1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 69 */ 70 71 #include "opt_ntp.h" 72 #include "opt_ifpoll.h" 73 #include "opt_pctrack.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/callout.h> 78 #include <sys/kernel.h> 79 #include <sys/kinfo.h> 80 #include <sys/proc.h> 81 #include <sys/malloc.h> 82 #include <sys/resource.h> 83 #include <sys/resourcevar.h> 84 #include <sys/signalvar.h> 85 #include <sys/priv.h> 86 #include <sys/timex.h> 87 #include <sys/timepps.h> 88 #include <sys/upmap.h> 89 #include <vm/vm.h> 90 #include <sys/lock.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_extern.h> 94 #include <sys/sysctl.h> 95 96 #include <sys/thread2.h> 97 #include <sys/spinlock2.h> 98 99 #include <machine/cpu.h> 100 #include <machine/limits.h> 101 #include <machine/smp.h> 102 #include <machine/cpufunc.h> 103 #include <machine/specialreg.h> 104 #include <machine/clock.h> 105 106 #ifdef GPROF 107 #include <sys/gmon.h> 108 #endif 109 110 #ifdef IFPOLL_ENABLE 111 extern void ifpoll_init_pcpu(int); 112 #endif 113 114 #ifdef DEBUG_PCTRACK 115 static void do_pctrack(struct intrframe *frame, int which); 116 #endif 117 118 static void initclocks (void *dummy); 119 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL); 120 121 /* 122 * Some of these don't belong here, but it's easiest to concentrate them. 123 * Note that cpu_time counts in microseconds, but most userland programs 124 * just compare relative times against the total by delta. 125 */ 126 struct kinfo_cputime cputime_percpu[MAXCPU]; 127 #ifdef DEBUG_PCTRACK 128 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 129 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 130 #endif 131 132 static int sniff_enable = 1; 133 static int sniff_target = -1; 134 SYSCTL_INT(_kern, OID_AUTO, sniff_enable, CTLFLAG_RW, &sniff_enable, 0 , ""); 135 SYSCTL_INT(_kern, OID_AUTO, sniff_target, CTLFLAG_RW, &sniff_target, 0 , ""); 136 137 static int 138 sysctl_cputime(SYSCTL_HANDLER_ARGS) 139 { 140 int cpu, error = 0; 141 int root_error; 142 size_t size = sizeof(struct kinfo_cputime); 143 struct kinfo_cputime tmp; 144 145 /* 146 * NOTE: For security reasons, only root can sniff %rip 147 */ 148 root_error = priv_check_cred(curthread->td_ucred, PRIV_ROOT, 0); 149 150 for (cpu = 0; cpu < ncpus; ++cpu) { 151 tmp = cputime_percpu[cpu]; 152 if (root_error == 0) { 153 tmp.cp_sample_pc = 154 (int64_t)globaldata_find(cpu)->gd_sample_pc; 155 tmp.cp_sample_sp = 156 (int64_t)globaldata_find(cpu)->gd_sample_sp; 157 } 158 if ((error = SYSCTL_OUT(req, &tmp, size)) != 0) 159 break; 160 } 161 162 if (root_error == 0) { 163 if (sniff_enable) { 164 int n = sniff_target; 165 if (n < 0) 166 smp_sniff(); 167 else if (n < ncpus) 168 cpu_sniff(n); 169 } 170 } 171 172 return (error); 173 } 174 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 175 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 176 177 static int 178 sysctl_cp_time(SYSCTL_HANDLER_ARGS) 179 { 180 long cpu_states[CPUSTATES] = {0}; 181 int cpu, error = 0; 182 size_t size = sizeof(cpu_states); 183 184 for (cpu = 0; cpu < ncpus; ++cpu) { 185 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user; 186 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice; 187 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys; 188 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr; 189 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle; 190 } 191 192 error = SYSCTL_OUT(req, cpu_states, size); 193 194 return (error); 195 } 196 197 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 198 sysctl_cp_time, "LU", "CPU time statistics"); 199 200 static int 201 sysctl_cp_times(SYSCTL_HANDLER_ARGS) 202 { 203 long cpu_states[CPUSTATES] = {0}; 204 int cpu, error; 205 size_t size = sizeof(cpu_states); 206 207 for (error = 0, cpu = 0; error == 0 && cpu < ncpus; ++cpu) { 208 cpu_states[CP_USER] = cputime_percpu[cpu].cp_user; 209 cpu_states[CP_NICE] = cputime_percpu[cpu].cp_nice; 210 cpu_states[CP_SYS] = cputime_percpu[cpu].cp_sys; 211 cpu_states[CP_INTR] = cputime_percpu[cpu].cp_intr; 212 cpu_states[CP_IDLE] = cputime_percpu[cpu].cp_idle; 213 error = SYSCTL_OUT(req, cpu_states, size); 214 } 215 216 return (error); 217 } 218 219 SYSCTL_PROC(_kern, OID_AUTO, cp_times, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 220 sysctl_cp_times, "LU", "per-CPU time statistics"); 221 222 /* 223 * boottime is used to calculate the 'real' uptime. Do not confuse this with 224 * microuptime(). microtime() is not drift compensated. The real uptime 225 * with compensation is nanotime() - bootime. boottime is recalculated 226 * whenever the real time is set based on the compensated elapsed time 227 * in seconds (gd->gd_time_seconds). 228 * 229 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 230 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 231 * the real time. 232 * 233 * WARNING! time_second can backstep on time corrections. Also, unlike 234 * time_second, time_uptime is not a "real" time_t (seconds 235 * since the Epoch) but seconds since booting. 236 */ 237 struct timespec boottime; /* boot time (realtime) for reference only */ 238 time_t time_second; /* read-only 'passive' realtime in seconds */ 239 time_t time_uptime; /* read-only 'passive' uptime in seconds */ 240 241 /* 242 * basetime is used to calculate the compensated real time of day. The 243 * basetime can be modified on a per-tick basis by the adjtime(), 244 * ntp_adjtime(), and sysctl-based time correction APIs. 245 * 246 * Note that frequency corrections can also be made by adjusting 247 * gd_cpuclock_base. 248 * 249 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 250 * used on both SMP and UP systems to avoid MP races between cpu's and 251 * interrupt races on UP systems. 