1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 69 */ 70 71 #include "opt_ntp.h" 72 #include "opt_pctrack.h" 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/callout.h> 77 #include <sys/kernel.h> 78 #include <sys/kinfo.h> 79 #include <sys/proc.h> 80 #include <sys/malloc.h> 81 #include <sys/resource.h> 82 #include <sys/resourcevar.h> 83 #include <sys/signalvar.h> 84 #include <sys/caps.h> 85 #include <sys/timex.h> 86 #include <sys/timepps.h> 87 #include <sys/upmap.h> 88 #include <sys/lock.h> 89 #include <sys/sysctl.h> 90 #include <sys/kcollect.h> 91 #include <sys/exislock.h> 92 #include <sys/exislock2.h> 93 94 #include <vm/vm.h> 95 #include <vm/pmap.h> 96 #include <vm/vm_map.h> 97 #include <vm/vm_extern.h> 98 99 #include <sys/thread2.h> 100 #include <sys/spinlock2.h> 101 102 #include <machine/cpu.h> 103 #include <machine/limits.h> 104 #include <machine/smp.h> 105 #include <machine/cpufunc.h> 106 #include <machine/specialreg.h> 107 #include <machine/clock.h> 108 109 #ifdef DEBUG_PCTRACK 110 static void do_pctrack(struct intrframe *frame, int which); 111 #endif 112 113 static void initclocks (void *dummy); 114 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL); 115 116 /* 117 * Some of these don't belong here, but it's easiest to concentrate them. 118 * Note that cpu_time counts in microseconds, but most userland programs 119 * just compare relative times against the total by delta. 120 */ 121 struct kinfo_cputime cputime_percpu[MAXCPU]; 122 #ifdef DEBUG_PCTRACK 123 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 124 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 125 #endif 126 127 __read_mostly static int sniff_enable = 1; 128 __read_mostly static int sniff_target = -1; 129 __read_mostly static int clock_debug2 = 0; 130 SYSCTL_INT(_kern, OID_AUTO, sniff_enable, CTLFLAG_RW, &sniff_enable, 0 , ""); 131 SYSCTL_INT(_kern, OID_AUTO, sniff_target, CTLFLAG_RW, &sniff_target, 0 , ""); 132 SYSCTL_INT(_debug, OID_AUTO, clock_debug2, CTLFLAG_RW, &clock_debug2, 0 , ""); 133 134 __read_mostly long pseudo_ticks = 1; /* existential timed locks */ 135 136 static int 137 sysctl_cputime(SYSCTL_HANDLER_ARGS) 138 { 139 int cpu, error = 0; 140 int root_error; 141 size_t size = sizeof(struct kinfo_cputime); 142 struct kinfo_cputime tmp; 143 144 /* 145 * NOTE: For security reasons, only root can sniff %rip 146 */ 147 root_error = caps_priv_check_self(SYSCAP_RESTRICTEDROOT); 148 149 for (cpu = 0; cpu < ncpus; ++cpu) { 150 tmp = cputime_percpu[cpu]; 151 if (root_error == 0) { 152 tmp.cp_sample_pc = 153 (int64_t)globaldata_find(cpu)->gd_sample_pc; 154 tmp.cp_sample_sp = 155 (int64_t)globaldata_find(cpu)->gd_sample_sp; 156 } 157 if ((error = SYSCTL_OUT(req, &tmp, size)) != 0) 158 break; 159 } 160 161 if (root_error == 0) { 162 if (sniff_enable) { 163 int n = sniff_target; 164 if (n < 0) 165 smp_sniff(); 166 else if (n < ncpus) 167 cpu_sniff(n); 168 } 169 } 170 171 return (error); 172 } 173 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 174 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 175 176 static int 177 sysctl_cp_time(SYSCTL_HANDLER_ARGS) 178 { 179 long cpu_states[CPUSTATES] = {0}; 180 int cpu, error = 0; 181 size_t size = sizeof(cpu_states); 182 183 for (cpu = 0; cpu < ncpus; ++cpu) { 184 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user; 185 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice; 186 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys; 187 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr; 188 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle; 189 } 190 191 error = SYSCTL_OUT(req, cpu_states, size); 192 193 return (error); 194 } 195 196 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 197 sysctl_cp_time, "LU", "CPU time statistics"); 198 199 static int 200 sysctl_cp_times(SYSCTL_HANDLER_ARGS) 201 { 202 long cpu_states[CPUSTATES] = {0}; 203 int cpu, error; 204 size_t size = sizeof(cpu_states); 205 206 for (error = 0, cpu = 0; error == 0 && cpu < ncpus; ++cpu) { 207 cpu_states[CP_USER] = cputime_percpu[cpu].cp_user; 208 cpu_states[CP_NICE] = cputime_percpu[cpu].cp_nice; 209 cpu_states[CP_SYS] = cputime_percpu[cpu].cp_sys; 210 cpu_states[CP_INTR] = cputime_percpu[cpu].cp_intr; 211 cpu_states[CP_IDLE] = cputime_percpu[cpu].cp_idle; 212 error = SYSCTL_OUT(req, cpu_states, size); 213 } 214 215 return (error); 216 } 217 218 SYSCTL_PROC(_kern, OID_AUTO, cp_times, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 219 sysctl_cp_times, "LU", "per-CPU time statistics"); 220 221 /* 222 * boottime is used to calculate the 'real' uptime. Do not confuse this with 223 * microuptime(). microtime() is not drift compensated. The real uptime 224 * with compensation is nanotime() - bootime. boottime is recalculated 225 * whenever the real time is set based on the compensated elapsed time 226 * in seconds (gd->gd_time_seconds). 227 * 228 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 229 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 230 * the real time. 231 * 232 * WARNING! time_second can backstep on time corrections. Also, unlike 233 * time_second, time_uptime is not a "real" time_t (seconds 234 * since the Epoch) but seconds since booting. 235 */ 236 __read_mostly struct timespec boottime; /* boot time (realtime) for ref only */ 237 __read_mostly struct timespec ticktime0;/* updated every tick */ 238 __read_mostly struct timespec ticktime2;/* updated every tick */ 239 __read_mostly int ticktime_update; 240 __read_mostly time_t time_second; /* read-only 'passive' rt in seconds */ 241 __read_mostly time_t time_uptime; /* read-only 'passive' ut in seconds */ 242 243 /* 244 * basetime is used to calculate the compensated real time of day. The 245 * basetime can be modified on a per-tick basis by the adjtime(), 246 * ntp_adjtime(), and sysctl-based time correction APIs. 247 * 248 * Note that frequency corrections can also be made by adjusting 249 * gd_cpuclock_base. 250 * 251 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 252 * used on both SMP and UP systems to avoid MP races between cpu's and 253 * interrupt races on UP systems. 254 */ 255 struct hardtime { 256 __uint32_t time_second; 257 sysclock_t cpuclock_base; 258 }; 259 260 #define BASETIME_ARYSIZE 16 261 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 262 static struct timespec basetime[BASETIME_ARYSIZE]; 263 static struct hardtime hardtime[BASETIME_ARYSIZE]; 264 static volatile int basetime_index; 265 266 static int 267 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 268 { 269 struct timespec *bt; 270 int error; 271 int index; 272 273 /* 274 * Because basetime data and index may be updated by another cpu, 275 * a load fence is required to ensure that the data we read has 276 * not been speculatively read relative to a possibly updated index. 