xref: /dflybsd-src/sys/kern/kern_clock.c (revision 872a09d51adf63b4bdae6adb1d96a53f76e161e2)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
68  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
69  */
70 
71 #include "opt_ntp.h"
72 #include "opt_pctrack.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/callout.h>
77 #include <sys/kernel.h>
78 #include <sys/kinfo.h>
79 #include <sys/proc.h>
80 #include <sys/malloc.h>
81 #include <sys/resource.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/priv.h>
85 #include <sys/timex.h>
86 #include <sys/timepps.h>
87 #include <sys/upmap.h>
88 #include <sys/lock.h>
89 #include <sys/sysctl.h>
90 #include <sys/kcollect.h>
91 
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_extern.h>
96 
97 #include <sys/thread2.h>
98 #include <sys/spinlock2.h>
99 
100 #include <machine/cpu.h>
101 #include <machine/limits.h>
102 #include <machine/smp.h>
103 #include <machine/cpufunc.h>
104 #include <machine/specialreg.h>
105 #include <machine/clock.h>
106 
107 #ifdef DEBUG_PCTRACK
108 static void do_pctrack(struct intrframe *frame, int which);
109 #endif
110 
111 static void initclocks (void *dummy);
112 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
113 
114 /*
115  * Some of these don't belong here, but it's easiest to concentrate them.
116  * Note that cpu_time counts in microseconds, but most userland programs
117  * just compare relative times against the total by delta.
118  */
119 struct kinfo_cputime cputime_percpu[MAXCPU];
120 #ifdef DEBUG_PCTRACK
121 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
122 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
123 #endif
124 
125 static int sniff_enable = 1;
126 static int sniff_target = -1;
127 SYSCTL_INT(_kern, OID_AUTO, sniff_enable, CTLFLAG_RW, &sniff_enable, 0 , "");
128 SYSCTL_INT(_kern, OID_AUTO, sniff_target, CTLFLAG_RW, &sniff_target, 0 , "");
129 
130 static int
131 sysctl_cputime(SYSCTL_HANDLER_ARGS)
132 {
133 	int cpu, error = 0;
134 	int root_error;
135 	size_t size = sizeof(struct kinfo_cputime);
136 	struct kinfo_cputime tmp;
137 
138 	/*
139 	 * NOTE: For security reasons, only root can sniff %rip
140 	 */
141 	root_error = priv_check_cred(curthread->td_ucred, PRIV_ROOT, 0);
142 
143 	for (cpu = 0; cpu < ncpus; ++cpu) {
144 		tmp = cputime_percpu[cpu];
145 		if (root_error == 0) {
146 			tmp.cp_sample_pc =
147 				(int64_t)globaldata_find(cpu)->gd_sample_pc;
148 			tmp.cp_sample_sp =
149 				(int64_t)globaldata_find(cpu)->gd_sample_sp;
150 		}
151 		if ((error = SYSCTL_OUT(req, &tmp, size)) != 0)
152 			break;
153 	}
154 
155 	if (root_error == 0) {
156 		if (sniff_enable) {
157 			int n = sniff_target;
158 			if (n < 0)
159 				smp_sniff();
160 			else if (n < ncpus)
161 				cpu_sniff(n);
162 		}
163 	}
164 
165 	return (error);
166 }
167 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
168 	sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
169 
170 static int
171 sysctl_cp_time(SYSCTL_HANDLER_ARGS)
172 {
173 	long cpu_states[CPUSTATES] = {0};
174 	int cpu, error = 0;
175 	size_t size = sizeof(cpu_states);
176 
177 	for (cpu = 0; cpu < ncpus; ++cpu) {
178 		cpu_states[CP_USER] += cputime_percpu[cpu].cp_user;
179 		cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice;
180 		cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys;
181 		cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr;
182 		cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle;
183 	}
184 
185 	error = SYSCTL_OUT(req, cpu_states, size);
186 
187 	return (error);
188 }
189 
190 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
191     sysctl_cp_time, "LU", "CPU time statistics");
192 
193 static int
194 sysctl_cp_times(SYSCTL_HANDLER_ARGS)
195 {
196 	long cpu_states[CPUSTATES] = {0};
197 	int cpu, error;
198 	size_t size = sizeof(cpu_states);
199 
200 	for (error = 0, cpu = 0; error == 0 && cpu < ncpus; ++cpu) {
201 		cpu_states[CP_USER] = cputime_percpu[cpu].cp_user;
202 		cpu_states[CP_NICE] = cputime_percpu[cpu].cp_nice;
203 		cpu_states[CP_SYS] = cputime_percpu[cpu].cp_sys;
204 		cpu_states[CP_INTR] = cputime_percpu[cpu].cp_intr;
205 		cpu_states[CP_IDLE] = cputime_percpu[cpu].cp_idle;
206 		error = SYSCTL_OUT(req, cpu_states, size);
207 	}
208 
209 	return (error);
210 }
211 
212 SYSCTL_PROC(_kern, OID_AUTO, cp_times, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
213     sysctl_cp_times, "LU", "per-CPU time statistics");
214 
215 /*
216  * boottime is used to calculate the 'real' uptime.  Do not confuse this with
217  * microuptime().  microtime() is not drift compensated.  The real uptime
218  * with compensation is nanotime() - bootime.  boottime is recalculated
219  * whenever the real time is set based on the compensated elapsed time
220  * in seconds (gd->gd_time_seconds).
221  *
222  * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
223  * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
224  * the real time.
225  *
226  * WARNING! time_second can backstep on time corrections. Also, unlike
227  *          time_second, time_uptime is not a "real" time_t (seconds
228  *          since the Epoch) but seconds since booting.
229  */
230 __read_mostly struct timespec boottime;	/* boot time (realtime) for ref only */
231 __read_mostly time_t time_second;	/* read-only 'passive' rt in seconds */
232 __read_mostly time_t time_uptime;	/* read-only 'passive' ut in seconds */
233 
234 /*
235  * basetime is used to calculate the compensated real time of day.  The
236  * basetime can be modified on a per-tick basis by the adjtime(),
237  * ntp_adjtime(), and sysctl-based time correction APIs.
238  *
239  * Note that frequency corrections can also be made by adjusting
240  * gd_cpuclock_base.
241  *
242  * basetime is a tail-chasing FIFO, updated only by cpu #0.  The FIFO is
243  * used on both SMP and UP systems to avoid MP races between cpu's and
244  * interrupt races on UP systems.
245  */
246 struct hardtime {
247 	__uint32_t time_second;
248 	sysclock_t cpuclock_base;
249 };
250 
251 #define BASETIME_ARYSIZE	16
252 #define BASETIME_ARYMASK	(BASETIME_ARYSIZE - 1)
253 static struct timespec basetime[BASETIME_ARYSIZE];
254 static struct hardtime hardtime[BASETIME_ARYSIZE];
255 static volatile int basetime_index;
256 
257 static int
258 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
259 {
260 	struct timespec *bt;
261 	int error;
262 	int index;
263 
264 	/*
265 	 * Because basetime data and index may be updated by another cpu,
266 	 * a load fence is required to ensure that the data we read has
267 	 * not been speculatively read relative to a possibly updated index.
