1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.21 2004/07/16 05:51:09 dillon Exp $ 74 */ 75 76 #include "opt_ntp.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/dkstat.h> 81 #include <sys/callout.h> 82 #include <sys/kernel.h> 83 #include <sys/proc.h> 84 #include <sys/malloc.h> 85 #include <sys/resourcevar.h> 86 #include <sys/signalvar.h> 87 #include <sys/timex.h> 88 #include <sys/timepps.h> 89 #include <vm/vm.h> 90 #include <sys/lock.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <sys/sysctl.h> 94 #include <sys/thread2.h> 95 96 #include <machine/cpu.h> 97 #include <machine/limits.h> 98 #include <machine/smp.h> 99 100 #ifdef GPROF 101 #include <sys/gmon.h> 102 #endif 103 104 #ifdef DEVICE_POLLING 105 extern void init_device_poll(void); 106 extern void hardclock_device_poll(void); 107 #endif /* DEVICE_POLLING */ 108 109 static void initclocks (void *dummy); 110 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 111 112 /* 113 * Some of these don't belong here, but it's easiest to concentrate them. 114 * Note that cp_time[] counts in microseconds, but most userland programs 115 * just compare relative times against the total by delta. 116 */ 117 long cp_time[CPUSTATES]; 118 119 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time), 120 "LU", "CPU time statistics"); 121 122 long tk_cancc; 123 long tk_nin; 124 long tk_nout; 125 long tk_rawcc; 126 127 /* 128 * boottime is used to calculate the 'real' uptime. Do not confuse this with 129 * microuptime(). microtime() is not drift compensated. The real uptime 130 * with compensation is nanotime() - bootime. boottime is recalculated 131 * whenever the real time is set based on the compensated elapsed time 132 * in seconds (gd->gd_time_seconds). 133 * 134 * basetime is used to calculate the compensated real time of day. Chunky 135 * changes to the time, aka settimeofday(), are made by modifying basetime. 136 * 137 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 138 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 139 * the real time. 140 */ 141 struct timespec boottime; /* boot time (realtime) for reference only */ 142 struct timespec basetime; /* base time adjusts uptime -> realtime */ 143 time_t time_second; /* read-only 'passive' uptime in seconds */ 144 145 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 146 &boottime, timeval, "System boottime"); 147 SYSCTL_STRUCT(_kern, OID_AUTO, basetime, CTLFLAG_RD, 148 &basetime, timeval, "System basetime"); 149 150 static void hardclock(systimer_t info, struct intrframe *frame); 151 static void statclock(systimer_t info, struct intrframe *frame); 152 static void schedclock(systimer_t info, struct intrframe *frame); 153 154 int ticks; /* system master ticks at hz */ 155 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 156 int64_t nsec_acc; /* accumulator */ 157 158 /* 159 * Finish initializing clock frequencies and start all clocks running. 160 */ 161 /* ARGSUSED*/ 162 static void 163 initclocks(void *dummy) 164 { 165 cpu_initclocks(); 166 #ifdef DEVICE_POLLING 167 init_device_poll(); 168 #endif 169 /*psratio = profhz / stathz;*/ 170 initclocks_pcpu(); 171 } 172 173 /* 174 * Called on a per-cpu basis 175 */ 176 void 177 initclocks_pcpu(void) 178 { 179 struct globaldata *gd = mycpu; 180 181 crit_enter(); 182 if (gd->gd_cpuid == 0) { 183 gd->gd_time_seconds = 1; 184 gd->gd_cpuclock_base = cputimer_count(); 185 } else { 186 /* XXX */ 187 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 188 