1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 69 */ 70 71 #include "opt_ntp.h" 72 #include "opt_ifpoll.h" 73 #include "opt_pctrack.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/callout.h> 78 #include <sys/kernel.h> 79 #include <sys/kinfo.h> 80 #include <sys/proc.h> 81 #include <sys/malloc.h> 82 #include <sys/resource.h> 83 #include <sys/resourcevar.h> 84 #include <sys/signalvar.h> 85 #include <sys/priv.h> 86 #include <sys/timex.h> 87 #include <sys/timepps.h> 88 #include <sys/upmap.h> 89 #include <vm/vm.h> 90 #include <sys/lock.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_extern.h> 94 #include <sys/sysctl.h> 95 96 #include <sys/thread2.h> 97 #include <sys/spinlock2.h> 98 99 #include <machine/cpu.h> 100 #include <machine/limits.h> 101 #include <machine/smp.h> 102 #include <machine/cpufunc.h> 103 #include <machine/specialreg.h> 104 #include <machine/clock.h> 105 106 #ifdef GPROF 107 #include <sys/gmon.h> 108 #endif 109 110 #ifdef IFPOLL_ENABLE 111 extern void ifpoll_init_pcpu(int); 112 #endif 113 114 #ifdef DEBUG_PCTRACK 115 static void do_pctrack(struct intrframe *frame, int which); 116 #endif 117 118 static void initclocks (void *dummy); 119 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL); 120 121 /* 122 * Some of these don't belong here, but it's easiest to concentrate them. 123 * Note that cpu_time counts in microseconds, but most userland programs 124 * just compare relative times against the total by delta. 125 */ 126 struct kinfo_cputime cputime_percpu[MAXCPU]; 127 #ifdef DEBUG_PCTRACK 128 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 129 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 130 #endif 131 132 static int 133 sysctl_cputime(SYSCTL_HANDLER_ARGS) 134 { 135 int cpu, error = 0; 136 int root_error; 137 size_t size = sizeof(struct kinfo_cputime); 138 struct kinfo_cputime tmp; 139 140 /* 141 * NOTE: For security reasons, only root can sniff %rip 142 */ 143 root_error = priv_check_cred(curthread->td_ucred, PRIV_ROOT, 0); 144 145 for (cpu = 0; cpu < ncpus; ++cpu) { 146 tmp = cputime_percpu[cpu]; 147 if (root_error == 0) { 148 tmp.cp_sample_pc = 149 (int64_t)globaldata_find(cpu)->gd_sample_pc; 150 tmp.cp_sample_sp = 151 (int64_t)globaldata_find(cpu)->gd_sample_sp; 152 } 153 if ((error = SYSCTL_OUT(req, &tmp, size)) != 0) 154 break; 155 } 156 157 if (root_error == 0) 158 smp_sniff(); 159 160 return (error); 161 } 162 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 163 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 164 165 static int 166 sysctl_cp_time(SYSCTL_HANDLER_ARGS) 167 { 168 long cpu_states[5] = {0}; 169 int cpu, error = 0; 170 size_t size = sizeof(cpu_states); 171 172 for (cpu = 0; cpu < ncpus; ++cpu) { 173 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user; 174 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice; 175 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys; 176 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr; 177 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle; 178 } 179 180 error = SYSCTL_OUT(req, cpu_states, size); 181 182 return (error); 183 } 184 185 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 186 sysctl_cp_time, "LU", "CPU time statistics"); 187 188 /* 189 * boottime is used to calculate the 'real' uptime. Do not confuse this with 190 * microuptime(). microtime() is not drift compensated. The real uptime 191 * with compensation is nanotime() - bootime. boottime is recalculated 192 * whenever the real time is set based on the compensated elapsed time 193 * in seconds (gd->gd_time_seconds). 194 * 195 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 196 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 197 * the real time. 198 * 199 * WARNING! time_second can backstep on time corrections. Also, unlike 200 * time_second, time_uptime is not a "real" time_t (seconds 201 * since the Epoch) but seconds since booting. 202 */ 203 struct timespec boottime; /* boot time (realtime) for reference only */ 204 time_t time_second; /* read-only 'passive' realtime in seconds */ 205 time_t time_uptime; /* read-only 'passive' uptime in seconds */ 206 207 /* 208 * basetime is used to calculate the compensated real time of day. The 209 * basetime can be modified on a per-tick basis by the adjtime(), 210 * ntp_adjtime(), and sysctl-based time correction APIs. 211 * 212 * Note that frequency corrections can also be made by adjusting 213 * gd_cpuclock_base. 214 * 215 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 216 * used on both SMP and UP systems to avoid MP races between cpu's and 217 * interrupt races on UP systems. 218 */ 219 struct hardtime { 220 __uint32_t time_second; 221 sysclock_t cpuclock_base; 222 }; 223 224 #define BASETIME_ARYSIZE 16 225 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 226 static struct timespec basetime[BASETIME_ARYSIZE]; 227 static struct hardtime hardtime[BASETIME_ARYSIZE]; 228 static volatile int basetime_index; 229 230 static int 231 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 232 { 233 struct timespec *bt; 234 int error; 235 int index; 236 237 /* 238 * Because basetime data and index may be updated by another cpu, 239 * a load fence is required to ensure that the data we read has 240 * not been speculatively read relative to a possibly updated index. 