1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.62 2008/09/09 04:06:13 dillon Exp $ 74 */ 75 76 #include "opt_ntp.h" 77 #include "opt_polling.h" 78 #include "opt_ifpoll.h" 79 #include "opt_pctrack.h" 80 81 #include <sys/param.h> 82 #include <sys/systm.h> 83 #include <sys/callout.h> 84 #include <sys/kernel.h> 85 #include <sys/kinfo.h> 86 #include <sys/proc.h> 87 #include <sys/malloc.h> 88 #include <sys/resource.h> 89 #include <sys/resourcevar.h> 90 #include <sys/signalvar.h> 91 #include <sys/timex.h> 92 #include <sys/timepps.h> 93 #include <vm/vm.h> 94 #include <sys/lock.h> 95 #include <vm/pmap.h> 96 #include <vm/vm_map.h> 97 #include <vm/vm_extern.h> 98 #include <sys/sysctl.h> 99 100 #include <sys/thread2.h> 101 102 #include <machine/cpu.h> 103 #include <machine/limits.h> 104 #include <machine/smp.h> 105 #include <machine/cpufunc.h> 106 #include <machine/specialreg.h> 107 #include <machine/clock.h> 108 109 #ifdef GPROF 110 #include <sys/gmon.h> 111 #endif 112 113 #ifdef DEVICE_POLLING 114 extern void init_device_poll_pcpu(int); 115 #endif 116 117 #ifdef IFPOLL_ENABLE 118 extern void ifpoll_init_pcpu(int); 119 #endif 120 121 #ifdef DEBUG_PCTRACK 122 static void do_pctrack(struct intrframe *frame, int which); 123 #endif 124 125 static void initclocks (void *dummy); 126 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 127 128 /* 129 * Some of these don't belong here, but it's easiest to concentrate them. 130 * Note that cpu_time counts in microseconds, but most userland programs 131 * just compare relative times against the total by delta. 132 */ 133 struct kinfo_cputime cputime_percpu[MAXCPU]; 134 #ifdef DEBUG_PCTRACK 135 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 136 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 137 #endif 138 139 #ifdef SMP 140 static int 141 sysctl_cputime(SYSCTL_HANDLER_ARGS) 142 { 143 int cpu, error = 0; 144 size_t size = sizeof(struct kinfo_cputime); 145 146 for (cpu = 0; cpu < ncpus; ++cpu) { 147 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size))) 148 break; 149 } 150 151 return (error); 152 } 153 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 154 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 155 #else 156 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime, 157 "CPU time statistics"); 158 #endif 159 160 static int 161 sysctl_cp_time(SYSCTL_HANDLER_ARGS) 162 { 163 long cpu_states[5] = {0}; 164 int cpu, error = 0; 165 size_t size = sizeof(cpu_states); 166 167 for (cpu = 0; cpu < ncpus; ++cpu) { 168 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user; 169 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice; 170 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys; 171 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr; 172 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle; 173 } 174 175 error = SYSCTL_OUT(req, cpu_states, size); 176 177 return (error); 178 } 179 180 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 181 sysctl_cp_time, "LU", "CPU time statistics"); 182 183 /* 184 * boottime is used to calculate the 'real' uptime. Do not confuse this with 185 * microuptime(). microtime() is not drift compensated. The real uptime 186 * with compensation is nanotime() - bootime. boottime is recalculated 187 * whenever the real time is set based on the compensated elapsed time 188 * in seconds (gd->gd_time_seconds). 189 * 190 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 191 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 192 * the real time. 193 */ 194 struct timespec boottime; /* boot time (realtime) for reference only */ 195 time_t time_second; /* read-only 'passive' uptime in seconds */ 196 197 /* 198 * basetime is used to calculate the compensated real time of day. The 199 * basetime can be modified on a per-tick basis by the adjtime(), 200 * ntp_adjtime(), and sysctl-based time correction APIs. 201 * 202 * Note that frequency corrections can also be made by adjusting 203 * gd_cpuclock_base. 204 * 205 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 206 * used on both SMP and UP systems to avoid MP races between cpu's and 207 * interrupt races on UP systems. 208 */ 209 #define BASETIME_ARYSIZE 16 210 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 211 static struct timespec basetime[BASETIME_ARYSIZE]; 212 static volatile int basetime_index; 213 214 static int 215 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 216 { 217 struct timespec *bt; 218 int error; 219 int index; 220 221 /* 222 * Because basetime data and index may be updated by another cpu, 223 * a load fence is required to ensure that the data we read has 224 * not been speculatively read relative to a possibly updated index. 