1 /*- 2 * Copyright (c) 2004, Matthew Dillon <dillon@backplane.com> 3 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 41 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 42 * $DragonFly: src/sys/kern/kern_clock.c,v 1.17 2004/03/20 19:21:08 dillon Exp $ 43 */ 44 45 #include "opt_ntp.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/dkstat.h> 50 #include <sys/callout.h> 51 #include <sys/kernel.h> 52 #include <sys/proc.h> 53 #include <sys/malloc.h> 54 #include <sys/resourcevar.h> 55 #include <sys/signalvar.h> 56 #include <sys/timex.h> 57 #include <sys/timepps.h> 58 #include <vm/vm.h> 59 #include <sys/lock.h> 60 #include <vm/pmap.h> 61 #include <vm/vm_map.h> 62 #include <sys/sysctl.h> 63 #include <sys/thread2.h> 64 65 #include <machine/cpu.h> 66 #include <machine/limits.h> 67 #include <machine/smp.h> 68 69 #ifdef GPROF 70 #include <sys/gmon.h> 71 #endif 72 73 #ifdef DEVICE_POLLING 74 extern void init_device_poll(void); 75 extern void hardclock_device_poll(void); 76 #endif /* DEVICE_POLLING */ 77 78 static void initclocks (void *dummy); 79 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 80 81 /* 82 * Some of these don't belong here, but it's easiest to concentrate them. 83 * Note that cp_time[] counts in microseconds, but most userland programs 84 * just compare relative times against the total by delta. 85 */ 86 long cp_time[CPUSTATES]; 87 88 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time), 89 "LU", "CPU time statistics"); 90 91 long tk_cancc; 92 long tk_nin; 93 long tk_nout; 94 long tk_rawcc; 95 96 /* 97 * boottime is used to calculate the 'real' uptime. Do not confuse this with 98 * microuptime(). microtime() is not drift compensated. The real uptime 99 * with compensation is nanotime() - bootime. 100 * 101 * basetime is used to calculate the compensated real time of day. Chunky 102 * changes to the time, aka settimeofday(), are made by modifying basetime. 103 * 104 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 105 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 106 * the real time. 107 */ 108 struct timespec boottime; /* boot time (realtime) for reference only */ 109 struct timespec basetime; /* base time adjusts uptime -> realtime */ 110 time_t time_second; /* read-only 'passive' uptime in seconds */ 111 112 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 113 &boottime, timeval, "System boottime"); 114 SYSCTL_STRUCT(_kern, OID_AUTO, basetime, CTLFLAG_RD, 115 &basetime, timeval, "System basetime"); 116 117 static void hardclock(systimer_t info, struct intrframe *frame); 118 static void statclock(systimer_t info, struct intrframe *frame); 119 static void schedclock(systimer_t info, struct intrframe *frame); 120 121 int ticks; /* system master ticks at hz */ 122 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 123 int64_t nsec_acc; /* accumulator */ 124 125 /* 126 * Finish initializing clock frequencies and start all clocks running. 127 */ 128 /* ARGSUSED*/ 129 static void 130 initclocks(void *dummy) 131 { 132 cpu_initclocks(); 133 #ifdef DEVICE_POLLING 134 init_device_poll(); 135 #endif 136 /*psratio = profhz / stathz;*/ 137 initclocks_pcpu(); 138 } 139 140 /* 141 * Called on a per-cpu basis 142 */ 143 void 144 initclocks_pcpu(void) 145 { 146 struct globaldata *gd = mycpu; 147 148 crit_enter(); 149 if (gd->gd_cpuid == 0) { 150 gd->gd_time_seconds = 1; 151 gd->gd_cpuclock_base = cputimer_count(); 152 } else { 153 /* XXX */ 154 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 