252 */ 253 struct hardtime { 254 __uint32_t time_second; 255 sysclock_t cpuclock_base; 256 }; 257 258 #define BASETIME_ARYSIZE 16 259 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 260 static struct timespec basetime[BASETIME_ARYSIZE]; 261 static struct hardtime hardtime[BASETIME_ARYSIZE]; 262 static volatile int basetime_index; 263 264 static int 265 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 266 { 267 struct timespec *bt; 268 int error; 269 int index; 270 271 /* 272 * Because basetime data and index may be updated by another cpu, 273 * a load fence is required to ensure that the data we read has 274 * not been speculatively read relative to a possibly updated index. 275 */ 276 index = basetime_index; 277 cpu_lfence(); 278 bt = &basetime[index]; 279 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 280 return (error); 281 } 282 283 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 284 &boottime, timespec, "System boottime"); 285 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 286 sysctl_get_basetime, "S,timespec", "System basetime"); 287 288 static void hardclock(systimer_t info, int, struct intrframe *frame); 289 static void statclock(systimer_t info, int, struct intrframe *frame); 290 static void schedclock(systimer_t info, int, struct intrframe *frame); 291 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 292 293 int ticks; /* system master ticks at hz */ 294 int clocks_running; /* tsleep/timeout clocks operational */ 295 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 296 int64_t nsec_acc; /* accumulator */ 297 int sched_ticks; /* global schedule clock ticks */ 298 299 /* NTPD time correction fields */ 300 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 301 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 302 int64_t ntp_delta; /* one-time correction in nsec */ 303 int64_t ntp_big_delta = 1000000000; 304 int32_t ntp_tick_delta; /* current adjustment rate */ 305 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 306 time_t ntp_leap_second; /* time of next leap second */ 307 int ntp_leap_insert; /* whether to insert or remove a second */ 308 struct spinlock ntp_spin; 309 310 /* 311 * Finish initializing clock frequencies and start all clocks running. 312 */ 313 /* ARGSUSED*/ 314 static void 315 initclocks(void *dummy) 316 { 317 /*psratio = profhz / stathz;*/ 318 spin_init(&ntp_spin, "ntp"); 319 initclocks_pcpu(); 320 clocks_running = 1; 321 if (kpmap) { 322 kpmap->tsc_freq = (uint64_t)tsc_frequency; 323 kpmap->tick_freq = hz; 324 } 325 } 326 327 /* 328 * Called on a per-cpu basis from the idle thread bootstrap on each cpu 329 * during SMP initialization. 330 * 331 * This routine is called concurrently during low-level SMP initialization 332 * and may not block in any way. Meaning, among other things, we can't 333 * acquire any tokens. 334 */ 335 void 336 initclocks_pcpu(void) 337 { 338 struct globaldata *gd = mycpu; 339 340 crit_enter(); 341 if (gd->gd_cpuid == 0) { 342 gd->gd_time_seconds = 1; 343 gd->gd_cpuclock_base = sys_cputimer->count(); 344 hardtime[0].time_second = gd->gd_time_seconds; 345 hardtime[0].cpuclock_base = gd->gd_cpuclock_base; 346 } else { 347 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 348 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 349 } 350 351 systimer_intr_enable(); 352 353 crit_exit(); 354 } 355 356 /* 357 * This routine is called on just the BSP, just after SMP initialization 358 * completes to * finish initializing any clocks that might contend/block 359 * (e.g. like on a token). We can't do this in initclocks_pcpu() because 360 * that function is called from the idle thread bootstrap for each cpu and 361 * not allowed to block at all. 362 */ 363 static 364 void 365 initclocks_other(void *dummy) 366 { 367 struct globaldata *ogd = mycpu; 368 struct globaldata *gd; 369 int n; 370 371 for (n = 0; n < ncpus; ++n) { 372 lwkt_setcpu_self(globaldata_find(n)); 373 gd = mycpu; 374 375 /* 376 * Use a non-queued periodic systimer to prevent multiple 377 * ticks from building up if the sysclock jumps forward 378 * (8254 gets reset). The sysclock will never jump backwards. 379 * Our time sync is based on the actual sysclock, not the 380 * ticks count. 381 * 382 * Install statclock before hardclock to prevent statclock 383 * from misinterpreting gd_flags for tick assignment when 384 * they overlap. 385 */ 386 systimer_init_periodic_nq(&gd->gd_statclock, statclock, 387 NULL, stathz); 388 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, 389 NULL, hz); 390 /* XXX correct the frequency for scheduler / estcpu tests */ 391 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock, 392 NULL, ESTCPUFREQ); 393 #ifdef IFPOLL_ENABLE 394 ifpoll_init_pcpu(gd->gd_cpuid); 395 #endif 396 } 397 lwkt_setcpu_self(ogd); 398 } 399 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL); 400 401 /* 402 * This sets the current real time of day. Timespecs are in seconds and 403 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 404 * instead we adjust basetime so basetime + gd_* results in the current 405 * time of day. This way the gd_* fields are guaranteed to represent 406 * a monotonically increasing 'uptime' value. 407 * 408 * When set_timeofday() is called from userland, the system call forces it 409 * onto cpu #0 since only cpu #0 can update basetime_index. 