1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 69 */ 70 71 #include "opt_ntp.h" 72 #include "opt_ifpoll.h" 73 #include "opt_pctrack.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/callout.h> 78 #include <sys/kernel.h> 79 #include <sys/kinfo.h> 80 #include <sys/proc.h> 81 #include <sys/malloc.h> 82 #include <sys/resource.h> 83 #include <sys/resourcevar.h> 84 #include <sys/signalvar.h> 85 #include <sys/priv.h> 86 #include <sys/timex.h> 87 #include <sys/timepps.h> 88 #include <sys/upmap.h> 89 #include <vm/vm.h> 90 #include <sys/lock.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_extern.h> 94 #include <sys/sysctl.h> 95 96 #include <sys/thread2.h> 97 #include <sys/spinlock2.h> 98 99 #include <machine/cpu.h> 100 #include <machine/limits.h> 101 #include <machine/smp.h> 102 #include <machine/cpufunc.h> 103 #include <machine/specialreg.h> 104 #include <machine/clock.h> 105 106 #ifdef GPROF 107 #include <sys/gmon.h> 108 #endif 109 110 #ifdef IFPOLL_ENABLE 111 extern void ifpoll_init_pcpu(int); 112 #endif 113 114 #ifdef DEBUG_PCTRACK 115 static void do_pctrack(struct intrframe *frame, int which); 116 #endif 117 118 static void initclocks (void *dummy); 119 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL); 120 121 /* 122 * Some of these don't belong here, but it's easiest to concentrate them. 123 * Note that cpu_time counts in microseconds, but most userland programs 124 * just compare relative times against the total by delta. 125 */ 126 struct kinfo_cputime cputime_percpu[MAXCPU]; 127 #ifdef DEBUG_PCTRACK 128 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 129 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 130 #endif 131 132 static int 133 sysctl_cputime(SYSCTL_HANDLER_ARGS) 134 { 135 int cpu, error = 0; 136 int root_error; 137 size_t size = sizeof(struct kinfo_cputime); 138 struct kinfo_cputime tmp; 139 140 /* 141 * NOTE: For security reasons, only root can sniff %rip 142 */ 143 root_error = priv_check_cred(curthread->td_ucred, PRIV_ROOT, 0); 144 145 for (cpu = 0; cpu < ncpus; ++cpu) { 146 tmp = cputime_percpu[cpu]; 147 if (root_error == 0) { 148 tmp.cp_sample_pc = 149 (int64_t)globaldata_find(cpu)->gd_sample_pc; 150 tmp.cp_sample_sp = 151 (int64_t)globaldata_find(cpu)->gd_sample_sp; 152 } 153 if ((error = SYSCTL_OUT(req, &tmp, size)) != 0) 154 break; 155 } 156 157 if (root_error == 0) 158 smp_sniff(); 159 160 return (error); 161 } 162 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 163 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 164 165 static int 166 sysctl_cp_time(SYSCTL_HANDLER_ARGS) 167 { 168 long cpu_states[CPUSTATES] = {0}; 169 int cpu, error = 0; 170 size_t size = sizeof(cpu_states); 171 172 for (cpu = 0; cpu < ncpus; ++cpu) { 173 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user; 174 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice; 175 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys; 176 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr; 177 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle; 178 } 179 180 error = SYSCTL_OUT(req, cpu_states, size); 181 182 return (error); 183 } 184 185 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 186 sysctl_cp_time, "LU", "CPU time statistics"); 187 188 static int 189 sysctl_cp_times(SYSCTL_HANDLER_ARGS) 190 { 191 long cpu_states[CPUSTATES] = {0}; 192 int cpu, error; 193 size_t size = sizeof(cpu_states); 194 195 for (error = 0, cpu = 0; error == 0 && cpu < ncpus; ++cpu) { 196 cpu_states[CP_USER] = cputime_percpu[cpu].cp_user; 197 cpu_states[CP_NICE] = cputime_percpu[cpu].cp_nice; 198 cpu_states[CP_SYS] = cputime_percpu[cpu].cp_sys; 199 cpu_states[CP_INTR] = cputime_percpu[cpu].cp_intr; 200 cpu_states[CP_IDLE] = cputime_percpu[cpu].cp_idle; 201 error = SYSCTL_OUT(req, cpu_states, size); 202 } 203 204 return (error); 205 } 206 207 SYSCTL_PROC(_kern, OID_AUTO, cp_times, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 208 sysctl_cp_times, "LU", "per-CPU time statistics"); 209 210 /* 211 * boottime is used to calculate the 'real' uptime. Do not confuse this with 212 * microuptime(). microtime() is not drift compensated. The real uptime 213 * with compensation is nanotime() - bootime. boottime is recalculated 214 * whenever the real time is set based on the compensated elapsed time 215 * in seconds (gd->gd_time_seconds). 216 * 217 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 218 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 219 * the real time. 220 * 221 * WARNING! time_second can backstep on time corrections. Also, unlike 222 * time_second, time_uptime is not a "real" time_t (seconds 223 * since the Epoch) but seconds since booting. 224 */ 225 struct timespec boottime; /* boot time (realtime) for reference only */ 226 time_t time_second; /* read-only 'passive' realtime in seconds */ 227 time_t time_uptime; /* read-only 'passive' uptime in seconds */ 228 229 /* 230 * basetime is used to calculate the compensated real time of day. The 231 * basetime can be modified on a per-tick basis by the adjtime(), 232 * ntp_adjtime(), and sysctl-based time correction APIs. 233 * 234 * Note that frequency corrections can also be made by adjusting 235 * gd_cpuclock_base. 236 * 237 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 238 * used on both SMP and UP systems to avoid MP races between cpu's and 239 * interrupt races on UP systems. 