277 */ 278 index = basetime_index; 279 cpu_lfence(); 280 bt = &basetime[index]; 281 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 282 return (error); 283 } 284 285 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 286 &boottime, timespec, "System boottime"); 287 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 288 sysctl_get_basetime, "S,timespec", "System basetime"); 289 290 static void hardclock(systimer_t info, int, struct intrframe *frame); 291 static void statclock(systimer_t info, int, struct intrframe *frame); 292 static void schedclock(systimer_t info, int, struct intrframe *frame); 293 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 294 295 /* 296 * Use __read_mostly for ticks and sched_ticks because these variables are 297 * used all over the kernel and only updated once per tick. 298 */ 299 __read_mostly sbintime_t sbticks; /* system master ticks at hz (64bit) */ 300 __read_mostly int ticks; /* system master ticks at hz */ 301 __read_mostly int sched_ticks; /* global schedule clock ticks */ 302 __read_mostly int clocks_running; /* tsleep/timeout clocks operational */ 303 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 304 int64_t nsec_acc; /* accumulator */ 305 306 /* NTPD time correction fields */ 307 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 308 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 309 int64_t ntp_delta; /* one-time correction in nsec */ 310 int64_t ntp_big_delta = 1000000000; 311 int32_t ntp_tick_delta; /* current adjustment rate */ 312 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 313 time_t ntp_leap_second; /* time of next leap second */ 314 int ntp_leap_insert; /* whether to insert or remove a second */ 315 struct spinlock ntp_spin; 316 317 /* 318 * Finish initializing clock frequencies and start all clocks running. 319 */ 320 /* ARGSUSED*/ 321 static void 322 initclocks(void *dummy) 323 { 324 /*psratio = profhz / stathz;*/ 325 spin_init(&ntp_spin, "ntp"); 326 initclocks_pcpu(); 327 clocks_running = 1; 328 if (kpmap) { 329 kpmap->tsc_freq = tsc_frequency; 330 kpmap->tick_freq = hz; 331 } 332 } 333 334 /* 335 * Called on a per-cpu basis from the idle thread bootstrap on each cpu 336 * during SMP initialization. 337 * 338 * This routine is called concurrently during low-level SMP initialization 339 * and may not block in any way. Meaning, among other things, we can't 340 * acquire any tokens. 341 */ 342 void 343 initclocks_pcpu(void) 344 { 345 struct globaldata *gd = mycpu; 346 347 crit_enter(); 348 if (gd->gd_cpuid == 0) { 349 gd->gd_time_seconds = 1; 350 gd->gd_cpuclock_base = sys_cputimer->count(); 351 hardtime[0].time_second = gd->gd_time_seconds; 352 hardtime[0].cpuclock_base = gd->gd_cpuclock_base; 353 } else { 354 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 355 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 356 } 357 358 systimer_intr_enable(); 359 360 crit_exit(); 361 } 362 363 /* 364 * Called on a 10-second interval after the system is operational. 365 * Return the collection data for USERPCT and install the data for 366 * SYSTPCT and IDLEPCT. 367 */ 368 static 369 uint64_t 370 collect_cputime_callback(int n) 371 { 372 static long cpu_base[CPUSTATES]; 373 long cpu_states[CPUSTATES]; 374 long total; 375 long acc; 376 long lsb; 377 378 bzero(cpu_states, sizeof(cpu_states)); 379 for (n = 0; n < ncpus; ++n) { 380 cpu_states[CP_USER] += cputime_percpu[n].cp_user; 381 cpu_states[CP_NICE] += cputime_percpu[n].cp_nice; 382 cpu_states[CP_SYS] += cputime_percpu[n].cp_sys; 383 cpu_states[CP_INTR] += cputime_percpu[n].cp_intr; 384 cpu_states[CP_IDLE] += cputime_percpu[n].cp_idle; 385 } 386 387 acc = 0; 388 for (n = 0; n < CPUSTATES; ++n) { 389 total = cpu_states[n] - cpu_base[n]; 390 cpu_base[n] = cpu_states[n]; 391 cpu_states[n] = total; 392 acc += total; 393 } 394 if (acc == 0) /* prevent degenerate divide by 0 */ 395 acc = 1; 396 lsb = acc / (10000 * 2); 397 kcollect_setvalue(KCOLLECT_SYSTPCT, 398 (cpu_states[CP_SYS] + lsb) * 10000 / acc); 399 kcollect_setvalue(KCOLLECT_IDLEPCT, 400 (cpu_states[CP_IDLE] + lsb) * 10000 / acc); 401 kcollect_setvalue(KCOLLECT_INTRPCT, 402 (cpu_states[CP_INTR] + lsb) * 10000 / acc); 403 return((cpu_states[CP_USER] + cpu_states[CP_NICE] + lsb) * 10000 / acc); 404 } 405 406 /* 407 * This routine is called on just the BSP, just after SMP initialization 408 * completes to * finish initializing any clocks that might contend/block 409 * (e.g. like on a token). We can't do this in initclocks_pcpu() because 410 * that function is called from the idle thread bootstrap for each cpu and 411 * not allowed to block at all. 412 */ 413 static 414 void 415 initclocks_other(void *dummy) 416 { 417 struct globaldata *ogd = mycpu; 418 struct globaldata *gd; 419 int n; 420 421 for (n = 0; n < ncpus; ++n) { 422 lwkt_setcpu_self(globaldata_find(n)); 423 gd = mycpu; 424 425 /* 426 * Use a non-queued periodic systimer to prevent multiple 427 * ticks from building up if the sysclock jumps forward 428 * (8254 gets reset). The sysclock will never jump backwards. 429 * Our time sync is based on the actual sysclock, not the 430 * ticks count. 431 * 432 * Install statclock before hardclock to prevent statclock 433 * from misinterpreting gd_flags for tick assignment when 434 * they overlap. Also offset the statclock by half of 435 * its interval to try to avoid being coincident with 436 * callouts. 437 */ 438 systimer_init_periodic_flags(&gd->gd_statclock, statclock, 439 NULL, stathz, 440 SYSTF_MSSYNC | SYSTF_FIRST | 441 SYSTF_OFFSET50 | SYSTF_OFFSETCPU); 442 systimer_init_periodic_flags(&gd->gd_hardclock, hardclock, 443 NULL, hz, 444 SYSTF_MSSYNC | SYSTF_OFFSETCPU); 445 } 446 lwkt_setcpu_self(ogd); 447 448 /* 449 * Regular data collection 450 */ 451 kcollect_register(KCOLLECT_USERPCT, "user", collect_cputime_callback, 452 KCOLLECT_SCALE(KCOLLECT_USERPCT_FORMAT, 0)); 453 kcollect_register(KCOLLECT_SYSTPCT, "syst", NULL, 454 KCOLLECT_SCALE(KCOLLECT_SYSTPCT_FORMAT, 0)); 455 kcollect_register(KCOLLECT_IDLEPCT, "idle", NULL, 456 KCOLLECT_SCALE(KCOLLECT_IDLEPCT_FORMAT, 0)); 457 } 458 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL); 459 460 /* 461 * This method is called on just the BSP, after all the usched implementations 462 * are initialized. This avoids races between usched initialization functions 463 * and usched_schedulerclock(). 