241 */ 242 index = basetime_index; 243 cpu_lfence(); 244 bt = &basetime[index]; 245 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 246 return (error); 247 } 248 249 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 250 &boottime, timespec, "System boottime"); 251 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 252 sysctl_get_basetime, "S,timespec", "System basetime"); 253 254 static void hardclock(systimer_t info, int, struct intrframe *frame); 255 static void statclock(systimer_t info, int, struct intrframe *frame); 256 static void schedclock(systimer_t info, int, struct intrframe *frame); 257 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 258 259 int ticks; /* system master ticks at hz */ 260 int clocks_running; /* tsleep/timeout clocks operational */ 261 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 262 int64_t nsec_acc; /* accumulator */ 263 int sched_ticks; /* global schedule clock ticks */ 264 265 /* NTPD time correction fields */ 266 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 267 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 268 int64_t ntp_delta; /* one-time correction in nsec */ 269 int64_t ntp_big_delta = 1000000000; 270 int32_t ntp_tick_delta; /* current adjustment rate */ 271 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 272 time_t ntp_leap_second; /* time of next leap second */ 273 int ntp_leap_insert; /* whether to insert or remove a second */ 274 struct spinlock ntp_spin; 275 276 /* 277 * Finish initializing clock frequencies and start all clocks running. 278 */ 279 /* ARGSUSED*/ 280 static void 281 initclocks(void *dummy) 282 { 283 /*psratio = profhz / stathz;*/ 284 spin_init(&ntp_spin, "ntp"); 285 initclocks_pcpu(); 286 clocks_running = 1; 287 if (kpmap) { 288 kpmap->tsc_freq = (uint64_t)tsc_frequency; 289 kpmap->tick_freq = hz; 290 } 291 } 292 293 /* 294 * Called on a per-cpu basis from the idle thread bootstrap on each cpu 295 * during SMP initialization. 296 * 297 * This routine is called concurrently during low-level SMP initialization 298 * and may not block in any way. Meaning, among other things, we can't 299 * acquire any tokens. 300 */ 301 void 302 initclocks_pcpu(void) 303 { 304 struct globaldata *gd = mycpu; 305 306 crit_enter(); 307 if (gd->gd_cpuid == 0) { 308 gd->gd_time_seconds = 1; 309 gd->gd_cpuclock_base = sys_cputimer->count(); 310 hardtime[0].time_second = gd->gd_time_seconds; 311 hardtime[0].cpuclock_base = gd->gd_cpuclock_base; 312 } else { 313 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 314 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 315 } 316 317 systimer_intr_enable(); 318 319 crit_exit(); 320 } 321 322 /* 323 * This routine is called on just the BSP, just after SMP initialization 324 * completes to * finish initializing any clocks that might contend/block 325 * (e.g. like on a token). We can't do this in initclocks_pcpu() because 326 * that function is called from the idle thread bootstrap for each cpu and 327 * not allowed to block at all. 328 */ 329 static 330 void 331 initclocks_other(void *dummy) 332 { 333 struct globaldata *ogd = mycpu; 334 struct globaldata *gd; 335 int n; 336 337 for (n = 0; n < ncpus; ++n) { 338 lwkt_setcpu_self(globaldata_find(n)); 339 gd = mycpu; 340 341 /* 342 * Use a non-queued periodic systimer to prevent multiple 343 * ticks from building up if the sysclock jumps forward 344 * (8254 gets reset). The sysclock will never jump backwards. 345 * Our time sync is based on the actual sysclock, not the 346 * ticks count. 347 */ 348 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, 349 NULL, hz); 350 systimer_init_periodic_nq(&gd->gd_statclock, statclock, 351 NULL, stathz); 352 /* XXX correct the frequency for scheduler / estcpu tests */ 353 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock, 354 NULL, ESTCPUFREQ); 355 #ifdef IFPOLL_ENABLE 356 ifpoll_init_pcpu(gd->gd_cpuid); 357 #endif 358 } 359 lwkt_setcpu_self(ogd); 360 } 361 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL); 362 363 /* 364 * This sets the current real time of day. Timespecs are in seconds and 365 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 366 * instead we adjust basetime so basetime + gd_* results in the current 367 * time of day. This way the gd_* fields are guaranteed to represent 368 * a monotonically increasing 'uptime' value. 369 * 370 * When set_timeofday() is called from userland, the system call forces it 371 * onto cpu #0 since only cpu #0 can update basetime_index. 372 */ 373 void 374 set_timeofday(struct timespec *ts) 375 { 376 struct timespec *nbt; 377 int ni; 378 379 /* 380 * XXX SMP / non-atomic basetime updates 381 */ 382 crit_enter(); 383 ni = (basetime_index + 1) & BASETIME_ARYMASK; 384 cpu_lfence(); 385 nbt = &basetime[ni]; 386 nanouptime(nbt); 387 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 388 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 389 if (nbt->tv_nsec < 0) { 390 nbt->tv_nsec += 1000000000; 391 --nbt->tv_sec; 392 } 393 394 /* 395 * Note that basetime diverges from boottime as the clock drift is 396 * compensated for, so we cannot do away with boottime. When setting 397 * the absolute time of day the drift is 0 (for an instant) and we 398 * can simply assign boottime to basetime. 399 * 400 * Note that nanouptime() is based on gd_time_seconds which is drift 401 * compensated up to a point (it is guaranteed to remain monotonically 402 * increasing). gd_time_seconds is thus our best uptime guess and 403 * suitable for use in the boottime calculation. It is already taken 404 * into account in the basetime calculation above. 