240 */ 241 struct hardtime { 242 __uint32_t time_second; 243 sysclock_t cpuclock_base; 244 }; 245 246 #define BASETIME_ARYSIZE 16 247 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 248 static struct timespec basetime[BASETIME_ARYSIZE]; 249 static struct hardtime hardtime[BASETIME_ARYSIZE]; 250 static volatile int basetime_index; 251 252 static int 253 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 254 { 255 struct timespec *bt; 256 int error; 257 int index; 258 259 /* 260 * Because basetime data and index may be updated by another cpu, 261 * a load fence is required to ensure that the data we read has 262 * not been speculatively read relative to a possibly updated index. 263 */ 264 index = basetime_index; 265 cpu_lfence(); 266 bt = &basetime[index]; 267 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 268 return (error); 269 } 270 271 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 272 &boottime, timespec, "System boottime"); 273 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 274 sysctl_get_basetime, "S,timespec", "System basetime"); 275 276 static void hardclock(systimer_t info, int, struct intrframe *frame); 277 static void statclock(systimer_t info, int, struct intrframe *frame); 278 static void schedclock(systimer_t info, int, struct intrframe *frame); 279 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 280 281 int ticks; /* system master ticks at hz */ 282 int clocks_running; /* tsleep/timeout clocks operational */ 283 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 284 int64_t nsec_acc; /* accumulator */ 285 int sched_ticks; /* global schedule clock ticks */ 286 287 /* NTPD time correction fields */ 288 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 289 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 290 int64_t ntp_delta; /* one-time correction in nsec */ 291 int64_t ntp_big_delta = 1000000000; 292 int32_t ntp_tick_delta; /* current adjustment rate */ 293 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 294 time_t ntp_leap_second; /* time of next leap second */ 295 int ntp_leap_insert; /* whether to insert or remove a second */ 296 struct spinlock ntp_spin; 297 298 /* 299 * Finish initializing clock frequencies and start all clocks running. 300 */ 301 /* ARGSUSED*/ 302 static void 303 initclocks(void *dummy) 304 { 305 /*psratio = profhz / stathz;*/ 306 spin_init(&ntp_spin, "ntp"); 307 initclocks_pcpu(); 308 clocks_running = 1; 309 if (kpmap) { 310 kpmap->tsc_freq = (uint64_t)tsc_frequency; 311 kpmap->tick_freq = hz; 312 } 313 } 314 315 /* 316 * Called on a per-cpu basis from the idle thread bootstrap on each cpu 317 * during SMP initialization. 318 * 319 * This routine is called concurrently during low-level SMP initialization 320 * and may not block in any way. Meaning, among other things, we can't 321 * acquire any tokens. 322 */ 323 void 324 initclocks_pcpu(void) 325 { 326 struct globaldata *gd = mycpu; 327 328 crit_enter(); 329 if (gd->gd_cpuid == 0) { 330 gd->gd_time_seconds = 1; 331 gd->gd_cpuclock_base = sys_cputimer->count(); 332 hardtime[0].time_second = gd->gd_time_seconds; 333 hardtime[0].cpuclock_base = gd->gd_cpuclock_base; 334 } else { 335 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 336 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 337 } 338 339 systimer_intr_enable(); 340 341 crit_exit(); 342 } 343 344 /* 345 * This routine is called on just the BSP, just after SMP initialization 346 * completes to * finish initializing any clocks that might contend/block 347 * (e.g. like on a token). We can't do this in initclocks_pcpu() because 348 * that function is called from the idle thread bootstrap for each cpu and 349 * not allowed to block at all. 350 */ 351 static 352 void 353 initclocks_other(void *dummy) 354 { 355 struct globaldata *ogd = mycpu; 356 struct globaldata *gd; 357 int n; 358 359 for (n = 0; n < ncpus; ++n) { 360 lwkt_setcpu_self(globaldata_find(n)); 361 gd = mycpu; 362 363 /* 364 * Use a non-queued periodic systimer to prevent multiple 365 * ticks from building up if the sysclock jumps forward 366 * (8254 gets reset). The sysclock will never jump backwards. 367 * Our time sync is based on the actual sysclock, not the 368 * ticks count. 369 * 370 * Install statclock before hardclock to prevent statclock 371 * from misinterpreting gd_flags for tick assignment when 372 * they overlap. 373 */ 374 systimer_init_periodic_nq(&gd->gd_statclock, statclock, 375 NULL, stathz); 376 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, 377 NULL, hz); 378 /* XXX correct the frequency for scheduler / estcpu tests */ 379 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock, 380 NULL, ESTCPUFREQ); 381 #ifdef IFPOLL_ENABLE 382 ifpoll_init_pcpu(gd->gd_cpuid); 383 #endif 384 } 385 lwkt_setcpu_self(ogd); 386 } 387 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL); 388 389 /* 390 * This sets the current real time of day. Timespecs are in seconds and 391 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 392 * instead we adjust basetime so basetime + gd_* results in the current 393 * time of day. This way the gd_* fields are guaranteed to represent 394 * a monotonically increasing 'uptime' value. 395 * 396 * When set_timeofday() is called from userland, the system call forces it 397 * onto cpu #0 since only cpu #0 can update basetime_index. 398 */ 399 void 400 set_timeofday(struct timespec *ts) 401 { 402 struct timespec *nbt; 403 int ni; 404 405 /* 406 * XXX SMP / non-atomic basetime updates 407 */ 408 crit_enter(); 409 ni = (basetime_index + 1) & BASETIME_ARYMASK; 410 cpu_lfence(); 411 nbt = &basetime[ni]; 412 nanouptime(nbt); 413 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 414 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 415 if (nbt->tv_nsec < 0) { 416 nbt->tv_nsec += 1000000000; 417 --nbt->tv_sec; 418 } 419 420 /* 421 * Note that basetime diverges from boottime as the clock drift is 422 * compensated for, so we cannot do away with boottime. When setting 423 * the absolute time of day the drift is 0 (for an instant) and we 424 * can simply assign boottime to basetime. 