1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 73 */ 74 75 #include "opt_ntp.h" 76 #include "opt_polling.h" 77 #include "opt_ifpoll.h" 78 #include "opt_pctrack.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/callout.h> 83 #include <sys/kernel.h> 84 #include <sys/kinfo.h> 85 #include <sys/proc.h> 86 #include <sys/malloc.h> 87 #include <sys/resource.h> 88 #include <sys/resourcevar.h> 89 #include <sys/signalvar.h> 90 #include <sys/timex.h> 91 #include <sys/timepps.h> 92 #include <vm/vm.h> 93 #include <sys/lock.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_extern.h> 97 #include <sys/sysctl.h> 98 99 #include <sys/thread2.h> 100 101 #include <machine/cpu.h> 102 #include <machine/limits.h> 103 #include <machine/smp.h> 104 #include <machine/cpufunc.h> 105 #include <machine/specialreg.h> 106 #include <machine/clock.h> 107 108 #ifdef GPROF 109 #include <sys/gmon.h> 110 #endif 111 112 #ifdef DEVICE_POLLING 113 extern void init_device_poll_pcpu(int); 114 #endif 115 116 #ifdef IFPOLL_ENABLE 117 extern void ifpoll_init_pcpu(int); 118 #endif 119 120 #ifdef DEBUG_PCTRACK 121 static void do_pctrack(struct intrframe *frame, int which); 122 #endif 123 124 static void initclocks (void *dummy); 125 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 126 127 /* 128 * Some of these don't belong here, but it's easiest to concentrate them. 129 * Note that cpu_time counts in microseconds, but most userland programs 130 * just compare relative times against the total by delta. 131 */ 132 struct kinfo_cputime cputime_percpu[MAXCPU]; 133 #ifdef DEBUG_PCTRACK 134 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 135 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 136 #endif 137 138 static int 139 sysctl_cputime(SYSCTL_HANDLER_ARGS) 140 { 141 int cpu, error = 0; 142 size_t size = sizeof(struct kinfo_cputime); 143 144 for (cpu = 0; cpu < ncpus; ++cpu) { 145 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size))) 146 break; 147 } 148 149 return (error); 150 } 151 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 152 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 153 154 static int 155 sysctl_cp_time(SYSCTL_HANDLER_ARGS) 156 { 157 long cpu_states[5] = {0}; 158 int cpu, error = 0; 159 size_t size = sizeof(cpu_states); 160 161 for (cpu = 0; cpu < ncpus; ++cpu) { 162 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user; 163 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice; 164 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys; 165 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr; 166 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle; 167 } 168 169 error = SYSCTL_OUT(req, cpu_states, size); 170 171 return (error); 172 } 173 174 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 175 sysctl_cp_time, "LU", "CPU time statistics"); 176 177 /* 178 * boottime is used to calculate the 'real' uptime. Do not confuse this with 179 * microuptime(). microtime() is not drift compensated. The real uptime 180 * with compensation is nanotime() - bootime. boottime is recalculated 181 * whenever the real time is set based on the compensated elapsed time 182 * in seconds (gd->gd_time_seconds). 183 * 184 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 185 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 186 * the real time. 187 */ 188 struct timespec boottime; /* boot time (realtime) for reference only */ 189 time_t time_second; /* read-only 'passive' uptime in seconds */ 190 191 /* 192 * basetime is used to calculate the compensated real time of day. The 193 * basetime can be modified on a per-tick basis by the adjtime(), 194 * ntp_adjtime(), and sysctl-based time correction APIs. 195 * 196 * Note that frequency corrections can also be made by adjusting 197 * gd_cpuclock_base. 198 * 199 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 200 * used on both SMP and UP systems to avoid MP races between cpu's and 201 * interrupt races on UP systems. 202 */ 203 #define BASETIME_ARYSIZE 16 204 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 205 static struct timespec basetime[BASETIME_ARYSIZE]; 206 static volatile int basetime_index; 207 208 static int 209 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 210 { 211 struct timespec *bt; 212 int error; 213 int index; 214 215 /* 216 * Because basetime data and index may be updated by another cpu, 217 * a load fence is required to ensure that the data we read has 218 * not been speculatively read relative to a possibly updated index. 