1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.62 2008/09/09 04:06:13 dillon Exp $ 74 */ 75 76 #include "opt_ntp.h" 77 #include "opt_polling.h" 78 #include "opt_ifpoll.h" 79 #include "opt_pctrack.h" 80 81 #include <sys/param.h> 82 #include <sys/systm.h> 83 #include <sys/callout.h> 84 #include <sys/kernel.h> 85 #include <sys/kinfo.h> 86 #include <sys/proc.h> 87 #include <sys/malloc.h> 88 #include <sys/resource.h> 89 #include <sys/resourcevar.h> 90 #include <sys/signalvar.h> 91 #include <sys/timex.h> 92 #include <sys/timepps.h> 93 #include <vm/vm.h> 94 #include <sys/lock.h> 95 #include <vm/pmap.h> 96 #include <vm/vm_map.h> 97 #include <vm/vm_extern.h> 98 #include <sys/sysctl.h> 99 100 #include <sys/thread2.h> 101 102 #include <machine/cpu.h> 103 #include <machine/limits.h> 104 #include <machine/smp.h> 105 #include <machine/cpufunc.h> 106 #include <machine/specialreg.h> 107 #include <machine/clock.h> 108 109 #ifdef GPROF 110 #include <sys/gmon.h> 111 #endif 112 113 #ifdef DEVICE_POLLING 114 extern void init_device_poll_pcpu(int); 115 #endif 116 117 #ifdef IFPOLL_ENABLE 118 extern void ifpoll_init_pcpu(int); 119 #endif 120 121 #ifdef DEBUG_PCTRACK 122 static void do_pctrack(struct intrframe *frame, int which); 123 #endif 124 125 static void initclocks (void *dummy); 126 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 127 128 /* 129 * Some of these don't belong here, but it's easiest to concentrate them. 130 * Note that cpu_time counts in microseconds, but most userland programs 131 * just compare relative times against the total by delta. 132 */ 133 struct kinfo_cputime cputime_percpu[MAXCPU]; 134 #ifdef DEBUG_PCTRACK 135 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 136 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 137 #endif 138 139 #ifdef SMP 140 static int 141 sysctl_cputime(SYSCTL_HANDLER_ARGS) 142 { 143 int cpu, error = 0; 144 size_t size = sizeof(struct kinfo_cputime); 145 146 for (cpu = 0; cpu < ncpus; ++cpu) { 147 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size))) 148 break; 149 } 150 151 return (error); 152 } 153 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 154 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 155 #else 156 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime, 157 "CPU time statistics"); 158 #endif 159 160 static int 161 sysctl_cp_time(SYSCTL_HANDLER_ARGS) 162 { 163 long cpu_states[5] = {0}; 164 int cpu, error = 0; 165 size_t size = sizeof(cpu_states); 166 167 for (cpu = 0; cpu < ncpus; ++cpu) { 168 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user; 169 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice; 170 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys; 171 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr; 172 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle; 173 } 174 175 error = SYSCTL_OUT(req, cpu_states, size); 176 177 return (error); 178 } 179 180 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 181 sysctl_cp_time, "LU", "CPU time statistics"); 182 183 /* 184 * boottime is used to calculate the 'real' uptime. Do not confuse this with 185 * microuptime(). microtime() is not drift compensated. The real uptime 186 * with compensation is nanotime() - bootime. boottime is recalculated 187 * whenever the real time is set based on the compensated elapsed time 188 * in seconds (gd->gd_time_seconds). 189 * 190 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 191 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 192 * the real time. 193 */ 194 struct timespec boottime; /* boot time (realtime) for reference only */ 195 time_t time_second; /* read-only 'passive' uptime in seconds */ 196 197 /* 198 * basetime is used to calculate the compensated real time of day. The 199 * basetime can be modified on a per-tick basis by the adjtime(), 200 * ntp_adjtime(), and sysctl-based time correction APIs. 201 * 202 * Note that frequency corrections can also be made by adjusting 203 * gd_cpuclock_base. 204 * 205 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 206 * used on both SMP and UP systems to avoid MP races between cpu's and 207 * interrupt races on UP systems. 208 */ 209 #define BASETIME_ARYSIZE 16 210 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 211 static struct timespec basetime[BASETIME_ARYSIZE]; 212 static volatile int basetime_index; 213 214 static int 215 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 216 { 217 struct timespec *bt; 218 int error; 219 int index; 220 221 /* 222 * Because basetime data and index may be updated by another cpu, 223 * a load fence is required to ensure that the data we read has 224 * not been speculatively read relative to a possibly updated index. 