405 */ 406 spin_lock(&ntp_spin); 407 boottime.tv_sec = nbt->tv_sec; 408 ntp_delta = 0; 409 410 /* 411 * We now have a new basetime, make sure all other cpus have it, 412 * then update the index. 413 */ 414 cpu_sfence(); 415 basetime_index = ni; 416 spin_unlock(&ntp_spin); 417 418 crit_exit(); 419 } 420 421 /* 422 * Each cpu has its own hardclock, but we only increments ticks and softticks 423 * on cpu #0. 424 * 425 * NOTE! systimer! the MP lock might not be held here. We can only safely 426 * manipulate objects owned by the current cpu. 427 */ 428 static void 429 hardclock(systimer_t info, int in_ipi, struct intrframe *frame) 430 { 431 sysclock_t cputicks; 432 struct proc *p; 433 struct globaldata *gd = mycpu; 434 435 if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) { 436 /* Defer to doreti on passive IPIQ processing */ 437 need_ipiq(); 438 } 439 440 /* 441 * We update the compensation base to calculate fine-grained time 442 * from the sys_cputimer on a per-cpu basis in order to avoid 443 * having to mess around with locks. sys_cputimer is assumed to 444 * be consistent across all cpus. CPU N copies the base state from 445 * CPU 0 using the same FIFO trick that we use for basetime (so we 446 * don't catch a CPU 0 update in the middle). 447 * 448 * Note that we never allow info->time (aka gd->gd_hardclock.time) 449 * to reverse index gd_cpuclock_base, but that it is possible for 450 * it to temporarily get behind in the seconds if something in the 451 * system locks interrupts for a long period of time. Since periodic 452 * timers count events, though everything should resynch again 453 * immediately. 454 */ 455 if (gd->gd_cpuid == 0) { 456 int ni; 457 458 cputicks = info->time - gd->gd_cpuclock_base; 459 if (cputicks >= sys_cputimer->freq) { 460 cputicks /= sys_cputimer->freq; 461 if (cputicks != 0 && cputicks != 1) 462 kprintf("Warning: hardclock missed > 1 sec\n"); 463 gd->gd_time_seconds += cputicks; 464 gd->gd_cpuclock_base += sys_cputimer->freq * cputicks; 465 /* uncorrected monotonic 1-sec gran */ 466 time_uptime += cputicks; 467 } 468 ni = (basetime_index + 1) & BASETIME_ARYMASK; 469 hardtime[ni].time_second = gd->gd_time_seconds; 470 hardtime[ni].cpuclock_base = gd->gd_cpuclock_base; 471 } else { 472 int ni; 473 474 ni = basetime_index; 475 cpu_lfence(); 476 gd->gd_time_seconds = hardtime[ni].time_second; 477 gd->gd_cpuclock_base = hardtime[ni].cpuclock_base; 478 } 479 480 /* 481 * The system-wide ticks counter and NTP related timedelta/tickdelta 482 * adjustments only occur on cpu #0. NTP adjustments are accomplished 483 * by updating basetime. 484 */ 485 if (gd->gd_cpuid == 0) { 486 struct timespec *nbt; 487 struct timespec nts; 488 int leap; 489 int ni; 490 491 ++ticks; 492 493 #if 0 494 if (tco->tc_poll_pps) 495 tco->tc_poll_pps(tco); 496 #endif 497 498 /* 499 * Calculate the new basetime index. We are in a critical section 500 * on cpu #0 and can safely play with basetime_index. Start 501 * with the current basetime and then make adjustments. 502 */ 503 ni = (basetime_index + 1) & BASETIME_ARYMASK; 504 nbt = &basetime[ni]; 505 *nbt = basetime[basetime_index]; 506 507 /* 508 * ntp adjustments only occur on cpu 0 and are protected by 509 * ntp_spin. This spinlock virtually never conflicts. 510 */ 511 spin_lock(&ntp_spin); 512 513 /* 514 * Apply adjtime corrections. (adjtime() API) 515 * 516 * adjtime() only runs on cpu #0 so our critical section is 517 * sufficient to access these variables. 518 */ 519 if (ntp_delta != 0) { 520 nbt->tv_nsec += ntp_tick_delta; 521 ntp_delta -= ntp_tick_delta; 522 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 523 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 524 ntp_tick_delta = ntp_delta; 525 } 526 } 527 528 /* 529 * Apply permanent frequency corrections. (sysctl API) 530 */ 531 if (ntp_tick_permanent != 0) { 532 ntp_tick_acc += ntp_tick_permanent; 533 if (ntp_tick_acc >= (1LL << 32)) { 534 nbt->tv_nsec += ntp_tick_acc >> 32; 535 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 536 } else if (ntp_tick_acc <= -(1LL << 32)) { 537 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 538 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 539 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 540 } 541 } 542 543 if (nbt->tv_nsec >= 1000000000) { 544 nbt->tv_sec++; 545 nbt->tv_nsec -= 1000000000; 546 } else if (nbt->tv_nsec < 0) { 547 nbt->tv_sec--; 548 nbt->tv_nsec += 1000000000; 549 } 550 551 /* 552 * Another per-tick compensation. (for ntp_adjtime() API) 553 */ 554 if (nsec_adj != 0) { 555 nsec_acc += nsec_adj; 556 if (nsec_acc >= 0x100000000LL) { 557 nbt->tv_nsec += nsec_acc >> 32; 558 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 559 } else if (nsec_acc <= -0x100000000LL) { 560 nbt->tv_nsec -= -nsec_acc >> 32; 561 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 562 } 563 if (nbt->tv_nsec >= 1000000000) { 564 nbt->tv_nsec -= 1000000000; 565 ++nbt->tv_sec; 566 } else if (nbt->tv_nsec < 0) { 567 nbt->tv_nsec += 1000000000; 568 --nbt->tv_sec; 569 } 570 } 571 spin_unlock(&ntp_spin); 572 573 /************************************************************ 574 * LEAP SECOND CORRECTION * 575 ************************************************************ 576 * 577 * Taking into account all the corrections made above, figure 578 * out the new real time. If the seconds field has changed 579 * then apply any pending leap-second corrections. 580 */ 581 getnanotime_nbt(nbt, &nts); 582 583 if (time_second != nts.tv_sec) { 584 /* 585 * Apply leap second (sysctl API). Adjust nts for changes 586 * so we do not have to call getnanotime_nbt again. 