155 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 156 } 157 systimer_init_periodic(&gd->gd_hardclock, hardclock, NULL, hz); 158 systimer_init_periodic(&gd->gd_statclock, statclock, NULL, stathz); 159 /* XXX correct the frequency for scheduler / estcpu tests */ 160 systimer_init_periodic(&gd->gd_schedclock, schedclock, 161 NULL, ESTCPUFREQ); 162 crit_exit(); 163 } 164 165 /* 166 * This sets the current real time of day. Timespecs are in seconds and 167 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 168 * instead we adjust basetime so basetime + gd_* results in the current 169 * time of day. This way the gd_* fields are guarenteed to represent 170 * a monotonically increasing 'uptime' value. 171 */ 172 void 173 set_timeofday(struct timespec *ts) 174 { 175 struct timespec ts2; 176 177 /* 178 * XXX SMP / non-atomic basetime updates 179 */ 180 crit_enter(); 181 nanouptime(&ts2); 182 basetime.tv_sec = ts->tv_sec - ts2.tv_sec; 183 basetime.tv_nsec = ts->tv_nsec - ts2.tv_nsec; 184 if (basetime.tv_nsec < 0) { 185 basetime.tv_nsec += 1000000000; 186 --basetime.tv_sec; 187 } 188 if (boottime.tv_sec == 0) 189 boottime = basetime; 190 timedelta = 0; 191 crit_exit(); 192 } 193 194 /* 195 * Each cpu has its own hardclock, but we only increments ticks and softticks 196 * on cpu #0. 197 * 198 * NOTE! systimer! the MP lock might not be held here. We can only safely 199 * manipulate objects owned by the current cpu. 200 */ 201 static void 202 hardclock(systimer_t info, struct intrframe *frame) 203 { 204 sysclock_t cputicks; 205 struct proc *p; 206 struct pstats *pstats; 207 struct globaldata *gd = mycpu; 208 209 /* 210 * Realtime updates are per-cpu. Note that timer corrections as 211 * returned by microtime() and friends make an additional adjustment 212 * using a system-wise 'basetime', but the running time is always 213 * taken from the per-cpu globaldata area. Since the same clock 214 * is distributing (XXX SMP) to all cpus, the per-cpu timebases 215 * stay in synch. 216 * 217 * Note that we never allow info->time (aka gd->gd_hardclock.time) 218 * to reverse index gd_cpuclock_base. 219 */ 220 cputicks = info->time - gd->gd_cpuclock_base; 221 if (cputicks > cputimer_freq) { 222 ++gd->gd_time_seconds; 223 gd->gd_cpuclock_base += cputimer_freq; 224 } 225 226 /* 227 * The system-wide ticks and softticks are only updated by cpu #0. 228 * Callwheel actions are also (at the moment) only handled by cpu #0. 229 * Finally, we also do NTP related timedelta/tickdelta adjustments 230 * by adjusting basetime. 231 */ 232 if (gd->gd_cpuid == 0) { 233 struct timespec nts; 234 int leap; 235 236 ++ticks; 237 238 #ifdef DEVICE_POLLING 239 hardclock_device_poll(); /* mpsafe, short and quick */ 240 #endif /* DEVICE_POLLING */ 241 242 if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) { 243 setsoftclock(); 244 } else if (softticks + 1 == ticks) { 245 ++softticks; 246 } 247 248 #if 0 249 if (tco->tc_poll_pps) 250 tco->tc_poll_pps(tco); 251 #endif 252 /* 253 * Apply adjtime corrections. At the moment only do this if 254 * we can get the MP lock to interlock with adjtime's modification 255 * of these variables. Note that basetime adjustments are not 256 * MP safe either XXX. 257 */ 258 if (timedelta != 0 && try_mplock()) { 259 basetime.tv_nsec += tickdelta * 1000; 260 if (basetime.tv_nsec >= 1000000000) { 261 basetime.tv_nsec -= 1000000000; 262 ++basetime.tv_sec; 263 } else if (basetime.tv_nsec < 0) { 264 basetime.tv_nsec += 1000000000; 265 --basetime.tv_sec; 266 } 267 timedelta -= tickdelta; 268 rel_mplock(); 269 } 270 271 /* 272 * Apply per-tick compensation. ticks_adj adjusts for both 273 * offset and frequency, and could be negative. 