268 	 */
269 	index = basetime_index;
270 	cpu_lfence();
271 	bt = &basetime[index];
272 	error = SYSCTL_OUT(req, bt, sizeof(*bt));
273 	return (error);
274 }
275 
276 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
277     &boottime, timespec, "System boottime");
278 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
279     sysctl_get_basetime, "S,timespec", "System basetime");
280 
281 static void hardclock(systimer_t info, int, struct intrframe *frame);
282 static void statclock(systimer_t info, int, struct intrframe *frame);
283 static void schedclock(systimer_t info, int, struct intrframe *frame);
284 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
285 
286 /*
287  * Use __read_mostly for ticks and sched_ticks because these variables are
288  * used all over the kernel and only updated once per tick.
289  */
290 __read_mostly int ticks;		/* system master ticks at hz */
291 __read_mostly int sched_ticks;		/* global schedule clock ticks */
292 __read_mostly int clocks_running;	/* tsleep/timeout clocks operational */
293 int64_t	nsec_adj;		/* ntpd per-tick adjustment in nsec << 32 */
294 int64_t	nsec_acc;		/* accumulator */
295 
296 /* NTPD time correction fields */
297 int64_t	ntp_tick_permanent;	/* per-tick adjustment in nsec << 32 */
298 int64_t	ntp_tick_acc;		/* accumulator for per-tick adjustment */
299 int64_t	ntp_delta;		/* one-time correction in nsec */
300 int64_t ntp_big_delta = 1000000000;
301 int32_t	ntp_tick_delta;		/* current adjustment rate */
302 int32_t	ntp_default_tick_delta;	/* adjustment rate for ntp_delta */
303 time_t	ntp_leap_second;	/* time of next leap second */
304 int	ntp_leap_insert;	/* whether to insert or remove a second */
305 struct spinlock ntp_spin;
306 
307 /*
308  * Finish initializing clock frequencies and start all clocks running.
309  */
310 /* ARGSUSED*/
311 static void
312 initclocks(void *dummy)
313 {
314 	/*psratio = profhz / stathz;*/
315 	spin_init(&ntp_spin, "ntp");
316 	initclocks_pcpu();
317 	clocks_running = 1;
318 	if (kpmap) {
319 	    kpmap->tsc_freq = tsc_frequency;
320 	    kpmap->tick_freq = hz;
321 	}
322 }
323 
324 /*
325  * Called on a per-cpu basis from the idle thread bootstrap on each cpu
326  * during SMP initialization.
327  *
328  * This routine is called concurrently during low-level SMP initialization
329  * and may not block in any way.  Meaning, among other things, we can't
330  * acquire any tokens.
331  */
332 void
333 initclocks_pcpu(void)
334 {
335 	struct globaldata *gd = mycpu;
336 
337 	crit_enter();
338 	if (gd->gd_cpuid == 0) {
339 	    gd->gd_time_seconds = 1;
340 	    gd->gd_cpuclock_base = sys_cputimer->count();
341 	    hardtime[0].time_second = gd->gd_time_seconds;
342 	    hardtime[0].cpuclock_base = gd->gd_cpuclock_base;
343 	} else {
344 	    gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
345 	    gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
346 	}
347 
348 	systimer_intr_enable();
349 
350 	crit_exit();
351 }
352 
353 /*
354  * Called on a 10-second interval after the system is operational.
355  * Return the collection data for USERPCT and install the data for
356  * SYSTPCT and IDLEPCT.
357  */
358 static
359 uint64_t
360 collect_cputime_callback(int n)
361 {
362 	static long cpu_base[CPUSTATES];
363 	long cpu_states[CPUSTATES];
364 	long total;
365 	long acc;
366 	long lsb;
367 
368 	bzero(cpu_states, sizeof(cpu_states));
369 	for (n = 0; n < ncpus; ++n) {
370 		cpu_states[CP_USER] += cputime_percpu[n].cp_user;
371 		cpu_states[CP_NICE] += cputime_percpu[n].cp_nice;
372 		cpu_states[CP_SYS] += cputime_percpu[n].cp_sys;
373 		cpu_states[CP_INTR] += cputime_percpu[n].cp_intr;
374 		cpu_states[CP_IDLE] += cputime_percpu[n].cp_idle;
375 	}
376 
377 	acc = 0;
378 	for (n = 0; n < CPUSTATES; ++n) {
379 		total = cpu_states[n] - cpu_base[n];
380 		cpu_base[n] = cpu_states[n];
381 		cpu_states[n] = total;
382 		acc += total;
383 	}
384 	if (acc == 0)		/* prevent degenerate divide by 0 */
385 		acc = 1;
386 	lsb = acc / (10000 * 2);
387 	kcollect_setvalue(KCOLLECT_SYSTPCT,
388 			  (cpu_states[CP_SYS] + lsb) * 10000 / acc);
389 	kcollect_setvalue(KCOLLECT_IDLEPCT,
390 			  (cpu_states[CP_IDLE] + lsb) * 10000 / acc);
391 	kcollect_setvalue(KCOLLECT_INTRPCT,
392 			  (cpu_states[CP_INTR] + lsb) * 10000 / acc);
393 	return((cpu_states[CP_USER] + cpu_states[CP_NICE] + lsb) * 10000 / acc);
394 }
395 
396 /*
397  * This routine is called on just the BSP, just after SMP initialization
398  * completes to * finish initializing any clocks that might contend/block
399  * (e.g. like on a token).  We can't do this in initclocks_pcpu() because
400  * that function is called from the idle thread bootstrap for each cpu and
401  * not allowed to block at all.
402  */
403 static
404 void
405 initclocks_other(void *dummy)
406 {
407 	struct globaldata *ogd = mycpu;
408 	struct globaldata *gd;
409 	int n;
410 
411 	for (n = 0; n < ncpus; ++n) {
412 		lwkt_setcpu_self(globaldata_find(n));
413 		gd = mycpu;
414 
415 		/*
416 		 * Use a non-queued periodic systimer to prevent multiple
417 		 * ticks from building up if the sysclock jumps forward
418 		 * (8254 gets reset).  The sysclock will never jump backwards.
419 		 * Our time sync is based on the actual sysclock, not the
420 		 * ticks count.
421 		 *
422 		 * Install statclock before hardclock to prevent statclock
423 		 * from misinterpreting gd_flags for tick assignment when
424 		 * they overlap.  Also offset the statclock by half of
425 		 * its interval to try to avoid being coincident with
426 		 * callouts.
427 		 */
428 		systimer_init_periodic_flags(&gd->gd_statclock, statclock,
429 					  NULL, stathz,
430 					  SYSTF_MSSYNC | SYSTF_FIRST |
431 					  SYSTF_OFFSET50);
432 		systimer_init_periodic_flags(&gd->gd_hardclock, hardclock,
433 					  NULL, hz, SYSTF_MSSYNC);
434 	}
435 	lwkt_setcpu_self(ogd);
436 
437 	/*
438 	 * Regular data collection
439 	 */
440 	kcollect_register(KCOLLECT_USERPCT, "user", collect_cputime_callback,
441 			  KCOLLECT_SCALE(KCOLLECT_USERPCT_FORMAT, 0));
442 	kcollect_register(KCOLLECT_SYSTPCT, "syst", NULL,
443 			  KCOLLECT_SCALE(KCOLLECT_SYSTPCT_FORMAT, 0));
444 	kcollect_register(KCOLLECT_IDLEPCT, "idle", NULL,
445 			  KCOLLECT_SCALE(KCOLLECT_IDLEPCT_FORMAT, 0));
446 }
447 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL);
448 
449 /*
450  * This method is called on just the BSP, after all the usched implementations
451  * are initialized. This avoids races between usched initialization functions
452  * and usched_schedulerclock().
