634 * p->p_estcpu. 635 * 636 * Like the other clocks, the stat clock is called from what is effectively 637 * a fast interrupt, so the context should be the thread/process that got 638 * interrupted. 639 */ 640 static void 641 statclock(systimer_t info, int in_ipi, struct intrframe *frame) 642 { 643 #ifdef GPROF 644 struct gmonparam *g; 645 int i; 646 #endif 647 thread_t td; 648 struct proc *p; 649 int bump; 650 sysclock_t cv; 651 sysclock_t scv; 652 653 /* 654 * How big was our timeslice relative to the last time? Calculate 655 * in microseconds. 656 * 657 * NOTE: Use of microuptime() is typically MPSAFE, but usually not 658 * during early boot. Just use the systimer count to be nice 659 * to e.g. qemu. The systimer has a better chance of being 660 * MPSAFE at early boot. 661 */ 662 cv = sys_cputimer->count(); 663 scv = mycpu->statint.gd_statcv; 664 if (scv == 0) { 665 bump = 1; 666 } else { 667 bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32; 668 if (bump < 0) 669 bump = 0; 670 if (bump > 1000000) 671 bump = 1000000; 672 } 673 mycpu->statint.gd_statcv = cv; 674 675 #if 0 676 stv = &mycpu->gd_stattv; 677 if (stv->tv_sec == 0) { 678 bump = 1; 679 } else { 680 bump = tv.tv_usec - stv->tv_usec + 681 (tv.tv_sec - stv->tv_sec) * 1000000; 682 if (bump < 0) 683 bump = 0; 684 if (bump > 1000000) 685 bump = 1000000; 686 } 687 *stv = tv; 688 #endif 689 690 td = curthread; 691 p = td->td_proc; 692 693 if (frame && CLKF_USERMODE(frame)) { 694 /* 695 * Came from userland, handle user time and deal with 696 * possible process. 697 */ 698 if (p && (p->p_flags & P_PROFIL)) 699 addupc_intr(p, CLKF_PC(frame), 1); 700 td->td_uticks += bump; 701 702 /* 703 * Charge the time as appropriate 704 */ 705 if (p && p->p_nice > NZERO) 706 cpu_time.cp_nice += bump; 707 else 708 cpu_time.cp_user += bump; 709 } else { 710 int intr_nest = mycpu->gd_intr_nesting_level; 711 712 if (in_ipi) { 713 /* 714 * IPI processing code will bump gd_intr_nesting_level 715 * up by one, which breaks following CLKF_INTR testing, 716 * so we subtract it by one here. 717 */ 718 --intr_nest; 719 } 720 #ifdef GPROF 721 /* 722 * Kernel statistics are just like addupc_intr, only easier. 723 */ 724 g = &_gmonparam; 725 if (g->state == GMON_PROF_ON && frame) { 726 i = CLKF_PC(frame) - g->lowpc; 727 if (i < g->textsize) { 728 i /= HISTFRACTION * sizeof(*g->kcount); 729 g->kcount[i]++; 730 } 731 } 732 #endif 733 734 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td)) 735 736 /* 737 * Came from kernel mode, so we were: 738 * - handling an interrupt, 739 * - doing syscall or trap work on behalf of the current 740 * user process, or 741 * - spinning in the idle loop. 742 * Whichever it is, charge the time as appropriate. 743 * Note that we charge interrupts to the current process, 744 * regardless of whether they are ``for'' that process, 745 * so that we know how much of its real time was spent 746 * in ``non-process'' (i.e., interrupt) work. 747 * 748 * XXX assume system if frame is NULL. A NULL frame 749 * can occur if ipi processing is done from a crit_exit(). 