274 */ 275 if (nsec_adj != 0 && try_mplock()) { 276 nsec_acc += nsec_adj; 277 if (nsec_acc >= 0x100000000LL) { 278 basetime.tv_nsec += nsec_acc >> 32; 279 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 280 } else if (nsec_acc <= -0x100000000LL) { 281 basetime.tv_nsec -= -nsec_acc >> 32; 282 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 283 } 284 if (basetime.tv_nsec >= 1000000000) { 285 basetime.tv_nsec -= 1000000000; 286 ++basetime.tv_sec; 287 } else if (basetime.tv_nsec < 0) { 288 basetime.tv_nsec += 1000000000; 289 --basetime.tv_sec; 290 } 291 rel_mplock(); 292 } 293 294 /* 295 * If the realtime-adjusted seconds hand rolls over then tell 296 * ntp_update_second() what we did in the last second so it can 297 * calculate what to do in the next second. It may also add 298 * or subtract a leap second. 299 */ 300 getnanotime(&nts); 301 if (time_second != nts.tv_sec) { 302 leap = ntp_update_second(time_second, &nsec_adj); 303 basetime.tv_sec += leap; 304 time_second = nts.tv_sec + leap; 305 nsec_adj /= hz; 306 } 307 } 308 309 /* 310 * ITimer handling is per-tick, per-cpu. I don't think psignal() 311 * is mpsafe on curproc, so XXX get the mplock. 312 */ 313 if ((p = curproc) != NULL && try_mplock()) { 314 pstats = p->p_stats; 315 if (frame && CLKF_USERMODE(frame) && 316 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 317 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 318 psignal(p, SIGVTALRM); 319 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) && 320 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 321 psignal(p, SIGPROF); 322 rel_mplock(); 323 } 324 setdelayed(); 325 } 326 327 /* 328 * The statistics clock typically runs at a 125Hz rate, and is intended 329 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 330 * 331 * NOTE! systimer! the MP lock might not be held here. We can only safely 332 * manipulate objects owned by the current cpu. 333 * 334 * The stats clock is responsible for grabbing a profiling sample. 335 * Most of the statistics are only used by user-level statistics programs. 336 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 337 * p->p_estcpu. 338 * 339 * Like the other clocks, the stat clock is called from what is effectively 340 * a fast interrupt, so the context should be the thread/process that got 341 * interrupted. 342 */ 343 static void 344 statclock(systimer_t info, struct intrframe *frame) 345 { 346 #ifdef GPROF 347 struct gmonparam *g; 348 int i; 349 #endif 350 thread_t td; 351 struct proc *p; 352 int bump; 353 struct timeval tv; 354 struct timeval *stv; 355 356 /* 357 * How big was our timeslice relative to the last time? 358 */ 359 microuptime(&tv); /* mpsafe */ 360 stv = &mycpu->gd_stattv; 361 if (stv->tv_sec == 0) { 362 bump = 1; 363 } else { 364 bump = tv.tv_usec - stv->tv_usec + 365 (tv.tv_sec - stv->tv_sec) * 1000000; 366 if (bump < 0) 367 bump = 0; 368 if (bump > 1000000) 369 bump = 1000000; 370 } 371 *stv = tv; 372 373 td = curthread; 374 p = td->td_proc; 375 376 if (frame && CLKF_USERMODE(frame)) { 377 /* 378 * Came from userland, handle user time and deal with 379 * possible process. 380 */ 381 if (p && (p->p_flag & P_PROFIL)) 382 addupc_intr(p, CLKF_PC(frame), 1); 383 td->td_uticks += bump; 384 385 /* 386 * Charge the time as appropriate 387 */ 388 if (p && p->p_nice > NZERO) 389 cp_time[CP_NICE] += bump; 390 else 391 cp_time[CP_USER] += bump; 392 } else { 393 #ifdef GPROF 394 /* 395 * Kernel statistics are just like addupc_intr, only easier. 