587 */ 588 if (ntp_leap_second) { 589 if (ntp_leap_second == nts.tv_sec) { 590 if (ntp_leap_insert) { 591 nbt->tv_sec++; 592 nts.tv_sec++; 593 } else { 594 nbt->tv_sec--; 595 nts.tv_sec--; 596 } 597 ntp_leap_second--; 598 } 599 } 600 601 /* 602 * Apply leap second (ntp_adjtime() API), calculate a new 603 * nsec_adj field. ntp_update_second() returns nsec_adj 604 * as a per-second value but we need it as a per-tick value. 605 */ 606 leap = ntp_update_second(time_second, &nsec_adj); 607 nsec_adj /= hz; 608 nbt->tv_sec += leap; 609 nts.tv_sec += leap; 610 611 /* 612 * Update the time_second 'approximate time' global. 613 */ 614 time_second = nts.tv_sec; 615 } 616 617 /* 618 * Finally, our new basetime is ready to go live! 619 */ 620 cpu_sfence(); 621 basetime_index = ni; 622 623 /* 624 * Update kpmap on each tick. TS updates are integrated with 625 * fences and upticks allowing userland to read the data 626 * deterministically. 627 */ 628 if (kpmap) { 629 int w; 630 631 w = (kpmap->upticks + 1) & 1; 632 getnanouptime(&kpmap->ts_uptime[w]); 633 getnanotime(&kpmap->ts_realtime[w]); 634 cpu_sfence(); 635 ++kpmap->upticks; 636 cpu_sfence(); 637 } 638 } 639 640 /* 641 * lwkt thread scheduler fair queueing 642 */ 643 lwkt_schedulerclock(curthread); 644 645 /* 646 * softticks are handled for all cpus 647 */ 648 hardclock_softtick(gd); 649 650 /* 651 * Rollup accumulated vmstats, copy-back for critical path checks. 652 */ 653 vmstats_rollup_cpu(gd); 654 mycpu->gd_vmstats = vmstats; 655 656 /* 657 * ITimer handling is per-tick, per-cpu. 658 * 659 * We must acquire the per-process token in order for ksignal() 660 * to be non-blocking. For the moment this requires an AST fault, 661 * the ksignal() cannot be safely issued from this hard interrupt. 662 * 663 * XXX Even the trytoken here isn't right, and itimer operation in 664 * a multi threaded environment is going to be weird at the 665 * very least. 666 */ 667 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) { 668 crit_enter_hard(); 669 if (p->p_upmap) 670 ++p->p_upmap->runticks; 671 672 if (frame && CLKF_USERMODE(frame) && 673 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 674 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) { 675 p->p_flags |= P_SIGVTALRM; 676 need_user_resched(); 677 } 678 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 679 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) { 680 p->p_flags |= P_SIGPROF; 681 need_user_resched(); 682 } 683 crit_exit_hard(); 684 lwkt_reltoken(&p->p_token); 685 } 686 setdelayed(); 687 } 688 689 /* 690 * The statistics clock typically runs at a 125Hz rate, and is intended 691 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 692 * 693 * NOTE! systimer! the MP lock might not be held here. We can only safely 694 * manipulate objects owned by the current cpu. 695 * 696 * The stats clock is responsible for grabbing a profiling sample. 697 * Most of the statistics are only used by user-level statistics programs. 698 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 699 * p->p_estcpu. 700 * 701 * Like the other clocks, the stat clock is called from what is effectively 702 * a fast interrupt, so the context should be the thread/process that got 703 * interrupted. 704 */ 705 static void 706 statclock(systimer_t info, int in_ipi, struct intrframe *frame) 707 { 708 #ifdef GPROF 709 struct gmonparam *g; 710 int i; 711 #endif 712 thread_t td; 713 struct proc *p; 714 int bump; 715 sysclock_t cv; 716 sysclock_t scv; 717 718 /* 719 * How big was our timeslice relative to the last time? Calculate 720 * in microseconds. 721 * 722 * NOTE: Use of microuptime() is typically MPSAFE, but usually not 723 * during early boot. Just use the systimer count to be nice 724 * to e.g. qemu. The systimer has a better chance of being 725 * MPSAFE at early boot. 726 */ 727 cv = sys_cputimer->count(); 728 scv = mycpu->statint.gd_statcv; 729 if (scv == 0) { 730 bump = 1; 731 } else { 732 bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32; 733 if (bump < 0) 734 bump = 0; 735 if (bump > 1000000) 736 bump = 1000000; 737 } 738 mycpu->statint.gd_statcv = cv; 739 740 #if 0 741 stv = &mycpu->gd_stattv; 742 if (stv->tv_sec == 0) { 743 bump = 1; 744 } else { 745 bump = tv.tv_usec - stv->tv_usec + 746 (tv.tv_sec - stv->tv_sec) * 1000000; 747 if (bump < 0) 748 bump = 0; 749 if (bump > 1000000) 750 bump = 1000000; 751 } 752 *stv = tv; 753 #endif 754 755 td = curthread; 756 p = td->td_proc; 757 758 if (frame && CLKF_USERMODE(frame)) { 759 /* 760 * Came from userland, handle user time and deal with 761 * possible process. 762 */ 763 if (p && (p->p_flags & P_PROFIL)) 764 addupc_intr(p, CLKF_PC(frame), 1); 765 td->td_uticks += bump; 766 767 /* 768 * Charge the time as appropriate 769 */ 770 if (p && p->p_nice > NZERO) 771 cpu_time.cp_nice += bump; 772 else 773 cpu_time.cp_user += bump; 774 } else { 775 int intr_nest = mycpu->gd_intr_nesting_level; 776 777 if (in_ipi) { 778 /* 779 * IPI processing code will bump gd_intr_nesting_level 780 * up by one, which breaks following CLKF_INTR testing, 781 * so we subtract it by one here. 782 */ 783 --intr_nest; 784 } 785 #ifdef GPROF 786 /* 787 * Kernel statistics are just like addupc_intr, only easier. 