225 */ 226 index = basetime_index; 227 cpu_lfence(); 228 bt = &basetime[index]; 229 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 230 return (error); 231 } 232 233 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 234 &boottime, timespec, "System boottime"); 235 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 236 sysctl_get_basetime, "S,timespec", "System basetime"); 237 238 static void hardclock(systimer_t info, int, struct intrframe *frame); 239 static void statclock(systimer_t info, int, struct intrframe *frame); 240 static void schedclock(systimer_t info, int, struct intrframe *frame); 241 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 242 243 int ticks; /* system master ticks at hz */ 244 int clocks_running; /* tsleep/timeout clocks operational */ 245 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 246 int64_t nsec_acc; /* accumulator */ 247 int sched_ticks; /* global schedule clock ticks */ 248 249 /* NTPD time correction fields */ 250 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 251 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 252 int64_t ntp_delta; /* one-time correction in nsec */ 253 int64_t ntp_big_delta = 1000000000; 254 int32_t ntp_tick_delta; /* current adjustment rate */ 255 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 256 time_t ntp_leap_second; /* time of next leap second */ 257 int ntp_leap_insert; /* whether to insert or remove a second */ 258 259 /* 260 * Finish initializing clock frequencies and start all clocks running. 261 */ 262 /* ARGSUSED*/ 263 static void 264 initclocks(void *dummy) 265 { 266 /*psratio = profhz / stathz;*/ 267 initclocks_pcpu(); 268 clocks_running = 1; 269 } 270 271 /* 272 * Called on a per-cpu basis 273 */ 274 void 275 initclocks_pcpu(void) 276 { 277 struct globaldata *gd = mycpu; 278 279 crit_enter(); 280 if (gd->gd_cpuid == 0) { 281 gd->gd_time_seconds = 1; 282 gd->gd_cpuclock_base = sys_cputimer->count(); 283 } else { 284 /* XXX */ 285 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 286 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 287 } 288 289 systimer_intr_enable(); 290 291 #ifdef DEVICE_POLLING 292 init_device_poll_pcpu(gd->gd_cpuid); 293 #endif 294 295 #ifdef IFPOLL_ENABLE 296 ifpoll_init_pcpu(gd->gd_cpuid); 297 #endif 298 299 /* 300 * Use a non-queued periodic systimer to prevent multiple ticks from 301 * building up if the sysclock jumps forward (8254 gets reset). The 302 * sysclock will never jump backwards. Our time sync is based on 303 * the actual sysclock, not the ticks count. 304 */ 305 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz); 306 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz); 307 /* XXX correct the frequency for scheduler / estcpu tests */ 308 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock, 309 NULL, ESTCPUFREQ); 310 crit_exit(); 311 } 312 313 /* 314 * This sets the current real time of day. Timespecs are in seconds and 315 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 316 * instead we adjust basetime so basetime + gd_* results in the current 317 * time of day. This way the gd_* fields are guarenteed to represent 318 * a monotonically increasing 'uptime' value. 319 * 320 * When set_timeofday() is called from userland, the system call forces it 321 * onto cpu #0 since only cpu #0 can update basetime_index. 322 */ 323 void 324 set_timeofday(struct timespec *ts) 325 { 326 struct timespec *nbt; 327 int ni; 328 329 /* 330 * XXX SMP / non-atomic basetime updates 331 */ 332 crit_enter(); 333 ni = (basetime_index + 1) & BASETIME_ARYMASK; 334 nbt = &basetime[ni]; 335 nanouptime(nbt); 336 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 337 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 338 if (nbt->tv_nsec < 0) { 339 nbt->tv_nsec += 1000000000; 340 --nbt->tv_sec; 341 } 342 343 /* 344 * Note that basetime diverges from boottime as the clock drift is 345 * compensated for, so we cannot do away with boottime. When setting 346 * the absolute time of day the drift is 0 (for an instant) and we 347 * can simply assign boottime to basetime. 348 * 349 * Note that nanouptime() is based on gd_time_seconds which is drift 350 * compensated up to a point (it is guarenteed to remain monotonically 351 * increasing). gd_time_seconds is thus our best uptime guess and 352 * suitable for use in the boottime calculation. It is already taken 353 * into account in the basetime calculation above. 354 */ 355 boottime.tv_sec = nbt->tv_sec; 356 ntp_delta = 0; 357 358 /* 359 * We now have a new basetime, make sure all other cpus have it, 360 * then update the index. 361 */ 362 cpu_sfence(); 363 basetime_index = ni; 364 365 crit_exit(); 366 } 367 368 /* 369 * Each cpu has its own hardclock, but we only increments ticks and softticks 370 * on cpu #0. 