396 */ 397 g = &_gmonparam; 398 if (g->state == GMON_PROF_ON && frame) { 399 i = CLKF_PC(frame) - g->lowpc; 400 if (i < g->textsize) { 401 i /= HISTFRACTION * sizeof(*g->kcount); 402 g->kcount[i]++; 403 } 404 } 405 #endif 406 /* 407 * Came from kernel mode, so we were: 408 * - handling an interrupt, 409 * - doing syscall or trap work on behalf of the current 410 * user process, or 411 * - spinning in the idle loop. 412 * Whichever it is, charge the time as appropriate. 413 * Note that we charge interrupts to the current process, 414 * regardless of whether they are ``for'' that process, 415 * so that we know how much of its real time was spent 416 * in ``non-process'' (i.e., interrupt) work. 417 * 418 * XXX assume system if frame is NULL. A NULL frame 419 * can occur if ipi processing is done from an splx(). 420 */ 421 if (frame && CLKF_INTR(frame)) 422 td->td_iticks += bump; 423 else 424 td->td_sticks += bump; 425 426 if (frame && CLKF_INTR(frame)) { 427 cp_time[CP_INTR] += bump; 428 } else { 429 if (td == &mycpu->gd_idlethread) 430 cp_time[CP_IDLE] += bump; 431 else 432 cp_time[CP_SYS] += bump; 433 } 434 } 435 } 436 437 /* 438 * The scheduler clock typically runs at a 10Hz rate. NOTE! systimer, 439 * the MP lock might not be held. We can safely manipulate parts of curproc 440 * but that's about it. 441 */ 442 static void 443 schedclock(systimer_t info, struct intrframe *frame) 444 { 445 struct proc *p; 446 struct pstats *pstats; 447 struct rusage *ru; 448 struct vmspace *vm; 449 long rss; 450 451 schedulerclock(NULL); /* mpsafe */ 452 if ((p = curproc) != NULL) { 453 /* Update resource usage integrals and maximums. */ 454 if ((pstats = p->p_stats) != NULL && 455 (ru = &pstats->p_ru) != NULL && 456 (vm = p->p_vmspace) != NULL) { 457 ru->ru_ixrss += pgtok(vm->vm_tsize); 458 ru->ru_idrss += pgtok(vm->vm_dsize); 459 ru->ru_isrss += pgtok(vm->vm_ssize); 460 rss = pgtok(vmspace_resident_count(vm)); 461 if (ru->ru_maxrss < rss) 462 ru->ru_maxrss = rss; 463 } 464 } 465 } 466 467 /* 468 * Compute number of ticks for the specified amount of time. The 469 * return value is intended to be used in a clock interrupt timed 470 * operation and guarenteed to meet or exceed the requested time. 471 * If the representation overflows, return INT_MAX. The minimum return 472 * value is 1 ticks and the function will average the calculation up. 473 * If any value greater then 0 microseconds is supplied, a value 474 * of at least 2 will be returned to ensure that a near-term clock 475 * interrupt does not cause the timeout to occur (degenerately) early. 476 * 477 * Note that limit checks must take into account microseconds, which is 478 * done simply by using the smaller signed long maximum instead of 479 * the unsigned long maximum. 480 * 481 * If ints have 32 bits, then the maximum value for any timeout in 482 * 10ms ticks is 248 days. 483 */ 484 int 485 tvtohz_high(struct timeval *tv) 486 { 487 int ticks; 488 long sec, usec; 489 490 sec = tv->tv_sec; 491 usec = tv->tv_usec; 492 if (usec < 0) { 493 sec--; 494 usec += 1000000; 495 } 496 if (sec < 0) { 497 #ifdef DIAGNOSTIC 498 if (usec > 0) { 499 sec++; 500 usec -= 1000000; 501 } 502 printf("tvotohz: negative time difference %ld sec %ld usec\n", 503 sec, usec); 504 #endif 505 ticks = 1; 506 } else if (sec <= INT_MAX / hz) { 507 ticks = (int)(sec * hz + 508 ((u_long)usec + (tick - 1)) / tick) + 1; 509 } else { 510 ticks = INT_MAX; 511 } 512 return (ticks); 513 } 514 515 /* 516 * Compute number of ticks for the specified amount of time, erroring on 517 * the side of it being too low to ensure that sleeping the returned number 518 * of ticks will not result in a late return. 