1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.40 2005/04/27 14:31:19 hmp Exp $ 74 */ 75 76 #include "opt_ntp.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/callout.h> 81 #include <sys/kernel.h> 82 #include <sys/kinfo.h> 83 #include <sys/proc.h> 84 #include <sys/malloc.h> 85 #include <sys/resourcevar.h> 86 #include <sys/signalvar.h> 87 #include <sys/timex.h> 88 #include <sys/timepps.h> 89 #include <vm/vm.h> 90 #include <sys/lock.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <sys/sysctl.h> 94 #include <sys/thread2.h> 95 96 #include <machine/cpu.h> 97 #include <machine/limits.h> 98 #include <machine/smp.h> 99 100 #ifdef GPROF 101 #include <sys/gmon.h> 102 #endif 103 104 #ifdef DEVICE_POLLING 105 extern void init_device_poll(void); 106 extern void hardclock_device_poll(void); 107 #endif /* DEVICE_POLLING */ 108 109 static void initclocks (void *dummy); 110 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 111 112 /* 113 * Some of these don't belong here, but it's easiest to concentrate them. 114 * Note that cpu_time counts in microseconds, but most userland programs 115 * just compare relative times against the total by delta. 116 */ 117 struct kinfo_cputime cputime_percpu[MAXCPU]; 118 #ifdef SMP 119 static int 120 sysctl_cputime(SYSCTL_HANDLER_ARGS) 121 { 122 int cpu, error = 0; 123 size_t size = sizeof(struct kinfo_cputime); 124 125 for (cpu = 0; cpu < ncpus; ++cpu) { 126 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size))) 127 break; 128 } 129 130 return (error); 131 } 132 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 133 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 134 #else 135 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime, 136 "CPU time statistics"); 137 #endif 138 139 /* 140 * boottime is used to calculate the 'real' uptime. Do not confuse this with 141 * microuptime(). microtime() is not drift compensated. The real uptime 142 * with compensation is nanotime() - bootime. boottime is recalculated 143 * whenever the real time is set based on the compensated elapsed time 144 * in seconds (gd->gd_time_seconds). 145 * 146 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 147 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 148 * the real time. 149 */ 150 struct timespec boottime; /* boot time (realtime) for reference only */ 151 time_t time_second; /* read-only 'passive' uptime in seconds */ 152 153 /* 154 * basetime is used to calculate the compensated real time of day. The 155 * basetime can be modified on a per-tick basis by the adjtime(), 156 * ntp_adjtime(), and sysctl-based time correction APIs. 157 * 158 * Note that frequency corrections can also be made by adjusting 159 * gd_cpuclock_base. 160 * 161 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 162 * used on both SMP and UP systems to avoid MP races between cpu's and 163 * interrupt races on UP systems. 164 */ 165 #define BASETIME_ARYSIZE 16 166 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 167 static struct timespec basetime[BASETIME_ARYSIZE]; 168 static volatile int basetime_index; 169 170 static int 171 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 172 { 173 struct timespec *bt; 174 int error; 175 176 bt = &basetime[basetime_index]; 177 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 178 return (error); 179 } 180 181 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 182 &boottime, timespec, "System boottime"); 183 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 184 sysctl_get_basetime, "S,timespec", "System basetime"); 185 186 static void hardclock(systimer_t info, struct intrframe *frame); 187 static void statclock(systimer_t info, struct intrframe *frame); 188 static void schedclock(systimer_t info, struct intrframe *frame); 189 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 190 191 int ticks; /* system master ticks at hz */ 192 int clocks_running; /* tsleep/timeout clocks operational */ 193 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 