371 * 372 * NOTE! systimer! the MP lock might not be held here. We can only safely 373 * manipulate objects owned by the current cpu. 374 */ 375 static void 376 hardclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 377 { 378 sysclock_t cputicks; 379 struct proc *p; 380 struct globaldata *gd = mycpu; 381 382 /* 383 * Realtime updates are per-cpu. Note that timer corrections as 384 * returned by microtime() and friends make an additional adjustment 385 * using a system-wise 'basetime', but the running time is always 386 * taken from the per-cpu globaldata area. Since the same clock 387 * is distributing (XXX SMP) to all cpus, the per-cpu timebases 388 * stay in synch. 389 * 390 * Note that we never allow info->time (aka gd->gd_hardclock.time) 391 * to reverse index gd_cpuclock_base, but that it is possible for 392 * it to temporarily get behind in the seconds if something in the 393 * system locks interrupts for a long period of time. Since periodic 394 * timers count events, though everything should resynch again 395 * immediately. 396 */ 397 cputicks = info->time - gd->gd_cpuclock_base; 398 if (cputicks >= sys_cputimer->freq) { 399 ++gd->gd_time_seconds; 400 gd->gd_cpuclock_base += sys_cputimer->freq; 401 } 402 403 /* 404 * The system-wide ticks counter and NTP related timedelta/tickdelta 405 * adjustments only occur on cpu #0. NTP adjustments are accomplished 406 * by updating basetime. 407 */ 408 if (gd->gd_cpuid == 0) { 409 struct timespec *nbt; 410 struct timespec nts; 411 int leap; 412 int ni; 413 414 ++ticks; 415 416 #if 0 417 if (tco->tc_poll_pps) 418 tco->tc_poll_pps(tco); 419 #endif 420 421 /* 422 * Calculate the new basetime index. We are in a critical section 423 * on cpu #0 and can safely play with basetime_index. Start 424 * with the current basetime and then make adjustments. 425 */ 426 ni = (basetime_index + 1) & BASETIME_ARYMASK; 427 nbt = &basetime[ni]; 428 *nbt = basetime[basetime_index]; 429 430 /* 431 * Apply adjtime corrections. (adjtime() API) 432 * 433 * adjtime() only runs on cpu #0 so our critical section is 434 * sufficient to access these variables. 435 */ 436 if (ntp_delta != 0) { 437 nbt->tv_nsec += ntp_tick_delta; 438 ntp_delta -= ntp_tick_delta; 439 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 440 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 441 ntp_tick_delta = ntp_delta; 442 } 443 } 444 445 /* 446 * Apply permanent frequency corrections. (sysctl API) 447 */ 448 if (ntp_tick_permanent != 0) { 449 ntp_tick_acc += ntp_tick_permanent; 450 if (ntp_tick_acc >= (1LL << 32)) { 451 nbt->tv_nsec += ntp_tick_acc >> 32; 452 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 453 } else if (ntp_tick_acc <= -(1LL << 32)) { 454 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 455 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 456 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 457 } 458 } 459 460 if (nbt->tv_nsec >= 1000000000) { 461 nbt->tv_sec++; 462 nbt->tv_nsec -= 1000000000; 463 } else if (nbt->tv_nsec < 0) { 464 nbt->tv_sec--; 465 nbt->tv_nsec += 1000000000; 466 } 467 468 /* 469 * Another per-tick compensation. (for ntp_adjtime() API) 470 */ 471 if (nsec_adj != 0) { 472 nsec_acc += nsec_adj; 473 if (nsec_acc >= 0x100000000LL) { 474 nbt->tv_nsec += nsec_acc >> 32; 475 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 476 } else if (nsec_acc <= -0x100000000LL) { 477 nbt->tv_nsec -= -nsec_acc >> 32; 478 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 479 } 480 if (nbt->tv_nsec >= 1000000000) { 481 nbt->tv_nsec -= 1000000000; 482 ++nbt->tv_sec; 483 } else if (nbt->tv_nsec < 0) { 484 nbt->tv_nsec += 1000000000; 485 --nbt->tv_sec; 486 } 487 } 488 489 /************************************************************ 490 * LEAP SECOND CORRECTION * 491 ************************************************************ 492 * 493 * Taking into account all the corrections made above, figure 494 * out the new real time. If the seconds field has changed 495 * then apply any pending leap-second corrections. 496 */ 497 getnanotime_nbt(nbt, &nts); 498 499 if (time_second != nts.tv_sec) { 500 /* 501 * Apply leap second (sysctl API). Adjust nts for changes 502 * so we do not have to call getnanotime_nbt again. 503 */ 504 if (ntp_leap_second) { 505 if (ntp_leap_second == nts.tv_sec) { 506 if (ntp_leap_insert) { 507 nbt->tv_sec++; 508 nts.tv_sec++; 509 } else { 510 nbt->tv_sec--; 511 nts.tv_sec--; 512 } 513 ntp_leap_second--; 514 } 515 } 516 517 /* 518 * Apply leap second (ntp_adjtime() API), calculate a new 519 * nsec_adj field. ntp_update_second() returns nsec_adj 520 * as a per-second value but we need it as a per-tick value. 521 */ 522 leap = ntp_update_second(time_second, &nsec_adj); 523 nsec_adj /= hz; 524 nbt->tv_sec += leap; 525 nts.tv_sec += leap; 526 527 /* 528 * Update the time_second 'approximate time' global. 