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 189 } 190 systimer_init_periodic(&gd->gd_hardclock, hardclock, NULL, hz); 191 systimer_init_periodic(&gd->gd_statclock, statclock, NULL, stathz); 192 /* XXX correct the frequency for scheduler / estcpu tests */ 193 systimer_init_periodic(&gd->gd_schedclock, schedclock, 194 NULL, ESTCPUFREQ); 195 crit_exit(); 196 } 197 198 /* 199 * This sets the current real time of day. Timespecs are in seconds and 200 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 201 * instead we adjust basetime so basetime + gd_* results in the current 202 * time of day. This way the gd_* fields are guarenteed to represent 203 * a monotonically increasing 'uptime' value. 204 */ 205 void 206 set_timeofday(struct timespec *ts) 207 { 208 struct timespec ts2; 209 210 /* 211 * XXX SMP / non-atomic basetime updates 212 */ 213 crit_enter(); 214 nanouptime(&ts2); 215 basetime.tv_sec = ts->tv_sec - ts2.tv_sec; 216 basetime.tv_nsec = ts->tv_nsec - ts2.tv_nsec; 217 if (basetime.tv_nsec < 0) { 218 basetime.tv_nsec += 1000000000; 219 --basetime.tv_sec; 220 } 221 boottime.tv_sec = basetime.tv_sec - mycpu->gd_time_seconds; 222 timedelta = 0; 223 crit_exit(); 224 } 225 226 /* 227 * Each cpu has its own hardclock, but we only increments ticks and softticks 228 * on cpu #0. 229 * 230 * NOTE! systimer! the MP lock might not be held here. We can only safely 231 * manipulate objects owned by the current cpu. 232 */ 233 static void 234 hardclock(systimer_t info, struct intrframe *frame) 235 { 236 sysclock_t cputicks; 237 struct proc *p; 238 struct pstats *pstats; 239 struct globaldata *gd = mycpu; 240 241 /* 242 * Realtime updates are per-cpu. Note that timer corrections as 243 * returned by microtime() and friends make an additional adjustment 244 * using a system-wise 'basetime', but the running time is always 245 * taken from the per-cpu globaldata area. Since the same clock 246 * is distributing (XXX SMP) to all cpus, the per-cpu timebases 247 * stay in synch. 248 * 249 * Note that we never allow info->time (aka gd->gd_hardclock.time) 250 * to reverse index gd_cpuclock_base. 251 */ 252 cputicks = info->time - gd->gd_cpuclock_base; 253 if (cputicks > cputimer_freq) { 254 ++gd->gd_time_seconds; 255 gd->gd_cpuclock_base += cputimer_freq; 256 } 257 258 /* 259 * The system-wide ticks and softticks are only updated by cpu #0. 260 * Callwheel actions are also (at the moment) only handled by cpu #0. 261 * Finally, we also do NTP related timedelta/tickdelta adjustments 262 * by adjusting basetime. 263 */ 264 if (gd->gd_cpuid == 0) { 265 struct timespec nts; 266 int leap; 267 268 ++ticks; 269 270 #ifdef DEVICE_POLLING 271 hardclock_device_poll(); /* mpsafe, short and quick */ 272 #endif /* DEVICE_POLLING */ 273 274 if (TAILQ_FIRST(&callwheel[ticks & callwheelmask]) != NULL) { 275 setsoftclock(); 276 } else if (softticks + 1 == ticks) { 277 ++softticks; 278 } 279 280 #if 0 281 if (tco->tc_poll_pps) 282 tco->tc_poll_pps(tco); 283 #endif 284 /* 285 * Apply adjtime corrections. At the moment only do this if 286 * we can get the MP lock to interlock with adjtime's modification 287 * of these variables. Note that basetime adjustments are not 288 * MP safe either XXX. 289 */ 290 if (timedelta != 0 && try_mplock()) { 291 basetime.tv_nsec += tickdelta * 1000; 292 if (basetime.tv_nsec >= 1000000000) { 293 basetime.tv_nsec -= 1000000000; 294 ++basetime.tv_sec; 295 } else if (basetime.tv_nsec < 0) { 296 basetime.tv_nsec += 1000000000; 297 --basetime.tv_sec; 298 } 299 timedelta -= tickdelta; 300 rel_mplock(); 301 } 302 303 /* 304 * Apply per-tick compensation. ticks_adj adjusts for both 305 * offset and frequency, and could be negative. 