425 * 426 * Note that nanouptime() is based on gd_time_seconds which is drift 427 * compensated up to a point (it is guaranteed to remain monotonically 428 * increasing). gd_time_seconds is thus our best uptime guess and 429 * suitable for use in the boottime calculation. It is already taken 430 * into account in the basetime calculation above. 431 */ 432 spin_lock(&ntp_spin); 433 boottime.tv_sec = nbt->tv_sec; 434 ntp_delta = 0; 435 436 /* 437 * We now have a new basetime, make sure all other cpus have it, 438 * then update the index. 439 */ 440 cpu_sfence(); 441 basetime_index = ni; 442 spin_unlock(&ntp_spin); 443 444 crit_exit(); 445 } 446 447 /* 448 * Each cpu has its own hardclock, but we only increments ticks and softticks 449 * on cpu #0. 450 * 451 * NOTE! systimer! the MP lock might not be held here. We can only safely 452 * manipulate objects owned by the current cpu. 453 */ 454 static void 455 hardclock(systimer_t info, int in_ipi, struct intrframe *frame) 456 { 457 sysclock_t cputicks; 458 struct proc *p; 459 struct globaldata *gd = mycpu; 460 461 if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) { 462 /* Defer to doreti on passive IPIQ processing */ 463 need_ipiq(); 464 } 465 466 /* 467 * We update the compensation base to calculate fine-grained time 468 * from the sys_cputimer on a per-cpu basis in order to avoid 469 * having to mess around with locks. sys_cputimer is assumed to 470 * be consistent across all cpus. CPU N copies the base state from 471 * CPU 0 using the same FIFO trick that we use for basetime (so we 472 * don't catch a CPU 0 update in the middle). 473 * 474 * Note that we never allow info->time (aka gd->gd_hardclock.time) 475 * to reverse index gd_cpuclock_base, but that it is possible for 476 * it to temporarily get behind in the seconds if something in the 477 * system locks interrupts for a long period of time. Since periodic 478 * timers count events, though everything should resynch again 479 * immediately. 480 */ 481 if (gd->gd_cpuid == 0) { 482 int ni; 483 484 cputicks = info->time - gd->gd_cpuclock_base; 485 if (cputicks >= sys_cputimer->freq) { 486 cputicks /= sys_cputimer->freq; 487 if (cputicks != 0 && cputicks != 1) 488 kprintf("Warning: hardclock missed > 1 sec\n"); 489 gd->gd_time_seconds += cputicks; 490 gd->gd_cpuclock_base += sys_cputimer->freq * cputicks; 491 /* uncorrected monotonic 1-sec gran */ 492 time_uptime += cputicks; 493 } 494 ni = (basetime_index + 1) & BASETIME_ARYMASK; 495 hardtime[ni].time_second = gd->gd_time_seconds; 496 hardtime[ni].cpuclock_base = gd->gd_cpuclock_base; 497 } else { 498 int ni; 499 500 ni = basetime_index; 501 cpu_lfence(); 502 gd->gd_time_seconds = hardtime[ni].time_second; 503 gd->gd_cpuclock_base = hardtime[ni].cpuclock_base; 504 } 505 506 /* 507 * The system-wide ticks counter and NTP related timedelta/tickdelta 508 * adjustments only occur on cpu #0. NTP adjustments are accomplished 509 * by updating basetime. 510 */ 511 if (gd->gd_cpuid == 0) { 512 struct timespec *nbt; 513 struct timespec nts; 514 int leap; 515 int ni; 516 517 ++ticks; 518 519 #if 0 520 if (tco->tc_poll_pps) 521 tco->tc_poll_pps(tco); 522 #endif 523 524 /* 525 * Calculate the new basetime index. We are in a critical section 526 * on cpu #0 and can safely play with basetime_index. Start 527 * with the current basetime and then make adjustments. 528 */ 529 ni = (basetime_index + 1) & BASETIME_ARYMASK; 530 nbt = &basetime[ni]; 531 *nbt = basetime[basetime_index]; 532 533 /* 534 * ntp adjustments only occur on cpu 0 and are protected by 535 * ntp_spin. This spinlock virtually never conflicts. 536 */ 537 spin_lock(&ntp_spin); 538 539 /* 540 * Apply adjtime corrections. (adjtime() API) 541 * 542 * adjtime() only runs on cpu #0 so our critical section is 543 * sufficient to access these variables. 544 */ 545 if (ntp_delta != 0) { 546 nbt->tv_nsec += ntp_tick_delta; 547 ntp_delta -= ntp_tick_delta; 548 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 549 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 550 ntp_tick_delta = ntp_delta; 551 } 552 } 553 554 /* 555 * Apply permanent frequency corrections. (sysctl API) 556 */ 557 if (ntp_tick_permanent != 0) { 558 ntp_tick_acc += ntp_tick_permanent; 559 if (ntp_tick_acc >= (1LL << 32)) { 560 nbt->tv_nsec += ntp_tick_acc >> 32; 561 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 562 } else if (ntp_tick_acc <= -(1LL << 32)) { 563 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 564 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 565 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 566 } 567 } 568 569 if (nbt->tv_nsec >= 1000000000) { 570 nbt->tv_sec++; 571 nbt->tv_nsec -= 1000000000; 572 } else if (nbt->tv_nsec < 0) { 573 nbt->tv_sec--; 574 nbt->tv_nsec += 1000000000; 575 } 576 577 /* 578 * Another per-tick compensation. (for ntp_adjtime() API) 579 */ 580 if (nsec_adj != 0) { 581 nsec_acc += nsec_adj; 582 if (nsec_acc >= 0x100000000LL) { 583 nbt->tv_nsec += nsec_acc >> 32; 584 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 585 } else if (nsec_acc <= -0x100000000LL) { 586 nbt->tv_nsec -= -nsec_acc >> 32; 587 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 588 } 589 if (nbt->tv_nsec >= 1000000000) { 590 nbt->tv_nsec -= 1000000000; 591 ++nbt->tv_sec; 592 } else if (nbt->tv_nsec < 0) { 593 nbt->tv_nsec += 1000000000; 594 --nbt->tv_sec; 595 } 596 } 597 spin_unlock(&ntp_spin); 598 599 /************************************************************ 600 * LEAP SECOND CORRECTION * 601 ************************************************************ 602 * 603 * Taking into account all the corrections made above, figure 604 * out the new real time. If the seconds field has changed 605 * then apply any pending leap-second corrections. 