1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 69 */ 70 71 #include "opt_ntp.h" 72 #include "opt_ifpoll.h" 73 #include "opt_pctrack.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/callout.h> 78 #include <sys/kernel.h> 79 #include <sys/kinfo.h> 80 #include <sys/proc.h> 81 #include <sys/malloc.h> 82 #include <sys/resource.h> 83 #include <sys/resourcevar.h> 84 #include <sys/signalvar.h> 85 #include <sys/timex.h> 86 #include <sys/timepps.h> 87 #include <sys/upmap.h> 88 #include <vm/vm.h> 89 #include <sys/lock.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_extern.h> 93 #include <sys/sysctl.h> 94 95 #include <sys/thread2.h> 96 #include <sys/mplock2.h> 97 98 #include <machine/cpu.h> 99 #include <machine/limits.h> 100 #include <machine/smp.h> 101 #include <machine/cpufunc.h> 102 #include <machine/specialreg.h> 103 #include <machine/clock.h> 104 105 #ifdef GPROF 106 #include <sys/gmon.h> 107 #endif 108 109 #ifdef IFPOLL_ENABLE 110 extern void ifpoll_init_pcpu(int); 111 #endif 112 113 #ifdef DEBUG_PCTRACK 114 static void do_pctrack(struct intrframe *frame, int which); 115 #endif 116 117 static void initclocks (void *dummy); 118 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL); 119 120 /* 121 * Some of these don't belong here, but it's easiest to concentrate them. 122 * Note that cpu_time counts in microseconds, but most userland programs 123 * just compare relative times against the total by delta. 124 */ 125 struct kinfo_cputime cputime_percpu[MAXCPU]; 126 #ifdef DEBUG_PCTRACK 127 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 128 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 129 #endif 130 131 static int 132 sysctl_cputime(SYSCTL_HANDLER_ARGS) 133 { 134 int cpu, error = 0; 135 size_t size = sizeof(struct kinfo_cputime); 136 struct kinfo_cputime tmp; 137 138 for (cpu = 0; cpu < ncpus; ++cpu) { 139 tmp = cputime_percpu[cpu]; 140 tmp.cp_sample_pc = (int64_t)globaldata_find(cpu)->gd_sample_pc; 141 tmp.cp_sample_sp = (int64_t)globaldata_find(cpu)->gd_sample_sp; 142 if ((error = SYSCTL_OUT(req, &tmp, size)) != 0) 143 break; 144 } 145 smp_sniff(); 146 147 return (error); 148 } 149 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 150 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 151 152 static int 153 sysctl_cp_time(SYSCTL_HANDLER_ARGS) 154 { 155 long cpu_states[5] = {0}; 156 int cpu, error = 0; 157 size_t size = sizeof(cpu_states); 158 159 for (cpu = 0; cpu < ncpus; ++cpu) { 160 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user; 161 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice; 162 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys; 163 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr; 164 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle; 165 } 166 167 error = SYSCTL_OUT(req, cpu_states, size); 168 169 return (error); 170 } 171 172 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 173 sysctl_cp_time, "LU", "CPU time statistics"); 174 175 /* 176 * boottime is used to calculate the 'real' uptime. Do not confuse this with 177 * microuptime(). microtime() is not drift compensated. The real uptime 178 * with compensation is nanotime() - bootime. boottime is recalculated 179 * whenever the real time is set based on the compensated elapsed time 180 * in seconds (gd->gd_time_seconds). 181 * 182 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 183 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 184 * the real time. 185 * 186 * WARNING! time_second can backstep on time corrections. Also, unlike 187 * time_second, time_uptime is not a "real" time_t (seconds 188 * since the Epoch) but seconds since booting. 189 */ 190 struct timespec boottime; /* boot time (realtime) for reference only */ 191 time_t time_second; /* read-only 'passive' realtime in seconds */ 192 time_t time_uptime; /* read-only 'passive' uptime in seconds */ 193 194 /* 195 * basetime is used to calculate the compensated real time of day. The 196 * basetime can be modified on a per-tick basis by the adjtime(), 197 * ntp_adjtime(), and sysctl-based time correction APIs. 198 * 199 * Note that frequency corrections can also be made by adjusting 200 * gd_cpuclock_base. 201 * 202 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 203 * used on both SMP and UP systems to avoid MP races between cpu's and 204 * interrupt races on UP systems. 