1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 69 */ 70 71 #include "opt_ntp.h" 72 #include "opt_pctrack.h" 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/callout.h> 77 #include <sys/kernel.h> 78 #include <sys/kinfo.h> 79 #include <sys/proc.h> 80 #include <sys/malloc.h> 81 #include <sys/resource.h> 82 #include <sys/resourcevar.h> 83 #include <sys/signalvar.h> 84 #include <sys/priv.h> 85 #include <sys/timex.h> 86 #include <sys/timepps.h> 87 #include <sys/upmap.h> 88 #include <sys/lock.h> 89 #include <sys/sysctl.h> 90 #include <sys/kcollect.h> 91 92 #include <vm/vm.h> 93 #include <vm/pmap.h> 94 #include <vm/vm_map.h> 95 #include <vm/vm_extern.h> 96 97 #include <sys/thread2.h> 98 #include <sys/spinlock2.h> 99 100 #include <machine/cpu.h> 101 #include <machine/limits.h> 102 #include <machine/smp.h> 103 #include <machine/cpufunc.h> 104 #include <machine/specialreg.h> 105 #include <machine/clock.h> 106 107 #ifdef DEBUG_PCTRACK 108 static void do_pctrack(struct intrframe *frame, int which); 109 #endif 110 111 static void initclocks (void *dummy); 112 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL); 113 114 /* 115 * Some of these don't belong here, but it's easiest to concentrate them. 116 * Note that cpu_time counts in microseconds, but most userland programs 117 * just compare relative times against the total by delta. 118 */ 119 struct kinfo_cputime cputime_percpu[MAXCPU]; 120 #ifdef DEBUG_PCTRACK 121 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 122 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 123 #endif 124 125 static int sniff_enable = 1; 126 static int sniff_target = -1; 127 SYSCTL_INT(_kern, OID_AUTO, sniff_enable, CTLFLAG_RW, &sniff_enable, 0 , ""); 128 SYSCTL_INT(_kern, OID_AUTO, sniff_target, CTLFLAG_RW, &sniff_target, 0 , ""); 129 130 static int 131 sysctl_cputime(SYSCTL_HANDLER_ARGS) 132 { 133 int cpu, error = 0; 134 int root_error; 135 size_t size = sizeof(struct kinfo_cputime); 136 struct kinfo_cputime tmp; 137 138 /* 139 * NOTE: For security reasons, only root can sniff %rip 140 */ 141 root_error = priv_check_cred(curthread->td_ucred, PRIV_ROOT, 0); 142 143 for (cpu = 0; cpu < ncpus; ++cpu) { 144 tmp = cputime_percpu[cpu]; 145 if (root_error == 0) { 146 tmp.cp_sample_pc = 147 (int64_t)globaldata_find(cpu)->gd_sample_pc; 148 tmp.cp_sample_sp = 149 (int64_t)globaldata_find(cpu)->gd_sample_sp; 150 } 151 if ((error = SYSCTL_OUT(req, &tmp, size)) != 0) 152 break; 153 } 154 155 if (root_error == 0) { 156 if (sniff_enable) { 157 int n = sniff_target; 158 if (n < 0) 159 smp_sniff(); 160 else if (n < ncpus) 161 cpu_sniff(n); 162 } 163 } 164 165 return (error); 166 } 167 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 168 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 169 170 static int 171 sysctl_cp_time(SYSCTL_HANDLER_ARGS) 172 { 173 long cpu_states[CPUSTATES] = {0}; 174 int cpu, error = 0; 175 size_t size = sizeof(cpu_states); 176 177 for (cpu = 0; cpu < ncpus; ++cpu) { 178 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user; 179 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice; 180 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys; 181 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr; 182 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle; 183 } 184 185 error = SYSCTL_OUT(req, cpu_states, size); 186 187 return (error); 188 } 189 190 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 191 sysctl_cp_time, "LU", "CPU time statistics"); 192 193 static int 194 sysctl_cp_times(SYSCTL_HANDLER_ARGS) 195 { 196 long cpu_states[CPUSTATES] = {0}; 197 int cpu, error; 198 size_t size = sizeof(cpu_states); 199 200 for (error = 0, cpu = 0; error == 0 && cpu < ncpus; ++cpu) { 201 cpu_states[CP_USER] = cputime_percpu[cpu].cp_user; 202 cpu_states[CP_NICE] = cputime_percpu[cpu].cp_nice; 203 cpu_states[CP_SYS] = cputime_percpu[cpu].cp_sys; 204 cpu_states[CP_INTR] = cputime_percpu[cpu].cp_intr; 205 cpu_states[CP_IDLE] = cputime_percpu[cpu].cp_idle; 206 error = SYSCTL_OUT(req, cpu_states, size); 207 } 208 209 return (error); 210 } 211 212 SYSCTL_PROC(_kern, OID_AUTO, cp_times, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 213 sysctl_cp_times, "LU", "per-CPU time statistics"); 214 215 /* 216 * boottime is used to calculate the 'real' uptime. Do not confuse this with 217 * microuptime(). microtime() is not drift compensated. The real uptime 218 * with compensation is nanotime() - bootime. boottime is recalculated 219 * whenever the real time is set based on the compensated elapsed time 220 * in seconds (gd->gd_time_seconds). 221 * 222 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 223 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 224 * the real time. 225 * 226 * WARNING! time_second can backstep on time corrections. Also, unlike 227 * time_second, time_uptime is not a "real" time_t (seconds 228 * since the Epoch) but seconds since booting. 229 */ 230 struct timespec boottime; /* boot time (realtime) for reference only */ 231 time_t time_second; /* read-only 'passive' realtime in seconds */ 232 time_t time_uptime; /* read-only 'passive' uptime in seconds */ 233 234 /* 235 * basetime is used to calculate the compensated real time of day. The 236 * basetime can be modified on a per-tick basis by the adjtime(), 237 * ntp_adjtime(), and sysctl-based time correction APIs. 238 * 239 * Note that frequency corrections can also be made by adjusting 240 * gd_cpuclock_base. 241 * 242 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 243 * used on both SMP and UP systems to avoid MP races between cpu's and 244 * interrupt races on UP systems. 245 */ 246 struct hardtime { 247 __uint32_t time_second; 248 sysclock_t cpuclock_base; 249 }; 250 251 #define BASETIME_ARYSIZE 16 252 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 253 static struct timespec basetime[BASETIME_ARYSIZE]; 254 static struct hardtime hardtime[BASETIME_ARYSIZE]; 255 static volatile int basetime_index; 256 257 static int 258 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 259 { 260 struct timespec *bt; 261 int error; 262 int index; 263 264 /* 265 * Because basetime data and index may be updated by another cpu, 266 * a load fence is required to ensure that the data we read has 267 * not been speculatively read relative to a possibly updated index. 