194 int64_t nsec_acc; /* accumulator */ 195 196 /* NTPD time correction fields */ 197 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 198 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 199 int64_t ntp_delta; /* one-time correction in nsec */ 200 int64_t ntp_big_delta = 1000000000; 201 int32_t ntp_tick_delta; /* current adjustment rate */ 202 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 203 time_t ntp_leap_second; /* time of next leap second */ 204 int ntp_leap_insert; /* whether to insert or remove a second */ 205 206 /* 207 * Finish initializing clock frequencies and start all clocks running. 208 */ 209 /* ARGSUSED*/ 210 static void 211 initclocks(void *dummy) 212 { 213 cpu_initclocks(); 214 #ifdef DEVICE_POLLING 215 init_device_poll(); 216 #endif 217 /*psratio = profhz / stathz;*/ 218 initclocks_pcpu(); 219 clocks_running = 1; 220 } 221 222 /* 223 * Called on a per-cpu basis 224 */ 225 void 226 initclocks_pcpu(void) 227 { 228 struct globaldata *gd = mycpu; 229 230 crit_enter(); 231 if (gd->gd_cpuid == 0) { 232 gd->gd_time_seconds = 1; 233 gd->gd_cpuclock_base = cputimer_count(); 234 } else { 235 /* XXX */ 236 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 237 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 238 } 239 240 /* 241 * Use a non-queued periodic systimer to prevent multiple ticks from 242 * building up if the sysclock jumps forward (8254 gets reset). The 243 * sysclock will never jump backwards. Our time sync is based on 244 * the actual sysclock, not the ticks count. 245 */ 246 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz); 247 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz); 248 /* XXX correct the frequency for scheduler / estcpu tests */ 249 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock, 250 NULL, ESTCPUFREQ); 251 crit_exit(); 252 } 253 254 /* 255 * This sets the current real time of day. Timespecs are in seconds and 256 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 257 * instead we adjust basetime so basetime + gd_* results in the current 258 * time of day. This way the gd_* fields are guarenteed to represent 259 * a monotonically increasing 'uptime' value. 260 * 261 * When set_timeofday() is called from userland, the system call forces it 262 * onto cpu #0 since only cpu #0 can update basetime_index. 263 */ 264 void 265 set_timeofday(struct timespec *ts) 266 { 267 struct timespec *nbt; 268 int ni; 269 270 /* 271 * XXX SMP / non-atomic basetime updates 272 */ 273 crit_enter(); 274 ni = (basetime_index + 1) & BASETIME_ARYMASK; 275 nbt = &basetime[ni]; 276 nanouptime(nbt); 277 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 278 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 279 if (nbt->tv_nsec < 0) { 280 nbt->tv_nsec += 1000000000; 281 --nbt->tv_sec; 282 } 283 284 /* 285 * Note that basetime diverges from boottime as the clock drift is 286 * compensated for, so we cannot do away with boottime. When setting 287 * the absolute time of day the drift is 0 (for an instant) and we 288 * can simply assign boottime to basetime. 289 * 290 * Note that nanouptime() is based on gd_time_seconds which is drift 291 * compensated up to a point (it is guarenteed to remain monotonically 292 * increasing). gd_time_seconds is thus our best uptime guess and 293 * suitable for use in the boottime calculation. It is already taken 294 * into account in the basetime calculation above. 295 */ 296 boottime.tv_sec = nbt->tv_sec; 297 ntp_delta = 0; 298 299 /* 300 * We now have a new basetime, update the index. 301 */ 302 cpu_mb1(); 303 basetime_index = ni; 304 305 crit_exit(); 306 } 307 308 /* 309 * Each cpu has its own hardclock, but we only increments ticks and softticks 310 * on cpu #0. 