306 */ 307 if (nsec_adj != 0 && try_mplock()) { 308 nsec_acc += nsec_adj; 309 if (nsec_acc >= 0x100000000LL) { 310 basetime.tv_nsec += nsec_acc >> 32; 311 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 312 } else if (nsec_acc <= -0x100000000LL) { 313 basetime.tv_nsec -= -nsec_acc >> 32; 314 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 315 } 316 if (basetime.tv_nsec >= 1000000000) { 317 basetime.tv_nsec -= 1000000000; 318 ++basetime.tv_sec; 319 } else if (basetime.tv_nsec < 0) { 320 basetime.tv_nsec += 1000000000; 321 --basetime.tv_sec; 322 } 323 rel_mplock(); 324 } 325 326 /* 327 * If the realtime-adjusted seconds hand rolls over then tell 328 * ntp_update_second() what we did in the last second so it can 329 * calculate what to do in the next second. It may also add 330 * or subtract a leap second. 331 */ 332 getnanotime(&nts); 333 if (time_second != nts.tv_sec) { 334 leap = ntp_update_second(time_second, &nsec_adj); 335 basetime.tv_sec += leap; 336 time_second = nts.tv_sec + leap; 337 nsec_adj /= hz; 338 } 339 } 340 341 /* 342 * ITimer handling is per-tick, per-cpu. I don't think psignal() 343 * is mpsafe on curproc, so XXX get the mplock. 344 */ 345 if ((p = curproc) != NULL && try_mplock()) { 346 pstats = p->p_stats; 347 if (frame && CLKF_USERMODE(frame) && 348 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 349 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 350 psignal(p, SIGVTALRM); 351 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) && 352 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 353 psignal(p, SIGPROF); 354 rel_mplock(); 355 } 356 setdelayed(); 357 } 358 359 /* 360 * The statistics clock typically runs at a 125Hz rate, and is intended 361 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 362 * 363 * NOTE! systimer! the MP lock might not be held here. We can only safely 364 * manipulate objects owned by the current cpu. 365 * 366 * The stats clock is responsible for grabbing a profiling sample. 367 * Most of the statistics are only used by user-level statistics programs. 368 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 369 * p->p_estcpu. 370 * 371 * Like the other clocks, the stat clock is called from what is effectively 372 * a fast interrupt, so the context should be the thread/process that got 373 * interrupted. 374 */ 375 static void 376 statclock(systimer_t info, struct intrframe *frame) 377 { 378 #ifdef GPROF 379 struct gmonparam *g; 380 int i; 381 #endif 382 thread_t td; 383 struct proc *p; 384 int bump; 385 struct timeval tv; 386 struct timeval *stv; 387 388 /* 389 * How big was our timeslice relative to the last time? 390 */ 391 microuptime(&tv); /* mpsafe */ 392 stv = &mycpu->gd_stattv; 393 if (stv->tv_sec == 0) { 394 bump = 1; 395 } else { 396 bump = tv.tv_usec - stv->tv_usec + 397 (tv.tv_sec - stv->tv_sec) * 1000000; 398 if (bump < 0) 399 bump = 0; 400 if (bump > 1000000) 401 bump = 1000000; 402 } 403 *stv = tv; 404 405 td = curthread; 406 p = td->td_proc; 407 408 if (frame && CLKF_USERMODE(frame)) { 409 /* 410 * Came from userland, handle user time and deal with 411 * possible process. 412 */ 413 if (p && (p->p_flag & P_PROFIL)) 414 addupc_intr(p, CLKF_PC(frame), 1); 415 td->td_uticks += bump; 416 417 /* 418 * Charge the time as appropriate 419 */ 420 if (p && p->p_nice > NZERO) 421 cp_time[CP_NICE] += bump; 422 else 423 cp_time[CP_USER] += bump; 424 } else { 425 #ifdef GPROF 426 /* 427 * Kernel statistics are just like addupc_intr, only easier. 