529 */ 530 time_second = nts.tv_sec; 531 } 532 533 /* 534 * Finally, our new basetime is ready to go live! 535 */ 536 cpu_sfence(); 537 basetime_index = ni; 538 } 539 540 /* 541 * lwkt thread scheduler fair queueing 542 */ 543 lwkt_schedulerclock(curthread); 544 545 /* 546 * softticks are handled for all cpus 547 */ 548 hardclock_softtick(gd); 549 550 /* 551 * ITimer handling is per-tick, per-cpu. 552 * 553 * We must acquire the per-process token in order for ksignal() 554 * to be non-blocking. For the moment this requires an AST fault, 555 * the ksignal() cannot be safely issued from this hard interrupt. 556 * 557 * XXX Even the trytoken here isn't right, and itimer operation in 558 * a multi threaded environment is going to be weird at the 559 * very least. 560 */ 561 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) { 562 crit_enter_hard(); 563 if (frame && CLKF_USERMODE(frame) && 564 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 565 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) { 566 p->p_flags |= P_SIGVTALRM; 567 need_user_resched(); 568 } 569 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 570 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) { 571 p->p_flags |= P_SIGPROF; 572 need_user_resched(); 573 } 574 crit_exit_hard(); 575 lwkt_reltoken(&p->p_token); 576 } 577 setdelayed(); 578 } 579 580 /* 581 * The statistics clock typically runs at a 125Hz rate, and is intended 582 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 583 * 584 * NOTE! systimer! the MP lock might not be held here. We can only safely 585 * manipulate objects owned by the current cpu. 586 * 587 * The stats clock is responsible for grabbing a profiling sample. 588 * Most of the statistics are only used by user-level statistics programs. 589 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 590 * p->p_estcpu. 591 * 592 * Like the other clocks, the stat clock is called from what is effectively 593 * a fast interrupt, so the context should be the thread/process that got 594 * interrupted. 595 */ 596 static void 597 statclock(systimer_t info, int in_ipi, struct intrframe *frame) 598 { 599 #ifdef GPROF 600 struct gmonparam *g; 601 int i; 602 #endif 603 thread_t td; 604 struct proc *p; 605 int bump; 606 struct timeval tv; 607 struct timeval *stv; 608 609 /* 610 * How big was our timeslice relative to the last time? 611 */ 612 microuptime(&tv); /* mpsafe */ 613 stv = &mycpu->gd_stattv; 614 if (stv->tv_sec == 0) { 615 bump = 1; 616 } else { 617 bump = tv.tv_usec - stv->tv_usec + 618 (tv.tv_sec - stv->tv_sec) * 1000000; 619 if (bump < 0) 620 bump = 0; 621 if (bump > 1000000) 622 bump = 1000000; 623 } 624 *stv = tv; 625 626 td = curthread; 627 p = td->td_proc; 628 629 if (frame && CLKF_USERMODE(frame)) { 630 /* 631 * Came from userland, handle user time and deal with 632 * possible process. 633 */ 634 if (p && (p->p_flags & P_PROFIL)) 635 addupc_intr(p, CLKF_PC(frame), 1); 636 td->td_uticks += bump; 637 638 /* 639 * Charge the time as appropriate 640 */ 641 if (p && p->p_nice > NZERO) 642 cpu_time.cp_nice += bump; 643 else 644 cpu_time.cp_user += bump; 645 } else { 646 int intr_nest = mycpu->gd_intr_nesting_level; 647 648 if (in_ipi) { 649 /* 650 * IPI processing code will bump gd_intr_nesting_level 651 * up by one, which breaks following CLKF_INTR testing, 652 * so we substract it by one here. 653 */ 654 --intr_nest; 655 } 656 #ifdef GPROF 657 /* 658 * Kernel statistics are just like addupc_intr, only easier. 659 */ 660 g = &_gmonparam; 661 if (g->state == GMON_PROF_ON && frame) { 662 i = CLKF_PC(frame) - g->lowpc; 663 if (i < g->textsize) { 664 i /= HISTFRACTION * sizeof(*g->kcount); 665 g->kcount[i]++; 666 } 667 } 668 #endif 669 670 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td)) 671 672 /* 673 * Came from kernel mode, so we were: 674 * - handling an interrupt, 675 * - doing syscall or trap work on behalf of the current 676 * user process, or 677 * - spinning in the idle loop. 678 * Whichever it is, charge the time as appropriate. 679 * Note that we charge interrupts to the current process, 680 * regardless of whether they are ``for'' that process, 681 * so that we know how much of its real time was spent 682 * in ``non-process'' (i.e., interrupt) work. 683 * 684 * XXX assume system if frame is NULL. A NULL frame 685 * can occur if ipi processing is done from a crit_exit(). 686 */ 687 if (IS_INTR_RUNNING) 688 td->td_iticks += bump; 689 else 690 td->td_sticks += bump; 691 692 if (IS_INTR_RUNNING) { 693 #ifdef DEBUG_PCTRACK 694 if (frame) 695 do_pctrack(frame, PCTRACK_INT); 696 #endif 697 cpu_time.cp_intr += bump; 698 } else { 699 if (td == &mycpu->gd_idlethread) { 700 cpu_time.cp_idle += bump; 701 } else { 702 #ifdef DEBUG_PCTRACK 703 if (frame) 704 do_pctrack(frame, PCTRACK_SYS); 705 #endif 706 cpu_time.cp_sys += bump; 707 } 708 } 709 710 #undef IS_INTR_RUNNING 711 } 712 } 713 714 #ifdef DEBUG_PCTRACK 715 /* 716 * Sample the PC when in the kernel or in an interrupt. User code can 717 * retrieve the information and generate a histogram or other output. 