311 * 312 * NOTE! systimer! the MP lock might not be held here. We can only safely 313 * manipulate objects owned by the current cpu. 314 */ 315 static void 316 hardclock(systimer_t info, struct intrframe *frame) 317 { 318 sysclock_t cputicks; 319 struct proc *p; 320 struct pstats *pstats; 321 struct globaldata *gd = mycpu; 322 323 /* 324 * Realtime updates are per-cpu. Note that timer corrections as 325 * returned by microtime() and friends make an additional adjustment 326 * using a system-wise 'basetime', but the running time is always 327 * taken from the per-cpu globaldata area. Since the same clock 328 * is distributing (XXX SMP) to all cpus, the per-cpu timebases 329 * stay in synch. 330 * 331 * Note that we never allow info->time (aka gd->gd_hardclock.time) 332 * to reverse index gd_cpuclock_base, but that it is possible for 333 * it to temporarily get behind in the seconds if something in the 334 * system locks interrupts for a long period of time. Since periodic 335 * timers count events, though everything should resynch again 336 * immediately. 337 */ 338 cputicks = info->time - gd->gd_cpuclock_base; 339 if (cputicks >= cputimer_freq) { 340 ++gd->gd_time_seconds; 341 gd->gd_cpuclock_base += cputimer_freq; 342 } 343 344 /* 345 * The system-wide ticks counter and NTP related timedelta/tickdelta 346 * adjustments only occur on cpu #0. NTP adjustments are accomplished 347 * by updating basetime. 348 */ 349 if (gd->gd_cpuid == 0) { 350 struct timespec *nbt; 351 struct timespec nts; 352 int leap; 353 int ni; 354 355 ++ticks; 356 357 #ifdef DEVICE_POLLING 358 hardclock_device_poll(); /* mpsafe, short and quick */ 359 #endif /* DEVICE_POLLING */ 360 361 #if 0 362 if (tco->tc_poll_pps) 363 tco->tc_poll_pps(tco); 364 #endif 365 366 /* 367 * Calculate the new basetime index. We are in a critical section 368 * on cpu #0 and can safely play with basetime_index. Start 369 * with the current basetime and then make adjustments. 370 */ 371 ni = (basetime_index + 1) & BASETIME_ARYMASK; 372 nbt = &basetime[ni]; 373 *nbt = basetime[basetime_index]; 374 375 /* 376 * Apply adjtime corrections. (adjtime() API) 377 * 378 * adjtime() only runs on cpu #0 so our critical section is 379 * sufficient to access these variables. 380 */ 381 if (ntp_delta != 0) { 382 nbt->tv_nsec += ntp_tick_delta; 383 ntp_delta -= ntp_tick_delta; 384 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 385 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 386 ntp_tick_delta = ntp_delta; 387 } 388 } 389 390 /* 391 * Apply permanent frequency corrections. (sysctl API) 392 */ 393 if (ntp_tick_permanent != 0) { 394 ntp_tick_acc += ntp_tick_permanent; 395 if (ntp_tick_acc >= (1LL << 32)) { 396 nbt->tv_nsec += ntp_tick_acc >> 32; 397 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 398 } else if (ntp_tick_acc <= -(1LL << 32)) { 399 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 400 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 401 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 402 } 403 } 404 405 if (nbt->tv_nsec >= 1000000000) { 406 nbt->tv_sec++; 407 nbt->tv_nsec -= 1000000000; 408 } else if (nbt->tv_nsec < 0) { 409 nbt->tv_sec--; 410 nbt->tv_nsec += 1000000000; 411 } 412 413 /* 414 * Another per-tick compensation. (for ntp_adjtime() API) 415 */ 416 if (nsec_adj != 0) { 417 nsec_acc += nsec_adj; 418 if (nsec_acc >= 0x100000000LL) { 419 nbt->tv_nsec += nsec_acc >> 32; 420 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 421 } else if (nsec_acc <= -0x100000000LL) { 422 nbt->tv_nsec -= -nsec_acc >> 32; 423 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 424 } 425 if (nbt->tv_nsec >= 1000000000) { 426 nbt->tv_nsec -= 1000000000; 427 ++nbt->tv_sec; 428 } else if (nbt->tv_nsec < 0) { 429 nbt->tv_nsec += 1000000000; 430 --nbt->tv_sec; 431 } 432 } 433 434 /************************************************************ 435 * LEAP SECOND CORRECTION * 436 ************************************************************ 437 * 438 * Taking into account all the corrections made above, figure 439 * out the new real time. If the seconds field has changed 440 * then apply any pending leap-second corrections. 