410 */ 411 void 412 set_timeofday(struct timespec *ts) 413 { 414 struct timespec *nbt; 415 int ni; 416 417 /* 418 * XXX SMP / non-atomic basetime updates 419 */ 420 crit_enter(); 421 ni = (basetime_index + 1) & BASETIME_ARYMASK; 422 cpu_lfence(); 423 nbt = &basetime[ni]; 424 nanouptime(nbt); 425 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 426 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 427 if (nbt->tv_nsec < 0) { 428 nbt->tv_nsec += 1000000000; 429 --nbt->tv_sec; 430 } 431 432 /* 433 * Note that basetime diverges from boottime as the clock drift is 434 * compensated for, so we cannot do away with boottime. When setting 435 * the absolute time of day the drift is 0 (for an instant) and we 436 * can simply assign boottime to basetime. 437 * 438 * Note that nanouptime() is based on gd_time_seconds which is drift 439 * compensated up to a point (it is guaranteed to remain monotonically 440 * increasing). gd_time_seconds is thus our best uptime guess and 441 * suitable for use in the boottime calculation. It is already taken 442 * into account in the basetime calculation above. 443 */ 444 spin_lock(&ntp_spin); 445 boottime.tv_sec = nbt->tv_sec; 446 ntp_delta = 0; 447 448 /* 449 * We now have a new basetime, make sure all other cpus have it, 450 * then update the index. 451 */ 452 cpu_sfence(); 453 basetime_index = ni; 454 spin_unlock(&ntp_spin); 455 456 crit_exit(); 457 } 458 459 /* 460 * Each cpu has its own hardclock, but we only increments ticks and softticks 461 * on cpu #0. 462 * 463 * NOTE! systimer! the MP lock might not be held here. We can only safely 464 * manipulate objects owned by the current cpu. 465 */ 466 static void 467 hardclock(systimer_t info, int in_ipi, struct intrframe *frame) 468 { 469 sysclock_t cputicks; 470 struct proc *p; 471 struct globaldata *gd = mycpu; 472 473 if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) { 474 /* Defer to doreti on passive IPIQ processing */ 475 need_ipiq(); 476 } 477 478 /* 479 * We update the compensation base to calculate fine-grained time 480 * from the sys_cputimer on a per-cpu basis in order to avoid 481 * having to mess around with locks. sys_cputimer is assumed to 482 * be consistent across all cpus. CPU N copies the base state from 483 * CPU 0 using the same FIFO trick that we use for basetime (so we 484 * don't catch a CPU 0 update in the middle). 485 * 486 * Note that we never allow info->time (aka gd->gd_hardclock.time) 487 * to reverse index gd_cpuclock_base, but that it is possible for 488 * it to temporarily get behind in the seconds if something in the 489 * system locks interrupts for a long period of time. Since periodic 490 * timers count events, though everything should resynch again 491 * immediately. 492 */ 493 if (gd->gd_cpuid == 0) { 494 int ni; 495 496 cputicks = info->time - gd->gd_cpuclock_base; 497 if (cputicks >= sys_cputimer->freq) { 498 cputicks /= sys_cputimer->freq; 499 if (cputicks != 0 && cputicks != 1) 500 kprintf("Warning: hardclock missed > 1 sec\n"); 501 gd->gd_time_seconds += cputicks; 502 gd->gd_cpuclock_base += sys_cputimer->freq * cputicks; 503 /* uncorrected monotonic 1-sec gran */ 504 time_uptime += cputicks; 505 } 506 ni = (basetime_index + 1) & BASETIME_ARYMASK; 507 hardtime[ni].time_second = gd->gd_time_seconds; 508 hardtime[ni].cpuclock_base = gd->gd_cpuclock_base; 509 } else { 510 int ni; 511 512 ni = basetime_index; 513 cpu_lfence(); 514 gd->gd_time_seconds = hardtime[ni].time_second; 515 gd->gd_cpuclock_base = hardtime[ni].cpuclock_base; 516 } 517 518 /* 519 * The system-wide ticks counter and NTP related timedelta/tickdelta 520 * adjustments only occur on cpu #0. NTP adjustments are accomplished 521 * by updating basetime. 522 */ 523 if (gd->gd_cpuid == 0) { 524 struct timespec *nbt; 525 struct timespec nts; 526 int leap; 527 int ni; 528 529 ++ticks; 530 531 #if 0 532 if (tco->tc_poll_pps) 533 tco->tc_poll_pps(tco); 534 #endif 535 536 /* 537 * Calculate the new basetime index. We are in a critical section 538 * on cpu #0 and can safely play with basetime_index. Start 539 * with the current basetime and then make adjustments. 540 */ 541 ni = (basetime_index + 1) & BASETIME_ARYMASK; 542 nbt = &basetime[ni]; 543 *nbt = basetime[basetime_index]; 544 545 /* 546 * ntp adjustments only occur on cpu 0 and are protected by 547 * ntp_spin. This spinlock virtually never conflicts. 548 */ 549 spin_lock(&ntp_spin); 550 551 /* 552 * Apply adjtime corrections. (adjtime() API) 553 * 554 * adjtime() only runs on cpu #0 so our critical section is 555 * sufficient to access these variables. 556 */ 557 if (ntp_delta != 0) { 558 nbt->tv_nsec += ntp_tick_delta; 559 ntp_delta -= ntp_tick_delta; 560 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 561 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 562 ntp_tick_delta = ntp_delta; 563 } 564 } 565 566 /* 567 * Apply permanent frequency corrections. (sysctl API) 568 */ 569 if (ntp_tick_permanent != 0) { 570 ntp_tick_acc += ntp_tick_permanent; 571 if (ntp_tick_acc >= (1LL << 32)) { 572 nbt->tv_nsec += ntp_tick_acc >> 32; 573 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 574 } else if (ntp_tick_acc <= -(1LL << 32)) { 575 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 576 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 577 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 578 } 579 } 580 581 if (nbt->tv_nsec >= 1000000000) { 582 nbt->tv_sec++; 583 nbt->tv_nsec -= 1000000000; 584 } else if (nbt->tv_nsec < 0) { 585 nbt->tv_sec--; 586 nbt->tv_nsec += 1000000000; 587 } 588 589 /* 590 * Another per-tick compensation. (for ntp_adjtime() API) 591 */ 592 if (nsec_adj != 0) { 593 nsec_acc += nsec_adj; 594 if (nsec_acc >= 0x100000000LL) { 595 nbt->tv_nsec += nsec_acc >> 32; 596 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 597 } else if (nsec_acc <= -0x100000000LL) { 598 nbt->tv_nsec -= -nsec_acc >> 32; 599 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 600 } 601 if (nbt->tv_nsec >= 1000000000) { 602 nbt->tv_nsec -= 1000000000; 603 ++nbt->tv_sec; 604 } else if (nbt->tv_nsec < 0) { 605 nbt->tv_nsec += 1000000000; 606 --nbt->tv_sec; 607 } 608 } 609 spin_unlock(&ntp_spin); 610 611 /************************************************************ 612 * LEAP SECOND CORRECTION * 613 ************************************************************ 614 * 615 * Taking into account all the corrections made above, figure 616 * out the new real time. If the seconds field has changed 617 * then apply any pending leap-second corrections. 