788 */ 789 g = &_gmonparam; 790 if (g->state == GMON_PROF_ON && frame) { 791 i = CLKF_PC(frame) - g->lowpc; 792 if (i < g->textsize) { 793 i /= HISTFRACTION * sizeof(*g->kcount); 794 g->kcount[i]++; 795 } 796 } 797 #endif 798 799 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td)) 800 801 /* 802 * Came from kernel mode, so we were: 803 * - handling an interrupt, 804 * - doing syscall or trap work on behalf of the current 805 * user process, or 806 * - spinning in the idle loop. 807 * Whichever it is, charge the time as appropriate. 808 * Note that we charge interrupts to the current process, 809 * regardless of whether they are ``for'' that process, 810 * so that we know how much of its real time was spent 811 * in ``non-process'' (i.e., interrupt) work. 812 * 813 * XXX assume system if frame is NULL. A NULL frame 814 * can occur if ipi processing is done from a crit_exit(). 815 */ 816 if (IS_INTR_RUNNING) 817 td->td_iticks += bump; 818 else 819 td->td_sticks += bump; 820 821 if (IS_INTR_RUNNING) { 822 /* 823 * If we interrupted an interrupt thread, well, 824 * count it as interrupt time. 825 */ 826 #ifdef DEBUG_PCTRACK 827 if (frame) 828 do_pctrack(frame, PCTRACK_INT); 829 #endif 830 cpu_time.cp_intr += bump; 831 } else { 832 if (td == &mycpu->gd_idlethread) { 833 /* 834 * Even if the current thread is the idle 835 * thread it could be due to token contention 836 * in the LWKT scheduler. Count such as 837 * system time. 838 */ 839 if (mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK) 840 cpu_time.cp_sys += bump; 841 else 842 cpu_time.cp_idle += bump; 843 } else { 844 /* 845 * System thread was running. 846 */ 847 #ifdef DEBUG_PCTRACK 848 if (frame) 849 do_pctrack(frame, PCTRACK_SYS); 850 #endif 851 cpu_time.cp_sys += bump; 852 } 853 } 854 855 #undef IS_INTR_RUNNING 856 } 857 } 858 859 #ifdef DEBUG_PCTRACK 860 /* 861 * Sample the PC when in the kernel or in an interrupt. User code can 862 * retrieve the information and generate a histogram or other output. 863 */ 864 865 static void 866 do_pctrack(struct intrframe *frame, int which) 867 { 868 struct kinfo_pctrack *pctrack; 869 870 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 871 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 872 (void *)CLKF_PC(frame); 873 ++pctrack->pc_index; 874 } 875 876 static int 877 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 878 { 879 struct kinfo_pcheader head; 880 int error; 881 int cpu; 882 int ntrack; 883 884 head.pc_ntrack = PCTRACK_SIZE; 885 head.pc_arysize = PCTRACK_ARYSIZE; 886 887 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 888 return (error); 889 890 for (cpu = 0; cpu < ncpus; ++cpu) { 891 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 892 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 893 sizeof(struct kinfo_pctrack)); 894 if (error) 895 break; 896 } 897 if (error) 898 break; 899 } 900 return (error); 901 } 902 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 903 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 904 905 #endif 906 907 /* 908 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 909 * the MP lock might not be held. We can safely manipulate parts of curproc 910 * but that's about it. 911 * 912 * Each cpu has its own scheduler clock. 913 */ 914 static void 915 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 916 { 917 struct lwp *lp; 918 struct rusage *ru; 919 struct vmspace *vm; 920 long rss; 921 922 if ((lp = lwkt_preempted_proc()) != NULL) { 923 /* 924 * Account for cpu time used and hit the scheduler. Note 925 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 926 * HERE. 927 */ 928 ++lp->lwp_cpticks; 929 usched_schedulerclock(lp, info->periodic, info->time); 930 } else { 931 usched_schedulerclock(NULL, info->periodic, info->time); 932 } 933 if ((lp = curthread->td_lwp) != NULL) { 934 /* 935 * Update resource usage integrals and maximums. 936 */ 937 if ((ru = &lp->lwp_proc->p_ru) && 938 (vm = lp->lwp_proc->p_vmspace) != NULL) { 939 ru->ru_ixrss += pgtok(vm->vm_tsize); 940 ru->ru_idrss += pgtok(vm->vm_dsize); 941 ru->ru_isrss += pgtok(vm->vm_ssize); 942 if (lwkt_trytoken(&vm->vm_map.token)) { 943 rss = pgtok(vmspace_resident_count(vm)); 944 if (ru->ru_maxrss < rss) 945 ru->ru_maxrss = rss; 946 lwkt_reltoken(&vm->vm_map.token); 947 } 948 } 949 } 950 /* Increment the global sched_ticks */ 951 if (mycpu->gd_cpuid == 0) 952 ++sched_ticks; 953 } 954 955 /* 956 * Compute number of ticks for the specified amount of time. The 957 * return value is intended to be used in a clock interrupt timed 958 * operation and guaranteed to meet or exceed the requested time. 959 * If the representation overflows, return INT_MAX. The minimum return 960 * value is 1 ticks and the function will average the calculation up. 961 * If any value greater then 0 microseconds is supplied, a value 962 * of at least 2 will be returned to ensure that a near-term clock 963 * interrupt does not cause the timeout to occur (degenerately) early. 964 * 965 * Note that limit checks must take into account microseconds, which is 966 * done simply by using the smaller signed long maximum instead of 967 * the unsigned long maximum. 