453  */
454 static
455 void
456 initclocks_usched(void *dummy)
457 {
458 	struct globaldata *ogd = mycpu;
459 	struct globaldata *gd;
460 	int n;
461 
462 	for (n = 0; n < ncpus; ++n) {
463 		lwkt_setcpu_self(globaldata_find(n));
464 		gd = mycpu;
465 
466 		/* XXX correct the frequency for scheduler / estcpu tests */
467 		systimer_init_periodic_flags(&gd->gd_schedclock, schedclock,
468 					  NULL, ESTCPUFREQ, SYSTF_MSSYNC);
469 	}
470 	lwkt_setcpu_self(ogd);
471 }
472 SYSINIT(clocks3, SI_BOOT2_USCHED, SI_ORDER_ANY, initclocks_usched, NULL);
473 
474 /*
475  * This sets the current real time of day.  Timespecs are in seconds and
476  * nanoseconds.  We do not mess with gd_time_seconds and gd_cpuclock_base,
477  * instead we adjust basetime so basetime + gd_* results in the current
478  * time of day.  This way the gd_* fields are guaranteed to represent
479  * a monotonically increasing 'uptime' value.
480  *
481  * When set_timeofday() is called from userland, the system call forces it
482  * onto cpu #0 since only cpu #0 can update basetime_index.
483  */
484 void
485 set_timeofday(struct timespec *ts)
486 {
487 	struct timespec *nbt;
488 	int ni;
489 
490 	/*
491 	 * XXX SMP / non-atomic basetime updates
492 	 */
493 	crit_enter();
494 	ni = (basetime_index + 1) & BASETIME_ARYMASK;
495 	cpu_lfence();
496 	nbt = &basetime[ni];
497 	nanouptime(nbt);
498 	nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
499 	nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
500 	if (nbt->tv_nsec < 0) {
501 	    nbt->tv_nsec += 1000000000;
502 	    --nbt->tv_sec;
503 	}
504 
505 	/*
506 	 * Note that basetime diverges from boottime as the clock drift is
507 	 * compensated for, so we cannot do away with boottime.  When setting
508 	 * the absolute time of day the drift is 0 (for an instant) and we
509 	 * can simply assign boottime to basetime.
510 	 *
511 	 * Note that nanouptime() is based on gd_time_seconds which is drift
512 	 * compensated up to a point (it is guaranteed to remain monotonically
513 	 * increasing).  gd_time_seconds is thus our best uptime guess and
514 	 * suitable for use in the boottime calculation.  It is already taken
515 	 * into account in the basetime calculation above.
516 	 */
517 	spin_lock(&ntp_spin);
518 	boottime.tv_sec = nbt->tv_sec;
519 	ntp_delta = 0;
520 
521 	/*
522 	 * We now have a new basetime, make sure all other cpus have it,
523 	 * then update the index.
524 	 */
525 	cpu_sfence();
526 	basetime_index = ni;
527 	spin_unlock(&ntp_spin);
528 
529 	crit_exit();
530 }
531 
532 /*
533  * Each cpu has its own hardclock, but we only increment ticks and softticks
534  * on cpu #0.
535  *
536  * NOTE! systimer! the MP lock might not be held here.  We can only safely
537  * manipulate objects owned by the current cpu.
538  */
539 static void
540 hardclock(systimer_t info, int in_ipi, struct intrframe *frame)
541 {
542 	sysclock_t cputicks;
543 	struct proc *p;
544 	struct globaldata *gd = mycpu;
545 
546 	if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) {
547 		/* Defer to doreti on passive IPIQ processing */
548 		need_ipiq();
549 	}
550 
551 	/*
552 	 * We update the compensation base to calculate fine-grained time
553 	 * from the sys_cputimer on a per-cpu basis in order to avoid
554 	 * having to mess around with locks.  sys_cputimer is assumed to
555 	 * be consistent across all cpus.  CPU N copies the base state from
556 	 * CPU 0 using the same FIFO trick that we use for basetime (so we
557 	 * don't catch a CPU 0 update in the middle).
558 	 *
559 	 * Note that we never allow info->time (aka gd->gd_hardclock.time)
560 	 * to reverse index gd_cpuclock_base, but that it is possible for
561 	 * it to temporarily get behind in the seconds if something in the
562 	 * system locks interrupts for a long period of time.  Since periodic
563 	 * timers count events, though everything should resynch again
564 	 * immediately.
565 	 */
566 	if (gd->gd_cpuid == 0) {
567 		int ni;
568 
569 		cputicks = info->time - gd->gd_cpuclock_base;
570 		if (cputicks >= sys_cputimer->freq) {
571 			cputicks /= sys_cputimer->freq;
572 			if (cputicks != 0 && cputicks != 1)
573 				kprintf("Warning: hardclock missed > 1 sec\n");
574 			gd->gd_time_seconds += cputicks;
575 			gd->gd_cpuclock_base += sys_cputimer->freq * cputicks;
576 			/* uncorrected monotonic 1-sec gran */
577 			time_uptime += cputicks;
578 		}
579 		ni = (basetime_index + 1) & BASETIME_ARYMASK;
580 		hardtime[ni].time_second = gd->gd_time_seconds;
581 		hardtime[ni].cpuclock_base = gd->gd_cpuclock_base;
582 	} else {
583 		int ni;
584 
585 		ni = basetime_index;
586 		cpu_lfence();
587 		gd->gd_time_seconds = hardtime[ni].time_second;
588 		gd->gd_cpuclock_base = hardtime[ni].cpuclock_base;
589 	}
590 
591 	/*
592 	 * The system-wide ticks counter and NTP related timedelta/tickdelta
593 	 * adjustments only occur on cpu #0.  NTP adjustments are accomplished
594 	 * by updating basetime.
595 	 */
596 	if (gd->gd_cpuid == 0) {
597 	    struct timespec *nbt;
598 	    struct timespec nts;
599 	    int leap;
600 	    int ni;
601 
602 	    ++ticks;
603 
604 #if 0
605 	    if (tco->tc_poll_pps)
606 		tco->tc_poll_pps(tco);
607 #endif
608 
609 	    /*
610 	     * Calculate the new basetime index.  We are in a critical section
611 	     * on cpu #0 and can safely play with basetime_index.  Start
612 	     * with the current basetime and then make adjustments.
613 	     */
614 	    ni = (basetime_index + 1) & BASETIME_ARYMASK;
615 	    nbt = &basetime[ni];
616 	    *nbt = basetime[basetime_index];
617 
618 	    /*
619 	     * ntp adjustments only occur on cpu 0 and are protected by
620 	     * ntp_spin.  This spinlock virtually never conflicts.
621 	     */
622 	    spin_lock(&ntp_spin);
623 
624 	    /*
625 	     * Apply adjtime corrections.  (adjtime() API)
626 	     *
627 	     * adjtime() only runs on cpu #0 so our critical section is
628 	     * sufficient to access these variables.