519 * 520 * The supplied timeval may not be negative and should be normalized. A 521 * return value of 0 is possible if the timeval converts to less then 522 * 1 tick. 523 * 524 * If ints have 32 bits, then the maximum value for any timeout in 525 * 10ms ticks is 248 days. 526 */ 527 int 528 tvtohz_low(struct timeval *tv) 529 { 530 int ticks; 531 long sec; 532 533 sec = tv->tv_sec; 534 if (sec <= INT_MAX / hz) 535 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick); 536 else 537 ticks = INT_MAX; 538 return (ticks); 539 } 540 541 542 /* 543 * Start profiling on a process. 544 * 545 * Kernel profiling passes proc0 which never exits and hence 546 * keeps the profile clock running constantly. 547 */ 548 void 549 startprofclock(struct proc *p) 550 { 551 if ((p->p_flag & P_PROFIL) == 0) { 552 p->p_flag |= P_PROFIL; 553 #if 0 /* XXX */ 554 if (++profprocs == 1 && stathz != 0) { 555 s = splstatclock(); 556 psdiv = psratio; 557 setstatclockrate(profhz); 558 splx(s); 559 } 560 #endif 561 } 562 } 563 564 /* 565 * Stop profiling on a process. 566 */ 567 void 568 stopprofclock(struct proc *p) 569 { 570 if (p->p_flag & P_PROFIL) { 571 p->p_flag &= ~P_PROFIL; 572 #if 0 /* XXX */ 573 if (--profprocs == 0 && stathz != 0) { 574 s = splstatclock(); 575 psdiv = 1; 576 setstatclockrate(stathz); 577 splx(s); 578 } 579 #endif 580 } 581 } 582 583 /* 584 * Return information about system clocks. 585 */ 586 static int 587 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 588 { 589 struct clockinfo clkinfo; 590 /* 591 * Construct clockinfo structure. 592 */ 593 clkinfo.hz = hz; 594 clkinfo.tick = tick; 595 clkinfo.tickadj = tickadj; 596 clkinfo.profhz = profhz; 597 clkinfo.stathz = stathz ? stathz : hz; 598 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 599 } 600 601 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 602 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 603 604 /* 605 * We have eight functions for looking at the clock, four for 606 * microseconds and four for nanoseconds. For each there is fast 607 * but less precise version "get{nano|micro}[up]time" which will 608 * return a time which is up to 1/HZ previous to the call, whereas 609 * the raw version "{nano|micro}[up]time" will return a timestamp 610 * which is as precise as possible. The "up" variants return the 611 * time relative to system boot, these are well suited for time 612 * interval measurements. 613 * 614 * Each cpu independantly maintains the current time of day, so all 615 * we need to do to protect ourselves from changes is to do a loop 616 * check on the seconds field changing out from under us. 617 */ 618 void 619 getmicrouptime(struct timeval *tvp) 620 { 621 struct globaldata *gd = mycpu; 622 sysclock_t delta; 623 624 do { 625 tvp->tv_sec = gd->gd_time_seconds; 626 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 627 } while (tvp->tv_sec != gd->gd_time_seconds); 628 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 629 if (tvp->tv_usec >= 1000000) { 630 tvp->tv_usec -= 1000000; 631 ++tvp->tv_sec; 632 } 633 } 634 635 void 636 getnanouptime(struct timespec *tsp) 637 { 638 struct globaldata *gd = mycpu; 