618 */ 619 getnanotime_nbt(nbt, &nts); 620 621 if (time_second != nts.tv_sec) { 622 /* 623 * Apply leap second (sysctl API). Adjust nts for changes 624 * so we do not have to call getnanotime_nbt again. 625 */ 626 if (ntp_leap_second) { 627 if (ntp_leap_second == nts.tv_sec) { 628 if (ntp_leap_insert) { 629 nbt->tv_sec++; 630 nts.tv_sec++; 631 } else { 632 nbt->tv_sec--; 633 nts.tv_sec--; 634 } 635 ntp_leap_second--; 636 } 637 } 638 639 /* 640 * Apply leap second (ntp_adjtime() API), calculate a new 641 * nsec_adj field. ntp_update_second() returns nsec_adj 642 * as a per-second value but we need it as a per-tick value. 643 */ 644 leap = ntp_update_second(time_second, &nsec_adj); 645 nsec_adj /= hz; 646 nbt->tv_sec += leap; 647 nts.tv_sec += leap; 648 649 /* 650 * Update the time_second 'approximate time' global. 651 */ 652 time_second = nts.tv_sec; 653 } 654 655 /* 656 * Finally, our new basetime is ready to go live! 657 */ 658 cpu_sfence(); 659 basetime_index = ni; 660 661 /* 662 * Update kpmap on each tick. TS updates are integrated with 663 * fences and upticks allowing userland to read the data 664 * deterministically. 665 */ 666 if (kpmap) { 667 int w; 668 669 w = (kpmap->upticks + 1) & 1; 670 getnanouptime(&kpmap->ts_uptime[w]); 671 getnanotime(&kpmap->ts_realtime[w]); 672 cpu_sfence(); 673 ++kpmap->upticks; 674 cpu_sfence(); 675 } 676 } 677 678 /* 679 * lwkt thread scheduler fair queueing 680 */ 681 lwkt_schedulerclock(curthread); 682 683 /* 684 * softticks are handled for all cpus 685 */ 686 hardclock_softtick(gd); 687 688 /* 689 * Rollup accumulated vmstats, copy-back for critical path checks. 690 */ 691 vmstats_rollup_cpu(gd); 692 mycpu->gd_vmstats = vmstats; 693 694 /* 695 * ITimer handling is per-tick, per-cpu. 696 * 697 * We must acquire the per-process token in order for ksignal() 698 * to be non-blocking. For the moment this requires an AST fault, 699 * the ksignal() cannot be safely issued from this hard interrupt. 700 * 701 * XXX Even the trytoken here isn't right, and itimer operation in 702 * a multi threaded environment is going to be weird at the 703 * very least. 704 */ 705 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) { 706 crit_enter_hard(); 707 if (p->p_upmap) 708 ++p->p_upmap->runticks; 709 710 if (frame && CLKF_USERMODE(frame) && 711 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 712 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) { 713 p->p_flags |= P_SIGVTALRM; 714 need_user_resched(); 715 } 716 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 717 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) { 718 p->p_flags |= P_SIGPROF; 719 need_user_resched(); 720 } 721 crit_exit_hard(); 722 lwkt_reltoken(&p->p_token); 723 } 724 setdelayed(); 725 } 726 727 /* 728 * The statistics clock typically runs at a 125Hz rate, and is intended 729 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 730 * 731 * NOTE! systimer! the MP lock might not be held here. We can only safely 732 * manipulate objects owned by the current cpu. 733 * 734 * The stats clock is responsible for grabbing a profiling sample. 735 * Most of the statistics are only used by user-level statistics programs. 736 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 737 * p->p_estcpu. 738 * 739 * Like the other clocks, the stat clock is called from what is effectively 740 * a fast interrupt, so the context should be the thread/process that got 741 * interrupted. 742 */ 743 static void 744 statclock(systimer_t info, int in_ipi, struct intrframe *frame) 745 { 746 #ifdef GPROF 747 struct gmonparam *g; 748 int i; 749 #endif 750 globaldata_t gd = mycpu; 751 thread_t td; 752 struct proc *p; 753 int bump; 754 sysclock_t cv; 755 sysclock_t scv; 756 757 /* 758 * How big was our timeslice relative to the last time? Calculate 759 * in microseconds. 760 * 761 * NOTE: Use of microuptime() is typically MPSAFE, but usually not 762 * during early boot. Just use the systimer count to be nice 763 * to e.g. qemu. The systimer has a better chance of being 764 * MPSAFE at early boot. 765 */ 766 cv = sys_cputimer->count(); 767 scv = gd->statint.gd_statcv; 768 if (scv == 0) { 769 bump = 1; 770 } else { 771 bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32; 772 if (bump < 0) 773 bump = 0; 774 if (bump > 1000000) 775 bump = 1000000; 776 } 777 gd->statint.gd_statcv = cv; 778 779 #if 0 780 stv = &gd->gd_stattv; 781 if (stv->tv_sec == 0) { 782 bump = 1; 783 } else { 784 bump = tv.tv_usec - stv->tv_usec + 785 (tv.tv_sec - stv->tv_sec) * 1000000; 786 if (bump < 0) 787 bump = 0; 788 if (bump > 1000000) 789 bump = 1000000; 790 } 791 *stv = tv; 792 #endif 793 794 td = curthread; 795 p = td->td_proc; 796 797 if (frame && CLKF_USERMODE(frame)) { 798 /* 799 * Came from userland, handle user time and deal with 800 * possible process. 801 */ 802 if (p && (p->p_flags & P_PROFIL)) 803 addupc_intr(p, CLKF_PC(frame), 1); 804 td->td_uticks += bump; 805 806 /* 807 * Charge the time as appropriate 808 */ 809 if (p && p->p_nice > NZERO) 810 cpu_time.cp_nice += bump; 811 else 812 cpu_time.cp_user += bump; 813 } else { 814 int intr_nest = gd->gd_intr_nesting_level; 815 816 if (in_ipi) { 817 /* 818 * IPI processing code will bump gd_intr_nesting_level 819 * up by one, which breaks following CLKF_INTR testing, 820 * so we subtract it by one here. 821 */ 822 --intr_nest; 823 } 824 #ifdef GPROF 825 /* 826 * Kernel statistics are just like addupc_intr, only easier. 