606 */ 607 getnanotime_nbt(nbt, &nts); 608 609 if (time_second != nts.tv_sec) { 610 /* 611 * Apply leap second (sysctl API). Adjust nts for changes 612 * so we do not have to call getnanotime_nbt again. 613 */ 614 if (ntp_leap_second) { 615 if (ntp_leap_second == nts.tv_sec) { 616 if (ntp_leap_insert) { 617 nbt->tv_sec++; 618 nts.tv_sec++; 619 } else { 620 nbt->tv_sec--; 621 nts.tv_sec--; 622 } 623 ntp_leap_second--; 624 } 625 } 626 627 /* 628 * Apply leap second (ntp_adjtime() API), calculate a new 629 * nsec_adj field. ntp_update_second() returns nsec_adj 630 * as a per-second value but we need it as a per-tick value. 631 */ 632 leap = ntp_update_second(time_second, &nsec_adj); 633 nsec_adj /= hz; 634 nbt->tv_sec += leap; 635 nts.tv_sec += leap; 636 637 /* 638 * Update the time_second 'approximate time' global. 639 */ 640 time_second = nts.tv_sec; 641 } 642 643 /* 644 * Finally, our new basetime is ready to go live! 645 */ 646 cpu_sfence(); 647 basetime_index = ni; 648 649 /* 650 * Update kpmap on each tick. TS updates are integrated with 651 * fences and upticks allowing userland to read the data 652 * deterministically. 653 */ 654 if (kpmap) { 655 int w; 656 657 w = (kpmap->upticks + 1) & 1; 658 getnanouptime(&kpmap->ts_uptime[w]); 659 getnanotime(&kpmap->ts_realtime[w]); 660 cpu_sfence(); 661 ++kpmap->upticks; 662 cpu_sfence(); 663 } 664 } 665 666 /* 667 * lwkt thread scheduler fair queueing 668 */ 669 lwkt_schedulerclock(curthread); 670 671 /* 672 * softticks are handled for all cpus 673 */ 674 hardclock_softtick(gd); 675 676 /* 677 * Rollup accumulated vmstats, copy-back for critical path checks. 678 */ 679 vmstats_rollup_cpu(gd); 680 mycpu->gd_vmstats = vmstats; 681 682 /* 683 * ITimer handling is per-tick, per-cpu. 684 * 685 * We must acquire the per-process token in order for ksignal() 686 * to be non-blocking. For the moment this requires an AST fault, 687 * the ksignal() cannot be safely issued from this hard interrupt. 688 * 689 * XXX Even the trytoken here isn't right, and itimer operation in 690 * a multi threaded environment is going to be weird at the 691 * very least. 692 */ 693 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) { 694 crit_enter_hard(); 695 if (p->p_upmap) 696 ++p->p_upmap->runticks; 697 698 if (frame && CLKF_USERMODE(frame) && 699 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 700 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) { 701 p->p_flags |= P_SIGVTALRM; 702 need_user_resched(); 703 } 704 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 705 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) { 706 p->p_flags |= P_SIGPROF; 707 need_user_resched(); 708 } 709 crit_exit_hard(); 710 lwkt_reltoken(&p->p_token); 711 } 712 setdelayed(); 713 } 714 715 /* 716 * The statistics clock typically runs at a 125Hz rate, and is intended 717 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 718 * 719 * NOTE! systimer! the MP lock might not be held here. We can only safely 720 * manipulate objects owned by the current cpu. 721 * 722 * The stats clock is responsible for grabbing a profiling sample. 723 * Most of the statistics are only used by user-level statistics programs. 724 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 725 * p->p_estcpu. 726 * 727 * Like the other clocks, the stat clock is called from what is effectively 728 * a fast interrupt, so the context should be the thread/process that got 729 * interrupted. 730 */ 731 static void 732 statclock(systimer_t info, int in_ipi, struct intrframe *frame) 733 { 734 #ifdef GPROF 735 struct gmonparam *g; 736 int i; 737 #endif 738 globaldata_t gd = mycpu; 739 thread_t td; 740 struct proc *p; 741 int bump; 742 sysclock_t cv; 743 sysclock_t scv; 744 745 /* 746 * How big was our timeslice relative to the last time? Calculate 747 * in microseconds. 748 * 749 * NOTE: Use of microuptime() is typically MPSAFE, but usually not 750 * during early boot. Just use the systimer count to be nice 751 * to e.g. qemu. The systimer has a better chance of being 752 * MPSAFE at early boot. 753 */ 754 cv = sys_cputimer->count(); 755 scv = gd->statint.gd_statcv; 756 if (scv == 0) { 757 bump = 1; 758 } else { 759 bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32; 760 if (bump < 0) 761 bump = 0; 762 if (bump > 1000000) 763 bump = 1000000; 764 } 765 gd->statint.gd_statcv = cv; 766 767 #if 0 768 stv = &gd->gd_stattv; 769 if (stv->tv_sec == 0) { 770 bump = 1; 771 } else { 772 bump = tv.tv_usec - stv->tv_usec + 773 (tv.tv_sec - stv->tv_sec) * 1000000; 774 if (bump < 0) 775 bump = 0; 776 if (bump > 1000000) 777 bump = 1000000; 778 } 779 *stv = tv; 780 #endif 781 782 td = curthread; 783 p = td->td_proc; 784 785 if (frame && CLKF_USERMODE(frame)) { 786 /* 787 * Came from userland, handle user time and deal with 788 * possible process. 789 */ 790 if (p && (p->p_flags & P_PROFIL)) 791 addupc_intr(p, CLKF_PC(frame), 1); 792 td->td_uticks += bump; 793 794 /* 795 * Charge the time as appropriate 796 */ 797 if (p && p->p_nice > NZERO) 798 cpu_time.cp_nice += bump; 799 else 800 cpu_time.cp_user += bump; 801 } else { 802 int intr_nest = gd->gd_intr_nesting_level; 803 804 if (in_ipi) { 805 /* 806 * IPI processing code will bump gd_intr_nesting_level 807 * up by one, which breaks following CLKF_INTR testing, 808 * so we subtract it by one here. 809 */ 810 --intr_nest; 811 } 812 #ifdef GPROF 813 /* 814 * Kernel statistics are just like addupc_intr, only easier. 