268 */ 269 index = basetime_index; 270 cpu_lfence(); 271 bt = &basetime[index]; 272 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 273 return (error); 274 } 275 276 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 277 &boottime, timespec, "System boottime"); 278 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 279 sysctl_get_basetime, "S,timespec", "System basetime"); 280 281 static void hardclock(systimer_t info, int, struct intrframe *frame); 282 static void statclock(systimer_t info, int, struct intrframe *frame); 283 static void schedclock(systimer_t info, int, struct intrframe *frame); 284 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 285 286 int ticks; /* system master ticks at hz */ 287 int clocks_running; /* tsleep/timeout clocks operational */ 288 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 289 int64_t nsec_acc; /* accumulator */ 290 int sched_ticks; /* global schedule clock ticks */ 291 292 /* NTPD time correction fields */ 293 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 294 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 295 int64_t ntp_delta; /* one-time correction in nsec */ 296 int64_t ntp_big_delta = 1000000000; 297 int32_t ntp_tick_delta; /* current adjustment rate */ 298 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 299 time_t ntp_leap_second; /* time of next leap second */ 300 int ntp_leap_insert; /* whether to insert or remove a second */ 301 struct spinlock ntp_spin; 302 303 /* 304 * Finish initializing clock frequencies and start all clocks running. 305 */ 306 /* ARGSUSED*/ 307 static void 308 initclocks(void *dummy) 309 { 310 /*psratio = profhz / stathz;*/ 311 spin_init(&ntp_spin, "ntp"); 312 initclocks_pcpu(); 313 clocks_running = 1; 314 if (kpmap) { 315 kpmap->tsc_freq = tsc_frequency; 316 kpmap->tick_freq = hz; 317 } 318 } 319 320 /* 321 * Called on a per-cpu basis from the idle thread bootstrap on each cpu 322 * during SMP initialization. 323 * 324 * This routine is called concurrently during low-level SMP initialization 325 * and may not block in any way. Meaning, among other things, we can't 326 * acquire any tokens. 327 */ 328 void 329 initclocks_pcpu(void) 330 { 331 struct globaldata *gd = mycpu; 332 333 crit_enter(); 334 if (gd->gd_cpuid == 0) { 335 gd->gd_time_seconds = 1; 336 gd->gd_cpuclock_base = sys_cputimer->count(); 337 hardtime[0].time_second = gd->gd_time_seconds; 338 hardtime[0].cpuclock_base = gd->gd_cpuclock_base; 339 } else { 340 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 341 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 342 } 343 344 systimer_intr_enable(); 345 346 crit_exit(); 347 } 348 349 /* 350 * Called on a 10-second interval after the system is operational. 351 * Return the collection data for USERPCT and install the data for 352 * SYSTPCT and IDLEPCT. 353 */ 354 static 355 uint64_t 356 collect_cputime_callback(int n) 357 { 358 static long cpu_base[CPUSTATES]; 359 long cpu_states[CPUSTATES]; 360 long total; 361 long acc; 362 long lsb; 363 364 bzero(cpu_states, sizeof(cpu_states)); 365 for (n = 0; n < ncpus; ++n) { 366 cpu_states[CP_USER] += cputime_percpu[n].cp_user; 367 cpu_states[CP_NICE] += cputime_percpu[n].cp_nice; 368 cpu_states[CP_SYS] += cputime_percpu[n].cp_sys; 369 cpu_states[CP_INTR] += cputime_percpu[n].cp_intr; 370 cpu_states[CP_IDLE] += cputime_percpu[n].cp_idle; 371 } 372 373 acc = 0; 374 for (n = 0; n < CPUSTATES; ++n) { 375 total = cpu_states[n] - cpu_base[n]; 376 cpu_base[n] = cpu_states[n]; 377 cpu_states[n] = total; 378 acc += total; 379 } 380 if (acc == 0) /* prevent degenerate divide by 0 */ 381 acc = 1; 382 lsb = acc / (10000 * 2); 383 kcollect_setvalue(KCOLLECT_SYSTPCT, 384 (cpu_states[CP_SYS] + lsb) * 10000 / acc); 385 kcollect_setvalue(KCOLLECT_IDLEPCT, 386 (cpu_states[CP_IDLE] + lsb) * 10000 / acc); 387 kcollect_setvalue(KCOLLECT_INTRPCT, 388 (cpu_states[CP_INTR] + lsb) * 10000 / acc); 389 return((cpu_states[CP_USER] + cpu_states[CP_NICE] + lsb) * 10000 / acc); 390 } 391 392 /* 393 * This routine is called on just the BSP, just after SMP initialization 394 * completes to * finish initializing any clocks that might contend/block 395 * (e.g. like on a token). We can't do this in initclocks_pcpu() because 396 * that function is called from the idle thread bootstrap for each cpu and 397 * not allowed to block at all. 398 */ 399 static 400 void 401 initclocks_other(void *dummy) 402 { 403 struct globaldata *ogd = mycpu; 404 struct globaldata *gd; 405 int n; 406 407 for (n = 0; n < ncpus; ++n) { 408 lwkt_setcpu_self(globaldata_find(n)); 409 gd = mycpu; 410 411 /* 412 * Use a non-queued periodic systimer to prevent multiple 413 * ticks from building up if the sysclock jumps forward 414 * (8254 gets reset). The sysclock will never jump backwards. 415 * Our time sync is based on the actual sysclock, not the 416 * ticks count. 417 * 418 * Install statclock before hardclock to prevent statclock 419 * from misinterpreting gd_flags for tick assignment when 420 * they overlap. 421 */ 422 systimer_init_periodic_flags(&gd->gd_statclock, statclock, 423 NULL, stathz, 424 SYSTF_MSSYNC | SYSTF_FIRST); 425 systimer_init_periodic_flags(&gd->gd_hardclock, hardclock, 426 NULL, hz, SYSTF_MSSYNC); 427 } 428 lwkt_setcpu_self(ogd); 429 430 /* 431 * Regular data collection 432 */ 433 kcollect_register(KCOLLECT_USERPCT, "user", collect_cputime_callback, 434 KCOLLECT_SCALE(KCOLLECT_USERPCT_FORMAT, 0)); 435 kcollect_register(KCOLLECT_SYSTPCT, "syst", NULL, 436 KCOLLECT_SCALE(KCOLLECT_SYSTPCT_FORMAT, 0)); 437 kcollect_register(KCOLLECT_IDLEPCT, "idle", NULL, 438 KCOLLECT_SCALE(KCOLLECT_IDLEPCT_FORMAT, 0)); 439 } 440 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL); 441 442 /* 443 * This method is called on just the BSP, after all the usched implementations 444 * are initialized. This avoids races between usched initialization functions 445 * and usched_schedulerclock(). 