827 */ 828 g = &_gmonparam; 829 if (g->state == GMON_PROF_ON && frame) { 830 i = CLKF_PC(frame) - g->lowpc; 831 if (i < g->textsize) { 832 i /= HISTFRACTION * sizeof(*g->kcount); 833 g->kcount[i]++; 834 } 835 } 836 #endif 837 838 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td)) 839 840 /* 841 * Came from kernel mode, so we were: 842 * - handling an interrupt, 843 * - doing syscall or trap work on behalf of the current 844 * user process, or 845 * - spinning in the idle loop. 846 * Whichever it is, charge the time as appropriate. 847 * Note that we charge interrupts to the current process, 848 * regardless of whether they are ``for'' that process, 849 * so that we know how much of its real time was spent 850 * in ``non-process'' (i.e., interrupt) work. 851 * 852 * XXX assume system if frame is NULL. A NULL frame 853 * can occur if ipi processing is done from a crit_exit(). 854 */ 855 if (IS_INTR_RUNNING) { 856 /* 857 * If we interrupted an interrupt thread, well, 858 * count it as interrupt time. 859 */ 860 td->td_iticks += bump; 861 #ifdef DEBUG_PCTRACK 862 if (frame) 863 do_pctrack(frame, PCTRACK_INT); 864 #endif 865 cpu_time.cp_intr += bump; 866 } else if (gd->gd_flags & GDF_VIRTUSER) { 867 /* 868 * The vkernel doesn't do a good job providing trap 869 * frames that we can test. If the GDF_VIRTUSER 870 * flag is set we probably interrupted user mode. 871 * 872 * We also use this flag on the host when entering 873 * VMM mode. 874 */ 875 td->td_uticks += bump; 876 877 /* 878 * Charge the time as appropriate 879 */ 880 if (p && p->p_nice > NZERO) 881 cpu_time.cp_nice += bump; 882 else 883 cpu_time.cp_user += bump; 884 } else { 885 td->td_sticks += bump; 886 if (td == &gd->gd_idlethread) { 887 /* 888 * Token contention can cause us to mis-count 889 * a contended as idle, but it doesn't work 890 * properly for VKERNELs so just test on a 891 * real kernel. 892 */ 893 #ifdef _KERNEL_VIRTUAL 894 cpu_time.cp_idle += bump; 895 #else 896 if (mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK) 897 cpu_time.cp_sys += bump; 898 else 899 cpu_time.cp_idle += bump; 900 #endif 901 } else { 902 /* 903 * System thread was running. 904 */ 905 #ifdef DEBUG_PCTRACK 906 if (frame) 907 do_pctrack(frame, PCTRACK_SYS); 908 #endif 909 cpu_time.cp_sys += bump; 910 } 911 } 912 913 #undef IS_INTR_RUNNING 914 } 915 } 916 917 #ifdef DEBUG_PCTRACK 918 /* 919 * Sample the PC when in the kernel or in an interrupt. User code can 920 * retrieve the information and generate a histogram or other output. 921 */ 922 923 static void 924 do_pctrack(struct intrframe *frame, int which) 925 { 926 struct kinfo_pctrack *pctrack; 927 928 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 929 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 930 (void *)CLKF_PC(frame); 931 ++pctrack->pc_index; 932 } 933 934 static int 935 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 936 { 937 struct kinfo_pcheader head; 938 int error; 939 int cpu; 940 int ntrack; 941 942 head.pc_ntrack = PCTRACK_SIZE; 943 head.pc_arysize = PCTRACK_ARYSIZE; 944 945 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 946 return (error); 947 948 for (cpu = 0; cpu < ncpus; ++cpu) { 949 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 950 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 951 sizeof(struct kinfo_pctrack)); 952 if (error) 953 break; 954 } 955 if (error) 956 break; 957 } 958 return (error); 959 } 960 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 961 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 962 963 #endif 964 965 /* 966 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 967 * the MP lock might not be held. We can safely manipulate parts of curproc 968 * but that's about it. 969 * 970 * Each cpu has its own scheduler clock. 971 */ 972 static void 973 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 974 { 975 struct lwp *lp; 976 struct rusage *ru; 977 struct vmspace *vm; 978 long rss; 979 980 if ((lp = lwkt_preempted_proc()) != NULL) { 981 /* 982 * Account for cpu time used and hit the scheduler. Note 983 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 984 * HERE. 985 */ 986 ++lp->lwp_cpticks; 987 usched_schedulerclock(lp, info->periodic, info->time); 988 } else { 989 usched_schedulerclock(NULL, info->periodic, info->time); 990 } 991 if ((lp = curthread->td_lwp) != NULL) { 992 /* 993 * Update resource usage integrals and maximums. 994 */ 995 if ((ru = &lp->lwp_proc->p_ru) && 996 (vm = lp->lwp_proc->p_vmspace) != NULL) { 997 ru->ru_ixrss += pgtok(vm->vm_tsize); 998 ru->ru_idrss += pgtok(vm->vm_dsize); 999 ru->ru_isrss += pgtok(vm->vm_ssize); 1000 if (lwkt_trytoken(&vm->vm_map.token)) { 1001 rss = pgtok(vmspace_resident_count(vm)); 1002 if (ru->ru_maxrss < rss) 1003 ru->ru_maxrss = rss; 1004 lwkt_reltoken(&vm->vm_map.token); 1005 } 1006 } 1007 } 1008 /* Increment the global sched_ticks */ 1009 if (mycpu->gd_cpuid == 0) 1010 ++sched_ticks; 1011 } 1012 1013 /* 1014 * Compute number of ticks for the specified amount of time. The 1015 * return value is intended to be used in a clock interrupt timed 1016 * operation and guaranteed to meet or exceed the requested time. 1017 * If the representation overflows, return INT_MAX. The minimum return 1018 * value is 1 ticks and the function will average the calculation up. 1019 * If any value greater then 0 microseconds is supplied, a value 1020 * of at least 2 will be returned to ensure that a near-term clock 1021 * interrupt does not cause the timeout to occur (degenerately) early. 