428 */ 429 g = &_gmonparam; 430 if (g->state == GMON_PROF_ON && frame) { 431 i = CLKF_PC(frame) - g->lowpc; 432 if (i < g->textsize) { 433 i /= HISTFRACTION * sizeof(*g->kcount); 434 g->kcount[i]++; 435 } 436 } 437 #endif 438 /* 439 * Came from kernel mode, so we were: 440 * - handling an interrupt, 441 * - doing syscall or trap work on behalf of the current 442 * user process, or 443 * - spinning in the idle loop. 444 * Whichever it is, charge the time as appropriate. 445 * Note that we charge interrupts to the current process, 446 * regardless of whether they are ``for'' that process, 447 * so that we know how much of its real time was spent 448 * in ``non-process'' (i.e., interrupt) work. 449 * 450 * XXX assume system if frame is NULL. A NULL frame 451 * can occur if ipi processing is done from an splx(). 452 */ 453 if (frame && CLKF_INTR(frame)) 454 td->td_iticks += bump; 455 else 456 td->td_sticks += bump; 457 458 if (frame && CLKF_INTR(frame)) { 459 cp_time[CP_INTR] += bump; 460 } else { 461 if (td == &mycpu->gd_idlethread) 462 cp_time[CP_IDLE] += bump; 463 else 464 cp_time[CP_SYS] += bump; 465 } 466 } 467 } 468 469 /* 470 * The scheduler clock typically runs at a 20Hz rate. NOTE! systimer, 471 * the MP lock might not be held. We can safely manipulate parts of curproc 472 * but that's about it. 473 */ 474 static void 475 schedclock(systimer_t info, struct intrframe *frame) 476 { 477 struct proc *p; 478 struct pstats *pstats; 479 struct rusage *ru; 480 struct vmspace *vm; 481 long rss; 482 483 schedulerclock(NULL); /* mpsafe */ 484 if ((p = curproc) != NULL) { 485 /* Update resource usage integrals and maximums. */ 486 if ((pstats = p->p_stats) != NULL && 487 (ru = &pstats->p_ru) != NULL && 488 (vm = p->p_vmspace) != NULL) { 489 ru->ru_ixrss += pgtok(vm->vm_tsize); 490 ru->ru_idrss += pgtok(vm->vm_dsize); 491 ru->ru_isrss += pgtok(vm->vm_ssize); 492 rss = pgtok(vmspace_resident_count(vm)); 493 if (ru->ru_maxrss < rss) 494 ru->ru_maxrss = rss; 495 } 496 } 497 } 498 499 /* 500 * Compute number of ticks for the specified amount of time. The 501 * return value is intended to be used in a clock interrupt timed 502 * operation and guarenteed to meet or exceed the requested time. 503 * If the representation overflows, return INT_MAX. The minimum return 504 * value is 1 ticks and the function will average the calculation up. 505 * If any value greater then 0 microseconds is supplied, a value 506 * of at least 2 will be returned to ensure that a near-term clock 507 * interrupt does not cause the timeout to occur (degenerately) early. 508 * 509 * Note that limit checks must take into account microseconds, which is 510 * done simply by using the smaller signed long maximum instead of 511 * the unsigned long maximum. 512 * 513 * If ints have 32 bits, then the maximum value for any timeout in 514 * 10ms ticks is 248 days. 515 */ 516 int 517 tvtohz_high(struct timeval *tv) 518 { 519 int ticks; 520 long sec, usec; 521 522 sec = tv->tv_sec; 523 usec = tv->tv_usec; 524 if (usec < 0) { 525 sec--; 526 usec += 1000000; 527 } 528 if (sec < 0) { 529 #ifdef DIAGNOSTIC 530 if (usec > 0) { 531 sec++; 532 usec -= 1000000; 533 } 534 printf("tvotohz: negative time difference %ld sec %ld usec\n", 535 sec, usec); 536 #endif 537 ticks = 1; 538 } else if (sec <= INT_MAX / hz) { 539 ticks = (int)(sec * hz + 540 ((u_long)usec + (tick - 1)) / tick) + 1; 541 } else { 542 ticks = INT_MAX; 543 } 544 return (ticks); 545 } 546 547 /* 548 * Compute number of ticks for the specified amount of time, erroring on 549 * the side of it being too low to ensure that sleeping the returned number 550 * of ticks will not result in a late return. 