441 */ 442 getnanotime_nbt(nbt, &nts); 443 444 if (time_second != nts.tv_sec) { 445 /* 446 * Apply leap second (sysctl API). Adjust nts for changes 447 * so we do not have to call getnanotime_nbt again. 448 */ 449 if (ntp_leap_second) { 450 if (ntp_leap_second == nts.tv_sec) { 451 if (ntp_leap_insert) { 452 nbt->tv_sec++; 453 nts.tv_sec++; 454 } else { 455 nbt->tv_sec--; 456 nts.tv_sec--; 457 } 458 ntp_leap_second--; 459 } 460 } 461 462 /* 463 * Apply leap second (ntp_adjtime() API), calculate a new 464 * nsec_adj field. ntp_update_second() returns nsec_adj 465 * as a per-second value but we need it as a per-tick value. 466 */ 467 leap = ntp_update_second(time_second, &nsec_adj); 468 nsec_adj /= hz; 469 nbt->tv_sec += leap; 470 nts.tv_sec += leap; 471 472 /* 473 * Update the time_second 'approximate time' global. 474 */ 475 time_second = nts.tv_sec; 476 } 477 478 /* 479 * Finally, our new basetime is ready to go live! 480 */ 481 cpu_mb1(); 482 basetime_index = ni; 483 } 484 485 /* 486 * softticks are handled for all cpus 487 */ 488 hardclock_softtick(gd); 489 490 /* 491 * ITimer handling is per-tick, per-cpu. I don't think psignal() 492 * is mpsafe on curproc, so XXX get the mplock. 493 */ 494 if ((p = curproc) != NULL && try_mplock()) { 495 pstats = p->p_stats; 496 if (frame && CLKF_USERMODE(frame) && 497 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 498 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 499 psignal(p, SIGVTALRM); 500 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) && 501 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 502 psignal(p, SIGPROF); 503 rel_mplock(); 504 } 505 setdelayed(); 506 } 507 508 /* 509 * The statistics clock typically runs at a 125Hz rate, and is intended 510 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 511 * 512 * NOTE! systimer! the MP lock might not be held here. We can only safely 513 * manipulate objects owned by the current cpu. 514 * 515 * The stats clock is responsible for grabbing a profiling sample. 516 * Most of the statistics are only used by user-level statistics programs. 517 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 518 * p->p_estcpu. 519 * 520 * Like the other clocks, the stat clock is called from what is effectively 521 * a fast interrupt, so the context should be the thread/process that got 522 * interrupted. 523 */ 524 static void 525 statclock(systimer_t info, struct intrframe *frame) 526 { 527 #ifdef GPROF 528 struct gmonparam *g; 529 int i; 530 #endif 531 thread_t td; 532 struct proc *p; 533 int bump; 534 struct timeval tv; 535 struct timeval *stv; 536 537 /* 538 * How big was our timeslice relative to the last time? 539 */ 540 microuptime(&tv); /* mpsafe */ 541 stv = &mycpu->gd_stattv; 542 if (stv->tv_sec == 0) { 543 bump = 1; 544 } else { 545 bump = tv.tv_usec - stv->tv_usec + 546 (tv.tv_sec - stv->tv_sec) * 1000000; 547 if (bump < 0) 548 bump = 0; 549 if (bump > 1000000) 550 bump = 1000000; 551 } 552 *stv = tv; 553 554 td = curthread; 555 p = td->td_proc; 556 557 if (frame && CLKF_USERMODE(frame)) { 558 /* 559 * Came from userland, handle user time and deal with 560 * possible process. 561 */ 562 if (p && (p->p_flag & P_PROFIL)) 563 addupc_intr(p, CLKF_PC(frame), 1); 564 td->td_uticks += bump; 565 566 /* 567 * Charge the time as appropriate 568 */ 569 if (p && p->p_nice > NZERO) 570 cpu_time.cp_nice += bump; 571 else 572 cpu_time.cp_user += bump; 573 } else { 574 #ifdef GPROF 575 /* 576 * Kernel statistics are just like addupc_intr, only easier. 577 */ 578 g = &_gmonparam; 579 if (g->state == GMON_PROF_ON && frame) { 580 i = CLKF_PC(frame) - g->lowpc; 581 if (i < g->textsize) { 582 i /= HISTFRACTION * sizeof(*g->kcount); 583 g->kcount[i]++; 584 } 585 } 586 #endif 587 /* 588 * Came from kernel mode, so we were: 589 * - handling an interrupt, 590 * - doing syscall or trap work on behalf of the current 591 * user process, or 592 * - spinning in the idle loop. 593 * Whichever it is, charge the time as appropriate. 