225 */ 226 index = basetime_index; 227 cpu_lfence(); 228 bt = &basetime[index]; 229 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 230 return (error); 231 } 232 233 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 234 &boottime, timespec, "System boottime"); 235 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 236 sysctl_get_basetime, "S,timespec", "System basetime"); 237 238 static void hardclock(systimer_t info, int, struct intrframe *frame); 239 static void statclock(systimer_t info, int, struct intrframe *frame); 240 static void schedclock(systimer_t info, int, struct intrframe *frame); 241 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 242 243 int ticks; /* system master ticks at hz */ 244 int clocks_running; /* tsleep/timeout clocks operational */ 245 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 246 int64_t nsec_acc; /* accumulator */ 247 248 /* NTPD time correction fields */ 249 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 250 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 251 int64_t ntp_delta; /* one-time correction in nsec */ 252 int64_t ntp_big_delta = 1000000000; 253 int32_t ntp_tick_delta; /* current adjustment rate */ 254 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 255 time_t ntp_leap_second; /* time of next leap second */ 256 int ntp_leap_insert; /* whether to insert or remove a second */ 257 258 /* 259 * Finish initializing clock frequencies and start all clocks running. 260 */ 261 /* ARGSUSED*/ 262 static void 263 initclocks(void *dummy) 264 { 265 /*psratio = profhz / stathz;*/ 266 initclocks_pcpu(); 267 clocks_running = 1; 268 } 269 270 /* 271 * Called on a per-cpu basis 272 */ 273 void 274 initclocks_pcpu(void) 275 { 276 struct globaldata *gd = mycpu; 277 278 crit_enter(); 279 if (gd->gd_cpuid == 0) { 280 gd->gd_time_seconds = 1; 281 gd->gd_cpuclock_base = sys_cputimer->count(); 282 } else { 283 /* XXX */ 284 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 285 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 286 } 287 288 systimer_intr_enable(); 289 290 #ifdef DEVICE_POLLING 291 init_device_poll_pcpu(gd->gd_cpuid); 292 #endif 293 294 #ifdef IFPOLL_ENABLE 295 ifpoll_init_pcpu(gd->gd_cpuid); 296 #endif 297 298 /* 299 * Use a non-queued periodic systimer to prevent multiple ticks from 300 * building up if the sysclock jumps forward (8254 gets reset). The 301 * sysclock will never jump backwards. Our time sync is based on 302 * the actual sysclock, not the ticks count. 303 */ 304 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz); 305 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz); 306 /* XXX correct the frequency for scheduler / estcpu tests */ 307 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock, 308 NULL, ESTCPUFREQ); 309 crit_exit(); 310 } 311 312 /* 313 * This sets the current real time of day. Timespecs are in seconds and 314 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 315 * instead we adjust basetime so basetime + gd_* results in the current 316 * time of day. This way the gd_* fields are guarenteed to represent 317 * a monotonically increasing 'uptime' value. 318 * 319 * When set_timeofday() is called from userland, the system call forces it 320 * onto cpu #0 since only cpu #0 can update basetime_index. 321 */ 322 void 323 set_timeofday(struct timespec *ts) 324 { 325 struct timespec *nbt; 326 int ni; 327 328 /* 329 * XXX SMP / non-atomic basetime updates 330 */ 331 crit_enter(); 332 ni = (basetime_index + 1) & BASETIME_ARYMASK; 333 nbt = &basetime[ni]; 334 nanouptime(nbt); 335 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 336 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 337 if (nbt->tv_nsec < 0) { 338 nbt->tv_nsec += 1000000000; 339 --nbt->tv_sec; 340 } 341 342 /* 343 * Note that basetime diverges from boottime as the clock drift is 344 * compensated for, so we cannot do away with boottime. When setting 345 * the absolute time of day the drift is 0 (for an instant) and we 346 * can simply assign boottime to basetime. 347 * 348 * Note that nanouptime() is based on gd_time_seconds which is drift 349 * compensated up to a point (it is guarenteed to remain monotonically 350 * increasing). gd_time_seconds is thus our best uptime guess and 351 * suitable for use in the boottime calculation. It is already taken 352 * into account in the basetime calculation above. 353 */ 354 boottime.tv_sec = nbt->tv_sec; 355 ntp_delta = 0; 356 357 /* 358 * We now have a new basetime, make sure all other cpus have it, 359 * then update the index. 360 */ 361 cpu_sfence(); 362 basetime_index = ni; 363 364 crit_exit(); 365 } 366 367 /* 368 * Each cpu has its own hardclock, but we only increments ticks and softticks 369 * on cpu #0. 