205 */ 206 struct hardtime { 207 __uint32_t time_second; 208 sysclock_t cpuclock_base; 209 }; 210 211 #define BASETIME_ARYSIZE 16 212 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 213 static struct timespec basetime[BASETIME_ARYSIZE]; 214 static struct hardtime hardtime[BASETIME_ARYSIZE]; 215 static volatile int basetime_index; 216 217 static int 218 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 219 { 220 struct timespec *bt; 221 int error; 222 int index; 223 224 /* 225 * Because basetime data and index may be updated by another cpu, 226 * a load fence is required to ensure that the data we read has 227 * not been speculatively read relative to a possibly updated index. 228 */ 229 index = basetime_index; 230 cpu_lfence(); 231 bt = &basetime[index]; 232 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 233 return (error); 234 } 235 236 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 237 &boottime, timespec, "System boottime"); 238 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 239 sysctl_get_basetime, "S,timespec", "System basetime"); 240 241 static void hardclock(systimer_t info, int, struct intrframe *frame); 242 static void statclock(systimer_t info, int, struct intrframe *frame); 243 static void schedclock(systimer_t info, int, struct intrframe *frame); 244 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 245 246 int ticks; /* system master ticks at hz */ 247 int clocks_running; /* tsleep/timeout clocks operational */ 248 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 249 int64_t nsec_acc; /* accumulator */ 250 int sched_ticks; /* global schedule clock ticks */ 251 252 /* NTPD time correction fields */ 253 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 254 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 255 int64_t ntp_delta; /* one-time correction in nsec */ 256 int64_t ntp_big_delta = 1000000000; 257 int32_t ntp_tick_delta; /* current adjustment rate */ 258 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 259 time_t ntp_leap_second; /* time of next leap second */ 260 int ntp_leap_insert; /* whether to insert or remove a second */ 261 262 /* 263 * Finish initializing clock frequencies and start all clocks running. 264 */ 265 /* ARGSUSED*/ 266 static void 267 initclocks(void *dummy) 268 { 269 /*psratio = profhz / stathz;*/ 270 initclocks_pcpu(); 271 clocks_running = 1; 272 if (kpmap) { 273 kpmap->tsc_freq = (uint64_t)tsc_frequency; 274 kpmap->tick_freq = hz; 275 } 276 } 277 278 /* 279 * Called on a per-cpu basis from the idle thread bootstrap on each cpu 280 * during SMP initialization. 281 * 282 * This routine is called concurrently during low-level SMP initialization 283 * and may not block in any way. Meaning, among other things, we can't 284 * acquire any tokens. 285 */ 286 void 287 initclocks_pcpu(void) 288 { 289 struct globaldata *gd = mycpu; 290 291 crit_enter(); 292 if (gd->gd_cpuid == 0) { 293 gd->gd_time_seconds = 1; 294 gd->gd_cpuclock_base = sys_cputimer->count(); 295 hardtime[0].time_second = gd->gd_time_seconds; 296 hardtime[0].cpuclock_base = gd->gd_cpuclock_base; 297 } else { 298 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 299 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 300 } 301 302 systimer_intr_enable(); 303 304 crit_exit(); 305 } 306 307 /* 308 * This routine is called on just the BSP, just after SMP initialization 309 * completes to * finish initializing any clocks that might contend/block 310 * (e.g. like on a token). We can't do this in initclocks_pcpu() because 311 * that function is called from the idle thread bootstrap for each cpu and 312 * not allowed to block at all. 313 */ 314 static 315 void 316 initclocks_other(void *dummy) 317 { 318 struct globaldata *ogd = mycpu; 319 struct globaldata *gd; 320 int n; 321 322 for (n = 0; n < ncpus; ++n) { 323 lwkt_setcpu_self(globaldata_find(n)); 324 gd = mycpu; 325 326 /* 327 * Use a non-queued periodic systimer to prevent multiple 328 * ticks from building up if the sysclock jumps forward 329 * (8254 gets reset). The sysclock will never jump backwards. 330 * Our time sync is based on the actual sysclock, not the 331 * ticks count. 