1022 * 1023 * Note that limit checks must take into account microseconds, which is 1024 * done simply by using the smaller signed long maximum instead of 1025 * the unsigned long maximum. 1026 * 1027 * If ints have 32 bits, then the maximum value for any timeout in 1028 * 10ms ticks is 248 days. 1029 */ 1030 int 1031 tvtohz_high(struct timeval *tv) 1032 { 1033 int ticks; 1034 long sec, usec; 1035 1036 sec = tv->tv_sec; 1037 usec = tv->tv_usec; 1038 if (usec < 0) { 1039 sec--; 1040 usec += 1000000; 1041 } 1042 if (sec < 0) { 1043 #ifdef DIAGNOSTIC 1044 if (usec > 0) { 1045 sec++; 1046 usec -= 1000000; 1047 } 1048 kprintf("tvtohz_high: negative time difference " 1049 "%ld sec %ld usec\n", 1050 sec, usec); 1051 #endif 1052 ticks = 1; 1053 } else if (sec <= INT_MAX / hz) { 1054 ticks = (int)(sec * hz + 1055 ((u_long)usec + (ustick - 1)) / ustick) + 1; 1056 } else { 1057 ticks = INT_MAX; 1058 } 1059 return (ticks); 1060 } 1061 1062 int 1063 tstohz_high(struct timespec *ts) 1064 { 1065 int ticks; 1066 long sec, nsec; 1067 1068 sec = ts->tv_sec; 1069 nsec = ts->tv_nsec; 1070 if (nsec < 0) { 1071 sec--; 1072 nsec += 1000000000; 1073 } 1074 if (sec < 0) { 1075 #ifdef DIAGNOSTIC 1076 if (nsec > 0) { 1077 sec++; 1078 nsec -= 1000000000; 1079 } 1080 kprintf("tstohz_high: negative time difference " 1081 "%ld sec %ld nsec\n", 1082 sec, nsec); 1083 #endif 1084 ticks = 1; 1085 } else if (sec <= INT_MAX / hz) { 1086 ticks = (int)(sec * hz + 1087 ((u_long)nsec + (nstick - 1)) / nstick) + 1; 1088 } else { 1089 ticks = INT_MAX; 1090 } 1091 return (ticks); 1092 } 1093 1094 1095 /* 1096 * Compute number of ticks for the specified amount of time, erroring on 1097 * the side of it being too low to ensure that sleeping the returned number 1098 * of ticks will not result in a late return. 1099 * 1100 * The supplied timeval may not be negative and should be normalized. A 1101 * return value of 0 is possible if the timeval converts to less then 1102 * 1 tick. 1103 * 1104 * If ints have 32 bits, then the maximum value for any timeout in 1105 * 10ms ticks is 248 days. 1106 */ 1107 int 1108 tvtohz_low(struct timeval *tv) 1109 { 1110 int ticks; 1111 long sec; 1112 1113 sec = tv->tv_sec; 1114 if (sec <= INT_MAX / hz) 1115 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 1116 else 1117 ticks = INT_MAX; 1118 return (ticks); 1119 } 1120 1121 int 1122 tstohz_low(struct timespec *ts) 1123 { 1124 int ticks; 1125 long sec; 1126 1127 sec = ts->tv_sec; 1128 if (sec <= INT_MAX / hz) 1129 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 1130 else 1131 ticks = INT_MAX; 1132 return (ticks); 1133 } 1134 1135 /* 1136 * Start profiling on a process. 1137 * 1138 * Caller must hold p->p_token(); 1139 * 1140 * Kernel profiling passes proc0 which never exits and hence 1141 * keeps the profile clock running constantly. 1142 */ 1143 void 1144 startprofclock(struct proc *p) 1145 { 1146 if ((p->p_flags & P_PROFIL) == 0) { 1147 p->p_flags |= P_PROFIL; 1148 #if 0 /* XXX */ 1149 if (++profprocs == 1 && stathz != 0) { 1150 crit_enter(); 1151 psdiv = psratio; 1152 setstatclockrate(profhz); 1153 crit_exit(); 1154 } 1155 #endif 1156 } 1157 } 1158 1159 /* 1160 * Stop profiling on a process. 1161 * 1162 * caller must hold p->p_token 1163 */ 1164 void 1165 stopprofclock(struct proc *p) 1166 { 1167 if (p->p_flags & P_PROFIL) { 1168 p->p_flags &= ~P_PROFIL; 1169 #if 0 /* XXX */ 1170 if (--profprocs == 0 && stathz != 0) { 1171 crit_enter(); 1172 psdiv = 1; 1173 setstatclockrate(stathz); 1174 crit_exit(); 1175 } 1176 #endif 1177 } 1178 } 1179 1180 /* 1181 * Return information about system clocks. 1182 */ 1183 static int 1184 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 1185 { 1186 struct kinfo_clockinfo clkinfo; 1187 /* 1188 * Construct clockinfo structure. 1189 */ 1190 clkinfo.ci_hz = hz; 1191 clkinfo.ci_tick = ustick; 1192 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 1193 clkinfo.ci_profhz = profhz; 1194 clkinfo.ci_stathz = stathz ? stathz : hz; 1195 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 1196 } 1197 1198 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 1199 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 1200 1201 /* 1202 * We have eight functions for looking at the clock, four for 1203 * microseconds and four for nanoseconds. For each there is fast 1204 * but less precise version "get{nano|micro}[up]time" which will 1205 * return a time which is up to 1/HZ previous to the call, whereas 1206 * the raw version "{nano|micro}[up]time" will return a timestamp 1207 * which is as precise as possible. The "up" variants return the 1208 * time relative to system boot, these are well suited for time 1209 * interval measurements. 1210 * 1211 * Each cpu independently maintains the current time of day, so all 1212 * we need to do to protect ourselves from changes is to do a loop 1213 * check on the seconds field changing out from under us. 1214 * 1215 * The system timer maintains a 32 bit count and due to various issues 1216 * it is possible for the calculated delta to occasionally exceed 1217 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 1218 * multiplication can easily overflow, so we deal with the case. For 1219 * uniformity we deal with the case in the usec case too. 1220 * 1221 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 1222 */ 1223 void 1224 getmicrouptime(struct timeval *tvp) 1225 { 1226 struct globaldata *gd = mycpu; 1227 sysclock_t delta; 1228 1229 do { 1230 tvp->tv_sec = gd->gd_time_seconds; 1231 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1232 } while (tvp->tv_sec != gd->gd_time_seconds); 1233 1234 if (delta >= sys_cputimer->freq) { 1235 tvp->tv_sec += delta / sys_cputimer->freq; 1236 delta %= sys_cputimer->freq; 1237 } 1238 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1239 