594 * Note that we charge interrupts to the current process, 595 * regardless of whether they are ``for'' that process, 596 * so that we know how much of its real time was spent 597 * in ``non-process'' (i.e., interrupt) work. 598 * 599 * XXX assume system if frame is NULL. A NULL frame 600 * can occur if ipi processing is done from an splx(). 601 */ 602 if (frame && CLKF_INTR(frame)) 603 td->td_iticks += bump; 604 else 605 td->td_sticks += bump; 606 607 if (frame && CLKF_INTR(frame)) { 608 cpu_time.cp_intr += bump; 609 } else { 610 if (td == &mycpu->gd_idlethread) 611 cpu_time.cp_idle += bump; 612 else 613 cpu_time.cp_sys += bump; 614 } 615 } 616 } 617 618 /* 619 * The scheduler clock typically runs at a 20Hz rate. NOTE! systimer, 620 * the MP lock might not be held. We can safely manipulate parts of curproc 621 * but that's about it. 622 */ 623 static void 624 schedclock(systimer_t info, struct intrframe *frame) 625 { 626 struct proc *p; 627 struct pstats *pstats; 628 struct rusage *ru; 629 struct vmspace *vm; 630 long rss; 631 632 schedulerclock(NULL); /* mpsafe */ 633 if ((p = curproc) != NULL) { 634 /* Update resource usage integrals and maximums. */ 635 if ((pstats = p->p_stats) != NULL && 636 (ru = &pstats->p_ru) != NULL && 637 (vm = p->p_vmspace) != NULL) { 638 ru->ru_ixrss += pgtok(vm->vm_tsize); 639 ru->ru_idrss += pgtok(vm->vm_dsize); 640 ru->ru_isrss += pgtok(vm->vm_ssize); 641 rss = pgtok(vmspace_resident_count(vm)); 642 if (ru->ru_maxrss < rss) 643 ru->ru_maxrss = rss; 644 } 645 } 646 } 647 648 /* 649 * Compute number of ticks for the specified amount of time. The 650 * return value is intended to be used in a clock interrupt timed 651 * operation and guarenteed to meet or exceed the requested time. 652 * If the representation overflows, return INT_MAX. The minimum return 653 * value is 1 ticks and the function will average the calculation up. 654 * If any value greater then 0 microseconds is supplied, a value 655 * of at least 2 will be returned to ensure that a near-term clock 656 * interrupt does not cause the timeout to occur (degenerately) early. 657 * 658 * Note that limit checks must take into account microseconds, which is 659 * done simply by using the smaller signed long maximum instead of 660 * the unsigned long maximum. 661 * 662 * If ints have 32 bits, then the maximum value for any timeout in 663 * 10ms ticks is 248 days. 664 */ 665 int 666 tvtohz_high(struct timeval *tv) 667 { 668 int ticks; 669 long sec, usec; 670 671 sec = tv->tv_sec; 672 usec = tv->tv_usec; 673 if (usec < 0) { 674 sec--; 675 usec += 1000000; 676 } 677 if (sec < 0) { 678 #ifdef DIAGNOSTIC 679 if (usec > 0) { 680 sec++; 681 usec -= 1000000; 682 } 683 printf("tvotohz: negative time difference %ld sec %ld usec\n", 684 sec, usec); 685 #endif 686 ticks = 1; 687 } else if (sec <= INT_MAX / hz) { 688 ticks = (int)(sec * hz + 689 ((u_long)usec + (tick - 1)) / tick) + 1; 690 } else { 691 ticks = INT_MAX; 692 } 693 return (ticks); 694 } 695 696 /* 697 * Compute number of ticks for the specified amount of time, erroring on 698 * the side of it being too low to ensure that sleeping the returned number 699 * of ticks will not result in a late return. 700 * 701 * The supplied timeval may not be negative and should be normalized. A 702 * return value of 0 is possible if the timeval converts to less then 703 * 1 tick. 704 * 705 * If ints have 32 bits, then the maximum value for any timeout in 706 * 10ms ticks is 248 days. 707 */ 708 int 709 tvtohz_low(struct timeval *tv) 710 { 711 int ticks; 712 long sec; 713 714 sec = tv->tv_sec; 715 if (sec <= INT_MAX / hz) 716 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick); 717 else 718 ticks = INT_MAX; 719 return (ticks); 720 } 721 722 723 /* 724 * Start profiling on a process. 725 * 726 * Kernel profiling passes proc0 which never exits and hence 727 * keeps the profile clock running constantly. 