629 	     */
630 	    if (ntp_delta != 0) {
631 		nbt->tv_nsec += ntp_tick_delta;
632 		ntp_delta -= ntp_tick_delta;
633 		if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
634 		    (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
635 			ntp_tick_delta = ntp_delta;
636  		}
637  	    }
638 
639 	    /*
640 	     * Apply permanent frequency corrections.  (sysctl API)
641 	     */
642 	    if (ntp_tick_permanent != 0) {
643 		ntp_tick_acc += ntp_tick_permanent;
644 		if (ntp_tick_acc >= (1LL << 32)) {
645 		    nbt->tv_nsec += ntp_tick_acc >> 32;
646 		    ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
647 		} else if (ntp_tick_acc <= -(1LL << 32)) {
648 		    /* Negate ntp_tick_acc to avoid shifting the sign bit. */
649 		    nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
650 		    ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
651 		}
652  	    }
653 
654 	    if (nbt->tv_nsec >= 1000000000) {
655 		    nbt->tv_sec++;
656 		    nbt->tv_nsec -= 1000000000;
657 	    } else if (nbt->tv_nsec < 0) {
658 		    nbt->tv_sec--;
659 		    nbt->tv_nsec += 1000000000;
660 	    }
661 
662 	    /*
663 	     * Another per-tick compensation.  (for ntp_adjtime() API)
664 	     */
665 	    if (nsec_adj != 0) {
666 		nsec_acc += nsec_adj;
667 		if (nsec_acc >= 0x100000000LL) {
668 		    nbt->tv_nsec += nsec_acc >> 32;
669 		    nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
670 		} else if (nsec_acc <= -0x100000000LL) {
671 		    nbt->tv_nsec -= -nsec_acc >> 32;
672 		    nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
673 		}
674 		if (nbt->tv_nsec >= 1000000000) {
675 		    nbt->tv_nsec -= 1000000000;
676 		    ++nbt->tv_sec;
677 		} else if (nbt->tv_nsec < 0) {
678 		    nbt->tv_nsec += 1000000000;
679 		    --nbt->tv_sec;
680 		}
681 	    }
682 	    spin_unlock(&ntp_spin);
683 
684 	    /************************************************************
685 	     *			LEAP SECOND CORRECTION			*
686 	     ************************************************************
687 	     *
688 	     * Taking into account all the corrections made above, figure
689 	     * out the new real time.  If the seconds field has changed
690 	     * then apply any pending leap-second corrections.
691 	     */
692 	    getnanotime_nbt(nbt, &nts);
693 
694 	    if (time_second != nts.tv_sec) {
695 		/*
696 		 * Apply leap second (sysctl API).  Adjust nts for changes
697 		 * so we do not have to call getnanotime_nbt again.
698 		 */
699 		if (ntp_leap_second) {
700 		    if (ntp_leap_second == nts.tv_sec) {
701 			if (ntp_leap_insert) {
702 			    nbt->tv_sec++;
703 			    nts.tv_sec++;
704 			} else {
705 			    nbt->tv_sec--;
706 			    nts.tv_sec--;
707 			}
708 			ntp_leap_second--;
709 		    }
710 		}
711 
712 		/*
713 		 * Apply leap second (ntp_adjtime() API), calculate a new
714 		 * nsec_adj field.  ntp_update_second() returns nsec_adj
715 		 * as a per-second value but we need it as a per-tick value.
716 		 */
717 		leap = ntp_update_second(time_second, &nsec_adj);
718 		nsec_adj /= hz;
719 		nbt->tv_sec += leap;
720 		nts.tv_sec += leap;
721 
722 		/*
723 		 * Update the time_second 'approximate time' global.
724 		 */
725 		time_second = nts.tv_sec;
726 
727 		/*
728 		 * Clear the IPC hint for the currently running thread once
729 		 * per second, allowing us to disconnect the hint from a
730 		 * thread which may no longer care.
731 		 */
732 		curthread->td_wakefromcpu = -1;
733 
734 	    }
735 
736 	    /*
737 	     * Finally, our new basetime is ready to go live!
738 	     */
739 	    cpu_sfence();
740 	    basetime_index = ni;
741 
742 	    /*
743 	     * Update kpmap on each tick.  TS updates are integrated with
744 	     * fences and upticks allowing userland to read the data
745 	     * deterministically.
746 	     */
747 	    if (kpmap) {
748 		int w;
749 
750 		w = (kpmap->upticks + 1) & 1;
751 		getnanouptime(&kpmap->ts_uptime[w]);
752 		getnanotime(&kpmap->ts_realtime[w]);
753 		cpu_sfence();
754 		++kpmap->upticks;
755 		cpu_sfence();
756 	    }
757 	}
758 
759 	/*
760 	 * lwkt thread scheduler fair queueing
761 	 */
762 	lwkt_schedulerclock(curthread);
763 
764 	/*
765 	 * softticks are handled for all cpus
766 	 */
767 	hardclock_softtick(gd);
768 
769 	/*
770 	 * Rollup accumulated vmstats, copy-back for critical path checks.
771 	 */
772 	vmstats_rollup_cpu(gd);
773 	vfscache_rollup_cpu(gd);
774 	mycpu->gd_vmstats = vmstats;
775 
776 	/*
777 	 * ITimer handling is per-tick, per-cpu.
778 	 *
779 	 * We must acquire the per-process token in order for ksignal()
780 	 * to be non-blocking.  For the moment this requires an AST fault,
781 	 * the ksignal() cannot be safely issued from this hard interrupt.
782 	 *
783 	 * XXX Even the trytoken here isn't right, and itimer operation in
784 	 *     a multi threaded environment is going to be weird at the
785 	 *     very least.
786 	 */
787 	if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) {
788 		crit_enter_hard();
789 		if (p->p_upmap)
790 			++p->p_upmap->runticks;
791 
792 		if (frame && CLKF_USERMODE(frame) &&
793 		    timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
794 		    itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) {
795 			p->p_flags |= P_SIGVTALRM;
796 			need_user_resched();
797 		}
798 		if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
799 		    itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) {
800 			p->p_flags |= P_SIGPROF;
801 			need_user_resched();
802 		}
803 		crit_exit_hard();
804 		lwkt_reltoken(&p->p_token);
805 	}
806 	setdelayed();
807 }
808 
809 /*
810  * The statistics clock typically runs at a 125Hz rate, and is intended
811  * to be frequency offset from the hardclock (typ 100Hz).  It is per-cpu.
812  *
813  * NOTE! systimer! the MP lock might not be held here.  We can only safely
814  * manipulate objects owned by the current cpu.
815  *
816  * The stats clock is responsible for grabbing a profiling sample.
817  * Most of the statistics are only used by user-level statistics programs.
818  * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
819  * p->p_estcpu.
820  *
821  * Like the other clocks, the stat clock is called from what is effectively
822  * a fast interrupt, so the context should be the thread/process that got
823  * interrupted.
824  */
825 static void
826 statclock(systimer_t info, int in_ipi, struct intrframe *frame)
827 {
828 	globaldata_t gd = mycpu;
829 	thread_t td;
830 	struct proc *p;
831 	int bump;
832 	sysclock_t cv;
833 	sysclock_t scv;
834 
835 	/*
836 	 * How big was our timeslice relative to the last time?  Calculate
837 	 * in microseconds.
838 	 *
839 	 * NOTE: Use of microuptime() is typically MPSAFE, but usually not
840 	 *	 during early boot.  Just use the systimer count to be nice
841 	 *	 to e.g. qemu.  The systimer has a better chance of being
842 	 *	 MPSAFE at early boot.