446 */ 447 static 448 void 449 initclocks_usched(void *dummy) 450 { 451 struct globaldata *ogd = mycpu; 452 struct globaldata *gd; 453 int n; 454 455 for (n = 0; n < ncpus; ++n) { 456 lwkt_setcpu_self(globaldata_find(n)); 457 gd = mycpu; 458 459 /* XXX correct the frequency for scheduler / estcpu tests */ 460 systimer_init_periodic_flags(&gd->gd_schedclock, schedclock, 461 NULL, ESTCPUFREQ, SYSTF_MSSYNC); 462 } 463 lwkt_setcpu_self(ogd); 464 } 465 SYSINIT(clocks3, SI_BOOT2_USCHED, SI_ORDER_ANY, initclocks_usched, NULL); 466 467 /* 468 * This sets the current real time of day. Timespecs are in seconds and 469 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 470 * instead we adjust basetime so basetime + gd_* results in the current 471 * time of day. This way the gd_* fields are guaranteed to represent 472 * a monotonically increasing 'uptime' value. 473 * 474 * When set_timeofday() is called from userland, the system call forces it 475 * onto cpu #0 since only cpu #0 can update basetime_index. 476 */ 477 void 478 set_timeofday(struct timespec *ts) 479 { 480 struct timespec *nbt; 481 int ni; 482 483 /* 484 * XXX SMP / non-atomic basetime updates 485 */ 486 crit_enter(); 487 ni = (basetime_index + 1) & BASETIME_ARYMASK; 488 cpu_lfence(); 489 nbt = &basetime[ni]; 490 nanouptime(nbt); 491 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 492 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 493 if (nbt->tv_nsec < 0) { 494 nbt->tv_nsec += 1000000000; 495 --nbt->tv_sec; 496 } 497 498 /* 499 * Note that basetime diverges from boottime as the clock drift is 500 * compensated for, so we cannot do away with boottime. When setting 501 * the absolute time of day the drift is 0 (for an instant) and we 502 * can simply assign boottime to basetime. 503 * 504 * Note that nanouptime() is based on gd_time_seconds which is drift 505 * compensated up to a point (it is guaranteed to remain monotonically 506 * increasing). gd_time_seconds is thus our best uptime guess and 507 * suitable for use in the boottime calculation. It is already taken 508 * into account in the basetime calculation above. 509 */ 510 spin_lock(&ntp_spin); 511 boottime.tv_sec = nbt->tv_sec; 512 ntp_delta = 0; 513 514 /* 515 * We now have a new basetime, make sure all other cpus have it, 516 * then update the index. 517 */ 518 cpu_sfence(); 519 basetime_index = ni; 520 spin_unlock(&ntp_spin); 521 522 crit_exit(); 523 } 524 525 /* 526 * Each cpu has its own hardclock, but we only increment ticks and softticks 527 * on cpu #0. 528 * 529 * NOTE! systimer! the MP lock might not be held here. We can only safely 530 * manipulate objects owned by the current cpu. 531 */ 532 static void 533 hardclock(systimer_t info, int in_ipi, struct intrframe *frame) 534 { 535 sysclock_t cputicks; 536 struct proc *p; 537 struct globaldata *gd = mycpu; 538 539 if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) { 540 /* Defer to doreti on passive IPIQ processing */ 541 need_ipiq(); 542 } 543 544 /* 545 * We update the compensation base to calculate fine-grained time 546 * from the sys_cputimer on a per-cpu basis in order to avoid 547 * having to mess around with locks. sys_cputimer is assumed to 548 * be consistent across all cpus. CPU N copies the base state from 549 * CPU 0 using the same FIFO trick that we use for basetime (so we 550 * don't catch a CPU 0 update in the middle). 551 * 552 * Note that we never allow info->time (aka gd->gd_hardclock.time) 553 * to reverse index gd_cpuclock_base, but that it is possible for 554 * it to temporarily get behind in the seconds if something in the 555 * system locks interrupts for a long period of time. Since periodic 556 * timers count events, though everything should resynch again 557 * immediately. 558 */ 559 if (gd->gd_cpuid == 0) { 560 int ni; 561 562 cputicks = info->time - gd->gd_cpuclock_base; 563 if (cputicks >= sys_cputimer->freq) { 564 cputicks /= sys_cputimer->freq; 565 if (cputicks != 0 && cputicks != 1) 566 kprintf("Warning: hardclock missed > 1 sec\n"); 567 gd->gd_time_seconds += cputicks; 568 gd->gd_cpuclock_base += sys_cputimer->freq * cputicks; 569 /* uncorrected monotonic 1-sec gran */ 570 time_uptime += cputicks; 571 } 572 ni = (basetime_index + 1) & BASETIME_ARYMASK; 573 hardtime[ni].time_second = gd->gd_time_seconds; 574 hardtime[ni].cpuclock_base = gd->gd_cpuclock_base; 575 } else { 576 int ni; 577 578 ni = basetime_index; 579 cpu_lfence(); 580 gd->gd_time_seconds = hardtime[ni].time_second; 581 gd->gd_cpuclock_base = hardtime[ni].cpuclock_base; 582 } 583 584 /* 585 * The system-wide ticks counter and NTP related timedelta/tickdelta 586 * adjustments only occur on cpu #0. NTP adjustments are accomplished 587 * by updating basetime. 588 */ 589 if (gd->gd_cpuid == 0) { 590 struct timespec *nbt; 591 struct timespec nts; 592 int leap; 593 int ni; 594 595 ++ticks; 596 597 #if 0 598 if (tco->tc_poll_pps) 599 tco->tc_poll_pps(tco); 600 #endif 601 602 /* 603 * Calculate the new basetime index. We are in a critical section 604 * on cpu #0 and can safely play with basetime_index. Start 605 * with the current basetime and then make adjustments. 606 */ 607 ni = (basetime_index + 1) & BASETIME_ARYMASK; 608 nbt = &basetime[ni]; 609 *nbt = basetime[basetime_index]; 610 611 /* 612 * ntp adjustments only occur on cpu 0 and are protected by 613 * ntp_spin. This spinlock virtually never conflicts. 614 */ 615 spin_lock(&ntp_spin); 616 617 /* 618 * Apply adjtime corrections. (adjtime() API) 619 * 620 * adjtime() only runs on cpu #0 so our critical section is 621 * sufficient to access these variables. 