718 */ 719 720 static void 721 do_pctrack(struct intrframe *frame, int which) 722 { 723 struct kinfo_pctrack *pctrack; 724 725 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 726 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 727 (void *)CLKF_PC(frame); 728 ++pctrack->pc_index; 729 } 730 731 static int 732 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 733 { 734 struct kinfo_pcheader head; 735 int error; 736 int cpu; 737 int ntrack; 738 739 head.pc_ntrack = PCTRACK_SIZE; 740 head.pc_arysize = PCTRACK_ARYSIZE; 741 742 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 743 return (error); 744 745 for (cpu = 0; cpu < ncpus; ++cpu) { 746 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 747 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 748 sizeof(struct kinfo_pctrack)); 749 if (error) 750 break; 751 } 752 if (error) 753 break; 754 } 755 return (error); 756 } 757 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 758 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 759 760 #endif 761 762 /* 763 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 764 * the MP lock might not be held. We can safely manipulate parts of curproc 765 * but that's about it. 766 * 767 * Each cpu has its own scheduler clock. 768 */ 769 static void 770 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 771 { 772 struct lwp *lp; 773 struct rusage *ru; 774 struct vmspace *vm; 775 long rss; 776 777 if ((lp = lwkt_preempted_proc()) != NULL) { 778 /* 779 * Account for cpu time used and hit the scheduler. Note 780 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 781 * HERE. 782 */ 783 ++lp->lwp_cpticks; 784 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic, 785 info->time); 786 } 787 if ((lp = curthread->td_lwp) != NULL) { 788 /* 789 * Update resource usage integrals and maximums. 790 */ 791 if ((ru = &lp->lwp_proc->p_ru) && 792 (vm = lp->lwp_proc->p_vmspace) != NULL) { 793 ru->ru_ixrss += pgtok(vm->vm_tsize); 794 ru->ru_idrss += pgtok(vm->vm_dsize); 795 ru->ru_isrss += pgtok(vm->vm_ssize); 796 if (lwkt_trytoken(&vm->vm_map.token)) { 797 rss = pgtok(vmspace_resident_count(vm)); 798 if (ru->ru_maxrss < rss) 799 ru->ru_maxrss = rss; 800 lwkt_reltoken(&vm->vm_map.token); 801 } 802 } 803 } 804 /* Increment the global sched_ticks */ 805 if (mycpu->gd_cpuid == 0) 806 ++sched_ticks; 807 } 808 809 /* 810 * Compute number of ticks for the specified amount of time. The 811 * return value is intended to be used in a clock interrupt timed 812 * operation and guarenteed to meet or exceed the requested time. 813 * If the representation overflows, return INT_MAX. The minimum return 814 * value is 1 ticks and the function will average the calculation up. 815 * If any value greater then 0 microseconds is supplied, a value 816 * of at least 2 will be returned to ensure that a near-term clock 817 * interrupt does not cause the timeout to occur (degenerately) early. 818 * 819 * Note that limit checks must take into account microseconds, which is 820 * done simply by using the smaller signed long maximum instead of 821 * the unsigned long maximum. 822 * 823 * If ints have 32 bits, then the maximum value for any timeout in 824 * 10ms ticks is 248 days. 825 */ 826 int 827 tvtohz_high(struct timeval *tv) 828 { 829 int ticks; 830 long sec, usec; 831 832 sec = tv->tv_sec; 833 usec = tv->tv_usec; 834 if (usec < 0) { 835 sec--; 836 usec += 1000000; 837 } 838 if (sec < 0) { 839 #ifdef DIAGNOSTIC 840 if (usec > 0) { 841 sec++; 842 usec -= 1000000; 843 } 844 kprintf("tvtohz_high: negative time difference " 845 "%ld sec %ld usec\n", 846 sec, usec); 847 #endif 848 ticks = 1; 849 } else if (sec <= INT_MAX / hz) { 850 ticks = (int)(sec * hz + 851 ((u_long)usec + (ustick - 1)) / ustick) + 1; 852 } else { 853 ticks = INT_MAX; 854 } 855 return (ticks); 856 } 857 858 int 859 tstohz_high(struct timespec *ts) 860 { 861 int ticks; 862 long sec, nsec; 863 864 sec = ts->tv_sec; 865 nsec = ts->tv_nsec; 866 if (nsec < 0) { 867 sec--; 868 nsec += 1000000000; 869 } 870 if (sec < 0) { 871 #ifdef DIAGNOSTIC 872 if (nsec > 0) { 873 sec++; 874 nsec -= 1000000000; 875 } 876 kprintf("tstohz_high: negative time difference " 877 "%ld sec %ld nsec\n", 878 sec, nsec); 879 #endif 880 ticks = 1; 881 } else if (sec <= INT_MAX / hz) { 882 ticks = (int)(sec * hz + 883 ((u_long)nsec + (nstick - 1)) / nstick) + 1; 884 } else { 885 ticks = INT_MAX; 886 } 887 return (ticks); 888 } 889 890 891 /* 892 * Compute number of ticks for the specified amount of time, erroring on 893 * the side of it being too low to ensure that sleeping the returned number 894 * of ticks will not result in a late return. 