843 	 */
844 	cv = sys_cputimer->count();
845 	scv = gd->statint.gd_statcv;
846 	if (scv == 0) {
847 		bump = 1;
848 	} else {
849 		bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32;
850 		if (bump < 0)
851 			bump = 0;
852 		if (bump > 1000000)
853 			bump = 1000000;
854 	}
855 	gd->statint.gd_statcv = cv;
856 
857 #if 0
858 	stv = &gd->gd_stattv;
859 	if (stv->tv_sec == 0) {
860 	    bump = 1;
861 	} else {
862 	    bump = tv.tv_usec - stv->tv_usec +
863 		(tv.tv_sec - stv->tv_sec) * 1000000;
864 	    if (bump < 0)
865 		bump = 0;
866 	    if (bump > 1000000)
867 		bump = 1000000;
868 	}
869 	*stv = tv;
870 #endif
871 
872 	td = curthread;
873 	p = td->td_proc;
874 
875 	if (frame && CLKF_USERMODE(frame)) {
876 		/*
877 		 * Came from userland, handle user time and deal with
878 		 * possible process.
879 		 */
880 		if (p && (p->p_flags & P_PROFIL))
881 			addupc_intr(p, CLKF_PC(frame), 1);
882 		td->td_uticks += bump;
883 
884 		/*
885 		 * Charge the time as appropriate
886 		 */
887 		if (p && p->p_nice > NZERO)
888 			cpu_time.cp_nice += bump;
889 		else
890 			cpu_time.cp_user += bump;
891 	} else {
892 		int intr_nest = gd->gd_intr_nesting_level;
893 
894 		if (in_ipi) {
895 			/*
896 			 * IPI processing code will bump gd_intr_nesting_level
897 			 * up by one, which breaks following CLKF_INTR testing,
898 			 * so we subtract it by one here.
899 			 */
900 			--intr_nest;
901 		}
902 
903 #define IS_INTR_RUNNING	((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td))
904 
905 		/*
906 		 * Came from kernel mode, so we were:
907 		 * - handling an interrupt,
908 		 * - doing syscall or trap work on behalf of the current
909 		 *   user process, or
910 		 * - spinning in the idle loop.
911 		 * Whichever it is, charge the time as appropriate.
912 		 * Note that we charge interrupts to the current process,
913 		 * regardless of whether they are ``for'' that process,
914 		 * so that we know how much of its real time was spent
915 		 * in ``non-process'' (i.e., interrupt) work.
916 		 *
917 		 * XXX assume system if frame is NULL.  A NULL frame
918 		 * can occur if ipi processing is done from a crit_exit().
919 		 */
920 		if (IS_INTR_RUNNING ||
921 		    (gd->gd_reqflags & RQF_INTPEND)) {
922 			/*
923 			 * If we interrupted an interrupt thread, well,
924 			 * count it as interrupt time.
925 			 */
926 			td->td_iticks += bump;
927 #ifdef DEBUG_PCTRACK
928 			if (frame)
929 				do_pctrack(frame, PCTRACK_INT);
930 #endif
931 			cpu_time.cp_intr += bump;
932 		} else if (gd->gd_flags & GDF_VIRTUSER) {
933 			/*
934 			 * The vkernel doesn't do a good job providing trap
935 			 * frames that we can test.  If the GDF_VIRTUSER
936 			 * flag is set we probably interrupted user mode.
937 			 *
938 			 * We also use this flag on the host when entering
939 			 * VMM mode.
940 			 */
941 			td->td_uticks += bump;
942 
943 			/*
944 			 * Charge the time as appropriate
945 			 */
946 			if (p && p->p_nice > NZERO)
947 				cpu_time.cp_nice += bump;
948 			else
949 				cpu_time.cp_user += bump;
950 		} else {
951 			td->td_sticks += bump;
952 			if (td == &gd->gd_idlethread) {
953 				/*
954 				 * We want to count token contention as
955 				 * system time.  When token contention occurs
956 				 * the cpu may only be outside its critical
957 				 * section while switching through the idle
958 				 * thread.  In this situation, various flags
959 				 * will be set in gd_reqflags.
960 				 */
961 				if (gd->gd_reqflags & RQF_IDLECHECK_WK_MASK)
962 					cpu_time.cp_sys += bump;
963 				else
964 					cpu_time.cp_idle += bump;
965 			} else {
966 				/*
967 				 * System thread was running.
968 				 */
969 #ifdef DEBUG_PCTRACK
970 				if (frame)
971 					do_pctrack(frame, PCTRACK_SYS);
972 #endif
973 				cpu_time.cp_sys += bump;
974 			}
975 		}
976 
977 #undef IS_INTR_RUNNING
978 	}
979 }
980 
981 #ifdef DEBUG_PCTRACK
982 /*
983  * Sample the PC when in the kernel or in an interrupt.  User code can
984  * retrieve the information and generate a histogram or other output.
985  */
986 
987 static void
988 do_pctrack(struct intrframe *frame, int which)
989 {
990 	struct kinfo_pctrack *pctrack;
991 
992 	pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
993 	pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
994 		(void *)CLKF_PC(frame);
995 	++pctrack->pc_index;
996 }
997 
998 static int
999 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
1000 {
1001 	struct kinfo_pcheader head;
1002 	int error;
1003 	int cpu;
1004 	int ntrack;
1005 
1006 	head.pc_ntrack = PCTRACK_SIZE;
1007 	head.pc_arysize = PCTRACK_ARYSIZE;
1008 
1009 	if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
1010 		return (error);
1011 
1012 	for (cpu = 0; cpu < ncpus; ++cpu) {
1013 		for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
1014 			error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
1015 					   sizeof(struct kinfo_pctrack));
1016 			if (error)
1017 				break;
1018 		}
1019 		if (error)
1020 			break;
1021 	}
1022 	return (error);
1023 }
1024 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
1025 	sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
1026 
1027 #endif
1028 
1029 /*
1030  * The scheduler clock typically runs at a 50Hz rate.  NOTE! systimer,
1031  * the MP lock might not be held.  We can safely manipulate parts of curproc
1032  * but that's about it.
1033  *
1034  * Each cpu has its own scheduler clock.
1035  */
1036 static void
1037 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
1038 {
1039 	struct lwp *lp;
1040 	struct rusage *ru;
1041 	struct vmspace *vm;
1042 	long rss;
1043 
1044 	if ((lp = lwkt_preempted_proc()) != NULL) {
1045 		/*
1046 		 * Account for cpu time used and hit the scheduler.  Note
1047 		 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
1048 		 * HERE.
1049 		 */
1050 		++lp->lwp_cpticks;
1051 		usched_schedulerclock(lp, info->periodic, info->time);
1052 	} else {
1053 		usched_schedulerclock(NULL, info->periodic, info->time);
1054 	}
1055 	if ((lp = curthread->td_lwp) != NULL) {
1056 		/*
1057 		 * Update resource usage integrals and maximums.
1058 		 */
1059 		if ((ru = &lp->lwp_proc->p_ru) &&
1060 		    (vm = lp->lwp_proc->p_vmspace) != NULL) {
1061 			ru->ru_ixrss += pgtok(btoc(vm->vm_tsize));
1062 			ru->ru_idrss += pgtok(btoc(vm->vm_dsize));
1063 			ru->ru_isrss += pgtok(btoc(vm->vm_ssize));
1064 			if (lwkt_trytoken(&vm->vm_map.token)) {
1065 				rss = pgtok(vmspace_resident_count(vm));
1066 				if (ru->ru_maxrss < rss)
1067 					ru->ru_maxrss = rss;
1068 				lwkt_reltoken(&vm->vm_map.token);
1069 			}
1070 		}
1071 	}
1072 	/* Increment the global sched_ticks */
1073 	if (mycpu->gd_cpuid == 0)
1074 		++sched_ticks;
1075 }
1076 
1077 /*
1078  * Compute number of ticks for the specified amount of time.  The
1079  * return value is intended to be used in a clock interrupt timed
1080  * operation and guaranteed to meet or exceed the requested time.