622 */ 623 if (ntp_delta != 0) { 624 nbt->tv_nsec += ntp_tick_delta; 625 ntp_delta -= ntp_tick_delta; 626 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 627 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 628 ntp_tick_delta = ntp_delta; 629 } 630 } 631 632 /* 633 * Apply permanent frequency corrections. (sysctl API) 634 */ 635 if (ntp_tick_permanent != 0) { 636 ntp_tick_acc += ntp_tick_permanent; 637 if (ntp_tick_acc >= (1LL << 32)) { 638 nbt->tv_nsec += ntp_tick_acc >> 32; 639 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 640 } else if (ntp_tick_acc <= -(1LL << 32)) { 641 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 642 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 643 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 644 } 645 } 646 647 if (nbt->tv_nsec >= 1000000000) { 648 nbt->tv_sec++; 649 nbt->tv_nsec -= 1000000000; 650 } else if (nbt->tv_nsec < 0) { 651 nbt->tv_sec--; 652 nbt->tv_nsec += 1000000000; 653 } 654 655 /* 656 * Another per-tick compensation. (for ntp_adjtime() API) 657 */ 658 if (nsec_adj != 0) { 659 nsec_acc += nsec_adj; 660 if (nsec_acc >= 0x100000000LL) { 661 nbt->tv_nsec += nsec_acc >> 32; 662 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 663 } else if (nsec_acc <= -0x100000000LL) { 664 nbt->tv_nsec -= -nsec_acc >> 32; 665 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 666 } 667 if (nbt->tv_nsec >= 1000000000) { 668 nbt->tv_nsec -= 1000000000; 669 ++nbt->tv_sec; 670 } else if (nbt->tv_nsec < 0) { 671 nbt->tv_nsec += 1000000000; 672 --nbt->tv_sec; 673 } 674 } 675 spin_unlock(&ntp_spin); 676 677 /************************************************************ 678 * LEAP SECOND CORRECTION * 679 ************************************************************ 680 * 681 * Taking into account all the corrections made above, figure 682 * out the new real time. If the seconds field has changed 683 * then apply any pending leap-second corrections. 684 */ 685 getnanotime_nbt(nbt, &nts); 686 687 if (time_second != nts.tv_sec) { 688 /* 689 * Apply leap second (sysctl API). Adjust nts for changes 690 * so we do not have to call getnanotime_nbt again. 691 */ 692 if (ntp_leap_second) { 693 if (ntp_leap_second == nts.tv_sec) { 694 if (ntp_leap_insert) { 695 nbt->tv_sec++; 696 nts.tv_sec++; 697 } else { 698 nbt->tv_sec--; 699 nts.tv_sec--; 700 } 701 ntp_leap_second--; 702 } 703 } 704 705 /* 706 * Apply leap second (ntp_adjtime() API), calculate a new 707 * nsec_adj field. ntp_update_second() returns nsec_adj 708 * as a per-second value but we need it as a per-tick value. 709 */ 710 leap = ntp_update_second(time_second, &nsec_adj); 711 nsec_adj /= hz; 712 nbt->tv_sec += leap; 713 nts.tv_sec += leap; 714 715 /* 716 * Update the time_second 'approximate time' global. 717 */ 718 time_second = nts.tv_sec; 719 720 /* 721 * Clear the IPC hint for the currently running thread once 722 * per second, allowing us to disconnect the hint from a 723 * thread which may no longer care. 724 */ 725 curthread->td_wakefromcpu = -1; 726 727 } 728 729 /* 730 * Finally, our new basetime is ready to go live! 731 */ 732 cpu_sfence(); 733 basetime_index = ni; 734 735 /* 736 * Update kpmap on each tick. TS updates are integrated with 737 * fences and upticks allowing userland to read the data 738 * deterministically. 739 */ 740 if (kpmap) { 741 int w; 742 743 w = (kpmap->upticks + 1) & 1; 744 getnanouptime(&kpmap->ts_uptime[w]); 745 getnanotime(&kpmap->ts_realtime[w]); 746 cpu_sfence(); 747 ++kpmap->upticks; 748 cpu_sfence(); 749 } 750 } 751 752 /* 753 * lwkt thread scheduler fair queueing 754 */ 755 lwkt_schedulerclock(curthread); 756 757 /* 758 * softticks are handled for all cpus 759 */ 760 hardclock_softtick(gd); 761 762 /* 763 * Rollup accumulated vmstats, copy-back for critical path checks. 764 */ 765 vmstats_rollup_cpu(gd); 766 vfscache_rollup_cpu(gd); 767 mycpu->gd_vmstats = vmstats; 768 769 /* 770 * ITimer handling is per-tick, per-cpu. 771 * 772 * We must acquire the per-process token in order for ksignal() 773 * to be non-blocking. For the moment this requires an AST fault, 774 * the ksignal() cannot be safely issued from this hard interrupt. 775 * 776 * XXX Even the trytoken here isn't right, and itimer operation in 777 * a multi threaded environment is going to be weird at the 778 * very least. 779 */ 780 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) { 781 crit_enter_hard(); 782 if (p->p_upmap) 783 ++p->p_upmap->runticks; 784 785 if (frame && CLKF_USERMODE(frame) && 786 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 787 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) { 788 p->p_flags |= P_SIGVTALRM; 789 need_user_resched(); 790 } 791 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 792 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) { 793 p->p_flags |= P_SIGPROF; 794 need_user_resched(); 795 } 796 crit_exit_hard(); 797 lwkt_reltoken(&p->p_token); 798 } 799 setdelayed(); 800 } 801 802 /* 803 * The statistics clock typically runs at a 125Hz rate, and is intended 804 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 805 * 806 * NOTE! systimer! the MP lock might not be held here. We can only safely 807 * manipulate objects owned by the current cpu. 808 * 809 * The stats clock is responsible for grabbing a profiling sample. 810 * Most of the statistics are only used by user-level statistics programs. 811 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 812 * p->p_estcpu. 813 * 814 * Like the other clocks, the stat clock is called from what is effectively 815 * a fast interrupt, so the context should be the thread/process that got 816 * interrupted. 817 */ 818 static void 819 statclock(systimer_t info, int in_ipi, struct intrframe *frame) 820 { 821 globaldata_t gd = mycpu; 822 thread_t td; 823 struct proc *p; 824 int bump; 825 sysclock_t cv; 826 sysclock_t scv; 827 828 /* 829 * How big was our timeslice relative to the last time? Calculate 830 * in microseconds. 