219 */ 220 index = basetime_index; 221 cpu_lfence(); 222 bt = &basetime[index]; 223 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 224 return (error); 225 } 226 227 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 228 &boottime, timespec, "System boottime"); 229 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 230 sysctl_get_basetime, "S,timespec", "System basetime"); 231 232 static void hardclock(systimer_t info, int, struct intrframe *frame); 233 static void statclock(systimer_t info, int, struct intrframe *frame); 234 static void schedclock(systimer_t info, int, struct intrframe *frame); 235 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 236 237 int ticks; /* system master ticks at hz */ 238 int clocks_running; /* tsleep/timeout clocks operational */ 239 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 240 int64_t nsec_acc; /* accumulator */ 241 int sched_ticks; /* global schedule clock ticks */ 242 243 /* NTPD time correction fields */ 244 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 245 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 246 int64_t ntp_delta; /* one-time correction in nsec */ 247 int64_t ntp_big_delta = 1000000000; 248 int32_t ntp_tick_delta; /* current adjustment rate */ 249 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 250 time_t ntp_leap_second; /* time of next leap second */ 251 int ntp_leap_insert; /* whether to insert or remove a second */ 252 253 /* 254 * Finish initializing clock frequencies and start all clocks running. 255 */ 256 /* ARGSUSED*/ 257 static void 258 initclocks(void *dummy) 259 { 260 /*psratio = profhz / stathz;*/ 261 initclocks_pcpu(); 262 clocks_running = 1; 263 } 264 265 /* 266 * Called on a per-cpu basis 267 */ 268 void 269 initclocks_pcpu(void) 270 { 271 struct globaldata *gd = mycpu; 272 273 crit_enter(); 274 if (gd->gd_cpuid == 0) { 275 gd->gd_time_seconds = 1; 276 gd->gd_cpuclock_base = sys_cputimer->count(); 277 } else { 278 /* XXX */ 279 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 280 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 281 } 282 283 systimer_intr_enable(); 284 285 #ifdef DEVICE_POLLING 286 init_device_poll_pcpu(gd->gd_cpuid); 287 #endif 288 289 #ifdef IFPOLL_ENABLE 290 ifpoll_init_pcpu(gd->gd_cpuid); 291 #endif 292 293 /* 294 * Use a non-queued periodic systimer to prevent multiple ticks from 295 * building up if the sysclock jumps forward (8254 gets reset). The 296 * sysclock will never jump backwards. Our time sync is based on 297 * the actual sysclock, not the ticks count. 298 */ 299 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz); 300 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz); 301 /* XXX correct the frequency for scheduler / estcpu tests */ 302 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock, 303 NULL, ESTCPUFREQ); 304 crit_exit(); 305 } 306 307 /* 308 * This sets the current real time of day. Timespecs are in seconds and 309 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 310 * instead we adjust basetime so basetime + gd_* results in the current 311 * time of day. This way the gd_* fields are guarenteed to represent 312 * a monotonically increasing 'uptime' value. 313 * 314 * When set_timeofday() is called from userland, the system call forces it 315 * onto cpu #0 since only cpu #0 can update basetime_index. 316 */ 317 void 318 set_timeofday(struct timespec *ts) 319 { 320 struct timespec *nbt; 321 int ni; 322 323 /* 324 * XXX SMP / non-atomic basetime updates 325 */ 326 crit_enter(); 327 ni = (basetime_index + 1) & BASETIME_ARYMASK; 328 nbt = &basetime[ni]; 329 nanouptime(nbt); 330 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 331 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 332 if (nbt->tv_nsec < 0) { 333 nbt->tv_nsec += 1000000000; 334 --nbt->tv_sec; 335 } 336 337 /* 338 * Note that basetime diverges from boottime as the clock drift is 339 * compensated for, so we cannot do away with boottime. When setting 340 * the absolute time of day the drift is 0 (for an instant) and we 341 * can simply assign boottime to basetime. 342 * 343 * Note that nanouptime() is based on gd_time_seconds which is drift 344 * compensated up to a point (it is guarenteed to remain monotonically 345 * increasing). gd_time_seconds is thus our best uptime guess and 346 * suitable for use in the boottime calculation. It is already taken 347 * into account in the basetime calculation above. 348 */ 349 boottime.tv_sec = nbt->tv_sec; 350 ntp_delta = 0; 351 352 /* 353 * We now have a new basetime, make sure all other cpus have it, 354 * then update the index. 355 */ 356 cpu_sfence(); 357 basetime_index = ni; 358 359 crit_exit(); 360 } 361 362 /* 363 * Each cpu has its own hardclock, but we only increments ticks and softticks 364 * on cpu #0. 365 * 366 * NOTE! systimer! the MP lock might not be held here. We can only safely 367 * manipulate objects owned by the current cpu. 368 */ 369 static void 370 hardclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 371 { 372 sysclock_t cputicks; 373 struct proc *p; 374 struct globaldata *gd = mycpu; 375 376 /* 377 * Realtime updates are per-cpu. Note that timer corrections as 378 * returned by microtime() and friends make an additional adjustment 379 * using a system-wise 'basetime', but the running time is always 380 * taken from the per-cpu globaldata area. Since the same clock 381 * is distributing (XXX SMP) to all cpus, the per-cpu timebases 382 * stay in synch. 