551 * 552 * The supplied timeval may not be negative and should be normalized. A 553 * return value of 0 is possible if the timeval converts to less then 554 * 1 tick. 555 * 556 * If ints have 32 bits, then the maximum value for any timeout in 557 * 10ms ticks is 248 days. 558 */ 559 int 560 tvtohz_low(struct timeval *tv) 561 { 562 int ticks; 563 long sec; 564 565 sec = tv->tv_sec; 566 if (sec <= INT_MAX / hz) 567 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick); 568 else 569 ticks = INT_MAX; 570 return (ticks); 571 } 572 573 574 /* 575 * Start profiling on a process. 576 * 577 * Kernel profiling passes proc0 which never exits and hence 578 * keeps the profile clock running constantly. 579 */ 580 void 581 startprofclock(struct proc *p) 582 { 583 if ((p->p_flag & P_PROFIL) == 0) { 584 p->p_flag |= P_PROFIL; 585 #if 0 /* XXX */ 586 if (++profprocs == 1 && stathz != 0) { 587 s = splstatclock(); 588 psdiv = psratio; 589 setstatclockrate(profhz); 590 splx(s); 591 } 592 #endif 593 } 594 } 595 596 /* 597 * Stop profiling on a process. 598 */ 599 void 600 stopprofclock(struct proc *p) 601 { 602 if (p->p_flag & P_PROFIL) { 603 p->p_flag &= ~P_PROFIL; 604 #if 0 /* XXX */ 605 if (--profprocs == 0 && stathz != 0) { 606 s = splstatclock(); 607 psdiv = 1; 608 setstatclockrate(stathz); 609 splx(s); 610 } 611 #endif 612 } 613 } 614 615 /* 616 * Return information about system clocks. 617 */ 618 static int 619 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 620 { 621 struct clockinfo clkinfo; 622 /* 623 * Construct clockinfo structure. 624 */ 625 clkinfo.hz = hz; 626 clkinfo.tick = tick; 627 clkinfo.tickadj = tickadj; 628 clkinfo.profhz = profhz; 629 clkinfo.stathz = stathz ? stathz : hz; 630 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 631 } 632 633 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 634 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 635 636 /* 637 * We have eight functions for looking at the clock, four for 638 * microseconds and four for nanoseconds. For each there is fast 639 * but less precise version "get{nano|micro}[up]time" which will 640 * return a time which is up to 1/HZ previous to the call, whereas 641 * the raw version "{nano|micro}[up]time" will return a timestamp 642 * which is as precise as possible. The "up" variants return the 643 * time relative to system boot, these are well suited for time 644 * interval measurements. 645 * 646 * Each cpu independantly maintains the current time of day, so all 647 * we need to do to protect ourselves from changes is to do a loop 648 * check on the seconds field changing out from under us. 649 */ 650 void 651 getmicrouptime(struct timeval *tvp) 652 { 653 struct globaldata *gd = mycpu; 654 sysclock_t delta; 655 656 do { 657 tvp->tv_sec = gd->gd_time_seconds; 658 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 659 } while (tvp->tv_sec != gd->gd_time_seconds); 660 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 661 if (tvp->tv_usec >= 1000000) { 662 tvp->tv_usec -= 1000000; 663 ++tvp->tv_sec; 664 } 665 } 666 667 void 668 getnanouptime(struct timespec *tsp) 669 { 670 struct globaldata *gd = mycpu; 