750 */ 751 if (IS_INTR_RUNNING) 752 td->td_iticks += bump; 753 else 754 td->td_sticks += bump; 755 756 if (IS_INTR_RUNNING) { 757 /* 758 * If we interrupted an interrupt thread, well, 759 * count it as interrupt time. 760 */ 761 #ifdef DEBUG_PCTRACK 762 if (frame) 763 do_pctrack(frame, PCTRACK_INT); 764 #endif 765 cpu_time.cp_intr += bump; 766 } else { 767 if (td == &mycpu->gd_idlethread) { 768 /* 769 * Even if the current thread is the idle 770 * thread it could be due to token contention 771 * in the LWKT scheduler. Count such as 772 * system time. 773 */ 774 if (mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK) 775 cpu_time.cp_sys += bump; 776 else 777 cpu_time.cp_idle += bump; 778 } else { 779 /* 780 * System thread was running. 781 */ 782 #ifdef DEBUG_PCTRACK 783 if (frame) 784 do_pctrack(frame, PCTRACK_SYS); 785 #endif 786 cpu_time.cp_sys += bump; 787 } 788 } 789 790 #undef IS_INTR_RUNNING 791 } 792 } 793 794 #ifdef DEBUG_PCTRACK 795 /* 796 * Sample the PC when in the kernel or in an interrupt. User code can 797 * retrieve the information and generate a histogram or other output. 798 */ 799 800 static void 801 do_pctrack(struct intrframe *frame, int which) 802 { 803 struct kinfo_pctrack *pctrack; 804 805 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 806 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 807 (void *)CLKF_PC(frame); 808 ++pctrack->pc_index; 809 } 810 811 static int 812 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 813 { 814 struct kinfo_pcheader head; 815 int error; 816 int cpu; 817 int ntrack; 818 819 head.pc_ntrack = PCTRACK_SIZE; 820 head.pc_arysize = PCTRACK_ARYSIZE; 821 822 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 823 return (error); 824 825 for (cpu = 0; cpu < ncpus; ++cpu) { 826 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 827 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 828 sizeof(struct kinfo_pctrack)); 829 if (error) 830 break; 831 } 832 if (error) 833 break; 834 } 835 return (error); 836 } 837 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 838 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 839 840 #endif 841 842 /* 843 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 844 * the MP lock might not be held. We can safely manipulate parts of curproc 845 * but that's about it. 846 * 847 * Each cpu has its own scheduler clock. 848 */ 849 static void 850 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 851 { 852 struct lwp *lp; 853 struct rusage *ru; 854 struct vmspace *vm; 855 long rss; 856 857 if ((lp = lwkt_preempted_proc()) != NULL) { 858 /* 859 * Account for cpu time used and hit the scheduler. Note 860 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 861 * HERE. 862 */ 863 ++lp->lwp_cpticks; 864 usched_schedulerclock(lp, info->periodic, info->time); 865 } else { 866 usched_schedulerclock(NULL, info->periodic, info->time); 867 } 868 if ((lp = curthread->td_lwp) != NULL) { 869 /* 870 * Update resource usage integrals and maximums. 871 */ 872 if ((ru = &lp->lwp_proc->p_ru) && 873 (vm = lp->lwp_proc->p_vmspace) != NULL) { 874 ru->ru_ixrss += pgtok(vm->vm_tsize); 875 ru->ru_idrss += pgtok(vm->vm_dsize); 876 ru->ru_isrss += pgtok(vm->vm_ssize); 877 if (lwkt_trytoken(&vm->vm_map.token)) { 878 rss = pgtok(vmspace_resident_count(vm)); 879 if (ru->ru_maxrss < rss) 880 ru->ru_maxrss = rss; 881 lwkt_reltoken(&vm->vm_map.token); 882 } 883 } 884 } 885 /* Increment the global sched_ticks */ 886 if (mycpu->gd_cpuid == 0) 887 ++sched_ticks; 888 } 889 890 /* 891 * Compute number of ticks for the specified amount of time. The 892 * return value is intended to be used in a clock interrupt timed 893 * operation and guaranteed to meet or exceed the requested time. 894 * If the representation overflows, return INT_MAX. The minimum return 895 * value is 1 ticks and the function will average the calculation up. 896 * If any value greater then 0 microseconds is supplied, a value 897 * of at least 2 will be returned to ensure that a near-term clock 898 * interrupt does not cause the timeout to occur (degenerately) early. 