728 */ 729 void 730 startprofclock(struct proc *p) 731 { 732 if ((p->p_flag & P_PROFIL) == 0) { 733 p->p_flag |= P_PROFIL; 734 #if 0 /* XXX */ 735 if (++profprocs == 1 && stathz != 0) { 736 s = splstatclock(); 737 psdiv = psratio; 738 setstatclockrate(profhz); 739 splx(s); 740 } 741 #endif 742 } 743 } 744 745 /* 746 * Stop profiling on a process. 747 */ 748 void 749 stopprofclock(struct proc *p) 750 { 751 if (p->p_flag & P_PROFIL) { 752 p->p_flag &= ~P_PROFIL; 753 #if 0 /* XXX */ 754 if (--profprocs == 0 && stathz != 0) { 755 s = splstatclock(); 756 psdiv = 1; 757 setstatclockrate(stathz); 758 splx(s); 759 } 760 #endif 761 } 762 } 763 764 /* 765 * Return information about system clocks. 766 */ 767 static int 768 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 769 { 770 struct kinfo_clockinfo clkinfo; 771 /* 772 * Construct clockinfo structure. 773 */ 774 clkinfo.ci_hz = hz; 775 clkinfo.ci_tick = tick; 776 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 777 clkinfo.ci_profhz = profhz; 778 clkinfo.ci_stathz = stathz ? stathz : hz; 779 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 780 } 781 782 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 783 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 784 785 /* 786 * We have eight functions for looking at the clock, four for 787 * microseconds and four for nanoseconds. For each there is fast 788 * but less precise version "get{nano|micro}[up]time" which will 789 * return a time which is up to 1/HZ previous to the call, whereas 790 * the raw version "{nano|micro}[up]time" will return a timestamp 791 * which is as precise as possible. The "up" variants return the 792 * time relative to system boot, these are well suited for time 793 * interval measurements. 794 * 795 * Each cpu independantly maintains the current time of day, so all 796 * we need to do to protect ourselves from changes is to do a loop 797 * check on the seconds field changing out from under us. 798 * 799 * The system timer maintains a 32 bit count and due to various issues 800 * it is possible for the calculated delta to occassionally exceed 801 * cputimer_freq. If this occurs the cputimer_freq64_nsec multiplication 802 * can easily overflow, so we deal with the case. For uniformity we deal 803 * with the case in the usec case too. 804 */ 805 void 806 getmicrouptime(struct timeval *tvp) 807 { 808 struct globaldata *gd = mycpu; 809 sysclock_t delta; 810 811 do { 812 tvp->tv_sec = gd->gd_time_seconds; 813 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 814 } while (tvp->tv_sec != gd->gd_time_seconds); 815 816 if (delta >= cputimer_freq) { 817 tvp->tv_sec += delta / cputimer_freq; 818 delta %= cputimer_freq; 819 } 820 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 821 if (tvp->tv_usec >= 1000000) { 822 tvp->tv_usec -= 1000000; 823 ++tvp->tv_sec; 824 } 825 } 826 827 void 828 getnanouptime(struct timespec *tsp) 829 { 830 struct globaldata *gd = mycpu; 831 sysclock_t delta; 832 833 do { 834 tsp->tv_sec = gd->gd_time_seconds; 835 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 836 } while (tsp->tv_sec != gd->gd_time_seconds); 837 838 if (delta >= cputimer_freq) { 839 tsp->tv_sec += delta / cputimer_freq; 840 delta %= cputimer_freq; 841 } 842 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 843 } 844 845 void 846 microuptime(struct timeval *tvp) 847 { 848 struct globaldata *gd = mycpu; 849 sysclock_t delta; 850 851 do { 852 tvp->tv_sec = gd->gd_time_seconds; 853 delta = cputimer_count() - gd->gd_cpuclock_base; 854 } while (tvp->tv_sec != gd->gd_time_seconds); 855 856 if (delta >= cputimer_freq) { 857 tvp->tv_sec += delta / cputimer_freq; 858 delta %= cputimer_freq; 859 } 860 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 861 } 862 863 void 864 nanouptime(struct timespec *tsp) 865 { 866 struct globaldata *gd = mycpu; 867 sysclock_t delta; 868 869 do { 870 tsp->tv_sec = gd->gd_time_seconds; 871 delta = cputimer_count() - gd->gd_cpuclock_base; 872 } while (tsp->tv_sec != gd->gd_time_seconds); 873 874 if (delta >= cputimer_freq) { 875 tsp->tv_sec += delta / cputimer_freq; 876 delta %= cputimer_freq; 877 } 878 