1081  * If the representation overflows, return INT_MAX.  The minimum return
1082  * value is 1 ticks and the function will average the calculation up.
1083  * If any value greater then 0 microseconds is supplied, a value
1084  * of at least 2 will be returned to ensure that a near-term clock
1085  * interrupt does not cause the timeout to occur (degenerately) early.
1086  *
1087  * Note that limit checks must take into account microseconds, which is
1088  * done simply by using the smaller signed long maximum instead of
1089  * the unsigned long maximum.
1090  *
1091  * If ints have 32 bits, then the maximum value for any timeout in
1092  * 10ms ticks is 248 days.
1093  */
1094 int
1095 tvtohz_high(struct timeval *tv)
1096 {
1097 	int ticks;
1098 	long sec, usec;
1099 
1100 	sec = tv->tv_sec;
1101 	usec = tv->tv_usec;
1102 	if (usec < 0) {
1103 		sec--;
1104 		usec += 1000000;
1105 	}
1106 	if (sec < 0) {
1107 #ifdef DIAGNOSTIC
1108 		if (usec > 0) {
1109 			sec++;
1110 			usec -= 1000000;
1111 		}
1112 		kprintf("tvtohz_high: negative time difference "
1113 			"%ld sec %ld usec\n",
1114 			sec, usec);
1115 #endif
1116 		ticks = 1;
1117 	} else if (sec <= INT_MAX / hz) {
1118 		ticks = (int)(sec * hz + howmany((u_long)usec, ustick)) + 1;
1119 	} else {
1120 		ticks = INT_MAX;
1121 	}
1122 	return (ticks);
1123 }
1124 
1125 int
1126 tstohz_high(struct timespec *ts)
1127 {
1128 	int ticks;
1129 	long sec, nsec;
1130 
1131 	sec = ts->tv_sec;
1132 	nsec = ts->tv_nsec;
1133 	if (nsec < 0) {
1134 		sec--;
1135 		nsec += 1000000000;
1136 	}
1137 	if (sec < 0) {
1138 #ifdef DIAGNOSTIC
1139 		if (nsec > 0) {
1140 			sec++;
1141 			nsec -= 1000000000;
1142 		}
1143 		kprintf("tstohz_high: negative time difference "
1144 			"%ld sec %ld nsec\n",
1145 			sec, nsec);
1146 #endif
1147 		ticks = 1;
1148 	} else if (sec <= INT_MAX / hz) {
1149 		ticks = (int)(sec * hz + howmany((u_long)nsec, nstick)) + 1;
1150 	} else {
1151 		ticks = INT_MAX;
1152 	}
1153 	return (ticks);
1154 }
1155 
1156 
1157 /*
1158  * Compute number of ticks for the specified amount of time, erroring on
1159  * the side of it being too low to ensure that sleeping the returned number
1160  * of ticks will not result in a late return.
1161  *
1162  * The supplied timeval may not be negative and should be normalized.  A
1163  * return value of 0 is possible if the timeval converts to less then
1164  * 1 tick.
1165  *
1166  * If ints have 32 bits, then the maximum value for any timeout in
1167  * 10ms ticks is 248 days.
1168  */
1169 int
1170 tvtohz_low(struct timeval *tv)
1171 {
1172 	int ticks;
1173 	long sec;
1174 
1175 	sec = tv->tv_sec;
1176 	if (sec <= INT_MAX / hz)
1177 		ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
1178 	else
1179 		ticks = INT_MAX;
1180 	return (ticks);
1181 }
1182 
1183 int
1184 tstohz_low(struct timespec *ts)
1185 {
1186 	int ticks;
1187 	long sec;
1188 
1189 	sec = ts->tv_sec;
1190 	if (sec <= INT_MAX / hz)
1191 		ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
1192 	else
1193 		ticks = INT_MAX;
1194 	return (ticks);
1195 }
1196 
1197 /*
1198  * Start profiling on a process.
1199  *
1200  * Caller must hold p->p_token();
1201  *
1202  * Kernel profiling passes proc0 which never exits and hence
1203  * keeps the profile clock running constantly.
1204  */
1205 void
1206 startprofclock(struct proc *p)
1207 {
1208 	if ((p->p_flags & P_PROFIL) == 0) {
1209 		p->p_flags |= P_PROFIL;
1210 #if 0	/* XXX */
1211 		if (++profprocs == 1 && stathz != 0) {
1212 			crit_enter();
1213 			psdiv = psratio;
1214 			setstatclockrate(profhz);
1215 			crit_exit();
1216 		}
1217 #endif
1218 	}
1219 }
1220 
1221 /*
1222  * Stop profiling on a process.
1223  *
1224  * caller must hold p->p_token
1225  */
1226 void
1227 stopprofclock(struct proc *p)
1228 {
1229 	if (p->p_flags & P_PROFIL) {
1230 		p->p_flags &= ~P_PROFIL;
1231 #if 0	/* XXX */
1232 		if (--profprocs == 0 && stathz != 0) {
1233 			crit_enter();
1234 			psdiv = 1;
1235 			setstatclockrate(stathz);
1236 			crit_exit();
1237 		}
1238 #endif
1239 	}
1240 }
1241 
1242 /*
1243  * Return information about system clocks.
1244  */
1245 static int
1246 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
1247 {
1248 	struct kinfo_clockinfo clkinfo;
1249 	/*
1250 	 * Construct clockinfo structure.
1251 	 */
1252 	clkinfo.ci_hz = hz;
1253 	clkinfo.ci_tick = ustick;
1254 	clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
1255 	clkinfo.ci_profhz = profhz;
1256 	clkinfo.ci_stathz = stathz ? stathz : hz;
1257 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
1258 }
1259 
1260 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
1261 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
1262 
1263 /*
1264  * We have eight functions for looking at the clock, four for
1265  * microseconds and four for nanoseconds.  For each there is fast
1266  * but less precise version "get{nano|micro}[up]time" which will
1267  * return a time which is up to 1/HZ previous to the call, whereas
1268  * the raw version "{nano|micro}[up]time" will return a timestamp
1269  * which is as precise as possible.  The "up" variants return the
1270  * time relative to system boot, these are well suited for time
1271  * interval measurements.
1272  *
1273  * Each cpu independently maintains the current time of day, so all
1274  * we need to do to protect ourselves from changes is to do a loop
1275  * check on the seconds field changing out from under us.
1276  *
1277  * The system timer maintains a 32 bit count and due to various issues
1278  * it is possible for the calculated delta to occasionally exceed
1279  * sys_cputimer->freq.  If this occurs the sys_cputimer->freq64_nsec
1280  * multiplication can easily overflow, so we deal with the case.  For
1281  * uniformity we deal with the case in the usec case too.