831 * 832 * NOTE: Use of microuptime() is typically MPSAFE, but usually not 833 * during early boot. Just use the systimer count to be nice 834 * to e.g. qemu. The systimer has a better chance of being 835 * MPSAFE at early boot. 836 */ 837 cv = sys_cputimer->count(); 838 scv = gd->statint.gd_statcv; 839 if (scv == 0) { 840 bump = 1; 841 } else { 842 bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32; 843 if (bump < 0) 844 bump = 0; 845 if (bump > 1000000) 846 bump = 1000000; 847 } 848 gd->statint.gd_statcv = cv; 849 850 #if 0 851 stv = &gd->gd_stattv; 852 if (stv->tv_sec == 0) { 853 bump = 1; 854 } else { 855 bump = tv.tv_usec - stv->tv_usec + 856 (tv.tv_sec - stv->tv_sec) * 1000000; 857 if (bump < 0) 858 bump = 0; 859 if (bump > 1000000) 860 bump = 1000000; 861 } 862 *stv = tv; 863 #endif 864 865 td = curthread; 866 p = td->td_proc; 867 868 if (frame && CLKF_USERMODE(frame)) { 869 /* 870 * Came from userland, handle user time and deal with 871 * possible process. 872 */ 873 if (p && (p->p_flags & P_PROFIL)) 874 addupc_intr(p, CLKF_PC(frame), 1); 875 td->td_uticks += bump; 876 877 /* 878 * Charge the time as appropriate 879 */ 880 if (p && p->p_nice > NZERO) 881 cpu_time.cp_nice += bump; 882 else 883 cpu_time.cp_user += bump; 884 } else { 885 int intr_nest = gd->gd_intr_nesting_level; 886 887 if (in_ipi) { 888 /* 889 * IPI processing code will bump gd_intr_nesting_level 890 * up by one, which breaks following CLKF_INTR testing, 891 * so we subtract it by one here. 892 */ 893 --intr_nest; 894 } 895 896 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td)) 897 898 /* 899 * Came from kernel mode, so we were: 900 * - handling an interrupt, 901 * - doing syscall or trap work on behalf of the current 902 * user process, or 903 * - spinning in the idle loop. 904 * Whichever it is, charge the time as appropriate. 905 * Note that we charge interrupts to the current process, 906 * regardless of whether they are ``for'' that process, 907 * so that we know how much of its real time was spent 908 * in ``non-process'' (i.e., interrupt) work. 909 * 910 * XXX assume system if frame is NULL. A NULL frame 911 * can occur if ipi processing is done from a crit_exit(). 912 */ 913 if (IS_INTR_RUNNING || 914 (gd->gd_reqflags & RQF_INTPEND)) { 915 /* 916 * If we interrupted an interrupt thread, well, 917 * count it as interrupt time. 918 */ 919 td->td_iticks += bump; 920 #ifdef DEBUG_PCTRACK 921 if (frame) 922 do_pctrack(frame, PCTRACK_INT); 923 #endif 924 cpu_time.cp_intr += bump; 925 } else if (gd->gd_flags & GDF_VIRTUSER) { 926 /* 927 * The vkernel doesn't do a good job providing trap 928 * frames that we can test. If the GDF_VIRTUSER 929 * flag is set we probably interrupted user mode. 930 * 931 * We also use this flag on the host when entering 932 * VMM mode. 933 */ 934 td->td_uticks += bump; 935 936 /* 937 * Charge the time as appropriate 938 */ 939 if (p && p->p_nice > NZERO) 940 cpu_time.cp_nice += bump; 941 else 942 cpu_time.cp_user += bump; 943 } else { 944 td->td_sticks += bump; 945 if (td == &gd->gd_idlethread) { 946 /* 947 * We want to count token contention as 948 * system time. When token contention occurs 949 * the cpu may only be outside its critical 950 * section while switching through the idle 951 * thread. In this situation, various flags 952 * will be set in gd_reqflags. 953 */ 954 if (gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) 955 cpu_time.cp_sys += bump; 956 else 957 cpu_time.cp_idle += bump; 958 } else { 959 /* 960 * System thread was running. 961 */ 962 #ifdef DEBUG_PCTRACK 963 if (frame) 964 do_pctrack(frame, PCTRACK_SYS); 965 #endif 966 cpu_time.cp_sys += bump; 967 } 968 } 969 970 #undef IS_INTR_RUNNING 971 } 972 } 973 974 #ifdef DEBUG_PCTRACK 975 /* 976 * Sample the PC when in the kernel or in an interrupt. User code can 977 * retrieve the information and generate a histogram or other output. 978 */ 979 980 static void 981 do_pctrack(struct intrframe *frame, int which) 982 { 983 struct kinfo_pctrack *pctrack; 984 985 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 986 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 987 (void *)CLKF_PC(frame); 988 ++pctrack->pc_index; 989 } 990 991 static int 992 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 993 { 994 struct kinfo_pcheader head; 995 int error; 996 int cpu; 997 int ntrack; 998 999 head.pc_ntrack = PCTRACK_SIZE; 1000 head.pc_arysize = PCTRACK_ARYSIZE; 1001 1002 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 1003 return (error); 1004 1005 for (cpu = 0; cpu < ncpus; ++cpu) { 1006 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 1007 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 1008 sizeof(struct kinfo_pctrack)); 1009 if (error) 1010 break; 1011 } 1012 if (error) 1013 break; 1014 } 1015 return (error); 1016 } 1017 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 1018 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 1019 1020 #endif 1021 1022 /* 1023 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 1024 * the MP lock might not be held. We can safely manipulate parts of curproc 1025 * but that's about it. 1026 * 1027 * Each cpu has its own scheduler clock. 1028 */ 1029 static void 1030 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 1031 { 1032 struct lwp *lp; 1033 struct rusage *ru; 1034 struct vmspace *vm; 1035 long rss; 1036 1037 if ((lp = lwkt_preempted_proc()) != NULL) { 1038 /* 1039 * Account for cpu time used and hit the scheduler. Note 1040 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 1041 * HERE. 1042 */ 1043 ++lp->lwp_cpticks; 1044 usched_schedulerclock(lp, info->periodic, info->time); 1045 } else { 1046 usched_schedulerclock(NULL, info->periodic, info->time); 1047 } 1048 if ((lp = curthread->td_lwp) != NULL) { 1049 /* 1050 * Update resource usage integrals and maximums. 