464 */ 465 static 466 void 467 initclocks_usched(void *dummy) 468 { 469 struct globaldata *ogd = mycpu; 470 struct globaldata *gd; 471 int n; 472 473 for (n = 0; n < ncpus; ++n) { 474 lwkt_setcpu_self(globaldata_find(n)); 475 gd = mycpu; 476 477 /* XXX correct the frequency for scheduler / estcpu tests */ 478 systimer_init_periodic_flags(&gd->gd_schedclock, schedclock, 479 NULL, ESTCPUFREQ, 480 SYSTF_MSSYNC | SYSTF_OFFSETCPU); 481 } 482 lwkt_setcpu_self(ogd); 483 } 484 SYSINIT(clocks3, SI_BOOT2_USCHED, SI_ORDER_ANY, initclocks_usched, NULL); 485 486 /* 487 * This sets the current real time of day. Timespecs are in seconds and 488 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 489 * instead we adjust basetime so basetime + gd_* results in the current 490 * time of day. This way the gd_* fields are guaranteed to represent 491 * a monotonically increasing 'uptime' value. 492 * 493 * When set_timeofday() is called from userland, the system call forces it 494 * onto cpu #0 since only cpu #0 can update basetime_index. 495 */ 496 void 497 set_timeofday(struct timespec *ts) 498 { 499 struct timespec *nbt; 500 int ni; 501 502 /* 503 * XXX SMP / non-atomic basetime updates 504 */ 505 crit_enter(); 506 ni = (basetime_index + 1) & BASETIME_ARYMASK; 507 cpu_lfence(); 508 nbt = &basetime[ni]; 509 nanouptime(nbt); 510 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 511 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 512 if (nbt->tv_nsec < 0) { 513 nbt->tv_nsec += 1000000000; 514 --nbt->tv_sec; 515 } 516 517 /* 518 * Note that basetime diverges from boottime as the clock drift is 519 * compensated for, so we cannot do away with boottime. When setting 520 * the absolute time of day the drift is 0 (for an instant) and we 521 * can simply assign boottime to basetime. 522 * 523 * Note that nanouptime() is based on gd_time_seconds which is drift 524 * compensated up to a point (it is guaranteed to remain monotonically 525 * increasing). gd_time_seconds is thus our best uptime guess and 526 * suitable for use in the boottime calculation. It is already taken 527 * into account in the basetime calculation above. 528 */ 529 spin_lock(&ntp_spin); 530 boottime.tv_sec = nbt->tv_sec; 531 ntp_delta = 0; 532 533 /* 534 * We now have a new basetime, make sure all other cpus have it, 535 * then update the index. 536 */ 537 cpu_sfence(); 538 basetime_index = ni; 539 spin_unlock(&ntp_spin); 540 541 crit_exit(); 542 } 543 544 /* 545 * Each cpu has its own hardclock, but we only increment ticks and softticks 546 * on cpu #0. 547 * 548 * NOTE! systimer! the MP lock might not be held here. We can only safely 549 * manipulate objects owned by the current cpu. 550 */ 551 static void 552 hardclock(systimer_t info, int in_ipi, struct intrframe *frame) 553 { 554 sysclock_t cputicks; 555 struct proc *p; 556 struct globaldata *gd = mycpu; 557 558 if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) { 559 /* Defer to doreti on passive IPIQ processing */ 560 need_ipiq(); 561 } 562 563 /* 564 * We update the compensation base to calculate fine-grained time 565 * from the sys_cputimer on a per-cpu basis in order to avoid 566 * having to mess around with locks. sys_cputimer is assumed to 567 * be consistent across all cpus. CPU N copies the base state from 568 * CPU 0 using the same FIFO trick that we use for basetime (so we 569 * don't catch a CPU 0 update in the middle). 570 * 571 * Note that we never allow info->time (aka gd->gd_hardclock.time) 572 * to reverse index gd_cpuclock_base, but that it is possible for 573 * it to temporarily get behind in the seconds if something in the 574 * system locks interrupts for a long period of time. Since periodic 575 * timers count events, though everything should resynch again 576 * immediately. 577 */ 578 if (gd->gd_cpuid == 0) { 579 int ni; 580 581 cputicks = info->time - gd->gd_cpuclock_base; 582 if (cputicks >= sys_cputimer->freq) { 583 cputicks /= sys_cputimer->freq; 584 if (cputicks != 0 && cputicks != 1) 585 kprintf("Warning: hardclock missed > 1 sec\n"); 586 gd->gd_time_seconds += cputicks; 587 gd->gd_cpuclock_base += sys_cputimer->freq * cputicks; 588 /* uncorrected monotonic 1-sec gran */ 589 time_uptime += cputicks; 590 } 591 ni = (basetime_index + 1) & BASETIME_ARYMASK; 592 hardtime[ni].time_second = gd->gd_time_seconds; 593 hardtime[ni].cpuclock_base = gd->gd_cpuclock_base; 594 } else { 595 int ni; 596 597 ni = basetime_index; 598 cpu_lfence(); 599 gd->gd_time_seconds = hardtime[ni].time_second; 600 gd->gd_cpuclock_base = hardtime[ni].cpuclock_base; 601 } 602 603 /* 604 * The system-wide ticks counter and NTP related timedelta/tickdelta 605 * adjustments only occur on cpu #0. NTP adjustments are accomplished 606 * by updating basetime. 607 */ 608 if (gd->gd_cpuid == 0) { 609 struct timespec *nbt; 610 struct timespec nts; 611 int leap; 612 int ni; 613 614 /* 615 * Update system-wide ticks 616 */ 617 ++ticks; 618 ++sbticks; 619 620 /* 621 * Update system-wide ticktime for getnanotime() and getmicrotime() 622 */ 623 nanotime(&nts); 624 atomic_add_int_nonlocked(&ticktime_update, 1); 625 cpu_sfence(); 626 if (ticktime_update & 2) 627 ticktime2 = nts; 628 else 629 ticktime0 = nts; 630 cpu_sfence(); 631 atomic_add_int_nonlocked(&ticktime_update, 1); 632 633 #if 0 634 if (tco->tc_poll_pps) 635 tco->tc_poll_pps(tco); 636 #endif 637 638 /* 639 * Calculate the new basetime index. We are in a critical section 640 * on cpu #0 and can safely play with basetime_index. Start 641 * with the current basetime and then make adjustments. 642 */ 643 ni = (basetime_index + 1) & BASETIME_ARYMASK; 644 nbt = &basetime[ni]; 645 *nbt = basetime[basetime_index]; 646 647 /* 648 * ntp adjustments only occur on cpu 0 and are protected by 649 * ntp_spin. This spinlock virtually never conflicts. 650 */ 651 spin_lock(&ntp_spin); 652 653 /* 654 * Apply adjtime corrections. (adjtime() API) 655 * 656 * adjtime() only runs on cpu #0 so our critical section is 657 * sufficient to access these variables. 