899 * 900 * Note that limit checks must take into account microseconds, which is 901 * done simply by using the smaller signed long maximum instead of 902 * the unsigned long maximum. 903 * 904 * If ints have 32 bits, then the maximum value for any timeout in 905 * 10ms ticks is 248 days. 906 */ 907 int 908 tvtohz_high(struct timeval *tv) 909 { 910 int ticks; 911 long sec, usec; 912 913 sec = tv->tv_sec; 914 usec = tv->tv_usec; 915 if (usec < 0) { 916 sec--; 917 usec += 1000000; 918 } 919 if (sec < 0) { 920 #ifdef DIAGNOSTIC 921 if (usec > 0) { 922 sec++; 923 usec -= 1000000; 924 } 925 kprintf("tvtohz_high: negative time difference " 926 "%ld sec %ld usec\n", 927 sec, usec); 928 #endif 929 ticks = 1; 930 } else if (sec <= INT_MAX / hz) { 931 ticks = (int)(sec * hz + 932 ((u_long)usec + (ustick - 1)) / ustick) + 1; 933 } else { 934 ticks = INT_MAX; 935 } 936 return (ticks); 937 } 938 939 int 940 tstohz_high(struct timespec *ts) 941 { 942 int ticks; 943 long sec, nsec; 944 945 sec = ts->tv_sec; 946 nsec = ts->tv_nsec; 947 if (nsec < 0) { 948 sec--; 949 nsec += 1000000000; 950 } 951 if (sec < 0) { 952 #ifdef DIAGNOSTIC 953 if (nsec > 0) { 954 sec++; 955 nsec -= 1000000000; 956 } 957 kprintf("tstohz_high: negative time difference " 958 "%ld sec %ld nsec\n", 959 sec, nsec); 960 #endif 961 ticks = 1; 962 } else if (sec <= INT_MAX / hz) { 963 ticks = (int)(sec * hz + 964 ((u_long)nsec + (nstick - 1)) / nstick) + 1; 965 } else { 966 ticks = INT_MAX; 967 } 968 return (ticks); 969 } 970 971 972 /* 973 * Compute number of ticks for the specified amount of time, erroring on 974 * the side of it being too low to ensure that sleeping the returned number 975 * of ticks will not result in a late return. 976 * 977 * The supplied timeval may not be negative and should be normalized. A 978 * return value of 0 is possible if the timeval converts to less then 979 * 1 tick. 980 * 981 * If ints have 32 bits, then the maximum value for any timeout in 982 * 10ms ticks is 248 days. 983 */ 984 int 985 tvtohz_low(struct timeval *tv) 986 { 987 int ticks; 988 long sec; 989 990 sec = tv->tv_sec; 991 if (sec <= INT_MAX / hz) 992 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 993 else 994 ticks = INT_MAX; 995 return (ticks); 996 } 997 998 int 999 tstohz_low(struct timespec *ts) 1000 { 1001 int ticks; 1002 long sec; 1003 1004 sec = ts->tv_sec; 1005 if (sec <= INT_MAX / hz) 1006 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 1007 else 1008 ticks = INT_MAX; 1009 return (ticks); 1010 } 1011 1012 /* 1013 * Start profiling on a process. 1014 * 1015 * Kernel profiling passes proc0 which never exits and hence 1016 * keeps the profile clock running constantly. 1017 */ 1018 void 1019 startprofclock(struct proc *p) 1020 { 1021 if ((p->p_flags & P_PROFIL) == 0) { 1022 p->p_flags |= P_PROFIL; 1023 #if 0 /* XXX */ 1024 if (++profprocs == 1 && stathz != 0) { 1025 crit_enter(); 1026 psdiv = psratio; 1027 setstatclockrate(profhz); 1028 crit_exit(); 1029 } 1030 #endif 1031 } 1032 } 1033 1034 /* 1035 * Stop profiling on a process. 