1051 */ 1052 if ((ru = &lp->lwp_proc->p_ru) && 1053 (vm = lp->lwp_proc->p_vmspace) != NULL) { 1054 ru->ru_ixrss += pgtok(btoc(vm->vm_tsize)); 1055 ru->ru_idrss += pgtok(btoc(vm->vm_dsize)); 1056 ru->ru_isrss += pgtok(btoc(vm->vm_ssize)); 1057 if (lwkt_trytoken(&vm->vm_map.token)) { 1058 rss = pgtok(vmspace_resident_count(vm)); 1059 if (ru->ru_maxrss < rss) 1060 ru->ru_maxrss = rss; 1061 lwkt_reltoken(&vm->vm_map.token); 1062 } 1063 } 1064 } 1065 /* Increment the global sched_ticks */ 1066 if (mycpu->gd_cpuid == 0) 1067 ++sched_ticks; 1068 } 1069 1070 /* 1071 * Compute number of ticks for the specified amount of time. The 1072 * return value is intended to be used in a clock interrupt timed 1073 * operation and guaranteed to meet or exceed the requested time. 1074 * If the representation overflows, return INT_MAX. The minimum return 1075 * value is 1 ticks and the function will average the calculation up. 1076 * If any value greater then 0 microseconds is supplied, a value 1077 * of at least 2 will be returned to ensure that a near-term clock 1078 * interrupt does not cause the timeout to occur (degenerately) early. 1079 * 1080 * Note that limit checks must take into account microseconds, which is 1081 * done simply by using the smaller signed long maximum instead of 1082 * the unsigned long maximum. 1083 * 1084 * If ints have 32 bits, then the maximum value for any timeout in 1085 * 10ms ticks is 248 days. 1086 */ 1087 int 1088 tvtohz_high(struct timeval *tv) 1089 { 1090 int ticks; 1091 long sec, usec; 1092 1093 sec = tv->tv_sec; 1094 usec = tv->tv_usec; 1095 if (usec < 0) { 1096 sec--; 1097 usec += 1000000; 1098 } 1099 if (sec < 0) { 1100 #ifdef DIAGNOSTIC 1101 if (usec > 0) { 1102 sec++; 1103 usec -= 1000000; 1104 } 1105 kprintf("tvtohz_high: negative time difference " 1106 "%ld sec %ld usec\n", 1107 sec, usec); 1108 #endif 1109 ticks = 1; 1110 } else if (sec <= INT_MAX / hz) { 1111 ticks = (int)(sec * hz + howmany((u_long)usec, ustick)) + 1; 1112 } else { 1113 ticks = INT_MAX; 1114 } 1115 return (ticks); 1116 } 1117 1118 int 1119 tstohz_high(struct timespec *ts) 1120 { 1121 int ticks; 1122 long sec, nsec; 1123 1124 sec = ts->tv_sec; 1125 nsec = ts->tv_nsec; 1126 if (nsec < 0) { 1127 sec--; 1128 nsec += 1000000000; 1129 } 1130 if (sec < 0) { 1131 #ifdef DIAGNOSTIC 1132 if (nsec > 0) { 1133 sec++; 1134 nsec -= 1000000000; 1135 } 1136 kprintf("tstohz_high: negative time difference " 1137 "%ld sec %ld nsec\n", 1138 sec, nsec); 1139 #endif 1140 ticks = 1; 1141 } else if (sec <= INT_MAX / hz) { 1142 ticks = (int)(sec * hz + howmany((u_long)nsec, nstick)) + 1; 1143 } else { 1144 ticks = INT_MAX; 1145 } 1146 return (ticks); 1147 } 1148 1149 1150 /* 1151 * Compute number of ticks for the specified amount of time, erroring on 1152 * the side of it being too low to ensure that sleeping the returned number 1153 * of ticks will not result in a late return. 1154 * 1155 * The supplied timeval may not be negative and should be normalized. A 1156 * return value of 0 is possible if the timeval converts to less then 1157 * 1 tick. 1158 * 1159 * If ints have 32 bits, then the maximum value for any timeout in 1160 * 10ms ticks is 248 days. 1161 */ 1162 int 1163 tvtohz_low(struct timeval *tv) 1164 { 1165 int ticks; 1166 long sec; 1167 1168 sec = tv->tv_sec; 1169 if (sec <= INT_MAX / hz) 1170 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 1171 else 1172 ticks = INT_MAX; 1173 return (ticks); 1174 } 1175 1176 int 1177 tstohz_low(struct timespec *ts) 1178 { 1179 int ticks; 1180 long sec; 1181 1182 sec = ts->tv_sec; 1183 if (sec <= INT_MAX / hz) 1184 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 1185 else 1186 ticks = INT_MAX; 1187 return (ticks); 1188 } 1189 1190 /* 1191 * Start profiling on a process. 1192 * 1193 * Caller must hold p->p_token(); 1194 * 1195 * Kernel profiling passes proc0 which never exits and hence 1196 * keeps the profile clock running constantly. 1197 */ 1198 void 1199 startprofclock(struct proc *p) 1200 { 1201 if ((p->p_flags & P_PROFIL) == 0) { 1202 p->p_flags |= P_PROFIL; 1203 #if 0 /* XXX */ 1204 if (++profprocs == 1 && stathz != 0) { 1205 crit_enter(); 1206 psdiv = psratio; 1207 setstatclockrate(profhz); 1208 crit_exit(); 1209 } 1210 #endif 1211 } 1212 } 1213 1214 /* 1215 * Stop profiling on a process. 1216 * 1217 * caller must hold p->p_token 1218 */ 1219 void 1220 stopprofclock(struct proc *p) 1221 { 1222 if (p->p_flags & P_PROFIL) { 1223 p->p_flags &= ~P_PROFIL; 1224 #if 0 /* XXX */ 1225 if (--profprocs == 0 && stathz != 0) { 1226 crit_enter(); 1227 psdiv = 1; 1228 setstatclockrate(stathz); 1229 crit_exit(); 1230 } 1231 #endif 1232 } 1233 } 1234 1235 /* 1236 * Return information about system clocks. 1237 */ 1238 static int 1239 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 1240 { 1241 struct kinfo_clockinfo clkinfo; 1242 /* 1243 * Construct clockinfo structure. 1244 */ 1245 clkinfo.ci_hz = hz; 1246 clkinfo.ci_tick = ustick; 1247 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 1248 clkinfo.ci_profhz = profhz; 1249 clkinfo.ci_stathz = stathz ? stathz : hz; 1250 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 1251 } 1252 1253 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 1254 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 1255 1256 /* 1257 * We have eight functions for looking at the clock, four for 1258 * microseconds and four for nanoseconds. For each there is fast 1259 * but less precise version "get{nano|micro}[up]time" which will 1260 * return a time which is up to 1/HZ previous to the call, whereas 1261 * the raw version "{nano|micro}[up]time" will return a timestamp 1262 * which is as precise as possible. The "up" variants return the 1263 * time relative to system boot, these are well suited for time 1264 * interval measurements. 