658 */ 659 if (ntp_delta != 0) { 660 nbt->tv_nsec += ntp_tick_delta; 661 ntp_delta -= ntp_tick_delta; 662 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 663 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 664 ntp_tick_delta = ntp_delta; 665 } 666 } 667 668 /* 669 * Apply permanent frequency corrections. (sysctl API) 670 */ 671 if (ntp_tick_permanent != 0) { 672 ntp_tick_acc += ntp_tick_permanent; 673 if (ntp_tick_acc >= (1LL << 32)) { 674 nbt->tv_nsec += ntp_tick_acc >> 32; 675 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 676 } else if (ntp_tick_acc <= -(1LL << 32)) { 677 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 678 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 679 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 680 } 681 } 682 683 if (nbt->tv_nsec >= 1000000000) { 684 nbt->tv_sec++; 685 nbt->tv_nsec -= 1000000000; 686 } else if (nbt->tv_nsec < 0) { 687 nbt->tv_sec--; 688 nbt->tv_nsec += 1000000000; 689 } 690 691 /* 692 * Another per-tick compensation. (for ntp_adjtime() API) 693 */ 694 if (nsec_adj != 0) { 695 nsec_acc += nsec_adj; 696 if (nsec_acc >= 0x100000000LL) { 697 nbt->tv_nsec += nsec_acc >> 32; 698 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 699 } else if (nsec_acc <= -0x100000000LL) { 700 nbt->tv_nsec -= -nsec_acc >> 32; 701 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 702 } 703 if (nbt->tv_nsec >= 1000000000) { 704 nbt->tv_nsec -= 1000000000; 705 ++nbt->tv_sec; 706 } else if (nbt->tv_nsec < 0) { 707 nbt->tv_nsec += 1000000000; 708 --nbt->tv_sec; 709 } 710 } 711 spin_unlock(&ntp_spin); 712 713 /************************************************************ 714 * LEAP SECOND CORRECTION * 715 ************************************************************ 716 * 717 * Taking into account all the corrections made above, figure 718 * out the new real time. If the seconds field has changed 719 * then apply any pending leap-second corrections. 720 */ 721 getnanotime_nbt(nbt, &nts); 722 723 if (time_second != nts.tv_sec) { 724 /* 725 * Apply leap second (sysctl API). Adjust nts for changes 726 * so we do not have to call getnanotime_nbt again. 727 */ 728 if (ntp_leap_second) { 729 if (ntp_leap_second == nts.tv_sec) { 730 if (ntp_leap_insert) { 731 nbt->tv_sec++; 732 nts.tv_sec++; 733 } else { 734 nbt->tv_sec--; 735 nts.tv_sec--; 736 } 737 ntp_leap_second--; 738 } 739 } 740 741 /* 742 * Apply leap second (ntp_adjtime() API), calculate a new 743 * nsec_adj field. ntp_update_second() returns nsec_adj 744 * as a per-second value but we need it as a per-tick value. 745 */ 746 leap = ntp_update_second(time_second, &nsec_adj); 747 nsec_adj /= hz; 748 nbt->tv_sec += leap; 749 nts.tv_sec += leap; 750 751 /* 752 * Update the time_second 'approximate time' global. 753 */ 754 time_second = nts.tv_sec; 755 756 /* 757 * Clear the IPC hint for the currently running thread once 758 * per second, allowing us to disconnect the hint from a 759 * thread which may no longer care. 760 */ 761 curthread->td_wakefromcpu = -1; 762 } 763 764 /* 765 * Finally, our new basetime is ready to go live! 766 */ 767 cpu_sfence(); 768 basetime_index = ni; 769 770 /* 771 * Update kpmap on each tick. TS updates are integrated with 772 * fences and upticks allowing userland to read the data 773 * deterministically. 774 */ 775 if (kpmap) { 776 int w; 777 778 w = (kpmap->upticks + 1) & 1; 779 getnanouptime(&kpmap->ts_uptime[w]); 780 getnanotime(&kpmap->ts_realtime[w]); 781 cpu_sfence(); 782 ++kpmap->upticks; 783 cpu_sfence(); 784 } 785 786 /* 787 * Handle exislock pseudo_ticks. We make things as simple as 788 * possible for the critical path arming code by adding a little 789 * complication here. 790 * 791 * When we find that all cores have been armed, we increment 792 * pseudo_ticks and disarm all the cores. 793 */ 794 { 795 globaldata_t gd; 796 int n; 797 798 for (n = 0; n < ncpus; ++n) { 799 gd = globaldata_find(n); 800 if (gd->gd_exisarmed == 0) 801 break; 802 } 803 804 if (n == ncpus) { 805 for (n = 0; n < ncpus; ++n) { 806 gd = globaldata_find(n); 807 gd->gd_exisarmed = 0; 808 } 809 ++pseudo_ticks; 810 } 811 } 812 } 813 814 /* 815 * lwkt thread scheduler fair queueing 816 */ 817 lwkt_schedulerclock(curthread); 818 819 /* 820 * Cycle the existential lock system on odd ticks in order to re-arm 821 * our cpu (in case the cpu is idle or nobody is using any exis locks). 822 */ 823 if (ticks & 1) { 824 exis_hold_gd(gd); 825 exis_drop_gd(gd); 826 } 827 828 /* 829 * softticks are handled for all cpus 830 */ 831 hardclock_softtick(gd); 832 833 /* 834 * Rollup accumulated vmstats, copy-back for critical path checks. 835 */ 836 vmstats_rollup_cpu(gd); 837 vfscache_rollup_cpu(gd); 838 mycpu->gd_vmstats = vmstats; 839 840 /* 841 * ITimer handling is per-tick, per-cpu. 842 * 843 * We must acquire the per-process token in order for ksignal() 844 * to be non-blocking. For the moment this requires an AST fault, 845 * the ksignal() cannot be safely issued from this hard interrupt. 846 * 847 * XXX Even the trytoken here isn't right, and itimer operation in 848 * a multi threaded environment is going to be weird at the 849 * very least. 850 */ 851 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) { 852 crit_enter_hard(); 853 if (p->p_upmap) 854 ++p->p_upmap->runticks; 855 856 if (frame && CLKF_USERMODE(frame) && 857 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 858 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) { 859 p->p_flags |= P_SIGVTALRM; 860 need_user_resched(); 861 } 862 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 863 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) { 864 p->p_flags |= P_SIGPROF; 865 need_user_resched(); 866 } 867 crit_exit_hard(); 868 lwkt_reltoken(&p->p_token); 869 } 870 setdelayed(); 871 } 872 873 /* 874 * The statistics clock typically runs at a 125Hz rate, and is intended 875 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 876 * 877 * NOTE! systimer! the MP lock might not be held here. We can only safely 878 * manipulate objects owned by the current cpu. 879 * 880 * The stats clock is responsible for grabbing a profiling sample. 881 * Most of the statistics are only used by user-level statistics programs. 882 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 883 * p->p_estcpu. 884 * 885 * Like the other clocks, the stat clock is called from what is effectively 886 * a fast interrupt, so the context should be the thread/process that got 887 * interrupted. 888 */ 889 static void 890 statclock(systimer_t info, int in_ipi, struct intrframe *frame) 891 { 892 globaldata_t gd = mycpu; 893 thread_t td; 894 struct proc *p; 895 int bump; 896 sysclock_t cv; 897 sysclock_t scv; 898 899 /* 900 * How big was our timeslice relative to the last time? Calculate 901 * in microseconds. 