815 */ 816 g = &_gmonparam; 817 if (g->state == GMON_PROF_ON && frame) { 818 i = CLKF_PC(frame) - g->lowpc; 819 if (i < g->textsize) { 820 i /= HISTFRACTION * sizeof(*g->kcount); 821 g->kcount[i]++; 822 } 823 } 824 #endif 825 826 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td)) 827 828 /* 829 * Came from kernel mode, so we were: 830 * - handling an interrupt, 831 * - doing syscall or trap work on behalf of the current 832 * user process, or 833 * - spinning in the idle loop. 834 * Whichever it is, charge the time as appropriate. 835 * Note that we charge interrupts to the current process, 836 * regardless of whether they are ``for'' that process, 837 * so that we know how much of its real time was spent 838 * in ``non-process'' (i.e., interrupt) work. 839 * 840 * XXX assume system if frame is NULL. A NULL frame 841 * can occur if ipi processing is done from a crit_exit(). 842 */ 843 if (IS_INTR_RUNNING) { 844 /* 845 * If we interrupted an interrupt thread, well, 846 * count it as interrupt time. 847 */ 848 td->td_iticks += bump; 849 #ifdef DEBUG_PCTRACK 850 if (frame) 851 do_pctrack(frame, PCTRACK_INT); 852 #endif 853 cpu_time.cp_intr += bump; 854 } else if (gd->gd_flags & GDF_VIRTUSER) { 855 /* 856 * The vkernel doesn't do a good job providing trap 857 * frames that we can test. If the GDF_VIRTUSER 858 * flag is set we probably interrupted user mode. 859 * 860 * We also use this flag on the host when entering 861 * VMM mode. 862 */ 863 td->td_uticks += bump; 864 865 /* 866 * Charge the time as appropriate 867 */ 868 if (p && p->p_nice > NZERO) 869 cpu_time.cp_nice += bump; 870 else 871 cpu_time.cp_user += bump; 872 } else { 873 td->td_sticks += bump; 874 if (td == &gd->gd_idlethread) { 875 /* 876 * Token contention can cause us to mis-count 877 * a contended as idle, but it doesn't work 878 * properly for VKERNELs so just test on a 879 * real kernel. 880 */ 881 #ifdef _KERNEL_VIRTUAL 882 cpu_time.cp_idle += bump; 883 #else 884 if (mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK) 885 cpu_time.cp_sys += bump; 886 else 887 cpu_time.cp_idle += bump; 888 #endif 889 } else { 890 /* 891 * System thread was running. 892 */ 893 #ifdef DEBUG_PCTRACK 894 if (frame) 895 do_pctrack(frame, PCTRACK_SYS); 896 #endif 897 cpu_time.cp_sys += bump; 898 } 899 } 900 901 #undef IS_INTR_RUNNING 902 } 903 } 904 905 #ifdef DEBUG_PCTRACK 906 /* 907 * Sample the PC when in the kernel or in an interrupt. User code can 908 * retrieve the information and generate a histogram or other output. 909 */ 910 911 static void 912 do_pctrack(struct intrframe *frame, int which) 913 { 914 struct kinfo_pctrack *pctrack; 915 916 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 917 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 918 (void *)CLKF_PC(frame); 919 ++pctrack->pc_index; 920 } 921 922 static int 923 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 924 { 925 struct kinfo_pcheader head; 926 int error; 927 int cpu; 928 int ntrack; 929 930 head.pc_ntrack = PCTRACK_SIZE; 931 head.pc_arysize = PCTRACK_ARYSIZE; 932 933 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 934 return (error); 935 936 for (cpu = 0; cpu < ncpus; ++cpu) { 937 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 938 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 939 sizeof(struct kinfo_pctrack)); 940 if (error) 941 break; 942 } 943 if (error) 944 break; 945 } 946 return (error); 947 } 948 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 949 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 950 951 #endif 952 953 /* 954 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 955 * the MP lock might not be held. We can safely manipulate parts of curproc 956 * but that's about it. 957 * 958 * Each cpu has its own scheduler clock. 959 */ 960 static void 961 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 962 { 963 struct lwp *lp; 964 struct rusage *ru; 965 struct vmspace *vm; 966 long rss; 967 968 if ((lp = lwkt_preempted_proc()) != NULL) { 969 /* 970 * Account for cpu time used and hit the scheduler. Note 971 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 972 * HERE. 973 */ 974 ++lp->lwp_cpticks; 975 usched_schedulerclock(lp, info->periodic, info->time); 976 } else { 977 usched_schedulerclock(NULL, info->periodic, info->time); 978 } 979 if ((lp = curthread->td_lwp) != NULL) { 980 /* 981 * Update resource usage integrals and maximums. 982 */ 983 if ((ru = &lp->lwp_proc->p_ru) && 984 (vm = lp->lwp_proc->p_vmspace) != NULL) { 985 ru->ru_ixrss += pgtok(vm->vm_tsize); 986 ru->ru_idrss += pgtok(vm->vm_dsize); 987 ru->ru_isrss += pgtok(vm->vm_ssize); 988 if (lwkt_trytoken(&vm->vm_map.token)) { 989 rss = pgtok(vmspace_resident_count(vm)); 990 if (ru->ru_maxrss < rss) 991 ru->ru_maxrss = rss; 992 lwkt_reltoken(&vm->vm_map.token); 993 } 994 } 995 } 996 /* Increment the global sched_ticks */ 997 if (mycpu->gd_cpuid == 0) 998 ++sched_ticks; 999 } 1000 1001 /* 1002 * Compute number of ticks for the specified amount of time. The 1003 * return value is intended to be used in a clock interrupt timed 1004 * operation and guaranteed to meet or exceed the requested time. 1005 * If the representation overflows, return INT_MAX. The minimum return 1006 * value is 1 ticks and the function will average the calculation up. 1007 * If any value greater then 0 microseconds is supplied, a value 1008 * of at least 2 will be returned to ensure that a near-term clock 1009 * interrupt does not cause the timeout to occur (degenerately) early. 1010 * 1011 * Note that limit checks must take into account microseconds, which is 1012 * done simply by using the smaller signed long maximum instead of 1013 * the unsigned long maximum. 