370 * 371 * NOTE! systimer! the MP lock might not be held here. We can only safely 372 * manipulate objects owned by the current cpu. 373 */ 374 static void 375 hardclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 376 { 377 sysclock_t cputicks; 378 struct proc *p; 379 struct globaldata *gd = mycpu; 380 381 /* 382 * Realtime updates are per-cpu. Note that timer corrections as 383 * returned by microtime() and friends make an additional adjustment 384 * using a system-wise 'basetime', but the running time is always 385 * taken from the per-cpu globaldata area. Since the same clock 386 * is distributing (XXX SMP) to all cpus, the per-cpu timebases 387 * stay in synch. 388 * 389 * Note that we never allow info->time (aka gd->gd_hardclock.time) 390 * to reverse index gd_cpuclock_base, but that it is possible for 391 * it to temporarily get behind in the seconds if something in the 392 * system locks interrupts for a long period of time. Since periodic 393 * timers count events, though everything should resynch again 394 * immediately. 395 */ 396 cputicks = info->time - gd->gd_cpuclock_base; 397 if (cputicks >= sys_cputimer->freq) { 398 ++gd->gd_time_seconds; 399 gd->gd_cpuclock_base += sys_cputimer->freq; 400 } 401 402 /* 403 * The system-wide ticks counter and NTP related timedelta/tickdelta 404 * adjustments only occur on cpu #0. NTP adjustments are accomplished 405 * by updating basetime. 406 */ 407 if (gd->gd_cpuid == 0) { 408 struct timespec *nbt; 409 struct timespec nts; 410 int leap; 411 int ni; 412 413 ++ticks; 414 415 #if 0 416 if (tco->tc_poll_pps) 417 tco->tc_poll_pps(tco); 418 #endif 419 420 /* 421 * Calculate the new basetime index. We are in a critical section 422 * on cpu #0 and can safely play with basetime_index. Start 423 * with the current basetime and then make adjustments. 424 */ 425 ni = (basetime_index + 1) & BASETIME_ARYMASK; 426 nbt = &basetime[ni]; 427 *nbt = basetime[basetime_index]; 428 429 /* 430 * Apply adjtime corrections. (adjtime() API) 431 * 432 * adjtime() only runs on cpu #0 so our critical section is 433 * sufficient to access these variables. 434 */ 435 if (ntp_delta != 0) { 436 nbt->tv_nsec += ntp_tick_delta; 437 ntp_delta -= ntp_tick_delta; 438 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 439 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 440 ntp_tick_delta = ntp_delta; 441 } 442 } 443 444 /* 445 * Apply permanent frequency corrections. (sysctl API) 446 */ 447 if (ntp_tick_permanent != 0) { 448 ntp_tick_acc += ntp_tick_permanent; 449 if (ntp_tick_acc >= (1LL << 32)) { 450 nbt->tv_nsec += ntp_tick_acc >> 32; 451 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 452 } else if (ntp_tick_acc <= -(1LL << 32)) { 453 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 454 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 455 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 456 } 457 } 458 459 if (nbt->tv_nsec >= 1000000000) { 460 nbt->tv_sec++; 461 nbt->tv_nsec -= 1000000000; 462 } else if (nbt->tv_nsec < 0) { 463 nbt->tv_sec--; 464 nbt->tv_nsec += 1000000000; 465 } 466 467 /* 468 * Another per-tick compensation. (for ntp_adjtime() API) 469 */ 470 if (nsec_adj != 0) { 471 nsec_acc += nsec_adj; 472 if (nsec_acc >= 0x100000000LL) { 473 nbt->tv_nsec += nsec_acc >> 32; 474 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 475 } else if (nsec_acc <= -0x100000000LL) { 476 nbt->tv_nsec -= -nsec_acc >> 32; 477 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 478 } 479 if (nbt->tv_nsec >= 1000000000) { 480 nbt->tv_nsec -= 1000000000; 481 ++nbt->tv_sec; 482 } else if (nbt->tv_nsec < 0) { 483 nbt->tv_nsec += 1000000000; 484 --nbt->tv_sec; 485 } 486 } 487 488 /************************************************************ 489 * LEAP SECOND CORRECTION * 490 ************************************************************ 491 * 492 * Taking into account all the corrections made above, figure 493 * out the new real time. If the seconds field has changed 494 * then apply any pending leap-second corrections. 495 */ 496 getnanotime_nbt(nbt, &nts); 497 498 if (time_second != nts.tv_sec) { 499 /* 500 * Apply leap second (sysctl API). Adjust nts for changes 501 * so we do not have to call getnanotime_nbt again. 502 */ 503 if (ntp_leap_second) { 504 if (ntp_leap_second == nts.tv_sec) { 505 if (ntp_leap_insert) { 506 nbt->tv_sec++; 507 nts.tv_sec++; 508 } else { 509 nbt->tv_sec--; 510 nts.tv_sec--; 511 } 512 ntp_leap_second--; 513 } 514 } 515 516 /* 517 * Apply leap second (ntp_adjtime() API), calculate a new 518 * nsec_adj field. ntp_update_second() returns nsec_adj 519 * as a per-second value but we need it as a per-tick value. 520 */ 521 leap = ntp_update_second(time_second, &nsec_adj); 522 nsec_adj /= hz; 523 nbt->tv_sec += leap; 524 nts.tv_sec += leap; 525 526 /* 527 * Update the time_second 'approximate time' global. 