1265 * 1266 * Each cpu independently maintains the current time of day, so all 1267 * we need to do to protect ourselves from changes is to do a loop 1268 * check on the seconds field changing out from under us. 1269 * 1270 * The system timer maintains a 32 bit count and due to various issues 1271 * it is possible for the calculated delta to occasionally exceed 1272 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 1273 * multiplication can easily overflow, so we deal with the case. For 1274 * uniformity we deal with the case in the usec case too. 1275 * 1276 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 1277 */ 1278 void 1279 getmicrouptime(struct timeval *tvp) 1280 { 1281 struct globaldata *gd = mycpu; 1282 sysclock_t delta; 1283 1284 do { 1285 tvp->tv_sec = gd->gd_time_seconds; 1286 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1287 } while (tvp->tv_sec != gd->gd_time_seconds); 1288 1289 if (delta >= sys_cputimer->freq) { 1290 tvp->tv_sec += delta / sys_cputimer->freq; 1291 delta %= sys_cputimer->freq; 1292 } 1293 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1294 if (tvp->tv_usec >= 1000000) { 1295 tvp->tv_usec -= 1000000; 1296 ++tvp->tv_sec; 1297 } 1298 } 1299 1300 void 1301 getnanouptime(struct timespec *tsp) 1302 { 1303 struct globaldata *gd = mycpu; 1304 sysclock_t delta; 1305 1306 do { 1307 tsp->tv_sec = gd->gd_time_seconds; 1308 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1309 } while (tsp->tv_sec != gd->gd_time_seconds); 1310 1311 if (delta >= sys_cputimer->freq) { 1312 tsp->tv_sec += delta / sys_cputimer->freq; 1313 delta %= sys_cputimer->freq; 1314 } 1315 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1316 } 1317 1318 void 1319 microuptime(struct timeval *tvp) 1320 { 1321 struct globaldata *gd = mycpu; 1322 sysclock_t delta; 1323 1324 do { 1325 tvp->tv_sec = gd->gd_time_seconds; 1326 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1327 } while (tvp->tv_sec != gd->gd_time_seconds); 1328 1329 if (delta >= sys_cputimer->freq) { 1330 tvp->tv_sec += delta / sys_cputimer->freq; 1331 delta %= sys_cputimer->freq; 1332 } 1333 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1334 } 1335 1336 void 1337 nanouptime(struct timespec *tsp) 1338 { 1339 struct globaldata *gd = mycpu; 1340 sysclock_t delta; 1341 1342 do { 1343 tsp->tv_sec = gd->gd_time_seconds; 1344 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1345 } while (tsp->tv_sec != gd->gd_time_seconds); 1346 1347 if (delta >= sys_cputimer->freq) { 1348 tsp->tv_sec += delta / sys_cputimer->freq; 1349 delta %= sys_cputimer->freq; 1350 } 1351 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1352 } 1353 1354 /* 1355 * realtime routines 1356 */ 1357 void 1358 getmicrotime(struct timeval *tvp) 1359 { 1360 struct globaldata *gd = mycpu; 1361 struct timespec *bt; 1362 sysclock_t delta; 1363 1364 do { 1365 tvp->tv_sec = gd->gd_time_seconds; 1366 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1367 } while (tvp->tv_sec != gd->gd_time_seconds); 1368 1369 if (delta >= sys_cputimer->freq) { 1370 tvp->tv_sec += delta / sys_cputimer->freq; 1371 delta %= sys_cputimer->freq; 1372 } 1373 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1374 1375 bt = &basetime[basetime_index]; 1376 cpu_lfence(); 1377 tvp->tv_sec += bt->tv_sec; 1378 tvp->tv_usec += bt->tv_nsec / 1000; 1379 while (tvp->tv_usec >= 1000000) { 1380 tvp->tv_usec -= 1000000; 1381 ++tvp->tv_sec; 1382 } 1383 } 1384 1385 void 1386 getnanotime(struct timespec *tsp) 1387 { 1388 struct globaldata *gd = mycpu; 1389 struct timespec *bt; 1390 sysclock_t delta; 1391 1392 do { 1393 tsp->tv_sec = gd->gd_time_seconds; 1394 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1395 } while (tsp->tv_sec != gd->gd_time_seconds); 1396 1397 if (delta >= sys_cputimer->freq) { 1398 tsp->tv_sec += delta / sys_cputimer->freq; 1399 delta %= sys_cputimer->freq; 1400 } 1401 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1402 1403 bt = &basetime[basetime_index]; 1404 cpu_lfence(); 1405 tsp->tv_sec += bt->tv_sec; 1406 tsp->tv_nsec += bt->tv_nsec; 1407 while (tsp->tv_nsec >= 1000000000) { 1408 tsp->tv_nsec -= 1000000000; 1409 ++tsp->tv_sec; 1410 } 1411 } 1412 1413 static void 1414 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1415 { 1416 struct globaldata *gd = mycpu; 1417 sysclock_t delta; 1418 1419 do { 1420 tsp->tv_sec = gd->gd_time_seconds; 1421 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1422 } while (tsp->tv_sec != gd->gd_time_seconds); 1423 1424 if (delta >= sys_cputimer->freq) { 1425 tsp->tv_sec += delta / sys_cputimer->freq; 1426 delta %= sys_cputimer->freq; 1427 } 1428 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1429 1430 tsp->tv_sec += nbt->tv_sec; 1431 tsp->tv_nsec += nbt->tv_nsec; 1432 while (tsp->tv_nsec >= 1000000000) { 1433 tsp->tv_nsec -= 1000000000; 1434 ++tsp->tv_sec; 1435 } 1436 } 1437 1438 1439 void 1440 microtime(struct timeval *tvp) 1441 { 1442 struct globaldata *gd = mycpu; 1443 struct timespec *bt; 1444 sysclock_t delta; 1445 1446 do { 1447 tvp->tv_sec = gd->gd_time_seconds; 1448 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1449 } while (tvp->tv_sec != gd->gd_time_seconds); 1450 1451 if (delta >= sys_cputimer->freq) { 1452 tvp->tv_sec += delta / sys_cputimer->freq; 1453 delta %= sys_cputimer->freq; 1454 } 1455 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1456 1457 bt = &basetime[basetime_index]; 1458 cpu_lfence(); 1459 tvp->tv_sec += bt->tv_sec; 1460 tvp->tv_usec += bt->tv_nsec / 1000; 1461 while (tvp->tv_usec >= 1000000) { 1462 tvp->tv_usec -= 1000000; 1463 ++tvp->tv_sec; 1464 } 1465 } 1466 1467 void 1468 nanotime(struct timespec *tsp) 1469 { 1470 struct globaldata *gd = mycpu; 1471 struct timespec *bt; 1472 sysclock_t delta; 1473 1474 do { 1475 tsp->tv_sec = gd->gd_time_seconds; 1476 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1477 } while (tsp->tv_sec != gd->gd_time_seconds); 1478 1479 if (delta >= sys_cputimer->freq) { 1480 tsp->tv_sec += delta / sys_cputimer->freq; 1481 delta %= sys_cputimer->freq; 1482 } 1483 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1484 1485 bt = &basetime[basetime_index]; 1486 cpu_lfence(); 1487 tsp->tv_sec += bt->tv_sec; 1488 tsp->tv_nsec += bt->tv_nsec; 1489 while (tsp->tv_nsec >= 1000000000) { 1490 tsp->tv_nsec -= 1000000000; 1491 ++tsp->tv_sec; 1492 } 1493 } 1494 1495 /* 1496 * Get an approximate time_t. It does not have to be accurate. This 1497 * function is called only from KTR and can be called with the system in 1498 * any state so do not use a critical section or other complex operation 1499 * here. 1500 * 1501 * NOTE: This is not exactly synchronized with real time. To do that we 1502 * would have to do what microtime does and check for a nanoseconds 1503 * overflow. 