1282  *
1283  * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
1284  */
1285 void
1286 getmicrouptime(struct timeval *tvp)
1287 {
1288 	struct globaldata *gd = mycpu;
1289 	sysclock_t delta;
1290 
1291 	do {
1292 		tvp->tv_sec = gd->gd_time_seconds;
1293 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1294 	} while (tvp->tv_sec != gd->gd_time_seconds);
1295 
1296 	if (delta >= sys_cputimer->freq) {
1297 		tvp->tv_sec += delta / sys_cputimer->freq;
1298 		delta %= sys_cputimer->freq;
1299 	}
1300 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1301 	if (tvp->tv_usec >= 1000000) {
1302 		tvp->tv_usec -= 1000000;
1303 		++tvp->tv_sec;
1304 	}
1305 }
1306 
1307 void
1308 getnanouptime(struct timespec *tsp)
1309 {
1310 	struct globaldata *gd = mycpu;
1311 	sysclock_t delta;
1312 
1313 	do {
1314 		tsp->tv_sec = gd->gd_time_seconds;
1315 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1316 	} while (tsp->tv_sec != gd->gd_time_seconds);
1317 
1318 	if (delta >= sys_cputimer->freq) {
1319 		tsp->tv_sec += delta / sys_cputimer->freq;
1320 		delta %= sys_cputimer->freq;
1321 	}
1322 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1323 }
1324 
1325 void
1326 microuptime(struct timeval *tvp)
1327 {
1328 	struct globaldata *gd = mycpu;
1329 	sysclock_t delta;
1330 
1331 	do {
1332 		tvp->tv_sec = gd->gd_time_seconds;
1333 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1334 	} while (tvp->tv_sec != gd->gd_time_seconds);
1335 
1336 	if (delta >= sys_cputimer->freq) {
1337 		tvp->tv_sec += delta / sys_cputimer->freq;
1338 		delta %= sys_cputimer->freq;
1339 	}
1340 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1341 }
1342 
1343 void
1344 nanouptime(struct timespec *tsp)
1345 {
1346 	struct globaldata *gd = mycpu;
1347 	sysclock_t delta;
1348 
1349 	do {
1350 		tsp->tv_sec = gd->gd_time_seconds;
1351 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1352 	} while (tsp->tv_sec != gd->gd_time_seconds);
1353 
1354 	if (delta >= sys_cputimer->freq) {
1355 		tsp->tv_sec += delta / sys_cputimer->freq;
1356 		delta %= sys_cputimer->freq;
1357 	}
1358 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1359 }
1360 
1361 /*
1362  * realtime routines
1363  */
1364 void
1365 getmicrotime(struct timeval *tvp)
1366 {
1367 	struct globaldata *gd = mycpu;
1368 	struct timespec *bt;
1369 	sysclock_t delta;
1370 
1371 	do {
1372 		tvp->tv_sec = gd->gd_time_seconds;
1373 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1374 	} while (tvp->tv_sec != gd->gd_time_seconds);
1375 
1376 	if (delta >= sys_cputimer->freq) {
1377 		tvp->tv_sec += delta / sys_cputimer->freq;
1378 		delta %= sys_cputimer->freq;
1379 	}
1380 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1381 
1382 	bt = &basetime[basetime_index];
1383 	cpu_lfence();
1384 	tvp->tv_sec += bt->tv_sec;
1385 	tvp->tv_usec += bt->tv_nsec / 1000;
1386 	while (tvp->tv_usec >= 1000000) {
1387 		tvp->tv_usec -= 1000000;
1388 		++tvp->tv_sec;
1389 	}
1390 }
1391 
1392 void
1393 getnanotime(struct timespec *tsp)
1394 {
1395 	struct globaldata *gd = mycpu;
1396 	struct timespec *bt;
1397 	sysclock_t delta;
1398 
1399 	do {
1400 		tsp->tv_sec = gd->gd_time_seconds;
1401 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1402 	} while (tsp->tv_sec != gd->gd_time_seconds);
1403 
1404 	if (delta >= sys_cputimer->freq) {
1405 		tsp->tv_sec += delta / sys_cputimer->freq;
1406 		delta %= sys_cputimer->freq;
1407 	}
1408 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1409 
1410 	bt = &basetime[basetime_index];
1411 	cpu_lfence();
1412 	tsp->tv_sec += bt->tv_sec;
1413 	tsp->tv_nsec += bt->tv_nsec;
1414 	while (tsp->tv_nsec >= 1000000000) {
1415 		tsp->tv_nsec -= 1000000000;
1416 		++tsp->tv_sec;
1417 	}
1418 }
1419 
1420 static void
1421 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1422 {
1423 	struct globaldata *gd = mycpu;
1424 	sysclock_t delta;
1425 
1426 	do {
1427 		tsp->tv_sec = gd->gd_time_seconds;
1428 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1429 	} while (tsp->tv_sec != gd->gd_time_seconds);
1430 
1431 	if (delta >= sys_cputimer->freq) {
1432 		tsp->tv_sec += delta / sys_cputimer->freq;
1433 		delta %= sys_cputimer->freq;
1434 	}
1435 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1436 
1437 	tsp->tv_sec += nbt->tv_sec;
1438 	tsp->tv_nsec += nbt->tv_nsec;
1439 	while (tsp->tv_nsec >= 1000000000) {
1440 		tsp->tv_nsec -= 1000000000;
1441 		++tsp->tv_sec;
1442 	}
1443 }
1444 
1445 
1446 void
1447 microtime(struct timeval *tvp)
1448 {
1449 	struct globaldata *gd = mycpu;
1450 	struct timespec *bt;
1451 	sysclock_t delta;
1452 
1453 	do {
1454 		tvp->tv_sec = gd->gd_time_seconds;
1455 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1456 	} while (tvp->tv_sec != gd->gd_time_seconds);
1457 
1458 	if (delta >= sys_cputimer->freq) {
1459 		tvp->tv_sec += delta / sys_cputimer->freq;
1460 		delta %= sys_cputimer->freq;
1461 	}
1462 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1463 
1464 	bt = &basetime[basetime_index];
1465 	cpu_lfence();
1466 	tvp->tv_sec += bt->tv_sec;
1467 	tvp->tv_usec += bt->tv_nsec / 1000;
1468 	while (tvp->tv_usec >= 1000000) {
1469 		tvp->tv_usec -= 1000000;
1470 		++tvp->tv_sec;
1471 	}
1472 }
1473 
1474 void
1475 nanotime(struct timespec *tsp)
1476 {
1477 	struct globaldata *gd = mycpu;
1478 	struct timespec *bt;
1479 	sysclock_t delta;
1480 
1481 	do {
1482 		tsp->tv_sec = gd->gd_time_seconds;
1483 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1484 	} while (tsp->tv_sec != gd->gd_time_seconds);
1485 
1486 	if (delta >= sys_cputimer->freq) {
1487 		tsp->tv_sec += delta / sys_cputimer->freq;
1488 		delta %= sys_cputimer->freq;
1489 	}
1490 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1491 
1492 	bt = &basetime[basetime_index];
1493 	cpu_lfence();
1494 	tsp->tv_sec += bt->tv_sec;
1495 	tsp->tv_nsec += bt->tv_nsec;
1496 	while (tsp->tv_nsec >= 1000000000) {
1497 		tsp->tv_nsec -= 1000000000;
1498 		++tsp->tv_sec;
1499 	}
1500 }
1501 
1502 /*
1503  * Get an approximate time_t.  It does not have to be accurate.  This
1504  * function is called only from KTR and can be called with the system in
1505  * any state so do not use a critical section or other complex operation
1506  * here.
1507  *
1508  * NOTE: This is not exactly synchronized with real time.  To do that we
1509  *	 would have to do what microtime does and check for a nanoseconds
1510  *	 overflow.