528 */ 529 time_second = nts.tv_sec; 530 } 531 532 /* 533 * Finally, our new basetime is ready to go live! 534 */ 535 cpu_sfence(); 536 basetime_index = ni; 537 } 538 539 /* 540 * lwkt thread scheduler fair queueing 541 */ 542 lwkt_schedulerclock(curthread); 543 544 /* 545 * softticks are handled for all cpus 546 */ 547 hardclock_softtick(gd); 548 549 /* 550 * ITimer handling is per-tick, per-cpu. 551 * 552 * We must acquire the per-process token in order for ksignal() 553 * to be non-blocking. For the moment this requires an AST fault, 554 * the ksignal() cannot be safely issued from this hard interrupt. 555 * 556 * XXX Even the trytoken here isn't right, and itimer operation in 557 * a multi threaded environment is going to be weird at the 558 * very least. 559 */ 560 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) { 561 crit_enter_hard(); 562 if (frame && CLKF_USERMODE(frame) && 563 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 564 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) { 565 p->p_flags |= P_SIGVTALRM; 566 need_user_resched(); 567 } 568 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 569 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) { 570 p->p_flags |= P_SIGPROF; 571 need_user_resched(); 572 } 573 crit_exit_hard(); 574 lwkt_reltoken(&p->p_token); 575 } 576 setdelayed(); 577 } 578 579 /* 580 * The statistics clock typically runs at a 125Hz rate, and is intended 581 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 582 * 583 * NOTE! systimer! the MP lock might not be held here. We can only safely 584 * manipulate objects owned by the current cpu. 585 * 586 * The stats clock is responsible for grabbing a profiling sample. 587 * Most of the statistics are only used by user-level statistics programs. 588 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 589 * p->p_estcpu. 590 * 591 * Like the other clocks, the stat clock is called from what is effectively 592 * a fast interrupt, so the context should be the thread/process that got 593 * interrupted. 594 */ 595 static void 596 statclock(systimer_t info, int in_ipi, struct intrframe *frame) 597 { 598 #ifdef GPROF 599 struct gmonparam *g; 600 int i; 601 #endif 602 thread_t td; 603 struct proc *p; 604 int bump; 605 struct timeval tv; 606 struct timeval *stv; 607 608 /* 609 * How big was our timeslice relative to the last time? 610 */ 611 microuptime(&tv); /* mpsafe */ 612 stv = &mycpu->gd_stattv; 613 if (stv->tv_sec == 0) { 614 bump = 1; 615 } else { 616 bump = tv.tv_usec - stv->tv_usec + 617 (tv.tv_sec - stv->tv_sec) * 1000000; 618 if (bump < 0) 619 bump = 0; 620 if (bump > 1000000) 621 bump = 1000000; 622 } 623 *stv = tv; 624 625 td = curthread; 626 p = td->td_proc; 627 628 if (frame && CLKF_USERMODE(frame)) { 629 /* 630 * Came from userland, handle user time and deal with 631 * possible process. 632 */ 633 if (p && (p->p_flags & P_PROFIL)) 634 addupc_intr(p, CLKF_PC(frame), 1); 635 td->td_uticks += bump; 636 637 /* 638 * Charge the time as appropriate 639 */ 640 if (p && p->p_nice > NZERO) 641 cpu_time.cp_nice += bump; 642 else 643 cpu_time.cp_user += bump; 644 } else { 645 int intr_nest = mycpu->gd_intr_nesting_level; 646 647 if (in_ipi) { 648 /* 649 * IPI processing code will bump gd_intr_nesting_level 650 * up by one, which breaks following CLKF_INTR testing, 651 * so we substract it by one here. 652 */ 653 --intr_nest; 654 } 655 #ifdef GPROF 656 /* 657 * Kernel statistics are just like addupc_intr, only easier. 658 */ 659 g = &_gmonparam; 660 if (g->state == GMON_PROF_ON && frame) { 661 i = CLKF_PC(frame) - g->lowpc; 662 if (i < g->textsize) { 663 i /= HISTFRACTION * sizeof(*g->kcount); 664 g->kcount[i]++; 665 } 666 } 667 #endif 668 669 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td)) 670 671 /* 672 * Came from kernel mode, so we were: 673 * - handling an interrupt, 674 * - doing syscall or trap work on behalf of the current 675 * user process, or 676 * - spinning in the idle loop. 677 * Whichever it is, charge the time as appropriate. 678 * Note that we charge interrupts to the current process, 679 * regardless of whether they are ``for'' that process, 680 * so that we know how much of its real time was spent 681 * in ``non-process'' (i.e., interrupt) work. 682 * 683 * XXX assume system if frame is NULL. A NULL frame 684 * can occur if ipi processing is done from a crit_exit(). 685 */ 686 if (IS_INTR_RUNNING) 687 td->td_iticks += bump; 688 else 689 td->td_sticks += bump; 690 691 if (IS_INTR_RUNNING) { 692 #ifdef DEBUG_PCTRACK 693 if (frame) 694 do_pctrack(frame, PCTRACK_INT); 695 #endif 696 cpu_time.cp_intr += bump; 697 } else { 698 if (td == &mycpu->gd_idlethread) { 699 cpu_time.cp_idle += bump; 700 } else { 701 #ifdef DEBUG_PCTRACK 702 if (frame) 703 do_pctrack(frame, PCTRACK_SYS); 704 #endif 705 cpu_time.cp_sys += bump; 706 } 707 } 708 709 #undef IS_INTR_RUNNING 710 } 711 } 712 713 #ifdef DEBUG_PCTRACK 714 /* 715 * Sample the PC when in the kernel or in an interrupt. User code can 716 * retrieve the information and generate a histogram or other output. 