1504 */ 1505 time_t 1506 get_approximate_time_t(void) 1507 { 1508 struct globaldata *gd = mycpu; 1509 struct timespec *bt; 1510 1511 bt = &basetime[basetime_index]; 1512 return(gd->gd_time_seconds + bt->tv_sec); 1513 } 1514 1515 int 1516 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1517 { 1518 pps_params_t *app; 1519 struct pps_fetch_args *fapi; 1520 #ifdef PPS_SYNC 1521 struct pps_kcbind_args *kapi; 1522 #endif 1523 1524 switch (cmd) { 1525 case PPS_IOC_CREATE: 1526 return (0); 1527 case PPS_IOC_DESTROY: 1528 return (0); 1529 case PPS_IOC_SETPARAMS: 1530 app = (pps_params_t *)data; 1531 if (app->mode & ~pps->ppscap) 1532 return (EINVAL); 1533 pps->ppsparam = *app; 1534 return (0); 1535 case PPS_IOC_GETPARAMS: 1536 app = (pps_params_t *)data; 1537 *app = pps->ppsparam; 1538 app->api_version = PPS_API_VERS_1; 1539 return (0); 1540 case PPS_IOC_GETCAP: 1541 *(int*)data = pps->ppscap; 1542 return (0); 1543 case PPS_IOC_FETCH: 1544 fapi = (struct pps_fetch_args *)data; 1545 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1546 return (EINVAL); 1547 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1548 return (EOPNOTSUPP); 1549 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1550 fapi->pps_info_buf = pps->ppsinfo; 1551 return (0); 1552 case PPS_IOC_KCBIND: 1553 #ifdef PPS_SYNC 1554 kapi = (struct pps_kcbind_args *)data; 1555 /* XXX Only root should be able to do this */ 1556 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1557 return (EINVAL); 1558 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1559 return (EINVAL); 1560 if (kapi->edge & ~pps->ppscap) 1561 return (EINVAL); 1562 pps->kcmode = kapi->edge; 1563 return (0); 1564 #else 1565 return (EOPNOTSUPP); 1566 #endif 1567 default: 1568 return (ENOTTY); 1569 } 1570 } 1571 1572 void 1573 pps_init(struct pps_state *pps) 1574 { 1575 pps->ppscap |= PPS_TSFMT_TSPEC; 1576 if (pps->ppscap & PPS_CAPTUREASSERT) 1577 pps->ppscap |= PPS_OFFSETASSERT; 1578 if (pps->ppscap & PPS_CAPTURECLEAR) 1579 pps->ppscap |= PPS_OFFSETCLEAR; 1580 } 1581 1582 void 1583 pps_event(struct pps_state *pps, sysclock_t count, int event) 1584 { 1585 struct globaldata *gd; 1586 struct timespec *tsp; 1587 struct timespec *osp; 1588 struct timespec *bt; 1589 struct timespec ts; 1590 sysclock_t *pcount; 1591 #ifdef PPS_SYNC 1592 sysclock_t tcount; 1593 #endif 1594 sysclock_t delta; 1595 pps_seq_t *pseq; 1596 int foff; 1597 #ifdef PPS_SYNC 1598 int fhard; 1599 #endif 1600 int ni; 1601 1602 gd = mycpu; 1603 1604 /* Things would be easier with arrays... */ 1605 if (event == PPS_CAPTUREASSERT) { 1606 tsp = &pps->ppsinfo.assert_timestamp; 1607 osp = &pps->ppsparam.assert_offset; 1608 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1609 #ifdef PPS_SYNC 1610 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1611 #endif 1612 pcount = &pps->ppscount[0]; 1613 pseq = &pps->ppsinfo.assert_sequence; 1614 } else { 1615 tsp = &pps->ppsinfo.clear_timestamp; 1616 osp = &pps->ppsparam.clear_offset; 1617 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1618 #ifdef PPS_SYNC 1619 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1620 #endif 1621 pcount = &pps->ppscount[1]; 1622 pseq = &pps->ppsinfo.clear_sequence; 1623 } 1624 1625 /* Nothing really happened */ 1626 if (*pcount == count) 1627 return; 1628 1629 *pcount = count; 1630 1631 do { 1632 ts.tv_sec = gd->gd_time_seconds; 1633 delta = count - gd->gd_cpuclock_base; 1634 } while (ts.tv_sec != gd->gd_time_seconds); 1635 1636 if (delta >= sys_cputimer->freq) { 1637 ts.tv_sec += delta / sys_cputimer->freq; 1638 delta %= sys_cputimer->freq; 1639 } 1640 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1641 ni = basetime_index; 1642 cpu_lfence(); 1643 bt = &basetime[ni]; 1644 ts.tv_sec += bt->tv_sec; 1645 ts.tv_nsec += bt->tv_nsec; 1646 while (ts.tv_nsec >= 1000000000) { 1647 ts.tv_nsec -= 1000000000; 1648 ++ts.tv_sec; 1649 } 1650 1651 (*pseq)++; 1652 *tsp = ts; 1653 1654 if (foff) { 1655 timespecadd(tsp, osp, tsp); 1656 if (tsp->tv_nsec < 0) { 1657 tsp->tv_nsec += 1000000000; 1658 tsp->tv_sec -= 1; 1659 } 1660 } 1661 #ifdef PPS_SYNC 1662 if (fhard) { 1663 /* magic, at its best... */ 1664 tcount = count - pps->ppscount[2]; 1665 pps->ppscount[2] = count; 1666 if (tcount >= sys_cputimer->freq) { 1667 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1668 sys_cputimer->freq64_nsec * 1669 (tcount % sys_cputimer->freq)) >> 32; 1670 } else { 1671 delta = (sys_cputimer->freq64_nsec * tcount) >> 32; 1672 } 1673 hardpps(tsp, delta); 1674 } 1675 #endif 1676 } 1677 1678 /* 1679 * Return the tsc target value for a delay of (ns). 1680 * 1681 * Returns -1 if the TSC is not supported. 1682 */ 1683 tsc_uclock_t 1684 tsc_get_target(int ns) 1685 { 1686 #if defined(_RDTSC_SUPPORTED_) 1687 if (cpu_feature & CPUID_TSC) { 1688 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1689 } 1690 #endif 1691 return(-1); 1692 } 1693 1694 /* 1695 * Compare the tsc against the passed target 1696 * 1697 * Returns +1 if the target has been reached 1698 * Returns 0 if the target has not yet been reached 1699 * Returns -1 if the TSC is not supported. 1700 * 1701 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1702 */ 1703 int 1704 tsc_test_target(int64_t target) 1705 { 1706 #if defined(_RDTSC_SUPPORTED_) 1707 if (cpu_feature & CPUID_TSC) { 1708 if ((int64_t)(target - rdtsc()) <= 0) 1709 return(1); 1710 return(0); 1711 } 1712 #endif 1713 return(-1); 1714 } 1715 1716 /* 1717 * Delay the specified number of nanoseconds using the tsc. This function 1718 * returns immediately if the TSC is not supported. At least one cpu_pause() 1719 * will be issued. 1720 */ 1721 void 1722 tsc_delay(int ns) 1723 { 1724 int64_t clk; 1725 1726 clk = tsc_get_target(ns); 1727 cpu_pause(); 1728 cpu_pause(); 1729 while (tsc_test_target(clk) == 0) { 1730 cpu_pause(); 1731 cpu_pause(); 1732 cpu_pause(); 1733 cpu_pause(); 1734 } 1735 } 1736