1036 * 1037 * caller must hold p->p_token 1038 */ 1039 void 1040 stopprofclock(struct proc *p) 1041 { 1042 if (p->p_flags & P_PROFIL) { 1043 p->p_flags &= ~P_PROFIL; 1044 #if 0 /* XXX */ 1045 if (--profprocs == 0 && stathz != 0) { 1046 crit_enter(); 1047 psdiv = 1; 1048 setstatclockrate(stathz); 1049 crit_exit(); 1050 } 1051 #endif 1052 } 1053 } 1054 1055 /* 1056 * Return information about system clocks. 1057 */ 1058 static int 1059 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 1060 { 1061 struct kinfo_clockinfo clkinfo; 1062 /* 1063 * Construct clockinfo structure. 1064 */ 1065 clkinfo.ci_hz = hz; 1066 clkinfo.ci_tick = ustick; 1067 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 1068 clkinfo.ci_profhz = profhz; 1069 clkinfo.ci_stathz = stathz ? stathz : hz; 1070 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 1071 } 1072 1073 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 1074 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 1075 1076 /* 1077 * We have eight functions for looking at the clock, four for 1078 * microseconds and four for nanoseconds. For each there is fast 1079 * but less precise version "get{nano|micro}[up]time" which will 1080 * return a time which is up to 1/HZ previous to the call, whereas 1081 * the raw version "{nano|micro}[up]time" will return a timestamp 1082 * which is as precise as possible. The "up" variants return the 1083 * time relative to system boot, these are well suited for time 1084 * interval measurements. 1085 * 1086 * Each cpu independently maintains the current time of day, so all 1087 * we need to do to protect ourselves from changes is to do a loop 1088 * check on the seconds field changing out from under us. 1089 * 1090 * The system timer maintains a 32 bit count and due to various issues 1091 * it is possible for the calculated delta to occasionally exceed 1092 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 1093 * multiplication can easily overflow, so we deal with the case. For 1094 * uniformity we deal with the case in the usec case too. 1095 * 1096 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 1097 */ 1098 void 1099 getmicrouptime(struct timeval *tvp) 1100 { 1101 struct globaldata *gd = mycpu; 1102 sysclock_t delta; 1103 1104 do { 1105 tvp->tv_sec = gd->gd_time_seconds; 1106 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1107 } while (tvp->tv_sec != gd->gd_time_seconds); 1108 1109 if (delta >= sys_cputimer->freq) { 1110 tvp->tv_sec += delta / sys_cputimer->freq; 1111 delta %= sys_cputimer->freq; 1112 } 1113 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1114 if (tvp->tv_usec >= 1000000) { 1115 tvp->tv_usec -= 1000000; 1116 ++tvp->tv_sec; 1117 } 1118 } 1119 1120 void 1121 getnanouptime(struct timespec *tsp) 1122 { 1123 struct globaldata *gd = mycpu; 1124 sysclock_t delta; 1125 1126 do { 1127 tsp->tv_sec = gd->gd_time_seconds; 1128 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1129 } while (tsp->tv_sec != gd->gd_time_seconds); 1130 1131 if (delta >= sys_cputimer->freq) { 1132 tsp->tv_sec += delta / sys_cputimer->freq; 1133 delta %= sys_cputimer->freq; 1134 } 1135 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1136 } 1137 1138 void 1139 microuptime(struct timeval *tvp) 1140 { 1141 struct globaldata *gd = mycpu; 1142 sysclock_t delta; 1143 1144 do { 1145 tvp->tv_sec = gd->gd_time_seconds; 1146 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1147 } while (tvp->tv_sec != gd->gd_time_seconds); 1148 1149 if (delta >= sys_cputimer->freq) { 1150 tvp->tv_sec += delta / sys_cputimer->freq; 1151 delta %= sys_cputimer->freq; 1152 } 1153 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1154 } 1155 1156 void 1157 nanouptime(struct timespec *tsp) 1158 { 1159 struct globaldata *gd = mycpu; 1160 sysclock_t delta; 1161 1162 do { 1163 tsp->tv_sec = gd->gd_time_seconds; 1164 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1165 } while (tsp->tv_sec != gd->gd_time_seconds); 1166 1167 if (delta >= sys_cputimer->freq) { 1168 tsp->tv_sec += delta / sys_cputimer->freq; 1169 delta %= sys_cputimer->freq; 1170 } 1171 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1172 } 1173 1174 /* 1175 * realtime routines 1176 */ 1177 void 1178 getmicrotime(struct timeval *tvp) 1179 { 1180 struct globaldata *gd = mycpu; 1181 struct timespec *bt; 1182 sysclock_t delta; 1183 1184 do { 1185 tvp->tv_sec = gd->gd_time_seconds; 1186 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1187 } while (tvp->tv_sec != gd->gd_time_seconds); 1188 1189 if (delta >= sys_cputimer->freq) { 1190 tvp->tv_sec += delta / sys_cputimer->freq; 1191 delta %= sys_cputimer->freq; 1192 } 1193 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1194 1195 bt = &basetime[basetime_index]; 1196 tvp->tv_sec += bt->tv_sec; 1197 tvp->tv_usec += bt->tv_nsec / 1000; 1198 while (tvp->tv_usec >= 1000000) { 1199 tvp->tv_usec -= 1000000; 1200 ++tvp->tv_sec; 1201 } 1202 } 1203 1204 void 1205 getnanotime(struct timespec *tsp) 1206 { 1207 struct globaldata *gd = mycpu; 1208 struct timespec *bt; 1209 sysclock_t delta; 1210 1211 do { 1212 tsp->tv_sec = gd->gd_time_seconds; 1213 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1214 } while (tsp->tv_sec != gd->gd_time_seconds); 1215 1216 if (delta >= sys_cputimer->freq) { 1217 tsp->tv_sec += delta / sys_cputimer->freq; 1218 delta %= sys_cputimer->freq; 1219 } 1220 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1221 1222 bt = &basetime[basetime_index]; 1223 tsp->tv_sec += bt->tv_sec; 1224 tsp->tv_nsec += bt->tv_nsec; 1225 while (tsp->tv_nsec >= 1000000000) { 1226 tsp->tv_nsec -= 1000000000; 1227 ++tsp->tv_sec; 1228 } 1229 } 1230 1231 static void 1232 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1233 { 1234 struct globaldata *gd = mycpu; 1235 sysclock_t delta; 1236 1237 do { 1238 tsp->tv_sec = gd->gd_time_seconds; 1239 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1240 } while (tsp->tv_sec != gd->gd_time_seconds); 1241 1242 if (delta >= sys_cputimer->freq) { 1243 tsp->tv_sec += delta / sys_cputimer->freq; 1244 delta %= sys_cputimer->freq; 1245 } 1246 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1247 1248 tsp->tv_sec += nbt->tv_sec; 1249 tsp->tv_nsec += nbt->tv_nsec; 1250 while (tsp->tv_nsec >= 1000000000) { 1251 tsp->tv_nsec -= 1000000000; 1252 ++tsp->tv_sec; 1253 } 1254 } 1255 1256 1257 void 1258 microtime(struct timeval *tvp) 1259 { 1260 struct globaldata *gd = mycpu; 1261 struct timespec *bt; 1262 sysclock_t delta; 1263 1264 do { 1265 tvp->tv_sec = gd->gd_time_seconds; 1266 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1267 } while (tvp->tv_sec != gd->gd_time_seconds); 1268 1269 if (delta >= sys_cputimer->freq) { 1270 tvp->tv_sec += delta / sys_cputimer->freq; 1271 delta %= sys_cputimer->freq; 1272 } 1273 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1274 