895 * 896 * The supplied timeval may not be negative and should be normalized. A 897 * return value of 0 is possible if the timeval converts to less then 898 * 1 tick. 899 * 900 * If ints have 32 bits, then the maximum value for any timeout in 901 * 10ms ticks is 248 days. 902 */ 903 int 904 tvtohz_low(struct timeval *tv) 905 { 906 int ticks; 907 long sec; 908 909 sec = tv->tv_sec; 910 if (sec <= INT_MAX / hz) 911 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 912 else 913 ticks = INT_MAX; 914 return (ticks); 915 } 916 917 int 918 tstohz_low(struct timespec *ts) 919 { 920 int ticks; 921 long sec; 922 923 sec = ts->tv_sec; 924 if (sec <= INT_MAX / hz) 925 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 926 else 927 ticks = INT_MAX; 928 return (ticks); 929 } 930 931 /* 932 * Start profiling on a process. 933 * 934 * Kernel profiling passes proc0 which never exits and hence 935 * keeps the profile clock running constantly. 936 */ 937 void 938 startprofclock(struct proc *p) 939 { 940 if ((p->p_flags & P_PROFIL) == 0) { 941 p->p_flags |= P_PROFIL; 942 #if 0 /* XXX */ 943 if (++profprocs == 1 && stathz != 0) { 944 crit_enter(); 945 psdiv = psratio; 946 setstatclockrate(profhz); 947 crit_exit(); 948 } 949 #endif 950 } 951 } 952 953 /* 954 * Stop profiling on a process. 955 * 956 * caller must hold p->p_token 957 */ 958 void 959 stopprofclock(struct proc *p) 960 { 961 if (p->p_flags & P_PROFIL) { 962 p->p_flags &= ~P_PROFIL; 963 #if 0 /* XXX */ 964 if (--profprocs == 0 && stathz != 0) { 965 crit_enter(); 966 psdiv = 1; 967 setstatclockrate(stathz); 968 crit_exit(); 969 } 970 #endif 971 } 972 } 973 974 /* 975 * Return information about system clocks. 976 */ 977 static int 978 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 979 { 980 struct kinfo_clockinfo clkinfo; 981 /* 982 * Construct clockinfo structure. 983 */ 984 clkinfo.ci_hz = hz; 985 clkinfo.ci_tick = ustick; 986 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 987 clkinfo.ci_profhz = profhz; 988 clkinfo.ci_stathz = stathz ? stathz : hz; 989 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 990 } 991 992 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 993 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 994 995 /* 996 * We have eight functions for looking at the clock, four for 997 * microseconds and four for nanoseconds. For each there is fast 998 * but less precise version "get{nano|micro}[up]time" which will 999 * return a time which is up to 1/HZ previous to the call, whereas 1000 * the raw version "{nano|micro}[up]time" will return a timestamp 1001 * which is as precise as possible. The "up" variants return the 1002 * time relative to system boot, these are well suited for time 1003 * interval measurements. 1004 * 1005 * Each cpu independantly maintains the current time of day, so all 1006 * we need to do to protect ourselves from changes is to do a loop 1007 * check on the seconds field changing out from under us. 1008 * 1009 * The system timer maintains a 32 bit count and due to various issues 1010 * it is possible for the calculated delta to occassionally exceed 1011 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 1012 * multiplication can easily overflow, so we deal with the case. For 1013 * uniformity we deal with the case in the usec case too. 1014 * 1015 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 1016 */ 1017 void 1018 getmicrouptime(struct timeval *tvp) 1019 { 1020 struct globaldata *gd = mycpu; 1021 sysclock_t delta; 1022 1023 do { 1024 tvp->tv_sec = gd->gd_time_seconds; 1025 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1026 } while (tvp->tv_sec != gd->gd_time_seconds); 1027 1028 if (delta >= sys_cputimer->freq) { 1029 tvp->tv_sec += delta / sys_cputimer->freq; 1030 delta %= sys_cputimer->freq; 1031 } 1032 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1033 if (tvp->tv_usec >= 1000000) { 1034 tvp->tv_usec -= 1000000; 1035 ++tvp->tv_sec; 1036 } 1037 } 1038 1039 void 1040 getnanouptime(struct timespec *tsp) 1041 { 1042 struct globaldata *gd = mycpu; 1043 sysclock_t delta; 1044 1045 do { 1046 tsp->tv_sec = gd->gd_time_seconds; 1047 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1048 } while (tsp->tv_sec != gd->gd_time_seconds); 1049 1050 if (delta >= sys_cputimer->freq) { 1051 tsp->tv_sec += delta / sys_cputimer->freq; 1052 delta %= sys_cputimer->freq; 1053 } 1054 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1055 } 1056 1057 void 1058 microuptime(struct timeval *tvp) 1059 { 1060 struct globaldata *gd = mycpu; 1061 sysclock_t delta; 1062 1063 do { 1064 tvp->tv_sec = gd->gd_time_seconds; 1065 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1066 } while (tvp->tv_sec != gd->gd_time_seconds); 1067 1068 if (delta >= sys_cputimer->freq) { 1069 tvp->tv_sec += delta / sys_cputimer->freq; 1070 delta %= sys_cputimer->freq; 1071 } 1072 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1073 } 1074 1075 void 1076 nanouptime(struct timespec *tsp) 1077 { 1078 struct globaldata *gd = mycpu; 1079 sysclock_t delta; 1080 1081 do { 1082 tsp->tv_sec = gd->gd_time_seconds; 1083 