717 */ 718 719 static void 720 do_pctrack(struct intrframe *frame, int which) 721 { 722 struct kinfo_pctrack *pctrack; 723 724 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 725 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 726 (void *)CLKF_PC(frame); 727 ++pctrack->pc_index; 728 } 729 730 static int 731 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 732 { 733 struct kinfo_pcheader head; 734 int error; 735 int cpu; 736 int ntrack; 737 738 head.pc_ntrack = PCTRACK_SIZE; 739 head.pc_arysize = PCTRACK_ARYSIZE; 740 741 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 742 return (error); 743 744 for (cpu = 0; cpu < ncpus; ++cpu) { 745 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 746 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 747 sizeof(struct kinfo_pctrack)); 748 if (error) 749 break; 750 } 751 if (error) 752 break; 753 } 754 return (error); 755 } 756 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 757 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 758 759 #endif 760 761 /* 762 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 763 * the MP lock might not be held. We can safely manipulate parts of curproc 764 * but that's about it. 765 * 766 * Each cpu has its own scheduler clock. 767 */ 768 static void 769 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 770 { 771 struct lwp *lp; 772 struct rusage *ru; 773 struct vmspace *vm; 774 long rss; 775 776 if ((lp = lwkt_preempted_proc()) != NULL) { 777 /* 778 * Account for cpu time used and hit the scheduler. Note 779 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 780 * HERE. 781 */ 782 ++lp->lwp_cpticks; 783 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic, 784 info->time); 785 } 786 if ((lp = curthread->td_lwp) != NULL) { 787 /* 788 * Update resource usage integrals and maximums. 789 */ 790 if ((ru = &lp->lwp_proc->p_ru) && 791 (vm = lp->lwp_proc->p_vmspace) != NULL) { 792 ru->ru_ixrss += pgtok(vm->vm_tsize); 793 ru->ru_idrss += pgtok(vm->vm_dsize); 794 ru->ru_isrss += pgtok(vm->vm_ssize); 795 if (lwkt_trytoken(&vm->vm_map.token)) { 796 rss = pgtok(vmspace_resident_count(vm)); 797 if (ru->ru_maxrss < rss) 798 ru->ru_maxrss = rss; 799 lwkt_reltoken(&vm->vm_map.token); 800 } 801 } 802 } 803 } 804 805 /* 806 * Compute number of ticks for the specified amount of time. The 807 * return value is intended to be used in a clock interrupt timed 808 * operation and guarenteed to meet or exceed the requested time. 809 * If the representation overflows, return INT_MAX. The minimum return 810 * value is 1 ticks and the function will average the calculation up. 811 * If any value greater then 0 microseconds is supplied, a value 812 * of at least 2 will be returned to ensure that a near-term clock 813 * interrupt does not cause the timeout to occur (degenerately) early. 814 * 815 * Note that limit checks must take into account microseconds, which is 816 * done simply by using the smaller signed long maximum instead of 817 * the unsigned long maximum. 818 * 819 * If ints have 32 bits, then the maximum value for any timeout in 820 * 10ms ticks is 248 days. 821 */ 822 int 823 tvtohz_high(struct timeval *tv) 824 { 825 int ticks; 826 long sec, usec; 827 828 sec = tv->tv_sec; 829 usec = tv->tv_usec; 830 if (usec < 0) { 831 sec--; 832 usec += 1000000; 833 } 834 if (sec < 0) { 835 #ifdef DIAGNOSTIC 836 if (usec > 0) { 837 sec++; 838 usec -= 1000000; 839 } 840 kprintf("tvtohz_high: negative time difference " 841 "%ld sec %ld usec\n", 842 sec, usec); 843 #endif 844 ticks = 1; 845 } else if (sec <= INT_MAX / hz) { 846 ticks = (int)(sec * hz + 847 ((u_long)usec + (ustick - 1)) / ustick) + 1; 848 } else { 849 ticks = INT_MAX; 850 } 851 return (ticks); 852 } 853 854 int 855 tstohz_high(struct timespec *ts) 856 { 857 int ticks; 858 long sec, nsec; 859 860 sec = ts->tv_sec; 861 nsec = ts->tv_nsec; 862 if (nsec < 0) { 863 sec--; 864 nsec += 1000000000; 865 } 866 if (sec < 0) { 867 #ifdef DIAGNOSTIC 868 if (nsec > 0) { 869 sec++; 870 nsec -= 1000000000; 871 } 872 kprintf("tstohz_high: negative time difference " 873 "%ld sec %ld nsec\n", 874 sec, nsec); 875 #endif 876 ticks = 1; 877 } else if (sec <= INT_MAX / hz) { 878 ticks = (int)(sec * hz + 879 ((u_long)nsec + (nstick - 1)) / nstick) + 1; 880 } else { 881 ticks = INT_MAX; 882 } 883 return (ticks); 884 } 885 886 887 /* 888 * Compute number of ticks for the specified amount of time, erroring on 889 * the side of it being too low to ensure that sleeping the returned number 890 * of ticks will not result in a late return. 