383 * 384 * Note that we never allow info->time (aka gd->gd_hardclock.time) 385 * to reverse index gd_cpuclock_base, but that it is possible for 386 * it to temporarily get behind in the seconds if something in the 387 * system locks interrupts for a long period of time. Since periodic 388 * timers count events, though everything should resynch again 389 * immediately. 390 */ 391 cputicks = info->time - gd->gd_cpuclock_base; 392 if (cputicks >= sys_cputimer->freq) { 393 ++gd->gd_time_seconds; 394 gd->gd_cpuclock_base += sys_cputimer->freq; 395 } 396 397 /* 398 * The system-wide ticks counter and NTP related timedelta/tickdelta 399 * adjustments only occur on cpu #0. NTP adjustments are accomplished 400 * by updating basetime. 401 */ 402 if (gd->gd_cpuid == 0) { 403 struct timespec *nbt; 404 struct timespec nts; 405 int leap; 406 int ni; 407 408 ++ticks; 409 410 #if 0 411 if (tco->tc_poll_pps) 412 tco->tc_poll_pps(tco); 413 #endif 414 415 /* 416 * Calculate the new basetime index. We are in a critical section 417 * on cpu #0 and can safely play with basetime_index. Start 418 * with the current basetime and then make adjustments. 419 */ 420 ni = (basetime_index + 1) & BASETIME_ARYMASK; 421 nbt = &basetime[ni]; 422 *nbt = basetime[basetime_index]; 423 424 /* 425 * Apply adjtime corrections. (adjtime() API) 426 * 427 * adjtime() only runs on cpu #0 so our critical section is 428 * sufficient to access these variables. 429 */ 430 if (ntp_delta != 0) { 431 nbt->tv_nsec += ntp_tick_delta; 432 ntp_delta -= ntp_tick_delta; 433 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 434 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 435 ntp_tick_delta = ntp_delta; 436 } 437 } 438 439 /* 440 * Apply permanent frequency corrections. (sysctl API) 441 */ 442 if (ntp_tick_permanent != 0) { 443 ntp_tick_acc += ntp_tick_permanent; 444 if (ntp_tick_acc >= (1LL << 32)) { 445 nbt->tv_nsec += ntp_tick_acc >> 32; 446 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 447 } else if (ntp_tick_acc <= -(1LL << 32)) { 448 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 449 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 450 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 451 } 452 } 453 454 if (nbt->tv_nsec >= 1000000000) { 455 nbt->tv_sec++; 456 nbt->tv_nsec -= 1000000000; 457 } else if (nbt->tv_nsec < 0) { 458 nbt->tv_sec--; 459 nbt->tv_nsec += 1000000000; 460 } 461 462 /* 463 * Another per-tick compensation. (for ntp_adjtime() API) 464 */ 465 if (nsec_adj != 0) { 466 nsec_acc += nsec_adj; 467 if (nsec_acc >= 0x100000000LL) { 468 nbt->tv_nsec += nsec_acc >> 32; 469 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 470 } else if (nsec_acc <= -0x100000000LL) { 471 nbt->tv_nsec -= -nsec_acc >> 32; 472 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 473 } 474 if (nbt->tv_nsec >= 1000000000) { 475 nbt->tv_nsec -= 1000000000; 476 ++nbt->tv_sec; 477 } else if (nbt->tv_nsec < 0) { 478 nbt->tv_nsec += 1000000000; 479 --nbt->tv_sec; 480 } 481 } 482 483 /************************************************************ 484 * LEAP SECOND CORRECTION * 485 ************************************************************ 486 * 487 * Taking into account all the corrections made above, figure 488 * out the new real time. If the seconds field has changed 489 * then apply any pending leap-second corrections. 490 */ 491 getnanotime_nbt(nbt, &nts); 492 493 if (time_second != nts.tv_sec) { 494 /* 495 * Apply leap second (sysctl API). Adjust nts for changes 496 * so we do not have to call getnanotime_nbt again. 497 */ 498 if (ntp_leap_second) { 499 if (ntp_leap_second == nts.tv_sec) { 500 if (ntp_leap_insert) { 501 nbt->tv_sec++; 502 nts.tv_sec++; 503 } else { 504 nbt->tv_sec--; 505 nts.tv_sec--; 506 } 507 ntp_leap_second--; 508 } 509 } 510 511 /* 512 * Apply leap second (ntp_adjtime() API), calculate a new 513 * nsec_adj field. ntp_update_second() returns nsec_adj 514 * as a per-second value but we need it as a per-tick value. 515 */ 516 leap = ntp_update_second(time_second, &nsec_adj); 517 nsec_adj /= hz; 518 nbt->tv_sec += leap; 519 nts.tv_sec += leap; 520 521 /* 522 * Update the time_second 'approximate time' global. 523 */ 524 time_second = nts.tv_sec; 525 } 526 527 /* 528 * Finally, our new basetime is ready to go live! 529 */ 530 cpu_sfence(); 531 basetime_index = ni; 532 } 533 534 /* 535 * lwkt thread scheduler fair queueing 536 */ 537 lwkt_schedulerclock(curthread); 538 539 /* 540 * softticks are handled for all cpus 541 */ 542 hardclock_softtick(gd); 543 544 /* 545 * ITimer handling is per-tick, per-cpu. 546 * 547 * We must acquire the per-process token in order for ksignal() 548 * to be non-blocking. For the moment this requires an AST fault, 549 * the ksignal() cannot be safely issued from this hard interrupt. 