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1084 } while (tsp->tv_sec != gd->gd_time_seconds); 1085 1086 if (delta >= sys_cputimer->freq) { 1087 tsp->tv_sec += delta / sys_cputimer->freq; 1088 delta %= sys_cputimer->freq; 1089 } 1090 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1091 } 1092 1093 /* 1094 * realtime routines 1095 */ 1096 void 1097 getmicrotime(struct timeval *tvp) 1098 { 1099 struct globaldata *gd = mycpu; 1100 struct timespec *bt; 1101 sysclock_t delta; 1102 1103 do { 1104 tvp->tv_sec = gd->gd_time_seconds; 1105 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1106 } while (tvp->tv_sec != gd->gd_time_seconds); 1107 1108 if (delta >= sys_cputimer->freq) { 1109 tvp->tv_sec += delta / sys_cputimer->freq; 1110 delta %= sys_cputimer->freq; 1111 } 1112 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1113 1114 bt = &basetime[basetime_index]; 1115 tvp->tv_sec += bt->tv_sec; 1116 tvp->tv_usec += bt->tv_nsec / 1000; 1117 while (tvp->tv_usec >= 1000000) { 1118 tvp->tv_usec -= 1000000; 1119 ++tvp->tv_sec; 1120 } 1121 } 1122 1123 void 1124 getnanotime(struct timespec *tsp) 1125 { 1126 struct globaldata *gd = mycpu; 1127 struct timespec *bt; 1128 sysclock_t delta; 1129 1130 do { 1131 tsp->tv_sec = gd->gd_time_seconds; 1132 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1133 } while (tsp->tv_sec != gd->gd_time_seconds); 1134 1135 if (delta >= sys_cputimer->freq) { 1136 tsp->tv_sec += delta / sys_cputimer->freq; 1137 delta %= sys_cputimer->freq; 1138 } 1139 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1140 1141 bt = &basetime[basetime_index]; 1142 tsp->tv_sec += bt->tv_sec; 1143 tsp->tv_nsec += bt->tv_nsec; 1144 while (tsp->tv_nsec >= 1000000000) { 1145 tsp->tv_nsec -= 1000000000; 1146 ++tsp->tv_sec; 1147 } 1148 } 1149 1150 static void 1151 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1152 { 1153 struct globaldata *gd = mycpu; 1154 sysclock_t delta; 1155 1156 do { 1157 tsp->tv_sec = gd->gd_time_seconds; 1158 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1159 } while (tsp->tv_sec != gd->gd_time_seconds); 1160 1161 if (delta >= sys_cputimer->freq) { 1162 tsp->tv_sec += delta / sys_cputimer->freq; 1163 delta %= sys_cputimer->freq; 1164 } 1165 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1166 1167 tsp->tv_sec += nbt->tv_sec; 1168 tsp->tv_nsec += nbt->tv_nsec; 1169 while (tsp->tv_nsec >= 1000000000) { 1170 tsp->tv_nsec -= 1000000000; 1171 ++tsp->tv_sec; 1172 } 1173 } 1174 1175 1176 void 1177 microtime(struct timeval *tvp) 1178 { 1179 struct globaldata *gd = mycpu; 1180 struct timespec *bt; 1181 sysclock_t delta; 1182 1183 do { 1184 tvp->tv_sec = gd->gd_time_seconds; 1185 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1186 } while (tvp->tv_sec != gd->gd_time_seconds); 1187 1188 if (delta >= sys_cputimer->freq) { 1189 tvp->tv_sec += delta / sys_cputimer->freq; 1190 delta %= sys_cputimer->freq; 1191 } 1192 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1193 1194 bt = &basetime[basetime_index]; 1195 tvp->tv_sec += bt->tv_sec; 1196 tvp->tv_usec += bt->tv_nsec / 1000; 1197 while (tvp->tv_usec >= 1000000) { 1198 tvp->tv_usec -= 1000000; 1199 ++tvp->tv_sec; 1200 } 1201 } 1202 1203 void 1204 nanotime(struct timespec *tsp) 1205 { 1206 struct globaldata *gd = mycpu; 1207 struct timespec *bt; 1208 sysclock_t delta; 1209 1210 do { 1211 tsp->tv_sec = gd->gd_time_seconds; 1212 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1213 } while (tsp->tv_sec != gd->gd_time_seconds); 1214 1215 if (delta >= sys_cputimer->freq) { 1216 tsp->tv_sec += delta / sys_cputimer->freq; 1217 delta %= sys_cputimer->freq; 1218 } 1219 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1220 1221 bt = &basetime[basetime_index]; 1222 tsp->tv_sec += bt->tv_sec; 1223 tsp->tv_nsec += bt->tv_nsec; 1224 while (tsp->tv_nsec >= 1000000000) { 1225 tsp->tv_nsec -= 1000000000; 1226 ++tsp->tv_sec; 1227 } 1228 } 1229 1230 /* 1231 * note: this is not exactly synchronized with real time. To do that we 1232 * would have to do what microtime does and check for a nanoseconds overflow. 1233 */ 1234 time_t 1235 get_approximate_time_t(void) 1236 { 1237 struct globaldata *gd = mycpu; 1238 struct timespec *bt; 1239 1240 bt = &basetime[basetime_index]; 1241 return(gd->gd_time_seconds + bt->tv_sec); 1242 } 1243 1244 int 1245 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1246 { 1247 pps_params_t *app; 1248 struct pps_fetch_args *fapi; 1249 #ifdef PPS_SYNC 1250 struct pps_kcbind_args *kapi; 1251 #endif 1252 1253 switch (cmd) { 1254 case PPS_IOC_CREATE: 1255 return (0); 1256 case PPS_IOC_DESTROY: 1257 return (0); 1258 case PPS_IOC_SETPARAMS: 1259 app = (pps_params_t *)data; 1260 if (app->mode & ~pps->ppscap) 1261 return (EINVAL); 1262 pps->ppsparam = *app; 1263 return (0); 1264 case PPS_IOC_GETPARAMS: 1265 app = (pps_params_t *)data; 1266 *app = pps->ppsparam; 