1014 * 1015 * If ints have 32 bits, then the maximum value for any timeout in 1016 * 10ms ticks is 248 days. 1017 */ 1018 int 1019 tvtohz_high(struct timeval *tv) 1020 { 1021 int ticks; 1022 long sec, usec; 1023 1024 sec = tv->tv_sec; 1025 usec = tv->tv_usec; 1026 if (usec < 0) { 1027 sec--; 1028 usec += 1000000; 1029 } 1030 if (sec < 0) { 1031 #ifdef DIAGNOSTIC 1032 if (usec > 0) { 1033 sec++; 1034 usec -= 1000000; 1035 } 1036 kprintf("tvtohz_high: negative time difference " 1037 "%ld sec %ld usec\n", 1038 sec, usec); 1039 #endif 1040 ticks = 1; 1041 } else if (sec <= INT_MAX / hz) { 1042 ticks = (int)(sec * hz + 1043 ((u_long)usec + (ustick - 1)) / ustick) + 1; 1044 } else { 1045 ticks = INT_MAX; 1046 } 1047 return (ticks); 1048 } 1049 1050 int 1051 tstohz_high(struct timespec *ts) 1052 { 1053 int ticks; 1054 long sec, nsec; 1055 1056 sec = ts->tv_sec; 1057 nsec = ts->tv_nsec; 1058 if (nsec < 0) { 1059 sec--; 1060 nsec += 1000000000; 1061 } 1062 if (sec < 0) { 1063 #ifdef DIAGNOSTIC 1064 if (nsec > 0) { 1065 sec++; 1066 nsec -= 1000000000; 1067 } 1068 kprintf("tstohz_high: negative time difference " 1069 "%ld sec %ld nsec\n", 1070 sec, nsec); 1071 #endif 1072 ticks = 1; 1073 } else if (sec <= INT_MAX / hz) { 1074 ticks = (int)(sec * hz + 1075 ((u_long)nsec + (nstick - 1)) / nstick) + 1; 1076 } else { 1077 ticks = INT_MAX; 1078 } 1079 return (ticks); 1080 } 1081 1082 1083 /* 1084 * Compute number of ticks for the specified amount of time, erroring on 1085 * the side of it being too low to ensure that sleeping the returned number 1086 * of ticks will not result in a late return. 1087 * 1088 * The supplied timeval may not be negative and should be normalized. A 1089 * return value of 0 is possible if the timeval converts to less then 1090 * 1 tick. 1091 * 1092 * If ints have 32 bits, then the maximum value for any timeout in 1093 * 10ms ticks is 248 days. 1094 */ 1095 int 1096 tvtohz_low(struct timeval *tv) 1097 { 1098 int ticks; 1099 long sec; 1100 1101 sec = tv->tv_sec; 1102 if (sec <= INT_MAX / hz) 1103 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 1104 else 1105 ticks = INT_MAX; 1106 return (ticks); 1107 } 1108 1109 int 1110 tstohz_low(struct timespec *ts) 1111 { 1112 int ticks; 1113 long sec; 1114 1115 sec = ts->tv_sec; 1116 if (sec <= INT_MAX / hz) 1117 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 1118 else 1119 ticks = INT_MAX; 1120 return (ticks); 1121 } 1122 1123 /* 1124 * Start profiling on a process. 1125 * 1126 * Caller must hold p->p_token(); 1127 * 1128 * Kernel profiling passes proc0 which never exits and hence 1129 * keeps the profile clock running constantly. 1130 */ 1131 void 1132 startprofclock(struct proc *p) 1133 { 1134 if ((p->p_flags & P_PROFIL) == 0) { 1135 p->p_flags |= P_PROFIL; 1136 #if 0 /* XXX */ 1137 if (++profprocs == 1 && stathz != 0) { 1138 crit_enter(); 1139 psdiv = psratio; 1140 setstatclockrate(profhz); 1141 crit_exit(); 1142 } 1143 #endif 1144 } 1145 } 1146 1147 /* 1148 * Stop profiling on a process. 1149 * 1150 * caller must hold p->p_token 1151 */ 1152 void 1153 stopprofclock(struct proc *p) 1154 { 1155 if (p->p_flags & P_PROFIL) { 1156 p->p_flags &= ~P_PROFIL; 1157 #if 0 /* XXX */ 1158 if (--profprocs == 0 && stathz != 0) { 1159 crit_enter(); 1160 psdiv = 1; 1161 setstatclockrate(stathz); 1162 crit_exit(); 1163 } 1164 #endif 1165 } 1166 } 1167 1168 /* 1169 * Return information about system clocks. 1170 */ 1171 static int 1172 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 1173 { 1174 struct kinfo_clockinfo clkinfo; 1175 /* 1176 * Construct clockinfo structure. 1177 */ 1178 clkinfo.ci_hz = hz; 1179 clkinfo.ci_tick = ustick; 1180 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 1181 clkinfo.ci_profhz = profhz; 1182 clkinfo.ci_stathz = stathz ? stathz : hz; 1183 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 1184 } 1185 1186 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 1187 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 1188 1189 /* 1190 * We have eight functions for looking at the clock, four for 1191 * microseconds and four for nanoseconds. For each there is fast 1192 * but less precise version "get{nano|micro}[up]time" which will 1193 * return a time which is up to 1/HZ previous to the call, whereas 1194 * the raw version "{nano|micro}[up]time" will return a timestamp 1195 * which is as precise as possible. The "up" variants return the 1196 * time relative to system boot, these are well suited for time 1197 * interval measurements. 1198 * 1199 * Each cpu independently maintains the current time of day, so all 1200 * we need to do to protect ourselves from changes is to do a loop 1201 * check on the seconds field changing out from under us. 1202 * 1203 * The system timer maintains a 32 bit count and due to various issues 1204 * it is possible for the calculated delta to occasionally exceed 1205 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 1206 * multiplication can easily overflow, so we deal with the case. For 1207 * uniformity we deal with the case in the usec case too. 1208 * 1209 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 1210 */ 1211 void 1212 getmicrouptime(struct timeval *tvp) 1213 { 1214 struct globaldata *gd = mycpu; 1215 sysclock_t delta; 1216 1217 do { 1218 tvp->tv_sec = gd->gd_time_seconds; 1219 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1220 } while (tvp->tv_sec != gd->gd_time_seconds); 1221 1222 if (delta >= sys_cputimer->freq) { 1223 tvp->tv_sec += delta / sys_cputimer->freq; 1224 delta %= sys_cputimer->freq; 1225 } 1226 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1227 if (tvp->tv_usec >= 1000000) { 1228 tvp->tv_usec -= 1000000; 1229 ++tvp->tv_sec; 