1275 bt = &basetime[basetime_index]; 1276 tvp->tv_sec += bt->tv_sec; 1277 tvp->tv_usec += bt->tv_nsec / 1000; 1278 while (tvp->tv_usec >= 1000000) { 1279 tvp->tv_usec -= 1000000; 1280 ++tvp->tv_sec; 1281 } 1282 } 1283 1284 void 1285 nanotime(struct timespec *tsp) 1286 { 1287 struct globaldata *gd = mycpu; 1288 struct timespec *bt; 1289 sysclock_t delta; 1290 1291 do { 1292 tsp->tv_sec = gd->gd_time_seconds; 1293 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1294 } while (tsp->tv_sec != gd->gd_time_seconds); 1295 1296 if (delta >= sys_cputimer->freq) { 1297 tsp->tv_sec += delta / sys_cputimer->freq; 1298 delta %= sys_cputimer->freq; 1299 } 1300 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1301 1302 bt = &basetime[basetime_index]; 1303 tsp->tv_sec += bt->tv_sec; 1304 tsp->tv_nsec += bt->tv_nsec; 1305 while (tsp->tv_nsec >= 1000000000) { 1306 tsp->tv_nsec -= 1000000000; 1307 ++tsp->tv_sec; 1308 } 1309 } 1310 1311 /* 1312 * note: this is not exactly synchronized with real time. To do that we 1313 * would have to do what microtime does and check for a nanoseconds overflow. 1314 */ 1315 time_t 1316 get_approximate_time_t(void) 1317 { 1318 struct globaldata *gd = mycpu; 1319 struct timespec *bt; 1320 1321 bt = &basetime[basetime_index]; 1322 return(gd->gd_time_seconds + bt->tv_sec); 1323 } 1324 1325 int 1326 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1327 { 1328 pps_params_t *app; 1329 struct pps_fetch_args *fapi; 1330 #ifdef PPS_SYNC 1331 struct pps_kcbind_args *kapi; 1332 #endif 1333 1334 switch (cmd) { 1335 case PPS_IOC_CREATE: 1336 return (0); 1337 case PPS_IOC_DESTROY: 1338 return (0); 1339 case PPS_IOC_SETPARAMS: 1340 app = (pps_params_t *)data; 1341 if (app->mode & ~pps->ppscap) 1342 return (EINVAL); 1343 pps->ppsparam = *app; 1344 return (0); 1345 case PPS_IOC_GETPARAMS: 1346 app = (pps_params_t *)data; 1347 *app = pps->ppsparam; 1348 app->api_version = PPS_API_VERS_1; 1349 return (0); 1350 case PPS_IOC_GETCAP: 1351 *(int*)data = pps->ppscap; 1352 return (0); 1353 case PPS_IOC_FETCH: 1354 fapi = (struct pps_fetch_args *)data; 1355 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1356 return (EINVAL); 1357 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1358 return (EOPNOTSUPP); 1359 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1360 fapi->pps_info_buf = pps->ppsinfo; 1361 return (0); 1362 case PPS_IOC_KCBIND: 1363 #ifdef PPS_SYNC 1364 kapi = (struct pps_kcbind_args *)data; 1365 /* XXX Only root should be able to do this */ 1366 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1367 return (EINVAL); 1368 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1369 return (EINVAL); 1370 if (kapi->edge & ~pps->ppscap) 1371 return (EINVAL); 1372 pps->kcmode = kapi->edge; 1373 return (0); 1374 #else 1375 return (EOPNOTSUPP); 1376 #endif 1377 default: 1378 return (ENOTTY); 1379 } 1380 } 1381 1382 void 1383 pps_init(struct pps_state *pps) 1384 { 1385 pps->ppscap |= PPS_TSFMT_TSPEC; 1386 if (pps->ppscap & PPS_CAPTUREASSERT) 1387 pps->ppscap |= PPS_OFFSETASSERT; 1388 if (pps->ppscap & PPS_CAPTURECLEAR) 1389 pps->ppscap |= PPS_OFFSETCLEAR; 1390 } 1391 1392 void 1393 pps_event(struct pps_state *pps, sysclock_t count, int event) 1394 { 1395 struct globaldata *gd; 1396 struct timespec *tsp; 1397 struct timespec *osp; 1398 struct timespec *bt; 1399 struct timespec ts; 1400 sysclock_t *pcount; 1401 #ifdef PPS_SYNC 1402 