1267 app->api_version = PPS_API_VERS_1; 1268 return (0); 1269 case PPS_IOC_GETCAP: 1270 *(int*)data = pps->ppscap; 1271 return (0); 1272 case PPS_IOC_FETCH: 1273 fapi = (struct pps_fetch_args *)data; 1274 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1275 return (EINVAL); 1276 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1277 return (EOPNOTSUPP); 1278 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1279 fapi->pps_info_buf = pps->ppsinfo; 1280 return (0); 1281 case PPS_IOC_KCBIND: 1282 #ifdef PPS_SYNC 1283 kapi = (struct pps_kcbind_args *)data; 1284 /* XXX Only root should be able to do this */ 1285 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1286 return (EINVAL); 1287 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1288 return (EINVAL); 1289 if (kapi->edge & ~pps->ppscap) 1290 return (EINVAL); 1291 pps->kcmode = kapi->edge; 1292 return (0); 1293 #else 1294 return (EOPNOTSUPP); 1295 #endif 1296 default: 1297 return (ENOTTY); 1298 } 1299 } 1300 1301 void 1302 pps_init(struct pps_state *pps) 1303 { 1304 pps->ppscap |= PPS_TSFMT_TSPEC; 1305 if (pps->ppscap & PPS_CAPTUREASSERT) 1306 pps->ppscap |= PPS_OFFSETASSERT; 1307 if (pps->ppscap & PPS_CAPTURECLEAR) 1308 pps->ppscap |= PPS_OFFSETCLEAR; 1309 } 1310 1311 void 1312 pps_event(struct pps_state *pps, sysclock_t count, int event) 1313 { 1314 struct globaldata *gd; 1315 struct timespec *tsp; 1316 struct timespec *osp; 1317 struct timespec *bt; 1318 struct timespec ts; 1319 sysclock_t *pcount; 1320 #ifdef PPS_SYNC 1321 sysclock_t tcount; 1322 #endif 1323 sysclock_t delta; 1324 pps_seq_t *pseq; 1325 int foff; 1326 int fhard; 1327 1328 gd = mycpu; 1329 1330 /* Things would be easier with arrays... */ 1331 if (event == PPS_CAPTUREASSERT) { 1332 tsp = &pps->ppsinfo.assert_timestamp; 1333 osp = &pps->ppsparam.assert_offset; 1334 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1335 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1336 pcount = &pps->ppscount[0]; 1337 pseq = &pps->ppsinfo.assert_sequence; 1338 } else { 1339 tsp = &pps->ppsinfo.clear_timestamp; 1340 osp = &pps->ppsparam.clear_offset; 1341 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1342 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1343 pcount = &pps->ppscount[1]; 1344 pseq = &pps->ppsinfo.clear_sequence; 1345 } 1346 1347 /* Nothing really happened */ 1348 if (*pcount == count) 1349 return; 1350 1351 *pcount = count; 1352 1353 do { 1354 ts.tv_sec = gd->gd_time_seconds; 1355 delta = count - gd->gd_cpuclock_base; 1356 } while (ts.tv_sec != gd->gd_time_seconds); 1357 1358 if (delta >= sys_cputimer->freq) { 1359 ts.tv_sec += delta / sys_cputimer->freq; 1360 delta %= sys_cputimer->freq; 1361 } 1362 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1363 bt = &basetime[basetime_index]; 1364 ts.tv_sec += bt->tv_sec; 1365 ts.tv_nsec += bt->tv_nsec; 1366 while (ts.tv_nsec >= 1000000000) { 1367 ts.tv_nsec -= 1000000000; 1368 ++ts.tv_sec; 1369 } 1370 1371 (*pseq)++; 1372 *tsp = ts; 1373 1374 if (foff) { 1375 timespecadd(tsp, osp); 1376 if (tsp->tv_nsec < 0) { 1377 tsp->tv_nsec += 1000000000; 1378 tsp->tv_sec -= 1; 1379 } 1380 } 1381 #ifdef PPS_SYNC 1382 if (fhard) { 1383 /* magic, at its best... */ 1384 tcount = count - pps->ppscount[2]; 1385 pps->ppscount[2] = count; 1386 if (tcount >= sys_cputimer->freq) { 1387 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1388 sys_cputimer->freq64_nsec * 1389 (tcount % sys_cputimer->freq)) >> 32; 1390 } else { 1391 delta = (sys_cputimer->freq64_nsec * tcount) >> 32; 1392 } 1393 hardpps(tsp, delta); 1394 } 1395 #endif 1396 } 1397 1398 /* 1399 * Return the tsc target value for a delay of (ns). 1400 * 1401 * Returns -1 if the TSC is not supported. 1402 */ 1403 int64_t 1404 tsc_get_target(int ns) 1405 { 1406 #if defined(_RDTSC_SUPPORTED_) 1407 if (cpu_feature & CPUID_TSC) { 1408 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1409 } 1410 #endif 1411 return(-1); 1412 } 1413 1414 /* 1415 * Compare the tsc against the passed target 1416 * 1417 * Returns +1 if the target has been reached 1418 * Returns 0 if the target has not yet been reached 1419 * Returns -1 if the TSC is not supported. 1420 * 1421 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1422 */ 1423 int 1424 tsc_test_target(int64_t target) 1425 { 1426 #if defined(_RDTSC_SUPPORTED_) 1427 if (cpu_feature & CPUID_TSC) { 1428 if ((int64_t)(target - rdtsc()) <= 0) 1429 return(1); 1430 return(0); 1431 } 1432 #endif 1433 return(-1); 1434 } 1435 1436 /* 1437 * Delay the specified number of nanoseconds using the tsc. This function 1438 * returns immediately if the TSC is not supported. At least one cpu_pause() 1439 * will be issued. 1440 */ 1441 void 1442 tsc_delay(int ns) 1443 { 1444 int64_t clk; 1445 1446 clk = tsc_get_target(ns); 1447 cpu_pause(); 1448 while (tsc_test_target(clk) == 0) 1449 cpu_pause(); 1450 } 1451