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 879 } 880 881 /* 882 * realtime routines 883 */ 884 885 void 886 getmicrotime(struct timeval *tvp) 887 { 888 struct globaldata *gd = mycpu; 889 struct timespec *bt; 890 sysclock_t delta; 891 892 do { 893 tvp->tv_sec = gd->gd_time_seconds; 894 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 895 } while (tvp->tv_sec != gd->gd_time_seconds); 896 897 if (delta >= cputimer_freq) { 898 tvp->tv_sec += delta / cputimer_freq; 899 delta %= cputimer_freq; 900 } 901 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 902 903 bt = &basetime[basetime_index]; 904 tvp->tv_sec += bt->tv_sec; 905 tvp->tv_usec += bt->tv_nsec / 1000; 906 while (tvp->tv_usec >= 1000000) { 907 tvp->tv_usec -= 1000000; 908 ++tvp->tv_sec; 909 } 910 } 911 912 void 913 getnanotime(struct timespec *tsp) 914 { 915 struct globaldata *gd = mycpu; 916 struct timespec *bt; 917 sysclock_t delta; 918 919 do { 920 tsp->tv_sec = gd->gd_time_seconds; 921 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 922 } while (tsp->tv_sec != gd->gd_time_seconds); 923 924 if (delta >= cputimer_freq) { 925 tsp->tv_sec += delta / cputimer_freq; 926 delta %= cputimer_freq; 927 } 928 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 929 930 bt = &basetime[basetime_index]; 931 tsp->tv_sec += bt->tv_sec; 932 tsp->tv_nsec += bt->tv_nsec; 933 while (tsp->tv_nsec >= 1000000000) { 934 tsp->tv_nsec -= 1000000000; 935 ++tsp->tv_sec; 936 } 937 } 938 939 static void 940 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 941 { 942 struct globaldata *gd = mycpu; 943 sysclock_t delta; 944 945 do { 946 tsp->tv_sec = gd->gd_time_seconds; 947 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 948 } while (tsp->tv_sec != gd->gd_time_seconds); 949 950 if (delta >= cputimer_freq) { 951 tsp->tv_sec += delta / cputimer_freq; 952 delta %= cputimer_freq; 953 } 954 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 955 956 tsp->tv_sec += nbt->tv_sec; 957 tsp->tv_nsec += nbt->tv_nsec; 958 while (tsp->tv_nsec >= 1000000000) { 959 tsp->tv_nsec -= 1000000000; 960 ++tsp->tv_sec; 961 } 962 } 963 964 965 void 966 microtime(struct timeval *tvp) 967 { 968 struct globaldata *gd = mycpu; 969 struct timespec *bt; 970 sysclock_t delta; 971 972 do { 973 tvp->tv_sec = gd->gd_time_seconds; 974 delta = cputimer_count() - gd->gd_cpuclock_base; 975 } while (tvp->tv_sec != gd->gd_time_seconds); 976 977 if (delta >= cputimer_freq) { 978 tvp->tv_sec += delta / cputimer_freq; 979 delta %= cputimer_freq; 980 } 981 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 982 983 bt = &basetime[basetime_index]; 984 tvp->tv_sec += bt->tv_sec; 985 tvp->tv_usec += bt->tv_nsec / 1000; 986 while (tvp->tv_usec >= 1000000) { 987 tvp->tv_usec -= 1000000; 988 ++tvp->tv_sec; 989 } 990 } 991 992 void 993 nanotime(struct timespec *tsp) 994 { 995 struct globaldata *gd = mycpu; 996 struct timespec *bt; 997 sysclock_t delta; 998 999 do { 1000 tsp->tv_sec = gd->gd_time_seconds; 1001 delta = cputimer_count() - gd->gd_cpuclock_base; 1002 } while (tsp->tv_sec != gd->gd_time_seconds); 1003 1004 if (delta >= cputimer_freq) { 1005 tsp->tv_sec += delta / cputimer_freq; 1006 delta %= cputimer_freq; 1007 } 1008 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 1009 1010 bt = &basetime[basetime_index]; 1011 tsp->tv_sec += bt->tv_sec; 1012 tsp->tv_nsec += bt->tv_nsec; 1013 while (tsp->tv_nsec >= 1000000000) { 1014 tsp->tv_nsec -= 1000000000; 1015 ++tsp->tv_sec; 1016 } 1017 } 1018 1019 /* 1020 * note: this is not exactly synchronized with real time. To do that we 1021 * would have to do what microtime does and check for a nanoseconds overflow. 