639 sysclock_t delta; 640 641 do { 642 tsp->tv_sec = gd->gd_time_seconds; 643 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 644 } while (tsp->tv_sec != gd->gd_time_seconds); 645 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 646 if (tsp->tv_nsec >= 1000000000) { 647 tsp->tv_nsec -= 1000000000; 648 ++tsp->tv_sec; 649 } 650 } 651 652 void 653 microuptime(struct timeval *tvp) 654 { 655 struct globaldata *gd = mycpu; 656 sysclock_t delta; 657 658 do { 659 tvp->tv_sec = gd->gd_time_seconds; 660 delta = cputimer_count() - gd->gd_cpuclock_base; 661 } while (tvp->tv_sec != gd->gd_time_seconds); 662 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 663 if (tvp->tv_usec >= 1000000) { 664 tvp->tv_usec -= 1000000; 665 ++tvp->tv_sec; 666 } 667 } 668 669 void 670 nanouptime(struct timespec *tsp) 671 { 672 struct globaldata *gd = mycpu; 673 sysclock_t delta; 674 675 do { 676 tsp->tv_sec = gd->gd_time_seconds; 677 delta = cputimer_count() - gd->gd_cpuclock_base; 678 } while (tsp->tv_sec != gd->gd_time_seconds); 679 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 680 if (tsp->tv_nsec >= 1000000000) { 681 tsp->tv_nsec -= 1000000000; 682 ++tsp->tv_sec; 683 } 684 } 685 686 /* 687 * realtime routines 688 */ 689 690 void 691 getmicrotime(struct timeval *tvp) 692 { 693 struct globaldata *gd = mycpu; 694 sysclock_t delta; 695 696 do { 697 tvp->tv_sec = gd->gd_time_seconds; 698 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 699 } while (tvp->tv_sec != gd->gd_time_seconds); 700 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 701 702 tvp->tv_sec += basetime.tv_sec; 703 tvp->tv_usec += basetime.tv_nsec / 1000; 704 while (tvp->tv_usec >= 1000000) { 705 tvp->tv_usec -= 1000000; 706 ++tvp->tv_sec; 707 } 708 } 709 710 void 711 getnanotime(struct timespec *tsp) 712 { 713 struct globaldata *gd = mycpu; 714 sysclock_t delta; 715 716 do { 717 tsp->tv_sec = gd->gd_time_seconds; 718 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 719 } while (tsp->tv_sec != gd->gd_time_seconds); 720 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 721 722 tsp->tv_sec += basetime.tv_sec; 723 tsp->tv_nsec += basetime.tv_nsec; 724 while (tsp->tv_nsec >= 1000000000) { 725 tsp->tv_nsec -= 1000000000; 726 ++tsp->tv_sec; 727 } 728 } 729 730 void 731 microtime(struct timeval *tvp) 732 { 733 struct globaldata *gd = mycpu; 734 sysclock_t delta; 735 736 do { 737 tvp->tv_sec = gd->gd_time_seconds; 738 delta = cputimer_count() - gd->gd_cpuclock_base; 739 } while (tvp->tv_sec != gd->gd_time_seconds); 740 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 741 742 tvp->tv_sec += basetime.tv_sec; 743 tvp->tv_usec += basetime.tv_nsec / 1000; 744 while (tvp->tv_usec >= 1000000) { 745 tvp->tv_usec -= 1000000; 746 ++tvp->tv_sec; 747 } 748 } 749 750 void 751 nanotime(struct timespec *tsp) 752 { 753 struct globaldata *gd = mycpu; 754 sysclock_t delta; 755 756 do { 757 tsp->tv_sec = gd->gd_time_seconds; 758 delta = cputimer_count() - gd->gd_cpuclock_base; 759 } while (tsp->tv_sec != gd->gd_time_seconds); 760 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 761 762 tsp->tv_sec += basetime.tv_sec; 763 tsp->tv_nsec += basetime.tv_nsec; 764 while (tsp->tv_nsec >= 1000000000) { 765 tsp->tv_nsec -= 1000000000; 766 ++tsp->tv_sec; 767 } 768 } 769 770 int 771 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 772 { 773 pps_params_t *app; 774 struct pps_fetch_args *fapi; 775 #ifdef PPS_SYNC 776 struct pps_kcbind_args *kapi; 777 #endif 778 779 switch (cmd) { 780 