671 sysclock_t delta; 672 673 do { 674 tsp->tv_sec = gd->gd_time_seconds; 675 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 676 } while (tsp->tv_sec != gd->gd_time_seconds); 677 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 678 if (tsp->tv_nsec >= 1000000000) { 679 tsp->tv_nsec -= 1000000000; 680 ++tsp->tv_sec; 681 } 682 } 683 684 void 685 microuptime(struct timeval *tvp) 686 { 687 struct globaldata *gd = mycpu; 688 sysclock_t delta; 689 690 do { 691 tvp->tv_sec = gd->gd_time_seconds; 692 delta = cputimer_count() - gd->gd_cpuclock_base; 693 } while (tvp->tv_sec != gd->gd_time_seconds); 694 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 695 if (tvp->tv_usec >= 1000000) { 696 tvp->tv_usec -= 1000000; 697 ++tvp->tv_sec; 698 } 699 } 700 701 void 702 nanouptime(struct timespec *tsp) 703 { 704 struct globaldata *gd = mycpu; 705 sysclock_t delta; 706 707 do { 708 tsp->tv_sec = gd->gd_time_seconds; 709 delta = cputimer_count() - gd->gd_cpuclock_base; 710 } while (tsp->tv_sec != gd->gd_time_seconds); 711 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 712 if (tsp->tv_nsec >= 1000000000) { 713 tsp->tv_nsec -= 1000000000; 714 ++tsp->tv_sec; 715 } 716 } 717 718 /* 719 * realtime routines 720 */ 721 722 void 723 getmicrotime(struct timeval *tvp) 724 { 725 struct globaldata *gd = mycpu; 726 sysclock_t delta; 727 728 do { 729 tvp->tv_sec = gd->gd_time_seconds; 730 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 731 } while (tvp->tv_sec != gd->gd_time_seconds); 732 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 733 734 tvp->tv_sec += basetime.tv_sec; 735 tvp->tv_usec += basetime.tv_nsec / 1000; 736 while (tvp->tv_usec >= 1000000) { 737 tvp->tv_usec -= 1000000; 738 ++tvp->tv_sec; 739 } 740 } 741 742 void 743 getnanotime(struct timespec *tsp) 744 { 745 struct globaldata *gd = mycpu; 746 sysclock_t delta; 747 748 do { 749 tsp->tv_sec = gd->gd_time_seconds; 750 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 751 } while (tsp->tv_sec != gd->gd_time_seconds); 752 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 753 754 tsp->tv_sec += basetime.tv_sec; 755 tsp->tv_nsec += basetime.tv_nsec; 756 while (tsp->tv_nsec >= 1000000000) { 757 tsp->tv_nsec -= 1000000000; 758 ++tsp->tv_sec; 759 } 760 } 761 762 void 763 microtime(struct timeval *tvp) 764 { 765 struct globaldata *gd = mycpu; 766 sysclock_t delta; 767 768 do { 769 tvp->tv_sec = gd->gd_time_seconds; 770 delta = cputimer_count() - gd->gd_cpuclock_base; 771 } while (tvp->tv_sec != gd->gd_time_seconds); 772 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 773 774 tvp->tv_sec += basetime.tv_sec; 775 tvp->tv_usec += basetime.tv_nsec / 1000; 776 while (tvp->tv_usec >= 1000000) { 777 tvp->tv_usec -= 1000000; 778 ++tvp->tv_sec; 779 } 780 } 781 782 void 783 nanotime(struct timespec *tsp) 784 { 785 struct globaldata *gd = mycpu; 786 sysclock_t delta; 787 788 do { 789 tsp->tv_sec = gd->gd_time_seconds; 790 delta = cputimer_count() - gd->gd_cpuclock_base; 791 } while (tsp->tv_sec != gd->gd_time_seconds); 792 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 793 794 tsp->tv_sec += basetime.tv_sec; 795 tsp->tv_nsec += basetime.tv_nsec; 796 while (tsp->tv_nsec >= 1000000000) { 797 tsp->tv_nsec -= 1000000000; 798 ++tsp->tv_sec; 799 } 800 } 801 802 int 803 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 804 { 805 pps_params_t *app; 806 struct pps_fetch_args *fapi; 807 #ifdef PPS_SYNC 808 struct pps_kcbind_args *kapi; 809 #endif 810 811 switch (cmd) { 812 