1230 } 1231 } 1232 1233 void 1234 getnanouptime(struct timespec *tsp) 1235 { 1236 struct globaldata *gd = mycpu; 1237 sysclock_t delta; 1238 1239 do { 1240 tsp->tv_sec = gd->gd_time_seconds; 1241 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1242 } while (tsp->tv_sec != gd->gd_time_seconds); 1243 1244 if (delta >= sys_cputimer->freq) { 1245 tsp->tv_sec += delta / sys_cputimer->freq; 1246 delta %= sys_cputimer->freq; 1247 } 1248 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1249 } 1250 1251 void 1252 microuptime(struct timeval *tvp) 1253 { 1254 struct globaldata *gd = mycpu; 1255 sysclock_t delta; 1256 1257 do { 1258 tvp->tv_sec = gd->gd_time_seconds; 1259 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1260 } while (tvp->tv_sec != gd->gd_time_seconds); 1261 1262 if (delta >= sys_cputimer->freq) { 1263 tvp->tv_sec += delta / sys_cputimer->freq; 1264 delta %= sys_cputimer->freq; 1265 } 1266 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1267 } 1268 1269 void 1270 nanouptime(struct timespec *tsp) 1271 { 1272 struct globaldata *gd = mycpu; 1273 sysclock_t delta; 1274 1275 do { 1276 tsp->tv_sec = gd->gd_time_seconds; 1277 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1278 } while (tsp->tv_sec != gd->gd_time_seconds); 1279 1280 if (delta >= sys_cputimer->freq) { 1281 tsp->tv_sec += delta / sys_cputimer->freq; 1282 delta %= sys_cputimer->freq; 1283 } 1284 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1285 } 1286 1287 /* 1288 * realtime routines 1289 */ 1290 void 1291 getmicrotime(struct timeval *tvp) 1292 { 1293 struct globaldata *gd = mycpu; 1294 struct timespec *bt; 1295 sysclock_t delta; 1296 1297 do { 1298 tvp->tv_sec = gd->gd_time_seconds; 1299 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1300 } while (tvp->tv_sec != gd->gd_time_seconds); 1301 1302 if (delta >= sys_cputimer->freq) { 1303 tvp->tv_sec += delta / sys_cputimer->freq; 1304 delta %= sys_cputimer->freq; 1305 } 1306 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1307 1308 bt = &basetime[basetime_index]; 1309 cpu_lfence(); 1310 tvp->tv_sec += bt->tv_sec; 1311 tvp->tv_usec += bt->tv_nsec / 1000; 1312 while (tvp->tv_usec >= 1000000) { 1313 tvp->tv_usec -= 1000000; 1314 ++tvp->tv_sec; 1315 } 1316 } 1317 1318 void 1319 getnanotime(struct timespec *tsp) 1320 { 1321 struct globaldata *gd = mycpu; 1322 struct timespec *bt; 1323 sysclock_t delta; 1324 1325 do { 1326 tsp->tv_sec = gd->gd_time_seconds; 1327 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1328 } while (tsp->tv_sec != gd->gd_time_seconds); 1329 1330 if (delta >= sys_cputimer->freq) { 1331 tsp->tv_sec += delta / sys_cputimer->freq; 1332 delta %= sys_cputimer->freq; 1333 } 1334 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1335 1336 bt = &basetime[basetime_index]; 1337 cpu_lfence(); 1338 tsp->tv_sec += bt->tv_sec; 1339 tsp->tv_nsec += bt->tv_nsec; 1340 while (tsp->tv_nsec >= 1000000000) { 1341 tsp->tv_nsec -= 1000000000; 1342 ++tsp->tv_sec; 1343 } 1344 } 1345 1346 static void 1347 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1348 { 1349 struct globaldata *gd = mycpu; 1350 sysclock_t delta; 1351 1352 do { 1353 tsp->tv_sec = gd->gd_time_seconds; 1354 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1355 } while (tsp->tv_sec != gd->gd_time_seconds); 1356 1357 if (delta >= sys_cputimer->freq) { 1358 tsp->tv_sec += delta / sys_cputimer->freq; 1359 delta %= sys_cputimer->freq; 1360 } 1361 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1362 1363 tsp->tv_sec += nbt->tv_sec; 1364 tsp->tv_nsec += nbt->tv_nsec; 1365 while (tsp->tv_nsec >= 1000000000) { 1366 tsp->tv_nsec -= 1000000000; 1367 ++tsp->tv_sec; 1368 } 1369 } 1370 1371 1372 void 1373 microtime(struct timeval *tvp) 1374 { 1375 struct globaldata *gd = mycpu; 1376 struct timespec *bt; 1377 sysclock_t delta; 1378 1379 do { 1380 tvp->tv_sec = gd->gd_time_seconds; 1381 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1382 } while (tvp->tv_sec != gd->gd_time_seconds); 1383 1384 if (delta >= sys_cputimer->freq) { 1385 tvp->tv_sec += delta / sys_cputimer->freq; 1386 delta %= sys_cputimer->freq; 1387 } 1388 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1389 1390 bt = &basetime[basetime_index]; 1391 cpu_lfence(); 1392 tvp->tv_sec += bt->tv_sec; 1393 tvp->tv_usec += bt->tv_nsec / 1000; 1394 while (tvp->tv_usec >= 1000000) { 1395 tvp->tv_usec -= 1000000; 1396 ++tvp->tv_sec; 1397 } 1398 } 1399 1400 void 1401 nanotime(struct timespec *tsp) 1402 { 1403 struct globaldata *gd = mycpu; 1404 struct timespec *bt; 1405 sysclock_t delta; 1406 1407 do { 1408 tsp->tv_sec = gd->gd_time_seconds; 1409 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1410 } while (tsp->tv_sec != gd->gd_time_seconds); 1411 1412 if (delta >= sys_cputimer->freq) { 1413 tsp->tv_sec += delta / sys_cputimer->freq; 1414 delta %= sys_cputimer->freq; 1415 } 1416 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1417 1418 bt = &basetime[basetime_index]; 1419 cpu_lfence(); 1420 tsp->tv_sec += bt->tv_sec; 1421 tsp->tv_nsec += bt->tv_nsec; 1422 while (tsp->tv_nsec >= 1000000000) { 1423 tsp->tv_nsec -= 1000000000; 1424 ++tsp->tv_sec; 1425 } 1426 } 1427 1428 /* 1429 * Get an approximate time_t. It does not have to be accurate. This 1430 * function is called only from KTR and can be called with the system in 1431 * any state so do not use a critical section or other complex operation 1432 * here. 1433 * 1434 * NOTE: This is not exactly synchronized with real time. To do that we 1435 * would have to do what microtime does and check for a nanoseconds 1436 * overflow. 