if (tvp->tv_usec >= 1000000) { 1240 tvp->tv_usec -= 1000000; 1241 ++tvp->tv_sec; 1242 } 1243 } 1244 1245 void 1246 getnanouptime(struct timespec *tsp) 1247 { 1248 struct globaldata *gd = mycpu; 1249 sysclock_t delta; 1250 1251 do { 1252 tsp->tv_sec = gd->gd_time_seconds; 1253 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1254 } while (tsp->tv_sec != gd->gd_time_seconds); 1255 1256 if (delta >= sys_cputimer->freq) { 1257 tsp->tv_sec += delta / sys_cputimer->freq; 1258 delta %= sys_cputimer->freq; 1259 } 1260 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1261 } 1262 1263 void 1264 microuptime(struct timeval *tvp) 1265 { 1266 struct globaldata *gd = mycpu; 1267 sysclock_t delta; 1268 1269 do { 1270 tvp->tv_sec = gd->gd_time_seconds; 1271 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1272 } while (tvp->tv_sec != gd->gd_time_seconds); 1273 1274 if (delta >= sys_cputimer->freq) { 1275 tvp->tv_sec += delta / sys_cputimer->freq; 1276 delta %= sys_cputimer->freq; 1277 } 1278 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1279 } 1280 1281 void 1282 nanouptime(struct timespec *tsp) 1283 { 1284 struct globaldata *gd = mycpu; 1285 sysclock_t delta; 1286 1287 do { 1288 tsp->tv_sec = gd->gd_time_seconds; 1289 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1290 } while (tsp->tv_sec != gd->gd_time_seconds); 1291 1292 if (delta >= sys_cputimer->freq) { 1293 tsp->tv_sec += delta / sys_cputimer->freq; 1294 delta %= sys_cputimer->freq; 1295 } 1296 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1297 } 1298 1299 /* 1300 * realtime routines 1301 */ 1302 void 1303 getmicrotime(struct timeval *tvp) 1304 { 1305 struct globaldata *gd = mycpu; 1306 struct timespec *bt; 1307 sysclock_t delta; 1308 1309 do { 1310 tvp->tv_sec = gd->gd_time_seconds; 1311 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1312 } while (tvp->tv_sec != gd->gd_time_seconds); 1313 1314 if (delta >= sys_cputimer->freq) { 1315 tvp->tv_sec += delta / sys_cputimer->freq; 1316 delta %= sys_cputimer->freq; 1317 } 1318 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1319 1320 bt = &basetime[basetime_index]; 1321 cpu_lfence(); 1322 tvp->tv_sec += bt->tv_sec; 1323 tvp->tv_usec += bt->tv_nsec / 1000; 1324 while (tvp->tv_usec >= 1000000) { 1325 tvp->tv_usec -= 1000000; 1326 ++tvp->tv_sec; 1327 } 1328 } 1329 1330 void 1331 getnanotime(struct timespec *tsp) 1332 { 1333 struct globaldata *gd = mycpu; 1334 struct timespec *bt; 1335 sysclock_t delta; 1336 1337 do { 1338 tsp->tv_sec = gd->gd_time_seconds; 1339 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1340 } while (tsp->tv_sec != gd->gd_time_seconds); 1341 1342 if (delta >= sys_cputimer->freq) { 1343 tsp->tv_sec += delta / sys_cputimer->freq; 1344 delta %= sys_cputimer->freq; 1345 } 1346 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1347 1348 bt = &basetime[basetime_index]; 1349 cpu_lfence(); 1350 tsp->tv_sec += bt->tv_sec; 1351 tsp->tv_nsec += bt->tv_nsec; 1352 while (tsp->tv_nsec >= 1000000000) { 1353 tsp->tv_nsec -= 1000000000; 1354 ++tsp->tv_sec; 1355 } 1356 } 1357 1358 static void 1359 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1360 { 1361 struct globaldata *gd = mycpu; 1362 sysclock_t delta; 1363 1364 do { 1365 tsp->tv_sec = gd->gd_time_seconds; 1366 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1367 } while (tsp->tv_sec != gd->gd_time_seconds); 1368 1369 if (delta >= sys_cputimer->freq) { 1370 tsp->tv_sec += delta / sys_cputimer->freq; 1371 delta %= sys_cputimer->freq; 1372 } 1373 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1374 1375 tsp->tv_sec += nbt->tv_sec; 1376 tsp->tv_nsec += nbt->tv_nsec; 1377 while (tsp->tv_nsec >= 1000000000) { 1378 tsp->tv_nsec -= 1000000000; 1379 ++tsp->tv_sec; 1380 } 1381 } 1382 1383 1384 void 1385 microtime(struct timeval *tvp) 1386 { 1387 struct globaldata *gd = mycpu; 1388 struct timespec *bt; 1389 sysclock_t delta; 1390 1391 do { 1392 tvp->tv_sec = gd->gd_time_seconds; 1393 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1394 } while (tvp->tv_sec != gd->gd_time_seconds); 1395 1396 if (delta >= sys_cputimer->freq) { 1397 tvp->tv_sec += delta / sys_cputimer->freq; 1398 delta %= sys_cputimer->freq; 1399 } 1400 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1401 1402 bt = &basetime[basetime_index]; 1403 cpu_lfence(); 1404 tvp->tv_sec += bt->tv_sec; 1405 tvp->tv_usec += bt->tv_nsec / 1000; 1406 while (tvp->tv_usec >= 1000000) { 1407 tvp->tv_usec -= 1000000; 1408 ++tvp->tv_sec; 1409 } 1410 } 1411 1412 void 1413 nanotime(struct timespec *tsp) 1414 { 1415 struct globaldata *gd = mycpu; 1416 struct timespec *bt; 1417 sysclock_t delta; 1418 1419 do { 1420 tsp->tv_sec = gd->gd_time_seconds; 1421 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1422 } while (tsp->tv_sec != gd->gd_time_seconds); 1423 1424 if (delta >= sys_cputimer->freq) { 1425 tsp->tv_sec += delta / sys_cputimer->freq; 1426 delta %= sys_cputimer->freq; 1427 } 1428 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1429 1430 bt = &basetime[basetime_index]; 1431 cpu_lfence(); 1432 tsp->tv_sec += bt->tv_sec; 1433 tsp->tv_nsec += bt->tv_nsec; 1434 while (tsp->tv_nsec >= 1000000000) { 1435 tsp->tv_nsec -= 1000000000; 1436 ++tsp->tv_sec; 1437 } 1438 } 1439 1440 /* 1441 * Get an approximate time_t. It does not have to be accurate. This 1442 * function is called only from KTR and can be called with the system in 1443 * any state so do not use a critical section or other complex operation 1444 * here. 1445 * 1446 * NOTE: This is not exactly synchronized with real time. To do that we 1447 * would have to do what microtime does and check for a nanoseconds 1448 * overflow. 