902 * 903 * NOTE: Use of microuptime() is typically MPSAFE, but usually not 904 * during early boot. Just use the systimer count to be nice 905 * to e.g. qemu. The systimer has a better chance of being 906 * MPSAFE at early boot. 907 */ 908 cv = sys_cputimer->count(); 909 scv = gd->statint.gd_statcv; 910 if (scv == 0) { 911 bump = 1; 912 } else { 913 bump = muldivu64(sys_cputimer->freq64_usec, 914 (cv - scv), 1L << 32); 915 if (bump < 0) 916 bump = 0; 917 if (bump > 1000000) 918 bump = 1000000; 919 } 920 gd->statint.gd_statcv = cv; 921 922 #if 0 923 stv = &gd->gd_stattv; 924 if (stv->tv_sec == 0) { 925 bump = 1; 926 } else { 927 bump = tv.tv_usec - stv->tv_usec + 928 (tv.tv_sec - stv->tv_sec) * 1000000; 929 if (bump < 0) 930 bump = 0; 931 if (bump > 1000000) 932 bump = 1000000; 933 } 934 *stv = tv; 935 #endif 936 937 td = curthread; 938 p = td->td_proc; 939 940 /* 941 * If this is an interrupt thread used for the clock interrupt, adjust 942 * td to the thread it is preempting. If a frame is available, it will 943 * be related to the thread being preempted. 944 */ 945 if ((td->td_flags & TDF_CLKTHREAD) && td->td_preempted) 946 td = td->td_preempted; 947 948 if (frame && CLKF_USERMODE(frame)) { 949 /* 950 * Came from userland, handle user time and deal with 951 * possible process. 952 */ 953 if (p && (p->p_flags & P_PROFIL)) 954 addupc_intr(p, CLKF_PC(frame), 1); 955 td->td_uticks += bump; 956 957 /* 958 * Charge the time as appropriate 959 */ 960 if (p && p->p_nice > NZERO) 961 cpu_time.cp_nice += bump; 962 else 963 cpu_time.cp_user += bump; 964 } else { 965 int intr_nest = gd->gd_intr_nesting_level; 966 967 if (in_ipi) { 968 /* 969 * IPI processing code will bump gd_intr_nesting_level 970 * up by one, which breaks following CLKF_INTR testing, 971 * so we subtract it by one here. 972 */ 973 --intr_nest; 974 } 975 976 /* 977 * Came from kernel mode, so we were: 978 * - handling an interrupt, 979 * - doing syscall or trap work on behalf of the current 980 * user process, or 981 * - spinning in the idle loop. 982 * Whichever it is, charge the time as appropriate. 983 * Note that we charge interrupts to the current process, 984 * regardless of whether they are ``for'' that process, 985 * so that we know how much of its real time was spent 986 * in ``non-process'' (i.e., interrupt) work. 987 * 988 * XXX assume system if frame is NULL. A NULL frame 989 * can occur if ipi processing is done from a crit_exit(). 990 */ 991 if ((frame && CLKF_INTR(intr_nest)) || 992 cpu_interrupt_running(td)) { 993 /* 994 * If we interrupted an interrupt thread, well, 995 * count it as interrupt time. 996 */ 997 td->td_iticks += bump; 998 #ifdef DEBUG_PCTRACK 999 if (frame) 1000 do_pctrack(frame, PCTRACK_INT); 1001 #endif 1002 cpu_time.cp_intr += bump; 1003 } else if (gd->gd_flags & GDF_VIRTUSER) { 1004 /* 1005 * The vkernel doesn't do a good job providing trap 1006 * frames that we can test. If the GDF_VIRTUSER 1007 * flag is set we probably interrupted user mode. 1008 */ 1009 td->td_uticks += bump; 1010 1011 /* 1012 * Charge the time as appropriate 1013 */ 1014 if (p && p->p_nice > NZERO) 1015 cpu_time.cp_nice += bump; 1016 else 1017 cpu_time.cp_user += bump; 1018 } else { 1019 if (clock_debug2 > 0) { 1020 --clock_debug2; 1021 kprintf("statclock preempt %s (%p %p)\n", td->td_comm, td, &gd->gd_idlethread); 1022 } 1023 td->td_sticks += bump; 1024 if (td == &gd->gd_idlethread) { 1025 /* 1026 * We want to count token contention as 1027 * system time. When token contention occurs 1028 * the cpu may only be outside its critical 1029 * section while switching through the idle 1030 * thread. In this situation, various flags 1031 * will be set in gd_reqflags. 1032 * 1033 * INTPEND is not necessarily useful because 1034 * it will be set if the clock interrupt 1035 * happens to be on an interrupt thread, the 1036 * cpu_interrupt_running() call does a better 1037 * job so we've already handled it. 1038 */ 1039 if (gd->gd_reqflags & 1040 (RQF_IDLECHECK_WK_MASK & ~RQF_INTPEND)) { 1041 cpu_time.cp_sys += bump; 1042 } else { 1043 cpu_time.cp_idle += bump; 1044 } 1045 } else { 1046 /* 1047 * System thread was running. 1048 */ 1049 #ifdef DEBUG_PCTRACK 1050 if (frame) 1051 do_pctrack(frame, PCTRACK_SYS); 1052 #endif 1053 cpu_time.cp_sys += bump; 1054 } 1055 } 1056 } 1057 } 1058 1059 #ifdef DEBUG_PCTRACK 1060 /* 1061 * Sample the PC when in the kernel or in an interrupt. User code can 1062 * retrieve the information and generate a histogram or other output. 1063 */ 1064 1065 static void 1066 do_pctrack(struct intrframe *frame, int which) 1067 { 1068 struct kinfo_pctrack *pctrack; 1069 1070 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 1071 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 1072 (void *)CLKF_PC(frame); 1073 ++pctrack->pc_index; 1074 } 1075 1076 static int 1077 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 1078 { 1079 struct kinfo_pcheader head; 1080 int error; 1081 int cpu; 1082 int ntrack; 1083 1084 head.pc_ntrack = PCTRACK_SIZE; 1085 head.pc_arysize = PCTRACK_ARYSIZE; 1086 1087 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 1088 return (error); 1089 1090 for (cpu = 0; cpu < ncpus; ++cpu) { 1091 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 1092 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 1093 sizeof(struct kinfo_pctrack)); 1094 if (error) 1095 break; 1096 } 1097 if (error) 1098 break; 1099 } 1100 return (error); 1101 } 1102 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 1103 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 1104 1105 #endif 1106 1107 /* 1108 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 1109 * the MP lock might not be held. We can safely manipulate parts of curproc 1110 * but that's about it. 1111 * 1112 * Each cpu has its own scheduler clock. 1113 */ 1114 static void 1115 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 1116 { 1117 struct lwp *lp; 1118 struct rusage *ru; 1119 struct vmspace *vm; 1120 long rss; 1121 1122 if ((lp = lwkt_preempted_proc()) != NULL) { 1123 /* 1124 * Account for cpu time used and hit the scheduler. Note 1125 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 1126 * HERE. 1127 */ 1128 ++lp->lwp_cpticks; 1129 usched_schedulerclock(lp, info->periodic, info->time); 1130 } else { 1131 usched_schedulerclock(NULL, info->periodic, info->time); 1132 } 1133 if ((lp = curthread->td_lwp) != NULL) { 1134 /* 1135 * Update resource usage integrals and maximums. 