sysclock_t tcount; 1403 #endif 1404 sysclock_t delta; 1405 pps_seq_t *pseq; 1406 int foff; 1407 #ifdef PPS_SYNC 1408 int fhard; 1409 #else 1410 int fhard __unused; 1411 #endif 1412 1413 gd = mycpu; 1414 1415 /* Things would be easier with arrays... */ 1416 if (event == PPS_CAPTUREASSERT) { 1417 tsp = &pps->ppsinfo.assert_timestamp; 1418 osp = &pps->ppsparam.assert_offset; 1419 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1420 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1421 pcount = &pps->ppscount[0]; 1422 pseq = &pps->ppsinfo.assert_sequence; 1423 } else { 1424 tsp = &pps->ppsinfo.clear_timestamp; 1425 osp = &pps->ppsparam.clear_offset; 1426 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1427 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1428 pcount = &pps->ppscount[1]; 1429 pseq = &pps->ppsinfo.clear_sequence; 1430 } 1431 1432 /* Nothing really happened */ 1433 if (*pcount == count) 1434 return; 1435 1436 *pcount = count; 1437 1438 do { 1439 ts.tv_sec = gd->gd_time_seconds; 1440 delta = count - gd->gd_cpuclock_base; 1441 } while (ts.tv_sec != gd->gd_time_seconds); 1442 1443 if (delta >= sys_cputimer->freq) { 1444 ts.tv_sec += delta / sys_cputimer->freq; 1445 delta %= sys_cputimer->freq; 1446 } 1447 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1448 bt = &basetime[basetime_index]; 1449 ts.tv_sec += bt->tv_sec; 1450 ts.tv_nsec += bt->tv_nsec; 1451 while (ts.tv_nsec >= 1000000000) { 1452 ts.tv_nsec -= 1000000000; 1453 ++ts.tv_sec; 1454 } 1455 1456 (*pseq)++; 1457 *tsp = ts; 1458 1459 if (foff) { 1460 timespecadd(tsp, osp); 1461 if (tsp->tv_nsec < 0) { 1462 tsp->tv_nsec += 1000000000; 1463 tsp->tv_sec -= 1; 1464 } 1465 } 1466 #ifdef PPS_SYNC 1467 if (fhard) { 1468 /* magic, at its best... */ 1469 tcount = count - pps->ppscount[2]; 1470 pps->ppscount[2] = count; 1471 if (tcount >= sys_cputimer->freq) { 1472 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1473 sys_cputimer->freq64_nsec * 1474 (tcount % sys_cputimer->freq)) >> 32; 1475 } else { 1476 delta = (sys_cputimer->freq64_nsec * tcount) >> 32; 1477 } 1478 hardpps(tsp, delta); 1479 } 1480 #endif 1481 } 1482 1483 /* 1484 * Return the tsc target value for a delay of (ns). 1485 * 1486 * Returns -1 if the TSC is not supported. 1487 */ 1488 int64_t 1489 tsc_get_target(int ns) 1490 { 1491 #if defined(_RDTSC_SUPPORTED_) 1492 if (cpu_feature & CPUID_TSC) { 1493 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1494 } 1495 #endif 1496 return(-1); 1497 } 1498 1499 /* 1500 * Compare the tsc against the passed target 1501 * 1502 * Returns +1 if the target has been reached 1503 * Returns 0 if the target has not yet been reached 1504 * Returns -1 if the TSC is not supported. 1505 * 1506 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1507 */ 1508 int 1509 tsc_test_target(int64_t target) 1510 { 1511 #if defined(_RDTSC_SUPPORTED_) 1512 if (cpu_feature & CPUID_TSC) { 1513 if ((int64_t)(target - rdtsc()) <= 0) 1514 return(1); 1515 return(0); 1516 } 1517 #endif 1518 return(-1); 1519 } 1520 1521 /* 1522 * Delay the specified number of nanoseconds using the tsc. This function 1523 * returns immediately if the TSC is not supported. At least one cpu_pause() 1524 * will be issued. 1525 */ 1526 void 1527 tsc_delay(int ns) 1528 { 1529 int64_t clk; 1530 1531 clk = tsc_get_target(ns); 1532 cpu_pause(); 1533 while (tsc_test_target(clk) == 0) 1534 cpu_pause(); 1535 } 1536