550 * 551 * XXX Even the trytoken here isn't right, and itimer operation in 552 * a multi threaded environment is going to be weird at the 553 * very least. 554 */ 555 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) { 556 crit_enter_hard(); 557 if (frame && CLKF_USERMODE(frame) && 558 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 559 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) { 560 p->p_flags |= P_SIGVTALRM; 561 need_user_resched(); 562 } 563 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 564 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) { 565 p->p_flags |= P_SIGPROF; 566 need_user_resched(); 567 } 568 crit_exit_hard(); 569 lwkt_reltoken(&p->p_token); 570 } 571 setdelayed(); 572 } 573 574 /* 575 * The statistics clock typically runs at a 125Hz rate, and is intended 576 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 577 * 578 * NOTE! systimer! the MP lock might not be held here. We can only safely 579 * manipulate objects owned by the current cpu. 580 * 581 * The stats clock is responsible for grabbing a profiling sample. 582 * Most of the statistics are only used by user-level statistics programs. 583 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 584 * p->p_estcpu. 585 * 586 * Like the other clocks, the stat clock is called from what is effectively 587 * a fast interrupt, so the context should be the thread/process that got 588 * interrupted. 589 */ 590 static void 591 statclock(systimer_t info, int in_ipi, struct intrframe *frame) 592 { 593 #ifdef GPROF 594 struct gmonparam *g; 595 int i; 596 #endif 597 thread_t td; 598 struct proc *p; 599 int bump; 600 struct timeval tv; 601 struct timeval *stv; 602 603 /* 604 * How big was our timeslice relative to the last time? 605 */ 606 microuptime(&tv); /* mpsafe */ 607 stv = &mycpu->gd_stattv; 608 if (stv->tv_sec == 0) { 609 bump = 1; 610 } else { 611 bump = tv.tv_usec - stv->tv_usec + 612 (tv.tv_sec - stv->tv_sec) * 1000000; 613 if (bump < 0) 614 bump = 0; 615 if (bump > 1000000) 616 bump = 1000000; 617 } 618 *stv = tv; 619 620 td = curthread; 621 p = td->td_proc; 622 623 if (frame && CLKF_USERMODE(frame)) { 624 /* 625 * Came from userland, handle user time and deal with 626 * possible process. 627 */ 628 if (p && (p->p_flags & P_PROFIL)) 629 addupc_intr(p, CLKF_PC(frame), 1); 630 td->td_uticks += bump; 631 632 /* 633 * Charge the time as appropriate 634 */ 635 if (p && p->p_nice > NZERO) 636 cpu_time.cp_nice += bump; 637 else 638 cpu_time.cp_user += bump; 639 } else { 640 int intr_nest = mycpu->gd_intr_nesting_level; 641 642 if (in_ipi) { 643 /* 644 * IPI processing code will bump gd_intr_nesting_level 645 * up by one, which breaks following CLKF_INTR testing, 646 * so we substract it by one here. 647 */ 648 --intr_nest; 649 } 650 #ifdef GPROF 651 /* 652 * Kernel statistics are just like addupc_intr, only easier. 653 */ 654 g = &_gmonparam; 655 if (g->state == GMON_PROF_ON && frame) { 656 i = CLKF_PC(frame) - g->lowpc; 657 if (i < g->textsize) { 658 i /= HISTFRACTION * sizeof(*g->kcount); 659 g->kcount[i]++; 660 } 661 } 662 #endif 663 664 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td)) 665 666 /* 667 * Came from kernel mode, so we were: 668 * - handling an interrupt, 669 * - doing syscall or trap work on behalf of the current 670 * user process, or 671 * - spinning in the idle loop. 672 * Whichever it is, charge the time as appropriate. 673 * Note that we charge interrupts to the current process, 674 * regardless of whether they are ``for'' that process, 675 * so that we know how much of its real time was spent 676 * in ``non-process'' (i.e., interrupt) work. 677 * 678 * XXX assume system if frame is NULL. A NULL frame 679 * can occur if ipi processing is done from a crit_exit(). 680 */ 681 if (IS_INTR_RUNNING) 682 td->td_iticks += bump; 683 else 684 td->td_sticks += bump; 685 686 if (IS_INTR_RUNNING) { 687 #ifdef DEBUG_PCTRACK 688 if (frame) 689 do_pctrack(frame, PCTRACK_INT); 690 #endif 691 cpu_time.cp_intr += bump; 692 } else { 693 if (td == &mycpu->gd_idlethread) { 694 cpu_time.cp_idle += bump; 695 } else { 696 #ifdef DEBUG_PCTRACK 697 if (frame) 698 do_pctrack(frame, PCTRACK_SYS); 699 #endif 700 cpu_time.cp_sys += bump; 701 } 702 } 703 704 #undef IS_INTR_RUNNING 705 } 706 } 707 708 #ifdef DEBUG_PCTRACK 709 /* 710 * Sample the PC when in the kernel or in an interrupt. User code can 711 * retrieve the information and generate a histogram or other output. 