968 * 969 * If ints have 32 bits, then the maximum value for any timeout in 970 * 10ms ticks is 248 days. 971 */ 972 int 973 tvtohz_high(struct timeval *tv) 974 { 975 int ticks; 976 long sec, usec; 977 978 sec = tv->tv_sec; 979 usec = tv->tv_usec; 980 if (usec < 0) { 981 sec--; 982 usec += 1000000; 983 } 984 if (sec < 0) { 985 #ifdef DIAGNOSTIC 986 if (usec > 0) { 987 sec++; 988 usec -= 1000000; 989 } 990 kprintf("tvtohz_high: negative time difference " 991 "%ld sec %ld usec\n", 992 sec, usec); 993 #endif 994 ticks = 1; 995 } else if (sec <= INT_MAX / hz) { 996 ticks = (int)(sec * hz + 997 ((u_long)usec + (ustick - 1)) / ustick) + 1; 998 } else { 999 ticks = INT_MAX; 1000 } 1001 return (ticks); 1002 } 1003 1004 int 1005 tstohz_high(struct timespec *ts) 1006 { 1007 int ticks; 1008 long sec, nsec; 1009 1010 sec = ts->tv_sec; 1011 nsec = ts->tv_nsec; 1012 if (nsec < 0) { 1013 sec--; 1014 nsec += 1000000000; 1015 } 1016 if (sec < 0) { 1017 #ifdef DIAGNOSTIC 1018 if (nsec > 0) { 1019 sec++; 1020 nsec -= 1000000000; 1021 } 1022 kprintf("tstohz_high: negative time difference " 1023 "%ld sec %ld nsec\n", 1024 sec, nsec); 1025 #endif 1026 ticks = 1; 1027 } else if (sec <= INT_MAX / hz) { 1028 ticks = (int)(sec * hz + 1029 ((u_long)nsec + (nstick - 1)) / nstick) + 1; 1030 } else { 1031 ticks = INT_MAX; 1032 } 1033 return (ticks); 1034 } 1035 1036 1037 /* 1038 * Compute number of ticks for the specified amount of time, erroring on 1039 * the side of it being too low to ensure that sleeping the returned number 1040 * of ticks will not result in a late return. 1041 * 1042 * The supplied timeval may not be negative and should be normalized. A 1043 * return value of 0 is possible if the timeval converts to less then 1044 * 1 tick. 1045 * 1046 * If ints have 32 bits, then the maximum value for any timeout in 1047 * 10ms ticks is 248 days. 1048 */ 1049 int 1050 tvtohz_low(struct timeval *tv) 1051 { 1052 int ticks; 1053 long sec; 1054 1055 sec = tv->tv_sec; 1056 if (sec <= INT_MAX / hz) 1057 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 1058 else 1059 ticks = INT_MAX; 1060 return (ticks); 1061 } 1062 1063 int 1064 tstohz_low(struct timespec *ts) 1065 { 1066 int ticks; 1067 long sec; 1068 1069 sec = ts->tv_sec; 1070 if (sec <= INT_MAX / hz) 1071 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 1072 else 1073 ticks = INT_MAX; 1074 return (ticks); 1075 } 1076 1077 /* 1078 * Start profiling on a process. 1079 * 1080 * Caller must hold p->p_token(); 1081 * 1082 * Kernel profiling passes proc0 which never exits and hence 1083 * keeps the profile clock running constantly. 1084 */ 1085 void 1086 startprofclock(struct proc *p) 1087 { 1088 if ((p->p_flags & P_PROFIL) == 0) { 1089 p->p_flags |= P_PROFIL; 1090 #if 0 /* XXX */ 1091 if (++profprocs == 1 && stathz != 0) { 1092 crit_enter(); 1093 psdiv = psratio; 1094 setstatclockrate(profhz); 1095 crit_exit(); 1096 } 1097 #endif 1098 } 1099 } 1100 1101 /* 1102 * Stop profiling on a process. 1103 * 1104 * caller must hold p->p_token 1105 */ 1106 void 1107 stopprofclock(struct proc *p) 1108 { 1109 if (p->p_flags & P_PROFIL) { 1110 p->p_flags &= ~P_PROFIL; 1111 #if 0 /* XXX */ 1112 if (--profprocs == 0 && stathz != 0) { 1113 crit_enter(); 1114 psdiv = 1; 1115 setstatclockrate(stathz); 1116 crit_exit(); 1117 } 1118 #endif 1119 } 1120 } 1121 1122 /* 1123 * Return information about system clocks. 1124 */ 1125 static int 1126 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 1127 { 1128 struct kinfo_clockinfo clkinfo; 1129 /* 1130 * Construct clockinfo structure. 1131 */ 1132 clkinfo.ci_hz = hz; 1133 clkinfo.ci_tick = ustick; 1134 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 1135 clkinfo.ci_profhz = profhz; 1136 clkinfo.ci_stathz = stathz ? stathz : hz; 1137 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 1138 } 1139 1140 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 1141 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 1142 1143 /* 1144 * We have eight functions for looking at the clock, four for 1145 * microseconds and four for nanoseconds. For each there is fast 1146 * but less precise version "get{nano|micro}[up]time" which will 1147 * return a time which is up to 1/HZ previous to the call, whereas 1148 * the raw version "{nano|micro}[up]time" will return a timestamp 1149 * which is as precise as possible. The "up" variants return the 1150 * time relative to system boot, these are well suited for time 1151 * interval measurements. 1152 * 1153 * Each cpu independently maintains the current time of day, so all 1154 * we need to do to protect ourselves from changes is to do a loop 1155 * check on the seconds field changing out from under us. 1156 * 1157 * The system timer maintains a 32 bit count and due to various issues 1158 * it is possible for the calculated delta to occasionally exceed 1159 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 1160 * multiplication can easily overflow, so we deal with the case. For 1161 * uniformity we deal with the case in the usec case too. 1162 * 1163 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 1164 */ 1165 void 1166 getmicrouptime(struct timeval *tvp) 1167 { 1168 struct globaldata *gd = mycpu; 1169 sysclock_t delta; 1170 1171 do { 1172 tvp->tv_sec = gd->gd_time_seconds; 1173 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1174 } while (tvp->tv_sec != gd->gd_time_seconds); 1175 1176 if (delta >= sys_cputimer->freq) { 1177 tvp->tv_sec += delta / sys_cputimer->freq; 1178 delta %= sys_cputimer->freq; 1179 } 1180 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1181 if (tvp->tv_usec >= 1000000) { 1182 tvp->tv_usec -= 1000000; 1183 ++tvp->tv_sec; 1184 } 1185 } 1186 1187 void 1188 getnanouptime(struct timespec *tsp) 1189 { 1190 struct globaldata *gd = mycpu; 1191 sysclock_t delta; 1192 1193 do { 1194 tsp->tv_sec = gd->gd_time_seconds; 1195 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1196 } while (tsp->tv_sec != gd->gd_time_seconds); 1197 1198 if (delta >= sys_cputimer->freq) { 1199 tsp->tv_sec += delta / sys_cputimer->freq; 1200 delta %= sys_cputimer->freq; 1201 } 1202 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1203 } 1204 1205 void 1206 microuptime(struct timeval *tvp) 1207 { 1208 struct globaldata *gd = mycpu; 1209 sysclock_t delta; 1210 1211 do { 1212 tvp->tv_sec = gd->gd_time_seconds; 1213 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1214 } while (tvp->tv_sec != gd->gd_time_seconds); 1215 1216 if (delta >= sys_cputimer->freq) { 1217 tvp->tv_sec += delta / sys_cputimer->freq; 1218 delta %= sys_cputimer->freq; 1219 } 1220 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1221 } 1222 1223 void 1224 nanouptime(struct timespec *tsp) 1225 { 1226 struct globaldata *gd = mycpu; 1227 sysclock_t delta; 1228 1229 do { 1230 tsp->tv_sec = gd->gd_time_seconds; 1231 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1232 } while (tsp->tv_sec != gd->gd_time_seconds); 1233 1234 if (delta >= sys_cputimer->freq) { 1235 tsp->tv_sec += delta / sys_cputimer->freq; 1236 delta %= sys_cputimer->freq; 1237 } 1238 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1239 } 1240 1241 /* 1242 * realtime routines 1243 */ 1244 void 1245 getmicrotime(struct timeval *tvp) 1246 { 1247 struct globaldata *gd = mycpu; 1248 struct timespec *bt; 1249 sysclock_t delta; 1250 1251 do { 1252 tvp->tv_sec = gd->gd_time_seconds; 1253 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1254 } while (tvp->tv_sec != gd->gd_time_seconds); 1255 1256 if (delta >= sys_cputimer->freq) { 1257 tvp->tv_sec += delta / sys_cputimer->freq; 1258 delta %= sys_cputimer->freq; 1259 } 1260 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1261 1262 bt = &basetime[basetime_index]; 1263 cpu_lfence(); 1264 tvp->tv_sec += bt->tv_sec; 1265 tvp->tv_usec += bt->tv_nsec / 1000; 1266 while (tvp->tv_usec >= 1000000) { 1267 tvp->tv_usec -= 1000000; 1268 ++tvp->tv_sec; 1269 } 1270 } 1271 1272 void 1273 getnanotime(struct timespec *tsp) 1274 { 1275 struct globaldata *gd = mycpu; 1276 struct timespec *bt; 1277 sysclock_t delta; 1278 1279 do { 1280 tsp->tv_sec = gd->gd_time_seconds; 1281 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1282 } while (tsp->tv_sec != gd->gd_time_seconds); 1283 1284 if (delta >= sys_cputimer->freq) { 1285 tsp->tv_sec += delta / sys_cputimer->freq; 1286 delta %= sys_cputimer->freq; 1287 } 1288 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1289 1290 bt = &basetime[basetime_index]; 1291 cpu_lfence(); 1292 tsp->tv_sec += bt->tv_sec; 1293 tsp->tv_nsec += bt->tv_nsec; 1294 while (tsp->tv_nsec >= 1000000000) { 1295 tsp->tv_nsec -= 1000000000; 1296 ++tsp->tv_sec; 1297 } 1298 } 1299 1300 static void 1301 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1302 { 1303 struct globaldata *gd = mycpu; 1304 sysclock_t delta; 1305 1306 do { 1307 tsp->tv_sec = gd->gd_time_seconds; 1308 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1309 } while (tsp->tv_sec != gd->gd_time_seconds); 1310 1311 if (delta >= sys_cputimer->freq) { 1312 tsp->tv_sec += delta / sys_cputimer->freq; 1313 delta %= sys_cputimer->freq; 1314 } 1315 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1316 1317 tsp->tv_sec += nbt->tv_sec; 1318 tsp->tv_nsec += nbt->tv_nsec; 1319 while (tsp->tv_nsec >= 1000000000) { 1320 tsp->tv_nsec -= 1000000000; 1321 ++tsp->tv_sec; 1322 } 1323 } 1324 1325 1326 void 1327 microtime(struct timeval *tvp) 1328 { 1329 struct globaldata *gd = mycpu; 1330 struct timespec *bt; 1331 sysclock_t delta; 1332 1333 do { 1334 tvp->tv_sec = gd->gd_time_seconds; 1335 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1336 } while (tvp->tv_sec != gd->gd_time_seconds); 1337 1338 if (delta >= sys_cputimer->freq) { 1339 tvp->tv_sec += delta / sys_cputimer->freq; 1340 delta %= sys_cputimer->freq; 1341 } 1342 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1343 1344 bt = &basetime[basetime_index]; 1345 cpu_lfence(); 1346 tvp->tv_sec += bt->tv_sec; 1347 tvp->tv_usec += bt->tv_nsec / 1000; 1348 while (tvp->tv_usec >= 1000000) { 1349 tvp->tv_usec -= 1000000; 1350 ++tvp->tv_sec; 1351 } 1352 } 1353 1354 void 1355 nanotime(struct timespec *tsp) 1356 { 1357 struct globaldata *gd = mycpu; 1358 struct timespec *bt; 1359 sysclock_t delta; 1360 1361 do { 1362 tsp->tv_sec = gd->gd_time_seconds; 1363 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1364 } while (tsp->tv_sec != gd->gd_time_seconds); 1365 1366 if (delta >= sys_cputimer->freq) { 1367 tsp->tv_sec += delta / sys_cputimer->freq; 1368 delta %= sys_cputimer->freq; 1369 } 1370 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1371 1372 bt = &basetime[basetime_index]; 1373 cpu_lfence(); 1374 tsp->tv_sec += bt->tv_sec; 1375 tsp->tv_nsec += bt->tv_nsec; 1376 while (tsp->tv_nsec >= 1000000000) { 1377 tsp->tv_nsec -= 1000000000; 1378 ++tsp->tv_sec; 1379 } 1380 } 1381 1382 /* 1383 * Get an approximate time_t. It does not have to be accurate. This 1384 * function is called only from KTR and can be called with the system in 1385 * any state so do not use a critical section or other complex operation 1386 * here. 1387 * 1388 * NOTE: This is not exactly synchronized with real time. To do that we 1389 * would have to do what microtime does and check for a nanoseconds 1390 * overflow. 