1136 */ 1137 if ((ru = &lp->lwp_proc->p_ru) && 1138 (vm = lp->lwp_proc->p_vmspace) != NULL) { 1139 ru->ru_ixrss += pgtok(btoc(vm->vm_tsize)); 1140 ru->ru_idrss += pgtok(btoc(vm->vm_dsize)); 1141 ru->ru_isrss += pgtok(btoc(vm->vm_ssize)); 1142 if (lwkt_trytoken(&vm->vm_map.token)) { 1143 rss = pgtok(vmspace_resident_count(vm)); 1144 if (ru->ru_maxrss < rss) 1145 ru->ru_maxrss = rss; 1146 lwkt_reltoken(&vm->vm_map.token); 1147 } 1148 } 1149 } 1150 /* Increment the global sched_ticks */ 1151 if (mycpu->gd_cpuid == 0) 1152 ++sched_ticks; 1153 } 1154 1155 /* 1156 * Compute number of ticks for the specified amount of time. The 1157 * return value is intended to be used in a clock interrupt timed 1158 * operation and guaranteed to meet or exceed the requested time. 1159 * If the representation overflows, return INT_MAX. The minimum return 1160 * value is 1 ticks and the function will average the calculation up. 1161 * If any value greater then 0 microseconds is supplied, a value 1162 * of at least 2 will be returned to ensure that a near-term clock 1163 * interrupt does not cause the timeout to occur (degenerately) early. 1164 * 1165 * Note that limit checks must take into account microseconds, which is 1166 * done simply by using the smaller signed long maximum instead of 1167 * the unsigned long maximum. 1168 * 1169 * If ints have 32 bits, then the maximum value for any timeout in 1170 * 10ms ticks is 248 days. 1171 */ 1172 int 1173 tvtohz_high(struct timeval *tv) 1174 { 1175 int ticks; 1176 long sec, usec; 1177 1178 sec = tv->tv_sec; 1179 usec = tv->tv_usec; 1180 if (usec < 0) { 1181 sec--; 1182 usec += 1000000; 1183 } 1184 if (sec < 0) { 1185 #ifdef DIAGNOSTIC 1186 if (usec > 0) { 1187 sec++; 1188 usec -= 1000000; 1189 } 1190 kprintf("tvtohz_high: negative time difference " 1191 "%ld sec %ld usec\n", 1192 sec, usec); 1193 #endif 1194 ticks = 1; 1195 } else if (sec <= INT_MAX / hz) { 1196 ticks = (int)(sec * hz + howmany((u_long)usec, ustick)) + 1; 1197 } else { 1198 ticks = INT_MAX; 1199 } 1200 return (ticks); 1201 } 1202 1203 int 1204 tstohz_high(struct timespec *ts) 1205 { 1206 int ticks; 1207 long sec, nsec; 1208 1209 sec = ts->tv_sec; 1210 nsec = ts->tv_nsec; 1211 if (nsec < 0) { 1212 sec--; 1213 nsec += 1000000000; 1214 } 1215 if (sec < 0) { 1216 #ifdef DIAGNOSTIC 1217 if (nsec > 0) { 1218 sec++; 1219 nsec -= 1000000000; 1220 } 1221 kprintf("tstohz_high: negative time difference " 1222 "%ld sec %ld nsec\n", 1223 sec, nsec); 1224 #endif 1225 ticks = 1; 1226 } else if (sec <= INT_MAX / hz) { 1227 ticks = (int)(sec * hz + howmany((u_long)nsec, nstick)) + 1; 1228 } else { 1229 ticks = INT_MAX; 1230 } 1231 return (ticks); 1232 } 1233 1234 1235 /* 1236 * Compute number of ticks for the specified amount of time, erroring on 1237 * the side of it being too low to ensure that sleeping the returned number 1238 * of ticks will not result in a late return. 1239 * 1240 * The supplied timeval may not be negative and should be normalized. A 1241 * return value of 0 is possible if the timeval converts to less then 1242 * 1 tick. 1243 * 1244 * If ints have 32 bits, then the maximum value for any timeout in 1245 * 10ms ticks is 248 days. 1246 */ 1247 int 1248 tvtohz_low(struct timeval *tv) 1249 { 1250 int ticks; 1251 long sec; 1252 1253 sec = tv->tv_sec; 1254 if (sec <= INT_MAX / hz) 1255 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 1256 else 1257 ticks = INT_MAX; 1258 return (ticks); 1259 } 1260 1261 int 1262 tstohz_low(struct timespec *ts) 1263 { 1264 int ticks; 1265 long sec; 1266 1267 sec = ts->tv_sec; 1268 if (sec <= INT_MAX / hz) 1269 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 1270 else 1271 ticks = INT_MAX; 1272 return (ticks); 1273 } 1274 1275 /* 1276 * Start profiling on a process. 1277 * 1278 * Caller must hold p->p_token(); 1279 * 1280 * Kernel profiling passes proc0 which never exits and hence 1281 * keeps the profile clock running constantly. 1282 */ 1283 void 1284 startprofclock(struct proc *p) 1285 { 1286 if ((p->p_flags & P_PROFIL) == 0) { 1287 p->p_flags |= P_PROFIL; 1288 #if 0 /* XXX */ 1289 if (++profprocs == 1 && stathz != 0) { 1290 crit_enter(); 1291 psdiv = psratio; 1292 setstatclockrate(profhz); 1293 crit_exit(); 1294 } 1295 #endif 1296 } 1297 } 1298 1299 /* 1300 * Stop profiling on a process. 1301 * 1302 * caller must hold p->p_token 1303 */ 1304 void 1305 stopprofclock(struct proc *p) 1306 { 1307 if (p->p_flags & P_PROFIL) { 1308 p->p_flags &= ~P_PROFIL; 1309 #if 0 /* XXX */ 1310 if (--profprocs == 0 && stathz != 0) { 1311 crit_enter(); 1312 psdiv = 1; 1313 setstatclockrate(stathz); 1314 crit_exit(); 1315 } 1316 #endif 1317 } 1318 } 1319 1320 /* 1321 * Return information about system clocks. 1322 */ 1323 static int 1324 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 1325 { 1326 struct kinfo_clockinfo clkinfo; 1327 /* 1328 * Construct clockinfo structure. 1329 */ 1330 clkinfo.ci_hz = hz; 1331 clkinfo.ci_tick = ustick; 1332 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 1333 clkinfo.ci_profhz = profhz; 1334 clkinfo.ci_stathz = stathz ? stathz : hz; 1335 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 1336 } 1337 1338 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 1339 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 1340 1341 /* 1342 * We have eight functions for looking at the clock, four for 1343 * microseconds and four for nanoseconds. For each there is fast 1344 * but less precise version "get{nano|micro}[up]time" which will 1345 * return a time which is up to 1/HZ previous to the call, whereas 1346 * the raw version "{nano|micro}[up]time" will return a timestamp 1347 * which is as precise as possible. The "up" variants return the 1348 * time relative to system boot, these are well suited for time 1349 * interval measurements. 1350 * 1351 * Each cpu independently maintains the current time of day, so all 1352 * we need to do to protect ourselves from changes is to do a loop 1353 * check on the seconds field changing out from under us. 1354 * 1355 * The system timer maintains a 32 bit count and due to various issues 1356 * it is possible for the calculated delta to occasionally exceed 1357 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 1358 * multiplication can easily overflow, so we deal with the case. For 1359 * uniformity we deal with the case in the usec case too. 1360 * 1361 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 1362 * 1363 * NEW CODE (!) 