712 */ 713 714 static void 715 do_pctrack(struct intrframe *frame, int which) 716 { 717 struct kinfo_pctrack *pctrack; 718 719 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 720 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 721 (void *)CLKF_PC(frame); 722 ++pctrack->pc_index; 723 } 724 725 static int 726 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 727 { 728 struct kinfo_pcheader head; 729 int error; 730 int cpu; 731 int ntrack; 732 733 head.pc_ntrack = PCTRACK_SIZE; 734 head.pc_arysize = PCTRACK_ARYSIZE; 735 736 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 737 return (error); 738 739 for (cpu = 0; cpu < ncpus; ++cpu) { 740 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 741 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 742 sizeof(struct kinfo_pctrack)); 743 if (error) 744 break; 745 } 746 if (error) 747 break; 748 } 749 return (error); 750 } 751 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 752 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 753 754 #endif 755 756 /* 757 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 758 * the MP lock might not be held. We can safely manipulate parts of curproc 759 * but that's about it. 760 * 761 * Each cpu has its own scheduler clock. 762 */ 763 static void 764 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 765 { 766 struct lwp *lp; 767 struct rusage *ru; 768 struct vmspace *vm; 769 long rss; 770 771 if ((lp = lwkt_preempted_proc()) != NULL) { 772 /* 773 * Account for cpu time used and hit the scheduler. Note 774 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 775 * HERE. 776 */ 777 ++lp->lwp_cpticks; 778 usched_schedulerclock(lp, info->periodic, info->time); 779 } else { 780 usched_schedulerclock(NULL, info->periodic, info->time); 781 } 782 if ((lp = curthread->td_lwp) != NULL) { 783 /* 784 * Update resource usage integrals and maximums. 785 */ 786 if ((ru = &lp->lwp_proc->p_ru) && 787 (vm = lp->lwp_proc->p_vmspace) != NULL) { 788 ru->ru_ixrss += pgtok(vm->vm_tsize); 789 ru->ru_idrss += pgtok(vm->vm_dsize); 790 ru->ru_isrss += pgtok(vm->vm_ssize); 791 if (lwkt_trytoken(&vm->vm_map.token)) { 792 rss = pgtok(vmspace_resident_count(vm)); 793 if (ru->ru_maxrss < rss) 794 ru->ru_maxrss = rss; 795 lwkt_reltoken(&vm->vm_map.token); 796 } 797 } 798 } 799 /* Increment the global sched_ticks */ 800 if (mycpu->gd_cpuid == 0) 801 ++sched_ticks; 802 } 803 804 /* 805 * Compute number of ticks for the specified amount of time. The 806 * return value is intended to be used in a clock interrupt timed 807 * operation and guarenteed to meet or exceed the requested time. 808 * If the representation overflows, return INT_MAX. The minimum return 809 * value is 1 ticks and the function will average the calculation up. 810 * If any value greater then 0 microseconds is supplied, a value 811 * of at least 2 will be returned to ensure that a near-term clock 812 * interrupt does not cause the timeout to occur (degenerately) early. 813 * 814 * Note that limit checks must take into account microseconds, which is 815 * done simply by using the smaller signed long maximum instead of 816 * the unsigned long maximum. 817 * 818 * If ints have 32 bits, then the maximum value for any timeout in 819 * 10ms ticks is 248 days. 820 */ 821 int 822 tvtohz_high(struct timeval *tv) 823 { 824 int ticks; 825 long sec, usec; 826 827 sec = tv->tv_sec; 828 usec = tv->tv_usec; 829 if (usec < 0) { 830 sec--; 831 usec += 1000000; 832 } 833 if (sec < 0) { 834 #ifdef DIAGNOSTIC 835 if (usec > 0) { 836 sec++; 837 usec -= 1000000; 838 } 839 kprintf("tvtohz_high: negative time difference " 840 "%ld sec %ld usec\n", 841 sec, usec); 842 #endif 843 ticks = 1; 844 } else if (sec <= INT_MAX / hz) { 845 ticks = (int)(sec * hz + 846 ((u_long)usec + (ustick - 1)) / ustick) + 1; 847 } else { 848 ticks = INT_MAX; 849 } 850 return (ticks); 851 } 852 853 int 854 tstohz_high(struct timespec *ts) 855 { 856 int ticks; 857 long sec, nsec; 858 859 sec = ts->tv_sec; 860 nsec = ts->tv_nsec; 861 if (nsec < 0) { 862 sec--; 863 nsec += 1000000000; 864 } 865 if (sec < 0) { 866 #ifdef DIAGNOSTIC 867 if (nsec > 0) { 868 sec++; 869 nsec -= 1000000000; 870 } 871 kprintf("tstohz_high: negative time difference " 872 "%ld sec %ld nsec\n", 873 sec, nsec); 874 #endif 875 ticks = 1; 876 } else if (sec <= INT_MAX / hz) { 877 ticks = (int)(sec * hz + 878 ((u_long)nsec + (nstick - 1)) / nstick) + 1; 879 } else { 880 ticks = INT_MAX; 881 } 882 return (ticks); 883 } 884 885 886 /* 887 * Compute number of ticks for the specified amount of time, erroring on 888 * the side of it being too low to ensure that sleeping the returned number 889 * of ticks will not result in a late return. 