case PPS_IOC_CREATE: 813 return (0); 814 case PPS_IOC_DESTROY: 815 return (0); 816 case PPS_IOC_SETPARAMS: 817 app = (pps_params_t *)data; 818 if (app->mode & ~pps->ppscap) 819 return (EINVAL); 820 pps->ppsparam = *app; 821 return (0); 822 case PPS_IOC_GETPARAMS: 823 app = (pps_params_t *)data; 824 *app = pps->ppsparam; 825 app->api_version = PPS_API_VERS_1; 826 return (0); 827 case PPS_IOC_GETCAP: 828 *(int*)data = pps->ppscap; 829 return (0); 830 case PPS_IOC_FETCH: 831 fapi = (struct pps_fetch_args *)data; 832 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 833 return (EINVAL); 834 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 835 return (EOPNOTSUPP); 836 pps->ppsinfo.current_mode = pps->ppsparam.mode; 837 fapi->pps_info_buf = pps->ppsinfo; 838 return (0); 839 case PPS_IOC_KCBIND: 840 #ifdef PPS_SYNC 841 kapi = (struct pps_kcbind_args *)data; 842 /* XXX Only root should be able to do this */ 843 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 844 return (EINVAL); 845 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 846 return (EINVAL); 847 if (kapi->edge & ~pps->ppscap) 848 return (EINVAL); 849 pps->kcmode = kapi->edge; 850 return (0); 851 #else 852 return (EOPNOTSUPP); 853 #endif 854 default: 855 return (ENOTTY); 856 } 857 } 858 859 void 860 pps_init(struct pps_state *pps) 861 { 862 pps->ppscap |= PPS_TSFMT_TSPEC; 863 if (pps->ppscap & PPS_CAPTUREASSERT) 864 pps->ppscap |= PPS_OFFSETASSERT; 865 if (pps->ppscap & PPS_CAPTURECLEAR) 866 pps->ppscap |= PPS_OFFSETCLEAR; 867 } 868 869 void 870 pps_event(struct pps_state *pps, sysclock_t count, int event) 871 { 872 struct globaldata *gd; 873 struct timespec *tsp; 874 struct timespec *osp; 875 struct timespec ts; 876 sysclock_t *pcount; 877 #ifdef PPS_SYNC 878 sysclock_t tcount; 879 #endif 880 sysclock_t delta; 881 pps_seq_t *pseq; 882 int foff; 883 int fhard; 884 885 gd = mycpu; 886 887 /* Things would be easier with arrays... */ 888 if (event == PPS_CAPTUREASSERT) { 889 tsp = &pps->ppsinfo.assert_timestamp; 890 osp = &pps->ppsparam.assert_offset; 891 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 892 fhard = pps->kcmode & PPS_CAPTUREASSERT; 893 pcount = &pps->ppscount[0]; 894 pseq = &pps->ppsinfo.assert_sequence; 895 } else { 896 tsp = &pps->ppsinfo.clear_timestamp; 897 osp = &pps->ppsparam.clear_offset; 898 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 899 fhard = pps->kcmode & PPS_CAPTURECLEAR; 900 pcount = &pps->ppscount[1]; 901 pseq = &pps->ppsinfo.clear_sequence; 902 } 903 904 /* Nothing really happened */ 905 if (*pcount == count) 906 return; 907 908 *pcount = count; 909 910 do { 911 ts.tv_sec = gd->gd_time_seconds; 912 delta = count - gd->gd_cpuclock_base; 913 } while (ts.tv_sec != gd->gd_time_seconds); 914 if (delta > cputimer_freq) { 915 ts.tv_sec += delta / cputimer_freq; 916 delta %= cputimer_freq; 917 } 918 ts.tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 919 ts.tv_sec += basetime.tv_sec; 920 ts.tv_nsec += basetime.tv_nsec; 921 while (ts.tv_nsec >= 1000000000) { 922 ts.tv_nsec -= 1000000000; 923 ++ts.tv_sec; 924 } 925 926 (*pseq)++; 927 *tsp = ts; 928 929 if (foff) { 930 timespecadd(tsp, osp); 931 if (tsp->tv_nsec < 0) { 932 tsp->tv_nsec += 1000000000; 933 tsp->tv_sec -= 1; 934 } 935 } 936 #ifdef PPS_SYNC 937 if (fhard) { 938 /* magic, at its best... */ 939 tcount = count - pps->ppscount[2]; 940 pps->ppscount[2] = count; 941 delta = (cputimer_freq64_nsec * tcount) >> 32; 942 hardpps(tsp, delta); 943 } 944 #endif 945 } 946 947