1022 */ 1023 time_t 1024 get_approximate_time_t(void) 1025 { 1026 struct globaldata *gd = mycpu; 1027 struct timespec *bt; 1028 1029 bt = &basetime[basetime_index]; 1030 return(gd->gd_time_seconds + bt->tv_sec); 1031 } 1032 1033 int 1034 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1035 { 1036 pps_params_t *app; 1037 struct pps_fetch_args *fapi; 1038 #ifdef PPS_SYNC 1039 struct pps_kcbind_args *kapi; 1040 #endif 1041 1042 switch (cmd) { 1043 case PPS_IOC_CREATE: 1044 return (0); 1045 case PPS_IOC_DESTROY: 1046 return (0); 1047 case PPS_IOC_SETPARAMS: 1048 app = (pps_params_t *)data; 1049 if (app->mode & ~pps->ppscap) 1050 return (EINVAL); 1051 pps->ppsparam = *app; 1052 return (0); 1053 case PPS_IOC_GETPARAMS: 1054 app = (pps_params_t *)data; 1055 *app = pps->ppsparam; 1056 app->api_version = PPS_API_VERS_1; 1057 return (0); 1058 case PPS_IOC_GETCAP: 1059 *(int*)data = pps->ppscap; 1060 return (0); 1061 case PPS_IOC_FETCH: 1062 fapi = (struct pps_fetch_args *)data; 1063 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1064 return (EINVAL); 1065 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1066 return (EOPNOTSUPP); 1067 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1068 fapi->pps_info_buf = pps->ppsinfo; 1069 return (0); 1070 case PPS_IOC_KCBIND: 1071 #ifdef PPS_SYNC 1072 kapi = (struct pps_kcbind_args *)data; 1073 /* XXX Only root should be able to do this */ 1074 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1075 return (EINVAL); 1076 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1077 return (EINVAL); 1078 if (kapi->edge & ~pps->ppscap) 1079 return (EINVAL); 1080 pps->kcmode = kapi->edge; 1081 return (0); 1082 #else 1083 return (EOPNOTSUPP); 1084 #endif 1085 default: 1086 return (ENOTTY); 1087 } 1088 } 1089 1090 void 1091 pps_init(struct pps_state *pps) 1092 { 1093 pps->ppscap |= PPS_TSFMT_TSPEC; 1094 if (pps->ppscap & PPS_CAPTUREASSERT) 1095 pps->ppscap |= PPS_OFFSETASSERT; 1096 if (pps->ppscap & PPS_CAPTURECLEAR) 1097 pps->ppscap |= PPS_OFFSETCLEAR; 1098 } 1099 1100 void 1101 pps_event(struct pps_state *pps, sysclock_t count, int event) 1102 { 1103 struct globaldata *gd; 1104 struct timespec *tsp; 1105 struct timespec *osp; 1106 struct timespec *bt; 1107 struct timespec ts; 1108 sysclock_t *pcount; 1109 #ifdef PPS_SYNC 1110 sysclock_t tcount; 1111 #endif 1112 sysclock_t delta; 1113 pps_seq_t *pseq; 1114 int foff; 1115 int fhard; 1116 1117 gd = mycpu; 1118 1119 /* Things would be easier with arrays... */ 1120 if (event == PPS_CAPTUREASSERT) { 1121 tsp = &pps->ppsinfo.assert_timestamp; 1122 osp = &pps->ppsparam.assert_offset; 1123 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1124 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1125 pcount = &pps->ppscount[0]; 1126 pseq = &pps->ppsinfo.assert_sequence; 1127 } else { 1128 tsp = &pps->ppsinfo.clear_timestamp; 1129 osp = &pps->ppsparam.clear_offset; 1130 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1131 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1132 pcount = &pps->ppscount[1]; 1133 pseq = &pps->ppsinfo.clear_sequence; 1134 } 1135 1136 /* Nothing really happened */ 1137 if (*pcount == count) 1138 return; 1139 1140 *pcount = count; 1141 1142 do { 1143 ts.tv_sec = gd->gd_time_seconds; 1144 delta = count - gd->gd_cpuclock_base; 1145 } while (ts.tv_sec != gd->gd_time_seconds); 1146 1147 if (delta >= cputimer_freq) { 1148 ts.tv_sec += delta / cputimer_freq; 1149 delta %= cputimer_freq; 1150 } 1151 ts.tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 1152 bt = &basetime[basetime_index]; 1153 ts.tv_sec += bt->tv_sec; 1154 ts.tv_nsec += bt->tv_nsec; 1155 while (ts.tv_nsec >= 1000000000) { 1156 ts.tv_nsec -= 1000000000; 1157 ++ts.tv_sec; 1158 } 1159 1160 (*pseq)++; 1161 *tsp = ts; 1162 1163 if (foff) { 1164 timespecadd(tsp, osp); 1165 if (tsp->tv_nsec < 0) { 1166 tsp->tv_nsec += 1000000000; 1167 tsp->tv_sec -= 1; 1168 } 1169 } 1170 #ifdef PPS_SYNC 1171 if (fhard) { 1172 /* magic, at its best... */ 1173 tcount = count - pps->ppscount[2]; 1174 pps->ppscount[2] = count; 1175 if (tcount >= cputimer_freq) { 1176 delta = (1000000000 * (tcount / cputimer_freq) + 1177 cputimer_freq64_nsec * 1178 (tcount % cputimer_freq)) >> 32; 1179 } else { 1180 delta = (cputimer_freq64_nsec * tcount) >> 32; 1181 } 1182 hardpps(tsp, delta); 1183 } 1184 #endif 1185 } 1186 1187