case PPS_IOC_CREATE: 781 return (0); 782 case PPS_IOC_DESTROY: 783 return (0); 784 case PPS_IOC_SETPARAMS: 785 app = (pps_params_t *)data; 786 if (app->mode & ~pps->ppscap) 787 return (EINVAL); 788 pps->ppsparam = *app; 789 return (0); 790 case PPS_IOC_GETPARAMS: 791 app = (pps_params_t *)data; 792 *app = pps->ppsparam; 793 app->api_version = PPS_API_VERS_1; 794 return (0); 795 case PPS_IOC_GETCAP: 796 *(int*)data = pps->ppscap; 797 return (0); 798 case PPS_IOC_FETCH: 799 fapi = (struct pps_fetch_args *)data; 800 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 801 return (EINVAL); 802 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 803 return (EOPNOTSUPP); 804 pps->ppsinfo.current_mode = pps->ppsparam.mode; 805 fapi->pps_info_buf = pps->ppsinfo; 806 return (0); 807 case PPS_IOC_KCBIND: 808 #ifdef PPS_SYNC 809 kapi = (struct pps_kcbind_args *)data; 810 /* XXX Only root should be able to do this */ 811 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 812 return (EINVAL); 813 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 814 return (EINVAL); 815 if (kapi->edge & ~pps->ppscap) 816 return (EINVAL); 817 pps->kcmode = kapi->edge; 818 return (0); 819 #else 820 return (EOPNOTSUPP); 821 #endif 822 default: 823 return (ENOTTY); 824 } 825 } 826 827 void 828 pps_init(struct pps_state *pps) 829 { 830 pps->ppscap |= PPS_TSFMT_TSPEC; 831 if (pps->ppscap & PPS_CAPTUREASSERT) 832 pps->ppscap |= PPS_OFFSETASSERT; 833 if (pps->ppscap & PPS_CAPTURECLEAR) 834 pps->ppscap |= PPS_OFFSETCLEAR; 835 } 836 837 void 838 pps_event(struct pps_state *pps, sysclock_t count, int event) 839 { 840 struct globaldata *gd; 841 struct timespec *tsp; 842 struct timespec *osp; 843 struct timespec ts; 844 sysclock_t *pcount; 845 #ifdef PPS_SYNC 846 sysclock_t tcount; 847 #endif 848 sysclock_t delta; 849 pps_seq_t *pseq; 850 int foff; 851 int fhard; 852 853 gd = mycpu; 854 855 /* Things would be easier with arrays... */ 856 if (event == PPS_CAPTUREASSERT) { 857 tsp = &pps->ppsinfo.assert_timestamp; 858 osp = &pps->ppsparam.assert_offset; 859 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 860 fhard = pps->kcmode & PPS_CAPTUREASSERT; 861 pcount = &pps->ppscount[0]; 862 pseq = &pps->ppsinfo.assert_sequence; 863 } else { 864 tsp = &pps->ppsinfo.clear_timestamp; 865 osp = &pps->ppsparam.clear_offset; 866 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 867 fhard = pps->kcmode & PPS_CAPTURECLEAR; 868 pcount = &pps->ppscount[1]; 869 pseq = &pps->ppsinfo.clear_sequence; 870 } 871 872 /* Nothing really happened */ 873 if (*pcount == count) 874 return; 875 876 *pcount = count; 877 878 do { 879 ts.tv_sec = gd->gd_time_seconds; 880 delta = count - gd->gd_cpuclock_base; 881 } while (ts.tv_sec != gd->gd_time_seconds); 882 if (delta > cputimer_freq) { 883 ts.tv_sec += delta / cputimer_freq; 884 delta %= cputimer_freq; 885 } 886 ts.tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 887 ts.tv_sec += basetime.tv_sec; 888 ts.tv_nsec += basetime.tv_nsec; 889 while (ts.tv_nsec >= 1000000000) { 890 ts.tv_nsec -= 1000000000; 891 ++ts.tv_sec; 892 } 893 894 (*pseq)++; 895 *tsp = ts; 896 897 if (foff) { 898 timespecadd(tsp, osp); 899 if (tsp->tv_nsec < 0) { 900 tsp->tv_nsec += 1000000000; 901 tsp->tv_sec -= 1; 902 } 903 } 904 #ifdef PPS_SYNC 905 if (fhard) { 906 /* magic, at its best... */ 907 tcount = count - pps->ppscount[2]; 908 pps->ppscount[2] = count; 909 delta = (cputimer_freq64_nsec * tcount) >> 32; 910 hardpps(tsp, delta); 911 } 912 #endif 913 } 914 915