1437 */ 1438 time_t 1439 get_approximate_time_t(void) 1440 { 1441 struct globaldata *gd = mycpu; 1442 struct timespec *bt; 1443 1444 bt = &basetime[basetime_index]; 1445 return(gd->gd_time_seconds + bt->tv_sec); 1446 } 1447 1448 int 1449 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1450 { 1451 pps_params_t *app; 1452 struct pps_fetch_args *fapi; 1453 #ifdef PPS_SYNC 1454 struct pps_kcbind_args *kapi; 1455 #endif 1456 1457 switch (cmd) { 1458 case PPS_IOC_CREATE: 1459 return (0); 1460 case PPS_IOC_DESTROY: 1461 return (0); 1462 case PPS_IOC_SETPARAMS: 1463 app = (pps_params_t *)data; 1464 if (app->mode & ~pps->ppscap) 1465 return (EINVAL); 1466 pps->ppsparam = *app; 1467 return (0); 1468 case PPS_IOC_GETPARAMS: 1469 app = (pps_params_t *)data; 1470 *app = pps->ppsparam; 1471 app->api_version = PPS_API_VERS_1; 1472 return (0); 1473 case PPS_IOC_GETCAP: 1474 *(int*)data = pps->ppscap; 1475 return (0); 1476 case PPS_IOC_FETCH: 1477 fapi = (struct pps_fetch_args *)data; 1478 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1479 return (EINVAL); 1480 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1481 return (EOPNOTSUPP); 1482 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1483 fapi->pps_info_buf = pps->ppsinfo; 1484 return (0); 1485 case PPS_IOC_KCBIND: 1486 #ifdef PPS_SYNC 1487 kapi = (struct pps_kcbind_args *)data; 1488 /* XXX Only root should be able to do this */ 1489 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1490 return (EINVAL); 1491 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1492 return (EINVAL); 1493 if (kapi->edge & ~pps->ppscap) 1494 return (EINVAL); 1495 pps->kcmode = kapi->edge; 1496 return (0); 1497 #else 1498 return (EOPNOTSUPP); 1499 #endif 1500 default: 1501 return (ENOTTY); 1502 } 1503 } 1504 1505 void 1506 pps_init(struct pps_state *pps) 1507 { 1508 pps->ppscap |= PPS_TSFMT_TSPEC; 1509 if (pps->ppscap & PPS_CAPTUREASSERT) 1510 pps->ppscap |= PPS_OFFSETASSERT; 1511 if (pps->ppscap & PPS_CAPTURECLEAR) 1512 pps->ppscap |= PPS_OFFSETCLEAR; 1513 } 1514 1515 void 1516 pps_event(struct pps_state *pps, sysclock_t count, int event) 1517 { 1518 struct globaldata *gd; 1519 struct timespec *tsp; 1520 struct timespec *osp; 1521 struct timespec *bt; 1522 struct timespec ts; 1523 sysclock_t *pcount; 1524 #ifdef PPS_SYNC 1525 sysclock_t tcount; 1526 #endif 1527 sysclock_t delta; 1528 pps_seq_t *pseq; 1529 int foff; 1530 #ifdef PPS_SYNC 1531 int fhard; 1532 #endif 1533 int ni; 1534 1535 gd = mycpu; 1536 1537 /* Things would be easier with arrays... */ 1538 if (event == PPS_CAPTUREASSERT) { 1539 tsp = &pps->ppsinfo.assert_timestamp; 1540 osp = &pps->ppsparam.assert_offset; 1541 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1542 #ifdef PPS_SYNC 1543 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1544 #endif 1545 pcount = &pps->ppscount[0]; 1546 pseq = &pps->ppsinfo.assert_sequence; 1547 } else { 1548 tsp = &pps->ppsinfo.clear_timestamp; 1549 osp = &pps->ppsparam.clear_offset; 1550 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1551 #ifdef PPS_SYNC 1552 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1553 #endif 1554 pcount = &pps->ppscount[1]; 1555 pseq = &pps->ppsinfo.clear_sequence; 1556 } 1557 1558 /* Nothing really happened */ 1559 if (*pcount == count) 1560 return; 1561 1562 *pcount = count; 1563 1564 do { 1565 ts.tv_sec = gd->gd_time_seconds; 1566 delta = count - gd->gd_cpuclock_base; 1567 } while (ts.tv_sec != gd->gd_time_seconds); 1568 1569 if (delta >= sys_cputimer->freq) { 1570 ts.tv_sec += delta / sys_cputimer->freq; 1571 delta %= sys_cputimer->freq; 1572 } 1573 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1574 ni = basetime_index; 1575 cpu_lfence(); 1576 bt = &basetime[ni]; 1577 ts.tv_sec += bt->tv_sec; 1578 ts.tv_nsec += bt->tv_nsec; 1579 while (ts.tv_nsec >= 1000000000) { 1580 ts.tv_nsec -= 1000000000; 1581 ++ts.tv_sec; 1582 } 1583 1584 (*pseq)++; 1585 *tsp = ts; 1586 1587 if (foff) { 1588 timespecadd(tsp, osp); 1589 if (tsp->tv_nsec < 0) { 1590 tsp->tv_nsec += 1000000000; 1591 tsp->tv_sec -= 1; 1592 } 1593 } 1594 #ifdef PPS_SYNC 1595 if (fhard) { 1596 /* magic, at its best... */ 1597 tcount = count - pps->ppscount[2]; 1598 pps->ppscount[2] = count; 1599 if (tcount >= sys_cputimer->freq) { 1600 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1601 sys_cputimer->freq64_nsec * 1602 (tcount % sys_cputimer->freq)) >> 32; 1603 } else { 1604 delta = (sys_cputimer->freq64_nsec * tcount) >> 32; 1605 } 1606 hardpps(tsp, delta); 1607 } 1608 #endif 1609 } 1610 1611 /* 1612 * Return the tsc target value for a delay of (ns). 1613 * 1614 * Returns -1 if the TSC is not supported. 1615 */ 1616 int64_t 1617 tsc_get_target(int ns) 1618 { 1619 #if defined(_RDTSC_SUPPORTED_) 1620 if (cpu_feature & CPUID_TSC) { 1621 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1622 } 1623 #endif 1624 return(-1); 1625 } 1626 1627 /* 1628 * Compare the tsc against the passed target 1629 * 1630 * Returns +1 if the target has been reached 1631 * Returns 0 if the target has not yet been reached 1632 * Returns -1 if the TSC is not supported. 1633 * 1634 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1635 */ 1636 int 1637 tsc_test_target(int64_t target) 1638 { 1639 #if defined(_RDTSC_SUPPORTED_) 1640 if (cpu_feature & CPUID_TSC) { 1641 if ((int64_t)(target - rdtsc()) <= 0) 1642 return(1); 1643 return(0); 1644 } 1645 #endif 1646 return(-1); 1647 } 1648 1649 /* 1650 * Delay the specified number of nanoseconds using the tsc. This function 1651 * returns immediately if the TSC is not supported. At least one cpu_pause() 1652 * will be issued. 1653 */ 1654 void 1655 tsc_delay(int ns) 1656 { 1657 int64_t clk; 1658 1659 clk = tsc_get_target(ns); 1660 cpu_pause(); 1661 while (tsc_test_target(clk) == 0) 1662 cpu_pause(); 1663 } 1664