1511  */
1512 time_t
1513 get_approximate_time_t(void)
1514 {
1515 	struct globaldata *gd = mycpu;
1516 	struct timespec *bt;
1517 
1518 	bt = &basetime[basetime_index];
1519 	return(gd->gd_time_seconds + bt->tv_sec);
1520 }
1521 
1522 int
1523 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1524 {
1525 	pps_params_t *app;
1526 	struct pps_fetch_args *fapi;
1527 #ifdef PPS_SYNC
1528 	struct pps_kcbind_args *kapi;
1529 #endif
1530 
1531 	switch (cmd) {
1532 	case PPS_IOC_CREATE:
1533 		return (0);
1534 	case PPS_IOC_DESTROY:
1535 		return (0);
1536 	case PPS_IOC_SETPARAMS:
1537 		app = (pps_params_t *)data;
1538 		if (app->mode & ~pps->ppscap)
1539 			return (EINVAL);
1540 		pps->ppsparam = *app;
1541 		return (0);
1542 	case PPS_IOC_GETPARAMS:
1543 		app = (pps_params_t *)data;
1544 		*app = pps->ppsparam;
1545 		app->api_version = PPS_API_VERS_1;
1546 		return (0);
1547 	case PPS_IOC_GETCAP:
1548 		*(int*)data = pps->ppscap;
1549 		return (0);
1550 	case PPS_IOC_FETCH:
1551 		fapi = (struct pps_fetch_args *)data;
1552 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1553 			return (EINVAL);
1554 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1555 			return (EOPNOTSUPP);
1556 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
1557 		fapi->pps_info_buf = pps->ppsinfo;
1558 		return (0);
1559 	case PPS_IOC_KCBIND:
1560 #ifdef PPS_SYNC
1561 		kapi = (struct pps_kcbind_args *)data;
1562 		/* XXX Only root should be able to do this */
1563 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1564 			return (EINVAL);
1565 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1566 			return (EINVAL);
1567 		if (kapi->edge & ~pps->ppscap)
1568 			return (EINVAL);
1569 		pps->kcmode = kapi->edge;
1570 		return (0);
1571 #else
1572 		return (EOPNOTSUPP);
1573 #endif
1574 	default:
1575 		return (ENOTTY);
1576 	}
1577 }
1578 
1579 void
1580 pps_init(struct pps_state *pps)
1581 {
1582 	pps->ppscap |= PPS_TSFMT_TSPEC;
1583 	if (pps->ppscap & PPS_CAPTUREASSERT)
1584 		pps->ppscap |= PPS_OFFSETASSERT;
1585 	if (pps->ppscap & PPS_CAPTURECLEAR)
1586 		pps->ppscap |= PPS_OFFSETCLEAR;
1587 }
1588 
1589 void
1590 pps_event(struct pps_state *pps, sysclock_t count, int event)
1591 {
1592 	struct globaldata *gd;
1593 	struct timespec *tsp;
1594 	struct timespec *osp;
1595 	struct timespec *bt;
1596 	struct timespec ts;
1597 	sysclock_t *pcount;
1598 #ifdef PPS_SYNC
1599 	sysclock_t tcount;
1600 #endif
1601 	sysclock_t delta;
1602 	pps_seq_t *pseq;
1603 	int foff;
1604 #ifdef PPS_SYNC
1605 	int fhard;
1606 #endif
1607 	int ni;
1608 
1609 	gd = mycpu;
1610 
1611 	/* Things would be easier with arrays... */
1612 	if (event == PPS_CAPTUREASSERT) {
1613 		tsp = &pps->ppsinfo.assert_timestamp;
1614 		osp = &pps->ppsparam.assert_offset;
1615 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1616 #ifdef PPS_SYNC
1617 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1618 #endif
1619 		pcount = &pps->ppscount[0];
1620 		pseq = &pps->ppsinfo.assert_sequence;
1621 	} else {
1622 		tsp = &pps->ppsinfo.clear_timestamp;
1623 		osp = &pps->ppsparam.clear_offset;
1624 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1625 #ifdef PPS_SYNC
1626 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1627 #endif
1628 		pcount = &pps->ppscount[1];
1629 		pseq = &pps->ppsinfo.clear_sequence;
1630 	}
1631 
1632 	/* Nothing really happened */
1633 	if (*pcount == count)
1634 		return;
1635 
1636 	*pcount = count;
1637 
1638 	do {
1639 		ts.tv_sec = gd->gd_time_seconds;
1640 		delta = count - gd->gd_cpuclock_base;
1641 	} while (ts.tv_sec != gd->gd_time_seconds);
1642 
1643 	if (delta >= sys_cputimer->freq) {
1644 		ts.tv_sec += delta / sys_cputimer->freq;
1645 		delta %= sys_cputimer->freq;
1646 	}
1647 	ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1648 	ni = basetime_index;
1649 	cpu_lfence();
1650 	bt = &basetime[ni];
1651 	ts.tv_sec += bt->tv_sec;
1652 	ts.tv_nsec += bt->tv_nsec;
1653 	while (ts.tv_nsec >= 1000000000) {
1654 		ts.tv_nsec -= 1000000000;
1655 		++ts.tv_sec;
1656 	}
1657 
1658 	(*pseq)++;
1659 	*tsp = ts;
1660 
1661 	if (foff) {
1662 		timespecadd(tsp, osp, tsp);
1663 		if (tsp->tv_nsec < 0) {
1664 			tsp->tv_nsec += 1000000000;
1665 			tsp->tv_sec -= 1;
1666 		}
1667 	}
1668 #ifdef PPS_SYNC
1669 	if (fhard) {
1670 		/* magic, at its best... */
1671 		tcount = count - pps->ppscount[2];
1672 		pps->ppscount[2] = count;
1673 		if (tcount >= sys_cputimer->freq) {
1674 			delta = (1000000000 * (tcount / sys_cputimer->freq) +
1675 				 sys_cputimer->freq64_nsec *
1676 				 (tcount % sys_cputimer->freq)) >> 32;
1677 		} else {
1678 			delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1679 		}
1680 		hardpps(tsp, delta);
1681 	}
1682 #endif
1683 }
1684 
1685 /*
1686  * Return the tsc target value for a delay of (ns).
1687  *
1688  * Returns -1 if the TSC is not supported.
1689  */
1690 tsc_uclock_t
1691 tsc_get_target(int ns)
1692 {
1693 #if defined(_RDTSC_SUPPORTED_)
1694 	if (cpu_feature & CPUID_TSC) {
1695 		return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1696 	}
1697 #endif
1698 	return(-1);
1699 }
1700 
1701 /*
1702  * Compare the tsc against the passed target
1703  *
1704  * Returns +1 if the target has been reached
1705  * Returns  0 if the target has not yet been reached
1706  * Returns -1 if the TSC is not supported.
1707  *
1708  * Typical use:		while (tsc_test_target(target) == 0) { ...poll... }
1709  */
1710 int
1711 tsc_test_target(int64_t target)
1712 {
1713 #if defined(_RDTSC_SUPPORTED_)
1714 	if (cpu_feature & CPUID_TSC) {
1715 		if ((int64_t)(target - rdtsc()) <= 0)
1716 			return(1);
1717 		return(0);
1718 	}
1719 #endif
1720 	return(-1);
1721 }
1722 
1723 /*
1724  * Delay the specified number of nanoseconds using the tsc.  This function
1725  * returns immediately if the TSC is not supported.  At least one cpu_pause()
1726  * will be issued.
1727  */
1728 void
1729 tsc_delay(int ns)
1730 {
1731 	int64_t clk;
1732 
1733 	clk = tsc_get_target(ns);
1734 	cpu_pause();
1735 	cpu_pause();
1736 	while (tsc_test_target(clk) == 0) {
1737 		cpu_pause();
1738 		cpu_pause();
1739 		cpu_pause();
1740 		cpu_pause();
1741 	}
1742 }
1743