1364 * 1365 * cpu 0 now maintains global ticktimes and an update counter. The 1366 * getnanotime() and getmicrotime() routines use these globals. 1367 */ 1368 void 1369 getmicrouptime(struct timeval *tvp) 1370 { 1371 struct globaldata *gd = mycpu; 1372 sysclock_t delta; 1373 1374 do { 1375 tvp->tv_sec = gd->gd_time_seconds; 1376 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1377 } while (tvp->tv_sec != gd->gd_time_seconds); 1378 1379 if (delta >= sys_cputimer->freq) { 1380 tvp->tv_sec += delta / sys_cputimer->freq; 1381 delta %= sys_cputimer->freq; 1382 } 1383 tvp->tv_usec = muldivu64(sys_cputimer->freq64_usec, delta, 1L << 32); 1384 if (tvp->tv_usec >= 1000000) { 1385 tvp->tv_usec -= 1000000; 1386 ++tvp->tv_sec; 1387 } 1388 } 1389 1390 void 1391 getnanouptime(struct timespec *tsp) 1392 { 1393 struct globaldata *gd = mycpu; 1394 sysclock_t delta; 1395 1396 do { 1397 tsp->tv_sec = gd->gd_time_seconds; 1398 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1399 } while (tsp->tv_sec != gd->gd_time_seconds); 1400 1401 if (delta >= sys_cputimer->freq) { 1402 tsp->tv_sec += delta / sys_cputimer->freq; 1403 delta %= sys_cputimer->freq; 1404 } 1405 tsp->tv_nsec = muldivu64(sys_cputimer->freq64_nsec, delta, 1L << 32); 1406 } 1407 1408 void 1409 microuptime(struct timeval *tvp) 1410 { 1411 struct globaldata *gd = mycpu; 1412 sysclock_t delta; 1413 1414 do { 1415 tvp->tv_sec = gd->gd_time_seconds; 1416 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1417 } while (tvp->tv_sec != gd->gd_time_seconds); 1418 1419 if (delta >= sys_cputimer->freq) { 1420 tvp->tv_sec += delta / sys_cputimer->freq; 1421 delta %= sys_cputimer->freq; 1422 } 1423 tvp->tv_usec = muldivu64(sys_cputimer->freq64_usec, delta, 1L << 32); 1424 } 1425 1426 void 1427 nanouptime(struct timespec *tsp) 1428 { 1429 struct globaldata *gd = mycpu; 1430 sysclock_t delta; 1431 1432 do { 1433 tsp->tv_sec = gd->gd_time_seconds; 1434 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1435 } while (tsp->tv_sec != gd->gd_time_seconds); 1436 1437 if (delta >= sys_cputimer->freq) { 1438 tsp->tv_sec += delta / sys_cputimer->freq; 1439 delta %= sys_cputimer->freq; 1440 } 1441 tsp->tv_nsec = muldivu64(sys_cputimer->freq64_nsec, delta, 1L << 32); 1442 } 1443 1444 /* 1445 * realtime routines 1446 */ 1447 void 1448 getmicrotime(struct timeval *tvp) 1449 { 1450 struct timespec ts; 1451 int counter; 1452 1453 do { 1454 counter = *(volatile int *)&ticktime_update; 1455 cpu_lfence(); 1456 switch(counter & 3) { 1457 case 0: /* ticktime2 completed update */ 1458 ts = ticktime2; 1459 break; 1460 case 1: /* ticktime0 update in progress */ 1461 ts = ticktime2; 1462 break; 1463 case 2: /* ticktime0 completed update */ 1464 ts = ticktime0; 1465 break; 1466 case 3: /* ticktime2 update in progress */ 1467 ts = ticktime0; 1468 break; 1469 } 1470 cpu_lfence(); 1471 } while (counter != *(volatile int *)&ticktime_update); 1472 tvp->tv_sec = ts.tv_sec; 1473 tvp->tv_usec = ts.tv_nsec / 1000; 1474 } 1475 1476 void 1477 getnanotime(struct timespec *tsp) 1478 { 1479 struct timespec ts; 1480 int counter; 1481 1482 do { 1483 counter = *(volatile int *)&ticktime_update; 1484 cpu_lfence(); 1485 switch(counter & 3) { 1486 case 0: /* ticktime2 completed update */ 1487 ts = ticktime2; 1488 break; 1489 case 1: /* ticktime0 update in progress */ 1490 ts = ticktime2; 1491 break; 1492 case 2: /* ticktime0 completed update */ 1493 ts = ticktime0; 1494 break; 1495 case 3: /* ticktime2 update in progress */ 1496 ts = ticktime0; 1497 break; 1498 } 1499 cpu_lfence(); 1500 } while (counter != *(volatile int *)&ticktime_update); 1501 *tsp = ts; 1502 } 1503 1504 static void 1505 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1506 { 1507 struct globaldata *gd = mycpu; 1508 sysclock_t delta; 1509 1510 do { 1511 tsp->tv_sec = gd->gd_time_seconds; 1512 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1513 } while (tsp->tv_sec != gd->gd_time_seconds); 1514 1515 if (delta >= sys_cputimer->freq) { 1516 tsp->tv_sec += delta / sys_cputimer->freq; 1517 delta %= sys_cputimer->freq; 1518 } 1519 tsp->tv_nsec = muldivu64(sys_cputimer->freq64_nsec, delta, 1L << 32); 1520 1521 tsp->tv_sec += nbt->tv_sec; 1522 tsp->tv_nsec += nbt->tv_nsec; 1523 while (tsp->tv_nsec >= 1000000000) { 1524 tsp->tv_nsec -= 1000000000; 1525 ++tsp->tv_sec; 1526 } 1527 } 1528 1529 1530 void 1531 microtime(struct timeval *tvp) 1532 { 1533 struct globaldata *gd = mycpu; 1534 struct timespec *bt; 1535 sysclock_t delta; 1536 1537 do { 1538 tvp->tv_sec = gd->gd_time_seconds; 1539 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1540 } while (tvp->tv_sec != gd->gd_time_seconds); 1541 1542 if (delta >= sys_cputimer->freq) { 1543 tvp->tv_sec += delta / sys_cputimer->freq; 1544 delta %= sys_cputimer->freq; 1545 } 1546 tvp->tv_usec = muldivu64(sys_cputimer->freq64_usec, delta, 1L << 32); 1547 1548 bt = &basetime[basetime_index]; 1549 cpu_lfence(); 1550 tvp->tv_sec += bt->tv_sec; 1551 tvp->tv_usec += bt->tv_nsec / 1000; 1552 while (tvp->tv_usec >= 1000000) { 1553 tvp->tv_usec -= 1000000; 1554 ++tvp->tv_sec; 1555 } 1556 } 1557 1558 void 1559 nanotime(struct timespec *tsp) 1560 { 1561 struct globaldata *gd = mycpu; 1562 struct timespec *bt; 1563 sysclock_t delta; 1564 1565 do { 1566 tsp->tv_sec = gd->gd_time_seconds; 1567 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1568 } while (tsp->tv_sec != gd->gd_time_seconds); 1569 1570 if (delta >= sys_cputimer->freq) { 1571 tsp->tv_sec += delta / sys_cputimer->freq; 1572 delta %= sys_cputimer->freq; 1573 } 1574 tsp->tv_nsec = muldivu64(sys_cputimer->freq64_nsec, delta, 1L << 32); 1575 1576 bt = &basetime[basetime_index]; 1577 cpu_lfence(); 1578 tsp->tv_sec += bt->tv_sec; 1579 tsp->tv_nsec += bt->tv_nsec; 1580 while (tsp->tv_nsec >= 1000000000) { 1581 tsp->tv_nsec -= 1000000000; 1582 ++tsp->tv_sec; 1583 } 1584 } 1585 1586 /* 1587 * Get an approximate time_t. It does not have to be accurate. This 1588 * function is called only from KTR and can be called with the system in 1589 * any state so do not use a critical section or other complex operation 1590 * here. 1591 * 1592 * NOTE: This is not exactly synchronized with real time. To do that we 1593 * would have to do what microtime does and check for a nanoseconds 1594 * overflow. 