1449 */ 1450 time_t 1451 get_approximate_time_t(void) 1452 { 1453 struct globaldata *gd = mycpu; 1454 struct timespec *bt; 1455 1456 bt = &basetime[basetime_index]; 1457 return(gd->gd_time_seconds + bt->tv_sec); 1458 } 1459 1460 int 1461 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1462 { 1463 pps_params_t *app; 1464 struct pps_fetch_args *fapi; 1465 #ifdef PPS_SYNC 1466 struct pps_kcbind_args *kapi; 1467 #endif 1468 1469 switch (cmd) { 1470 case PPS_IOC_CREATE: 1471 return (0); 1472 case PPS_IOC_DESTROY: 1473 return (0); 1474 case PPS_IOC_SETPARAMS: 1475 app = (pps_params_t *)data; 1476 if (app->mode & ~pps->ppscap) 1477 return (EINVAL); 1478 pps->ppsparam = *app; 1479 return (0); 1480 case PPS_IOC_GETPARAMS: 1481 app = (pps_params_t *)data; 1482 *app = pps->ppsparam; 1483 app->api_version = PPS_API_VERS_1; 1484 return (0); 1485 case PPS_IOC_GETCAP: 1486 *(int*)data = pps->ppscap; 1487 return (0); 1488 case PPS_IOC_FETCH: 1489 fapi = (struct pps_fetch_args *)data; 1490 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1491 return (EINVAL); 1492 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1493 return (EOPNOTSUPP); 1494 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1495 fapi->pps_info_buf = pps->ppsinfo; 1496 return (0); 1497 case PPS_IOC_KCBIND: 1498 #ifdef PPS_SYNC 1499 kapi = (struct pps_kcbind_args *)data; 1500 /* XXX Only root should be able to do this */ 1501 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1502 return (EINVAL); 1503 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1504 return (EINVAL); 1505 if (kapi->edge & ~pps->ppscap) 1506 return (EINVAL); 1507 pps->kcmode = kapi->edge; 1508 return (0); 1509 #else 1510 return (EOPNOTSUPP); 1511 #endif 1512 default: 1513 return (ENOTTY); 1514 } 1515 } 1516 1517 void 1518 pps_init(struct pps_state *pps) 1519 { 1520 pps->ppscap |= PPS_TSFMT_TSPEC; 1521 if (pps->ppscap & PPS_CAPTUREASSERT) 1522 pps->ppscap |= PPS_OFFSETASSERT; 1523 if (pps->ppscap & PPS_CAPTURECLEAR) 1524 pps->ppscap |= PPS_OFFSETCLEAR; 1525 } 1526 1527 void 1528 pps_event(struct pps_state *pps, sysclock_t count, int event) 1529 { 1530 struct globaldata *gd; 1531 struct timespec *tsp; 1532 struct timespec *osp; 1533 struct timespec *bt; 1534 struct timespec ts; 1535 sysclock_t *pcount; 1536 #ifdef PPS_SYNC 1537 sysclock_t tcount; 1538 #endif 1539 sysclock_t delta; 1540 pps_seq_t *pseq; 1541 int foff; 1542 #ifdef PPS_SYNC 1543 int fhard; 1544 #endif 1545 int ni; 1546 1547 gd = mycpu; 1548 1549 /* Things would be easier with arrays... */ 1550 if (event == PPS_CAPTUREASSERT) { 1551 tsp = &pps->ppsinfo.assert_timestamp; 1552 osp = &pps->ppsparam.assert_offset; 1553 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1554 #ifdef PPS_SYNC 1555 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1556 #endif 1557 pcount = &pps->ppscount[0]; 1558 pseq = &pps->ppsinfo.assert_sequence; 1559 } else { 1560 tsp = &pps->ppsinfo.clear_timestamp; 1561 osp = &pps->ppsparam.clear_offset; 1562 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1563 #ifdef PPS_SYNC 1564 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1565 #endif 1566 pcount = &pps->ppscount[1]; 1567 pseq = &pps->ppsinfo.clear_sequence; 1568 } 1569 1570 /* Nothing really happened */ 1571 if (*pcount == count) 1572 return; 1573 1574 *pcount = count; 1575 1576 do { 1577 ts.tv_sec = gd->gd_time_seconds; 1578 delta = count - gd->gd_cpuclock_base; 1579 } while (ts.tv_sec != gd->gd_time_seconds); 1580 1581 if (delta >= sys_cputimer->freq) { 1582 ts.tv_sec += delta / sys_cputimer->freq; 1583 delta %= sys_cputimer->freq; 1584 } 1585 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1586 ni = basetime_index; 1587 cpu_lfence(); 1588 bt = &basetime[ni]; 1589 ts.tv_sec += bt->tv_sec; 1590 ts.tv_nsec += bt->tv_nsec; 1591 while (ts.tv_nsec >= 1000000000) { 1592 ts.tv_nsec -= 1000000000; 1593 ++ts.tv_sec; 1594 } 1595 1596 (*pseq)++; 1597 *tsp = ts; 1598 1599 if (foff) { 1600 timespecadd(tsp, osp); 1601 if (tsp->tv_nsec < 0) { 1602 tsp->tv_nsec += 1000000000; 1603 tsp->tv_sec -= 1; 1604 } 1605 } 1606 #ifdef PPS_SYNC 1607 if (fhard) { 1608 /* magic, at its best... */ 1609 tcount = count - pps->ppscount[2]; 1610 pps->ppscount[2] = count; 1611 if (tcount >= sys_cputimer->freq) { 1612 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1613 sys_cputimer->freq64_nsec * 1614 (tcount % sys_cputimer->freq)) >> 32; 1615 } else { 1616 delta = (sys_cputimer->freq64_nsec * tcount) >> 32; 1617 } 1618 hardpps(tsp, delta); 1619 } 1620 #endif 1621 } 1622 1623 /* 1624 * Return the tsc target value for a delay of (ns). 1625 * 1626 * Returns -1 if the TSC is not supported. 1627 */ 1628 int64_t 1629 tsc_get_target(int ns) 1630 { 1631 #if defined(_RDTSC_SUPPORTED_) 1632 if (cpu_feature & CPUID_TSC) { 1633 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1634 } 1635 #endif 1636 return(-1); 1637 } 1638 1639 /* 1640 * Compare the tsc against the passed target 1641 * 1642 * Returns +1 if the target has been reached 1643 * Returns 0 if the target has not yet been reached 1644 * Returns -1 if the TSC is not supported. 1645 * 1646 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1647 */ 1648 int 1649 tsc_test_target(int64_t target) 1650 { 1651 #if defined(_RDTSC_SUPPORTED_) 1652 if (cpu_feature & CPUID_TSC) { 1653 if ((int64_t)(target - rdtsc()) <= 0) 1654 return(1); 1655 return(0); 1656 } 1657 #endif 1658 return(-1); 1659 } 1660 1661 /* 1662 * Delay the specified number of nanoseconds using the tsc. This function 1663 * returns immediately if the TSC is not supported. At least one cpu_pause() 1664 * will be issued. 1665 */ 1666 void 1667 tsc_delay(int ns) 1668 { 1669 int64_t clk; 1670 1671 clk = tsc_get_target(ns); 1672 cpu_pause(); 1673 while (tsc_test_target(clk) == 0) 1674 cpu_pause(); 1675 } 1676