890 * 891 * The supplied timeval may not be negative and should be normalized. A 892 * return value of 0 is possible if the timeval converts to less then 893 * 1 tick. 894 * 895 * If ints have 32 bits, then the maximum value for any timeout in 896 * 10ms ticks is 248 days. 897 */ 898 int 899 tvtohz_low(struct timeval *tv) 900 { 901 int ticks; 902 long sec; 903 904 sec = tv->tv_sec; 905 if (sec <= INT_MAX / hz) 906 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 907 else 908 ticks = INT_MAX; 909 return (ticks); 910 } 911 912 int 913 tstohz_low(struct timespec *ts) 914 { 915 int ticks; 916 long sec; 917 918 sec = ts->tv_sec; 919 if (sec <= INT_MAX / hz) 920 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 921 else 922 ticks = INT_MAX; 923 return (ticks); 924 } 925 926 /* 927 * Start profiling on a process. 928 * 929 * Kernel profiling passes proc0 which never exits and hence 930 * keeps the profile clock running constantly. 931 */ 932 void 933 startprofclock(struct proc *p) 934 { 935 if ((p->p_flags & P_PROFIL) == 0) { 936 p->p_flags |= P_PROFIL; 937 #if 0 /* XXX */ 938 if (++profprocs == 1 && stathz != 0) { 939 crit_enter(); 940 psdiv = psratio; 941 setstatclockrate(profhz); 942 crit_exit(); 943 } 944 #endif 945 } 946 } 947 948 /* 949 * Stop profiling on a process. 950 * 951 * caller must hold p->p_token 952 */ 953 void 954 stopprofclock(struct proc *p) 955 { 956 if (p->p_flags & P_PROFIL) { 957 p->p_flags &= ~P_PROFIL; 958 #if 0 /* XXX */ 959 if (--profprocs == 0 && stathz != 0) { 960 crit_enter(); 961 psdiv = 1; 962 setstatclockrate(stathz); 963 crit_exit(); 964 } 965 #endif 966 } 967 } 968 969 /* 970 * Return information about system clocks. 971 */ 972 static int 973 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 974 { 975 struct kinfo_clockinfo clkinfo; 976 /* 977 * Construct clockinfo structure. 978 */ 979 clkinfo.ci_hz = hz; 980 clkinfo.ci_tick = ustick; 981 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 982 clkinfo.ci_profhz = profhz; 983 clkinfo.ci_stathz = stathz ? stathz : hz; 984 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 985 } 986 987 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 988 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 989 990 /* 991 * We have eight functions for looking at the clock, four for 992 * microseconds and four for nanoseconds. For each there is fast 993 * but less precise version "get{nano|micro}[up]time" which will 994 * return a time which is up to 1/HZ previous to the call, whereas 995 * the raw version "{nano|micro}[up]time" will return a timestamp 996 * which is as precise as possible. The "up" variants return the 997 * time relative to system boot, these are well suited for time 998 * interval measurements. 999 * 1000 * Each cpu independantly maintains the current time of day, so all 1001 * we need to do to protect ourselves from changes is to do a loop 1002 * check on the seconds field changing out from under us. 1003 * 1004 * The system timer maintains a 32 bit count and due to various issues 1005 * it is possible for the calculated delta to occassionally exceed 1006 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 1007 * multiplication can easily overflow, so we deal with the case. For 1008 * uniformity we deal with the case in the usec case too. 1009 * 1010 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 1011 */ 1012 void 1013 getmicrouptime(struct timeval *tvp) 1014 { 1015 struct globaldata *gd = mycpu; 1016 sysclock_t delta; 1017 1018 do { 1019 tvp->tv_sec = gd->gd_time_seconds; 1020 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1021 } while (tvp->tv_sec != gd->gd_time_seconds); 1022 1023 if (delta >= sys_cputimer->freq) { 1024 tvp->tv_sec += delta / sys_cputimer->freq; 1025 delta %= sys_cputimer->freq; 1026 } 1027 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1028 if (tvp->tv_usec >= 1000000) { 1029 tvp->tv_usec -= 1000000; 1030 ++tvp->tv_sec; 1031 } 1032 } 1033 1034 void 1035 getnanouptime(struct timespec *tsp) 1036 { 1037 struct globaldata *gd = mycpu; 1038 sysclock_t delta; 1039 1040 do { 1041 tsp->tv_sec = gd->gd_time_seconds; 1042 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1043 } while (tsp->tv_sec != gd->gd_time_seconds); 1044 1045 if (delta >= sys_cputimer->freq) { 1046 tsp->tv_sec += delta / sys_cputimer->freq; 1047 delta %= sys_cputimer->freq; 1048 } 1049 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1050 } 1051 1052 void 1053 microuptime(struct timeval *tvp) 1054 { 1055 struct globaldata *gd = mycpu; 1056 sysclock_t delta; 1057 1058 do { 1059 tvp->tv_sec = gd->gd_time_seconds; 1060 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1061 } while (tvp->tv_sec != gd->gd_time_seconds); 1062 1063 if (delta >= sys_cputimer->freq) { 1064 tvp->tv_sec += delta / sys_cputimer->freq; 1065 delta %= sys_cputimer->freq; 1066 } 1067 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1068 } 1069 1070 void 1071 nanouptime(struct timespec *tsp) 1072 { 1073 struct globaldata *gd = mycpu; 1074 sysclock_t delta; 1075 1076 do { 1077 tsp->tv_sec = gd->gd_time_seconds; 1078 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1079 } while (tsp->tv_sec != gd->gd_time_seconds); 1080 1081 if (delta >= sys_cputimer->freq) { 1082 tsp->tv_sec += delta / sys_cputimer->freq; 1083 delta %= sys_cputimer->freq; 1084 } 1085 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1086 } 1087 1088 /* 1089 * realtime routines 1090 */ 1091 void 1092 getmicrotime(struct timeval *tvp) 1093 { 1094 struct globaldata *gd = mycpu; 1095 struct timespec *bt; 1096 sysclock_t delta; 1097 1098 do { 1099 tvp->tv_sec = gd->gd_time_seconds; 1100 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1101 } while (tvp->tv_sec != gd->gd_time_seconds); 1102 1103 if (delta >= sys_cputimer->freq) { 1104 tvp->tv_sec += delta / sys_cputimer->freq; 1105 delta %= sys_cputimer->freq; 1106 } 1107 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1108 1109 bt = &basetime[basetime_index]; 1110 tvp->tv_sec += bt->tv_sec; 1111 tvp->tv_usec += bt->tv_nsec / 1000; 1112 while (tvp->tv_usec >= 1000000) { 1113 tvp->tv_usec -= 1000000; 1114 ++tvp->tv_sec; 1115 } 1116 } 1117 1118 void 1119 getnanotime(struct timespec *tsp) 1120 { 1121 struct globaldata *gd = mycpu; 1122 struct timespec *bt; 1123 sysclock_t delta; 1124 1125 do { 1126 tsp->tv_sec = gd->gd_time_seconds; 1127 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1128 } while (tsp->tv_sec != gd->gd_time_seconds); 1129 1130 if (delta >= sys_cputimer->freq) { 1131 tsp->tv_sec += delta / sys_cputimer->freq; 1132 delta %= sys_cputimer->freq; 1133 } 1134 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1135 1136 bt = &basetime[basetime_index]; 1137 tsp->tv_sec += bt->tv_sec; 1138 tsp->tv_nsec += bt->tv_nsec; 1139 while (tsp->tv_nsec >= 1000000000) { 1140 tsp->tv_nsec -= 1000000000; 1141 ++tsp->tv_sec; 1142 } 1143 } 1144 1145 static void 1146 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1147 { 1148 struct globaldata *gd = mycpu; 1149 sysclock_t delta; 1150 1151 do { 1152 tsp->tv_sec = gd->gd_time_seconds; 1153 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1154 } while (tsp->tv_sec != gd->gd_time_seconds); 1155 1156 if (delta >= sys_cputimer->freq) { 1157 tsp->tv_sec += delta / sys_cputimer->freq; 1158 delta %= sys_cputimer->freq; 1159 } 1160 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1161 1162 tsp->tv_sec += nbt->tv_sec; 1163 tsp->tv_nsec += nbt->tv_nsec; 1164 while (tsp->tv_nsec >= 1000000000) { 1165 tsp->tv_nsec -= 1000000000; 1166 ++tsp->tv_sec; 1167 } 1168 } 1169 1170 1171 void 1172 microtime(struct timeval *tvp) 1173 { 1174 struct globaldata *gd = mycpu; 1175 struct timespec *bt; 1176 sysclock_t delta; 1177 1178 do { 1179 tvp->tv_sec = gd->gd_time_seconds; 1180 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1181 } while (tvp->tv_sec != gd->gd_time_seconds); 1182 1183 if (delta >= sys_cputimer->freq) { 1184 tvp->tv_sec += delta / sys_cputimer->freq; 1185 delta %= sys_cputimer->freq; 1186 } 1187 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1188 1189 bt = &basetime[basetime_index]; 1190 tvp->tv_sec += bt->tv_sec; 1191 tvp->tv_usec += bt->tv_nsec / 1000; 1192 while (tvp->tv_usec >= 1000000) { 1193 tvp->tv_usec -= 1000000; 1194 ++tvp->tv_sec; 1195 } 1196 } 1197 1198 void 1199 nanotime(struct timespec *tsp) 1200 { 1201 struct globaldata *gd = mycpu; 1202 struct timespec *bt; 1203 sysclock_t delta; 1204 1205 do { 1206 tsp->tv_sec = gd->gd_time_seconds; 1207 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1208 } while (tsp->tv_sec != gd->gd_time_seconds); 1209 1210 if (delta >= sys_cputimer->freq) { 1211 tsp->tv_sec += delta / sys_cputimer->freq; 1212 delta %= sys_cputimer->freq; 1213 } 1214 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1215 1216 bt = &basetime[basetime_index]; 1217 tsp->tv_sec += bt->tv_sec; 1218 tsp->tv_nsec += bt->tv_nsec; 1219 while (tsp->tv_nsec >= 1000000000) { 1220 tsp->tv_nsec -= 1000000000; 1221 ++tsp->tv_sec; 1222 } 1223 } 1224 1225 /* 1226 * note: this is not exactly synchronized with real time. To do that we 1227 * would have to do what microtime does and check for a nanoseconds overflow. 1228 */ 1229 time_t 1230 get_approximate_time_t(void) 1231 { 1232 struct globaldata *gd = mycpu; 1233 struct timespec *bt; 1234 1235 bt = &basetime[basetime_index]; 1236 return(gd->gd_time_seconds + bt->tv_sec); 1237 } 1238 1239 int 1240 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1241 { 1242 pps_params_t *app; 1243 struct pps_fetch_args *fapi; 1244 #ifdef PPS_SYNC 1245 struct pps_kcbind_args *kapi; 1246 #endif 1247 1248 switch (cmd) { 1249 case PPS_IOC_CREATE: 1250 return (0); 1251 case PPS_IOC_DESTROY: 1252 return (0); 1253 case PPS_IOC_SETPARAMS: 1254 app = (pps_params_t *)data; 1255 if (app->mode & ~pps->ppscap) 1256 return (EINVAL); 1257 pps->ppsparam = *app; 1258 return (0); 1259 case PPS_IOC_GETPARAMS: 1260 app = (pps_params_t *)data; 1261 *app = pps->ppsparam; 1262 app->api_version = PPS_API_VERS_1; 1263 return (0); 1264 case PPS_IOC_GETCAP: 1265 *(int*)data = pps->ppscap; 1266 return (0); 1267 case PPS_IOC_FETCH: 1268 fapi = (struct pps_fetch_args *)data; 1269 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1270 return (EINVAL); 1271 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1272 return (EOPNOTSUPP); 1273 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1274 fapi->pps_info_buf = pps->ppsinfo; 1275 return (0); 1276 case PPS_IOC_KCBIND: 1277 #ifdef PPS_SYNC 1278 kapi = (struct pps_kcbind_args *)data; 1279 /* XXX Only root should be able to do this */ 1280 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1281 return (EINVAL); 1282 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1283 return (EINVAL); 1284 if (kapi->edge & ~pps->ppscap) 1285 return (EINVAL); 1286 pps->kcmode = kapi->edge; 1287 return (0); 1288 #else 1289 return (EOPNOTSUPP); 1290 #endif 1291 default: 1292 return (ENOTTY); 1293 } 1294 } 1295 1296 void 1297 pps_init(struct pps_state *pps) 1298 { 1299 pps->ppscap |= PPS_TSFMT_TSPEC; 1300 if (pps->ppscap & PPS_CAPTUREASSERT) 1301 pps->ppscap |= PPS_OFFSETASSERT; 1302 if (pps->ppscap & PPS_CAPTURECLEAR) 1303 pps->ppscap |= PPS_OFFSETCLEAR; 1304 } 1305 1306 void 1307 pps_event(struct pps_state *pps, sysclock_t count, int event) 1308 { 1309 struct globaldata *gd; 1310 struct timespec *tsp; 1311 struct timespec *osp; 1312 struct timespec *bt; 1313 struct timespec ts; 1314 sysclock_t *pcount; 1315 #ifdef PPS_SYNC 1316 sysclock_t tcount; 1317 #endif 1318 sysclock_t delta; 1319 pps_seq_t *pseq; 1320 int foff; 1321 int fhard; 1322 1323 gd = mycpu; 1324 1325 /* Things would be easier with arrays... */ 1326 if (event == PPS_CAPTUREASSERT) { 1327 tsp = &pps->ppsinfo.assert_timestamp; 1328 osp = &pps->ppsparam.assert_offset; 1329 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1330 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1331 pcount = &pps->ppscount[0]; 1332 pseq = &pps->ppsinfo.assert_sequence; 1333 } else { 1334 tsp = &pps->ppsinfo.clear_timestamp; 1335 osp = &pps->ppsparam.clear_offset; 1336 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1337 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1338 pcount = &pps->ppscount[1]; 1339 pseq = &pps->ppsinfo.clear_sequence; 1340 } 1341 1342 /* Nothing really happened */ 1343 if (*pcount == count) 1344 return; 1345 1346 *pcount = count; 1347 1348 do { 1349 ts.tv_sec = gd->gd_time_seconds; 1350 delta = count - gd->gd_cpuclock_base; 1351 } while (ts.tv_sec != gd->gd_time_seconds); 1352 1353 if (delta >= sys_cputimer->freq) { 1354 ts.tv_sec += delta / sys_cputimer->freq; 1355 delta %= sys_cputimer->freq; 1356 } 1357 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1358 bt = &basetime[basetime_index]; 1359 ts.tv_sec += bt->tv_sec; 1360 ts.tv_nsec += bt->tv_nsec; 1361 while (ts.tv_nsec >= 1000000000) { 1362 ts.tv_nsec -= 1000000000; 1363 ++ts.tv_sec; 1364 } 1365 1366 (*pseq)++; 1367 *tsp = ts; 1368 1369 if (foff) { 1370 timespecadd(tsp, osp); 1371 if (tsp->tv_nsec < 0) { 1372 tsp->tv_nsec += 1000000000; 1373 tsp->tv_sec -= 1; 1374 } 1375 } 1376 #ifdef PPS_SYNC 1377 if (fhard) { 1378 /* magic, at its best... */ 1379 tcount = count - pps->ppscount[2]; 1380 pps->ppscount[2] = count; 1381 if (tcount >= sys_cputimer->freq) { 1382 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1383 sys_cputimer->freq64_nsec * 1384 (tcount % sys_cputimer->freq)) >> 32; 1385 } else { 1386 delta = (sys_cputimer->freq64_nsec * tcount) >> 32; 1387 } 1388 hardpps(tsp, delta); 1389 } 1390 #endif 1391 } 1392 1393 /* 1394 * Return the tsc target value for a delay of (ns). 1395 * 1396 * Returns -1 if the TSC is not supported. 1397 */ 1398 int64_t 1399 tsc_get_target(int ns) 1400 { 1401 #if defined(_RDTSC_SUPPORTED_) 1402 if (cpu_feature & CPUID_TSC) { 1403 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1404 } 1405 #endif 1406 return(-1); 1407 } 1408 1409 /* 1410 * Compare the tsc against the passed target 1411 * 1412 * Returns +1 if the target has been reached 1413 * Returns 0 if the target has not yet been reached 1414 * Returns -1 if the TSC is not supported. 1415 * 1416 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1417 */ 1418 int 1419 tsc_test_target(int64_t target) 1420 { 1421 #if defined(_RDTSC_SUPPORTED_) 1422 if (cpu_feature & CPUID_TSC) { 1423 if ((int64_t)(target - rdtsc()) <= 0) 1424 return(1); 1425 return(0); 1426 } 1427 #endif 1428 return(-1); 1429 } 1430 1431 /* 1432 * Delay the specified number of nanoseconds using the tsc. This function 1433 * returns immediately if the TSC is not supported. At least one cpu_pause() 1434 * will be issued. 1435 */ 1436 void 1437 tsc_delay(int ns) 1438 { 1439 int64_t clk; 1440 1441 clk = tsc_get_target(ns); 1442 cpu_pause(); 1443 while (tsc_test_target(clk) == 0) 1444 cpu_pause(); 1445 } 1446