1391 */ 1392 time_t 1393 get_approximate_time_t(void) 1394 { 1395 struct globaldata *gd = mycpu; 1396 struct timespec *bt; 1397 1398 bt = &basetime[basetime_index]; 1399 return(gd->gd_time_seconds + bt->tv_sec); 1400 } 1401 1402 int 1403 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1404 { 1405 pps_params_t *app; 1406 struct pps_fetch_args *fapi; 1407 #ifdef PPS_SYNC 1408 struct pps_kcbind_args *kapi; 1409 #endif 1410 1411 switch (cmd) { 1412 case PPS_IOC_CREATE: 1413 return (0); 1414 case PPS_IOC_DESTROY: 1415 return (0); 1416 case PPS_IOC_SETPARAMS: 1417 app = (pps_params_t *)data; 1418 if (app->mode & ~pps->ppscap) 1419 return (EINVAL); 1420 pps->ppsparam = *app; 1421 return (0); 1422 case PPS_IOC_GETPARAMS: 1423 app = (pps_params_t *)data; 1424 *app = pps->ppsparam; 1425 app->api_version = PPS_API_VERS_1; 1426 return (0); 1427 case PPS_IOC_GETCAP: 1428 *(int*)data = pps->ppscap; 1429 return (0); 1430 case PPS_IOC_FETCH: 1431 fapi = (struct pps_fetch_args *)data; 1432 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1433 return (EINVAL); 1434 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1435 return (EOPNOTSUPP); 1436 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1437 fapi->pps_info_buf = pps->ppsinfo; 1438 return (0); 1439 case PPS_IOC_KCBIND: 1440 #ifdef PPS_SYNC 1441 kapi = (struct pps_kcbind_args *)data; 1442 /* XXX Only root should be able to do this */ 1443 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1444 return (EINVAL); 1445 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1446 return (EINVAL); 1447 if (kapi->edge & ~pps->ppscap) 1448 return (EINVAL); 1449 pps->kcmode = kapi->edge; 1450 return (0); 1451 #else 1452 return (EOPNOTSUPP); 1453 #endif 1454 default: 1455 return (ENOTTY); 1456 } 1457 } 1458 1459 void 1460 pps_init(struct pps_state *pps) 1461 { 1462 pps->ppscap |= PPS_TSFMT_TSPEC; 1463 if (pps->ppscap & PPS_CAPTUREASSERT) 1464 pps->ppscap |= PPS_OFFSETASSERT; 1465 if (pps->ppscap & PPS_CAPTURECLEAR) 1466 pps->ppscap |= PPS_OFFSETCLEAR; 1467 } 1468 1469 void 1470 pps_event(struct pps_state *pps, sysclock_t count, int event) 1471 { 1472 struct globaldata *gd; 1473 struct timespec *tsp; 1474 struct timespec *osp; 1475 struct timespec *bt; 1476 struct timespec ts; 1477 sysclock_t *pcount; 1478 #ifdef PPS_SYNC 1479 sysclock_t tcount; 1480 #endif 1481 sysclock_t delta; 1482 pps_seq_t *pseq; 1483 int foff; 1484 #ifdef PPS_SYNC 1485 int fhard; 1486 #endif 1487 int ni; 1488 1489 gd = mycpu; 1490 1491 /* Things would be easier with arrays... */ 1492 if (event == PPS_CAPTUREASSERT) { 1493 tsp = &pps->ppsinfo.assert_timestamp; 1494 osp = &pps->ppsparam.assert_offset; 1495 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1496 #ifdef PPS_SYNC 1497 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1498 #endif 1499 pcount = &pps->ppscount[0]; 1500 pseq = &pps->ppsinfo.assert_sequence; 1501 } else { 1502 tsp = &pps->ppsinfo.clear_timestamp; 1503 osp = &pps->ppsparam.clear_offset; 1504 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1505 #ifdef PPS_SYNC 1506 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1507 #endif 1508 pcount = &pps->ppscount[1]; 1509 pseq = &pps->ppsinfo.clear_sequence; 1510 } 1511 1512 /* Nothing really happened */ 1513 if (*pcount == count) 1514 return; 1515 1516 *pcount = count; 1517 1518 do { 1519 ts.tv_sec = gd->gd_time_seconds; 1520 delta = count - gd->gd_cpuclock_base; 1521 } while (ts.tv_sec != gd->gd_time_seconds); 1522 1523 if (delta >= sys_cputimer->freq) { 1524 ts.tv_sec += delta / sys_cputimer->freq; 1525 delta %= sys_cputimer->freq; 1526 } 1527 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1528 ni = basetime_index; 1529 cpu_lfence(); 1530 bt = &basetime[ni]; 1531 ts.tv_sec += bt->tv_sec; 1532 ts.tv_nsec += bt->tv_nsec; 1533 while (ts.tv_nsec >= 1000000000) { 1534 ts.tv_nsec -= 1000000000; 1535 ++ts.tv_sec; 1536 } 1537 1538 (*pseq)++; 1539 *tsp = ts; 1540 1541 if (foff) { 1542 timespecadd(tsp, osp); 1543 if (tsp->tv_nsec < 0) { 1544 tsp->tv_nsec += 1000000000; 1545 tsp->tv_sec -= 1; 1546 } 1547 } 1548 #ifdef PPS_SYNC 1549 if (fhard) { 1550 /* magic, at its best... */ 1551 tcount = count - pps->ppscount[2]; 1552 pps->ppscount[2] = count; 1553 if (tcount >= sys_cputimer->freq) { 1554 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1555 sys_cputimer->freq64_nsec * 1556 (tcount % sys_cputimer->freq)) >> 32; 1557 } else { 1558 delta = (sys_cputimer->freq64_nsec * tcount) >> 32; 1559 } 1560 hardpps(tsp, delta); 1561 } 1562 #endif 1563 } 1564 1565 /* 1566 * Return the tsc target value for a delay of (ns). 1567 * 1568 * Returns -1 if the TSC is not supported. 1569 */ 1570 int64_t 1571 tsc_get_target(int ns) 1572 { 1573 #if defined(_RDTSC_SUPPORTED_) 1574 if (cpu_feature & CPUID_TSC) { 1575 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1576 } 1577 #endif 1578 return(-1); 1579 } 1580 1581 /* 1582 * Compare the tsc against the passed target 1583 * 1584 * Returns +1 if the target has been reached 1585 * Returns 0 if the target has not yet been reached 1586 * Returns -1 if the TSC is not supported. 1587 * 1588 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1589 */ 1590 int 1591 tsc_test_target(int64_t target) 1592 { 1593 #if defined(_RDTSC_SUPPORTED_) 1594 if (cpu_feature & CPUID_TSC) { 1595 if ((int64_t)(target - rdtsc()) <= 0) 1596 return(1); 1597 return(0); 1598 } 1599 #endif 1600 return(-1); 1601 } 1602 1603 /* 1604 * Delay the specified number of nanoseconds using the tsc. This function 1605 * returns immediately if the TSC is not supported. At least one cpu_pause() 1606 * will be issued. 1607 */ 1608 void 1609 tsc_delay(int ns) 1610 { 1611 int64_t clk; 1612 1613 clk = tsc_get_target(ns); 1614 cpu_pause(); 1615 while (tsc_test_target(clk) == 0) 1616 cpu_pause(); 1617 } 1618