1595 */ 1596 time_t 1597 get_approximate_time_t(void) 1598 { 1599 struct globaldata *gd = mycpu; 1600 struct timespec *bt; 1601 1602 bt = &basetime[basetime_index]; 1603 return(gd->gd_time_seconds + bt->tv_sec); 1604 } 1605 1606 static int 1607 pps_fetch_timeout(struct timespec *timeout, struct pps_state *pps) 1608 { 1609 int to, err; 1610 pps_seq_t *ap, *cp; 1611 pps_seq_t a, c; 1612 1613 to = INT_MAX; 1614 if (timeout->tv_sec > -1) 1615 to = tstohz_low(timeout); 1616 1617 ap = &pps->ppsinfo.assert_sequence; 1618 cp = &pps->ppsinfo.clear_sequence; 1619 a = atomic_load_acq_int(ap); 1620 c = atomic_load_acq_int(cp); 1621 1622 while (a == atomic_load_acq_int(ap) && c == atomic_load_acq_int(cp)) { 1623 err = tsleep(pps, PCATCH, "ppsfch", to); 1624 if (err == EWOULDBLOCK) { 1625 if (timeout->tv_sec < 0) 1626 continue; 1627 return (ETIMEDOUT); 1628 } 1629 if (err != 0) 1630 return (err); 1631 } 1632 1633 return (0); 1634 } 1635 1636 int 1637 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1638 { 1639 pps_params_t *app; 1640 struct pps_fetch_args *fapi; 1641 #ifdef PPS_SYNC 1642 struct pps_kcbind_args *kapi; 1643 #endif 1644 int err; 1645 1646 switch (cmd) { 1647 case PPS_IOC_CREATE: 1648 return (0); 1649 case PPS_IOC_DESTROY: 1650 return (0); 1651 case PPS_IOC_SETPARAMS: 1652 app = (pps_params_t *)data; 1653 if (app->mode & ~pps->ppscap) 1654 return (EINVAL); 1655 pps->ppsparam = *app; 1656 return (0); 1657 case PPS_IOC_GETPARAMS: 1658 app = (pps_params_t *)data; 1659 *app = pps->ppsparam; 1660 app->api_version = PPS_API_VERS_1; 1661 return (0); 1662 case PPS_IOC_GETCAP: 1663 *(int*)data = pps->ppscap; 1664 return (0); 1665 case PPS_IOC_FETCH: 1666 fapi = (struct pps_fetch_args *)data; 1667 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1668 return (EINVAL); 1669 if (fapi->timeout.tv_sec != 0 || fapi->timeout.tv_nsec != 0) { 1670 err = pps_fetch_timeout(&fapi->timeout, pps); 1671 if (err != 0) 1672 return (err); 1673 } 1674 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1675 fapi->pps_info_buf = pps->ppsinfo; 1676 return (0); 1677 case PPS_IOC_KCBIND: 1678 #ifdef PPS_SYNC 1679 kapi = (struct pps_kcbind_args *)data; 1680 /* XXX Only root should be able to do this */ 1681 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1682 return (EINVAL); 1683 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1684 return (EINVAL); 1685 if (kapi->edge & ~pps->ppscap) 1686 return (EINVAL); 1687 pps->kcmode = kapi->edge; 1688 return (0); 1689 #else 1690 return (EOPNOTSUPP); 1691 #endif 1692 default: 1693 return (ENOTTY); 1694 } 1695 } 1696 1697 void 1698 pps_init(struct pps_state *pps) 1699 { 1700 pps->ppscap |= PPS_TSFMT_TSPEC | PPS_CANWAIT; 1701 if (pps->ppscap & PPS_CAPTUREASSERT) 1702 pps->ppscap |= PPS_OFFSETASSERT; 1703 if (pps->ppscap & PPS_CAPTURECLEAR) 1704 pps->ppscap |= PPS_OFFSETCLEAR; 1705 } 1706 1707 void 1708 pps_event(struct pps_state *pps, sysclock_t count, int event) 1709 { 1710 struct globaldata *gd; 1711 struct timespec *tsp; 1712 struct timespec *osp; 1713 struct timespec *bt; 1714 struct timespec ts; 1715 sysclock_t *pcount; 1716 #ifdef PPS_SYNC 1717 sysclock_t tcount; 1718 #endif 1719 sysclock_t delta; 1720 pps_seq_t *pseq; 1721 int foff; 1722 #ifdef PPS_SYNC 1723 int fhard; 1724 #endif 1725 int ni; 1726 1727 gd = mycpu; 1728 1729 /* Things would be easier with arrays... */ 1730 if (event == PPS_CAPTUREASSERT) { 1731 tsp = &pps->ppsinfo.assert_timestamp; 1732 osp = &pps->ppsparam.assert_offset; 1733 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1734 #ifdef PPS_SYNC 1735 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1736 #endif 1737 pcount = &pps->ppscount[0]; 1738 pseq = &pps->ppsinfo.assert_sequence; 1739 } else { 1740 tsp = &pps->ppsinfo.clear_timestamp; 1741 osp = &pps->ppsparam.clear_offset; 1742 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1743 #ifdef PPS_SYNC 1744 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1745 #endif 1746 pcount = &pps->ppscount[1]; 1747 pseq = &pps->ppsinfo.clear_sequence; 1748 } 1749 1750 /* Nothing really happened */ 1751 if (*pcount == count) 1752 return; 1753 1754 *pcount = count; 1755 1756 do { 1757 ts.tv_sec = gd->gd_time_seconds; 1758 delta = count - gd->gd_cpuclock_base; 1759 } while (ts.tv_sec != gd->gd_time_seconds); 1760 1761 if (delta >= sys_cputimer->freq) { 1762 ts.tv_sec += delta / sys_cputimer->freq; 1763 delta %= sys_cputimer->freq; 1764 } 1765 ts.tv_nsec = muldivu64(sys_cputimer->freq64_nsec, delta, 1L << 32); 1766 ni = basetime_index; 1767 cpu_lfence(); 1768 bt = &basetime[ni]; 1769 ts.tv_sec += bt->tv_sec; 1770 ts.tv_nsec += bt->tv_nsec; 1771 while (ts.tv_nsec >= 1000000000) { 1772 ts.tv_nsec -= 1000000000; 1773 ++ts.tv_sec; 1774 } 1775 1776 atomic_add_rel_int(pseq, 1); 1777 *tsp = ts; 1778 1779 if (foff) { 1780 timespecadd(tsp, osp, tsp); 1781 if (tsp->tv_nsec < 0) { 1782 tsp->tv_nsec += 1000000000; 1783 tsp->tv_sec -= 1; 1784 } 1785 } 1786 #ifdef PPS_SYNC 1787 if (fhard) { 1788 /* magic, at its best... */ 1789 tcount = count - pps->ppscount[2]; 1790 pps->ppscount[2] = count; 1791 if (tcount >= sys_cputimer->freq) { 1792 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1793 sys_cputimer->freq64_nsec * 1794 (tcount % sys_cputimer->freq)) >> 32; 1795 } else { 1796 delta = muldivu64(sys_cputimer->freq64_nsec, 1797 tcount, 1L << 32); 1798 } 1799 hardpps(tsp, delta); 1800 } 1801 #endif 1802 wakeup(pps); 1803 } 1804 1805 /* 1806 * Return the tsc target value for a delay of (ns). 1807 * 1808 * Returns -1 if the TSC is not supported. 1809 */ 1810 tsc_uclock_t 1811 tsc_get_target(int ns) 1812 { 1813 #if defined(_RDTSC_SUPPORTED_) 1814 if (cpu_feature & CPUID_TSC) { 1815 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1816 } 1817 #endif 1818 return(-1); 1819 } 1820 1821 /* 1822 * Compare the tsc against the passed target 1823 * 1824 * Returns +1 if the target has been reached 1825 * Returns 0 if the target has not yet been reached 1826 * Returns -1 if the TSC is not supported. 1827 * 1828 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1829 */ 1830 int 1831 tsc_test_target(int64_t target) 1832 { 1833 #if defined(_RDTSC_SUPPORTED_) 1834 if (cpu_feature & CPUID_TSC) { 1835 if ((int64_t)(target - rdtsc()) <= 0) 1836 return(1); 1837 return(0); 1838 } 1839 #endif 1840 return(-1); 1841 } 1842 1843 /* 1844 * Delay the specified number of nanoseconds using the tsc. This function 1845 * returns immediately if the TSC is not supported. At least one cpu_pause() 1846 * will be issued. 1847 */ 1848 void 1849 tsc_delay(int ns) 1850 { 1851 int64_t clk; 1852 1853 clk = tsc_get_target(ns); 1854 cpu_pause(); 1855 cpu_pause(); 1856 while (tsc_test_target(clk) == 0) { 1857 cpu_pause(); 1858 cpu_pause(); 1859 cpu_pause(); 1860 cpu_pause(); 1861 } 1862 } 1863