891 * 892 * The supplied timeval may not be negative and should be normalized. A 893 * return value of 0 is possible if the timeval converts to less then 894 * 1 tick. 895 * 896 * If ints have 32 bits, then the maximum value for any timeout in 897 * 10ms ticks is 248 days. 898 */ 899 int 900 tvtohz_low(struct timeval *tv) 901 { 902 int ticks; 903 long sec; 904 905 sec = tv->tv_sec; 906 if (sec <= INT_MAX / hz) 907 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 908 else 909 ticks = INT_MAX; 910 return (ticks); 911 } 912 913 int 914 tstohz_low(struct timespec *ts) 915 { 916 int ticks; 917 long sec; 918 919 sec = ts->tv_sec; 920 if (sec <= INT_MAX / hz) 921 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 922 else 923 ticks = INT_MAX; 924 return (ticks); 925 } 926 927 /* 928 * Start profiling on a process. 929 * 930 * Kernel profiling passes proc0 which never exits and hence 931 * keeps the profile clock running constantly. 932 */ 933 void 934 startprofclock(struct proc *p) 935 { 936 if ((p->p_flags & P_PROFIL) == 0) { 937 p->p_flags |= P_PROFIL; 938 #if 0 /* XXX */ 939 if (++profprocs == 1 && stathz != 0) { 940 crit_enter(); 941 psdiv = psratio; 942 setstatclockrate(profhz); 943 crit_exit(); 944 } 945 #endif 946 } 947 } 948 949 /* 950 * Stop profiling on a process. 951 * 952 * caller must hold p->p_token 953 */ 954 void 955 stopprofclock(struct proc *p) 956 { 957 if (p->p_flags & P_PROFIL) { 958 p->p_flags &= ~P_PROFIL; 959 #if 0 /* XXX */ 960 if (--profprocs == 0 && stathz != 0) { 961 crit_enter(); 962 psdiv = 1; 963 setstatclockrate(stathz); 964 crit_exit(); 965 } 966 #endif 967 } 968 } 969 970 /* 971 * Return information about system clocks. 972 */ 973 static int 974 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 975 { 976 struct kinfo_clockinfo clkinfo; 977 /* 978 * Construct clockinfo structure. 979 */ 980 clkinfo.ci_hz = hz; 981 clkinfo.ci_tick = ustick; 982 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 983 clkinfo.ci_profhz = profhz; 984 clkinfo.ci_stathz = stathz ? stathz : hz; 985 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 986 } 987 988 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 989 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 990 991 /* 992 * We have eight functions for looking at the clock, four for 993 * microseconds and four for nanoseconds. For each there is fast 994 * but less precise version "get{nano|micro}[up]time" which will 995 * return a time which is up to 1/HZ previous to the call, whereas 996 * the raw version "{nano|micro}[up]time" will return a timestamp 997 * which is as precise as possible. The "up" variants return the 998 * time relative to system boot, these are well suited for time 999 * interval measurements. 1000 * 1001 * Each cpu independantly maintains the current time of day, so all 1002 * we need to do to protect ourselves from changes is to do a loop 1003 * check on the seconds field changing out from under us. 1004 * 1005 * The system timer maintains a 32 bit count and due to various issues 1006 * it is possible for the calculated delta to occassionally exceed 1007 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 1008 * multiplication can easily overflow, so we deal with the case. For 1009 * uniformity we deal with the case in the usec case too. 1010 * 1011 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 1012 */ 1013 void 1014 getmicrouptime(struct timeval *tvp) 1015 { 1016 struct globaldata *gd = mycpu; 1017 sysclock_t delta; 1018 1019 do { 1020 tvp->tv_sec = gd->gd_time_seconds; 1021 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1022 } while (tvp->tv_sec != gd->gd_time_seconds); 1023 1024 if (delta >= sys_cputimer->freq) { 1025 tvp->tv_sec += delta / sys_cputimer->freq; 1026 delta %= sys_cputimer->freq; 1027 } 1028 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1029 if (tvp->tv_usec >= 1000000) { 1030 tvp->tv_usec -= 1000000; 1031 ++tvp->tv_sec; 1032 } 1033 } 1034 1035 void 1036 getnanouptime(struct timespec *tsp) 1037 { 1038 struct globaldata *gd = mycpu; 1039 sysclock_t delta; 1040 1041 do { 1042 tsp->tv_sec = gd->gd_time_seconds; 1043 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1044 } while (tsp->tv_sec != gd->gd_time_seconds); 1045 1046 if (delta >= sys_cputimer->freq) { 1047 tsp->tv_sec += delta / sys_cputimer->freq; 1048 delta %= sys_cputimer->freq; 1049 } 1050 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1051 } 1052 1053 void 1054 microuptime(struct timeval *tvp) 1055 { 1056 struct globaldata *gd = mycpu; 1057 sysclock_t delta; 1058 1059 do { 1060 tvp->tv_sec = gd->gd_time_seconds; 1061 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1062 } while (tvp->tv_sec != gd->gd_time_seconds); 1063 1064 if (delta >= sys_cputimer->freq) { 1065 tvp->tv_sec += delta / sys_cputimer->freq; 1066 delta %= sys_cputimer->freq; 1067 } 1068 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1069 } 1070 1071 void 1072 nanouptime(struct timespec *tsp) 1073 { 1074 struct globaldata *gd = mycpu; 1075 sysclock_t delta; 1076 1077 do { 1078 tsp->tv_sec = gd->gd_time_seconds; 1079 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1080 } while (tsp->tv_sec != gd->gd_time_seconds); 1081 1082 if (delta >= sys_cputimer->freq) { 1083 tsp->tv_sec += delta / sys_cputimer->freq; 1084 delta %= sys_cputimer->freq; 1085 } 1086 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1087 } 1088 1089 /* 1090 * realtime routines 1091 */ 1092 void 1093 getmicrotime(struct timeval *tvp) 1094 { 1095 struct globaldata *gd = mycpu; 1096 struct timespec *bt; 1097 sysclock_t delta; 1098 1099 do { 1100 tvp->tv_sec = gd->gd_time_seconds; 1101 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1102 } while (tvp->tv_sec != gd->gd_time_seconds); 1103 1104 if (delta >= sys_cputimer->freq) { 1105 tvp->tv_sec += delta / sys_cputimer->freq; 1106 delta %= sys_cputimer->freq; 1107 } 1108 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1109 1110 bt = &basetime[basetime_index]; 1111 tvp->tv_sec += bt->tv_sec; 1112 tvp->tv_usec += bt->tv_nsec / 1000; 1113 while (tvp->tv_usec >= 1000000) { 1114 tvp->tv_usec -= 1000000; 1115 ++tvp->tv_sec; 1116 } 1117 } 1118 1119 void 1120 getnanotime(struct timespec *tsp) 1121 { 1122 struct globaldata *gd = mycpu; 1123 struct timespec *bt; 1124 sysclock_t delta; 1125 1126 do { 1127 tsp->tv_sec = gd->gd_time_seconds; 1128 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1129 } while (tsp->tv_sec != gd->gd_time_seconds); 1130 1131 if (delta >= sys_cputimer->freq) { 1132 tsp->tv_sec += delta / sys_cputimer->freq; 1133 delta %= sys_cputimer->freq; 1134 } 1135 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1136 1137 bt = &basetime[basetime_index]; 1138 tsp->tv_sec += bt->tv_sec; 1139 tsp->tv_nsec += bt->tv_nsec; 1140 while (tsp->tv_nsec >= 1000000000) { 1141 tsp->tv_nsec -= 1000000000; 1142 ++tsp->tv_sec; 1143 } 1144 } 1145 1146 static void 1147 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1148 { 1149 struct globaldata *gd = mycpu; 1150 sysclock_t delta; 1151 1152 do { 1153 tsp->tv_sec = gd->gd_time_seconds; 1154 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1155 } while (tsp->tv_sec != gd->gd_time_seconds); 1156 1157 if (delta >= sys_cputimer->freq) { 1158 tsp->tv_sec += delta / sys_cputimer->freq; 1159 delta %= sys_cputimer->freq; 1160 } 1161 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1162 1163 tsp->tv_sec += nbt->tv_sec; 1164 tsp->tv_nsec += nbt->tv_nsec; 1165 while (tsp->tv_nsec >= 1000000000) { 1166 tsp->tv_nsec -= 1000000000; 1167 ++tsp->tv_sec; 1168 } 1169 } 1170 1171 1172 void 1173 microtime(struct timeval *tvp) 1174 { 1175 struct globaldata *gd = mycpu; 1176 struct timespec *bt; 1177 sysclock_t delta; 1178 1179 do { 1180 tvp->tv_sec = gd->gd_time_seconds; 1181 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1182 } while (tvp->tv_sec != gd->gd_time_seconds); 1183 1184 if (delta >= sys_cputimer->freq) { 1185 tvp->tv_sec += delta / sys_cputimer->freq; 1186 delta %= sys_cputimer->freq; 1187 } 1188 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1189 1190 bt = &basetime[basetime_index]; 1191 tvp->tv_sec += bt->tv_sec; 1192 tvp->tv_usec += bt->tv_nsec / 1000; 1193 while (tvp->tv_usec >= 1000000) { 1194 tvp->tv_usec -= 1000000; 1195 ++tvp->tv_sec; 1196 } 1197 } 1198 1199 void 1200 nanotime(struct timespec *tsp) 1201 { 1202 struct globaldata *gd = mycpu; 1203 struct timespec *bt; 1204 sysclock_t delta; 1205 1206 do { 1207 tsp->tv_sec = gd->gd_time_seconds; 1208 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1209 } while (tsp->tv_sec != gd->gd_time_seconds); 1210 1211 if (delta >= sys_cputimer->freq) { 1212 tsp->tv_sec += delta / sys_cputimer->freq; 1213 delta %= sys_cputimer->freq; 1214 } 1215 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1216 1217 bt = &basetime[basetime_index]; 1218 tsp->tv_sec += bt->tv_sec; 1219 tsp->tv_nsec += bt->tv_nsec; 1220 while (tsp->tv_nsec >= 1000000000) { 1221 tsp->tv_nsec -= 1000000000; 1222 ++tsp->tv_sec; 1223 } 1224 } 1225 1226 /* 1227 * note: this is not exactly synchronized with real time. To do that we 1228 * would have to do what microtime does and check for a nanoseconds overflow. 1229 */ 1230 time_t 1231 get_approximate_time_t(void) 1232 { 1233 struct globaldata *gd = mycpu; 1234 struct timespec *bt; 1235 1236 bt = &basetime[basetime_index]; 1237 return(gd->gd_time_seconds + bt->tv_sec); 1238 } 1239 1240 int 1241 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1242 { 1243 pps_params_t *app; 1244 struct pps_fetch_args *fapi; 1245 #ifdef PPS_SYNC 1246 struct pps_kcbind_args *kapi; 1247 #endif 1248 1249 switch (cmd) { 1250 case PPS_IOC_CREATE: 1251 return (0); 1252 case PPS_IOC_DESTROY: 1253 return (0); 1254 case PPS_IOC_SETPARAMS: 1255 app = (pps_params_t *)data; 1256 if (app->mode & ~pps->ppscap) 1257 return (EINVAL); 1258 pps->ppsparam = *app; 1259 return (0); 1260 case PPS_IOC_GETPARAMS: 1261 app = (pps_params_t *)data; 1262 *app = pps->ppsparam; 1263 app->api_version = PPS_API_VERS_1; 1264 return (0); 1265 case PPS_IOC_GETCAP: 1266 *(int*)data = pps->ppscap; 1267 return (0); 1268 case PPS_IOC_FETCH: 1269 fapi = (struct pps_fetch_args *)data; 1270 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1271 return (EINVAL); 1272 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1273 return (EOPNOTSUPP); 1274 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1275 fapi->pps_info_buf = pps->ppsinfo; 1276 return (0); 1277 case PPS_IOC_KCBIND: 1278 #ifdef PPS_SYNC 1279 kapi = (struct pps_kcbind_args *)data; 1280 /* XXX Only root should be able to do this */ 1281 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1282 return (EINVAL); 1283 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1284 return (EINVAL); 1285 if (kapi->edge & ~pps->ppscap) 1286 return (EINVAL); 1287 pps->kcmode = kapi->edge; 1288 return (0); 1289 #else 1290 return (EOPNOTSUPP); 1291 #endif 1292 default: 1293 return (ENOTTY); 1294 } 1295 } 1296 1297 void 1298 pps_init(struct pps_state *pps) 1299 { 1300 pps->ppscap |= PPS_TSFMT_TSPEC; 1301 if (pps->ppscap & PPS_CAPTUREASSERT) 1302 pps->ppscap |= PPS_OFFSETASSERT; 1303 if (pps->ppscap & PPS_CAPTURECLEAR) 1304 pps->ppscap |= PPS_OFFSETCLEAR; 1305 } 1306 1307 void 1308 pps_event(struct pps_state *pps, sysclock_t count, int event) 1309 { 1310 struct globaldata *gd; 1311 struct timespec *tsp; 1312 struct timespec *osp; 1313 struct timespec *bt; 1314 struct timespec ts; 1315 sysclock_t *pcount; 1316 #ifdef PPS_SYNC 1317 sysclock_t tcount; 1318 #endif 1319 sysclock_t delta; 1320 pps_seq_t *pseq; 1321 int foff; 1322 int fhard; 1323 1324 gd = mycpu; 1325 1326 /* Things would be easier with arrays... */ 1327 if (event == PPS_CAPTUREASSERT) { 1328 tsp = &pps->ppsinfo.assert_timestamp; 1329 osp = &pps->ppsparam.assert_offset; 1330 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1331 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1332 pcount = &pps->ppscount[0]; 1333 pseq = &pps->ppsinfo.assert_sequence; 1334 } else { 1335 tsp = &pps->ppsinfo.clear_timestamp; 1336 osp = &pps->ppsparam.clear_offset; 1337 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1338 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1339 pcount = &pps->ppscount[1]; 1340 pseq = &pps->ppsinfo.clear_sequence; 1341 } 1342 1343 /* Nothing really happened */ 1344 if (*pcount == count) 1345 return; 1346 1347 *pcount = count; 1348 1349 do { 1350 ts.tv_sec = gd->gd_time_seconds; 1351 delta = count - gd->gd_cpuclock_base; 1352 } while (ts.tv_sec != gd->gd_time_seconds); 1353 1354 if (delta >= sys_cputimer->freq) { 1355 ts.tv_sec += delta / sys_cputimer->freq; 1356 delta %= sys_cputimer->freq; 1357 } 1358 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1359 bt = &basetime[basetime_index]; 1360 ts.tv_sec += bt->tv_sec; 1361 ts.tv_nsec += bt->tv_nsec; 1362 while (ts.tv_nsec >= 1000000000) { 1363 ts.tv_nsec -= 1000000000; 1364 ++ts.tv_sec; 1365 } 1366 1367 (*pseq)++; 1368 *tsp = ts; 1369 1370 if (foff) { 1371 timespecadd(tsp, osp); 1372 if (tsp->tv_nsec < 0) { 1373 tsp->tv_nsec += 1000000000; 1374 tsp->tv_sec -= 1; 1375 } 1376 } 1377 #ifdef PPS_SYNC 1378 if (fhard) { 1379 /* magic, at its best... */ 1380 tcount = count - pps->ppscount[2]; 1381 pps->ppscount[2] = count; 1382 if (tcount >= sys_cputimer->freq) { 1383 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1384 sys_cputimer->freq64_nsec * 1385 (tcount % sys_cputimer->freq)) >> 32; 1386 } else { 1387 delta = (sys_cputimer->freq64_nsec * tcount) >> 32; 1388 } 1389 hardpps(tsp, delta); 1390 } 1391 #endif 1392 } 1393 1394 /* 1395 * Return the tsc target value for a delay of (ns). 1396 * 1397 * Returns -1 if the TSC is not supported. 1398 */ 1399 int64_t 1400 tsc_get_target(int ns) 1401 { 1402 #if defined(_RDTSC_SUPPORTED_) 1403 if (cpu_feature & CPUID_TSC) { 1404 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1405 } 1406 #endif 1407 return(-1); 1408 } 1409 1410 /* 1411 * Compare the tsc against the passed target 1412 * 1413 * Returns +1 if the target has been reached 1414 * Returns 0 if the target has not yet been reached 1415 * Returns -1 if the TSC is not supported. 1416 * 1417 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1418 */ 1419 int 1420 tsc_test_target(int64_t target) 1421 { 1422 #if defined(_RDTSC_SUPPORTED_) 1423 if (cpu_feature & CPUID_TSC) { 1424 if ((int64_t)(target - rdtsc()) <= 0) 1425 return(1); 1426 return(0); 1427 } 1428 #endif 1429 return(-1); 1430 } 1431 1432 /* 1433 * Delay the specified number of nanoseconds using the tsc. This function 1434 * returns immediately if the TSC is not supported. At least one cpu_pause() 1435 * will be issued. 1436 */ 1437 void 1438 tsc_delay(int ns) 1439 { 1440 int64_t clk; 1441 1442 clk = tsc_get_target(ns); 1443 cpu_pause(); 1444 while (tsc_test_target(clk) == 0) 1445 cpu_pause(); 1446 } 1447