332 */ 333 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, 334 NULL, hz); 335 systimer_init_periodic_nq(&gd->gd_statclock, statclock, 336 NULL, stathz); 337 /* XXX correct the frequency for scheduler / estcpu tests */ 338 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock, 339 NULL, ESTCPUFREQ); 340 #ifdef IFPOLL_ENABLE 341 ifpoll_init_pcpu(gd->gd_cpuid); 342 #endif 343 } 344 lwkt_setcpu_self(ogd); 345 } 346 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL); 347 348 /* 349 * This sets the current real time of day. Timespecs are in seconds and 350 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 351 * instead we adjust basetime so basetime + gd_* results in the current 352 * time of day. This way the gd_* fields are guaranteed to represent 353 * a monotonically increasing 'uptime' value. 354 * 355 * When set_timeofday() is called from userland, the system call forces it 356 * onto cpu #0 since only cpu #0 can update basetime_index. 357 */ 358 void 359 set_timeofday(struct timespec *ts) 360 { 361 struct timespec *nbt; 362 int ni; 363 364 /* 365 * XXX SMP / non-atomic basetime updates 366 */ 367 crit_enter(); 368 ni = (basetime_index + 1) & BASETIME_ARYMASK; 369 cpu_lfence(); 370 nbt = &basetime[ni]; 371 nanouptime(nbt); 372 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 373 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 374 if (nbt->tv_nsec < 0) { 375 nbt->tv_nsec += 1000000000; 376 --nbt->tv_sec; 377 } 378 379 /* 380 * Note that basetime diverges from boottime as the clock drift is 381 * compensated for, so we cannot do away with boottime. When setting 382 * the absolute time of day the drift is 0 (for an instant) and we 383 * can simply assign boottime to basetime. 384 * 385 * Note that nanouptime() is based on gd_time_seconds which is drift 386 * compensated up to a point (it is guaranteed to remain monotonically 387 * increasing). gd_time_seconds is thus our best uptime guess and 388 * suitable for use in the boottime calculation. It is already taken 389 * into account in the basetime calculation above. 390 */ 391 boottime.tv_sec = nbt->tv_sec; 392 ntp_delta = 0; 393 394 /* 395 * We now have a new basetime, make sure all other cpus have it, 396 * then update the index. 397 */ 398 cpu_sfence(); 399 basetime_index = ni; 400 401 crit_exit(); 402 } 403 404 /* 405 * Each cpu has its own hardclock, but we only increments ticks and softticks 406 * on cpu #0. 407 * 408 * NOTE! systimer! the MP lock might not be held here. We can only safely 409 * manipulate objects owned by the current cpu. 410 */ 411 static void 412 hardclock(systimer_t info, int in_ipi, struct intrframe *frame) 413 { 414 sysclock_t cputicks; 415 struct proc *p; 416 struct globaldata *gd = mycpu; 417 418 if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) { 419 /* Defer to doreti on passive IPIQ processing */ 420 need_ipiq(); 421 } 422 423 /* 424 * We update the compensation base to calculate fine-grained time 425 * from the sys_cputimer on a per-cpu basis in order to avoid 426 * having to mess around with locks. sys_cputimer is assumed to 427 * be consistent across all cpus. CPU N copies the base state from 428 * CPU 0 using the same FIFO trick that we use for basetime (so we 429 * don't catch a CPU 0 update in the middle). 430 * 431 * Note that we never allow info->time (aka gd->gd_hardclock.time) 432 * to reverse index gd_cpuclock_base, but that it is possible for 433 * it to temporarily get behind in the seconds if something in the 434 * system locks interrupts for a long period of time. Since periodic 435 * timers count events, though everything should resynch again 436 * immediately. 437 */ 438 if (gd->gd_cpuid == 0) { 439 int ni; 440 441 cputicks = info->time - gd->gd_cpuclock_base; 442 if (cputicks >= sys_cputimer->freq) { 443 cputicks /= sys_cputimer->freq; 444 if (cputicks != 0 && cputicks != 1) 445 kprintf("Warning: hardclock missed > 1 sec\n"); 446 gd->gd_time_seconds += cputicks; 447 gd->gd_cpuclock_base += sys_cputimer->freq * cputicks; 448 /* uncorrected monotonic 1-sec gran */ 449 time_uptime += cputicks; 450 } 451 ni = (basetime_index + 1) & BASETIME_ARYMASK; 452 hardtime[ni].time_second = gd->gd_time_seconds; 453 hardtime[ni].cpuclock_base = gd->gd_cpuclock_base; 454 } else { 455 int ni; 456 457 ni = basetime_index; 458 cpu_lfence(); 459 gd->gd_time_seconds = hardtime[ni].time_second; 460 gd->gd_cpuclock_base = hardtime[ni].cpuclock_base; 461 } 462 463 /* 464 * The system-wide ticks counter and NTP related timedelta/tickdelta 465 * adjustments only occur on cpu #0. NTP adjustments are accomplished 466 * by updating basetime. 467 */ 468 if (gd->gd_cpuid == 0) { 469 struct timespec *nbt; 470 struct timespec nts; 471 int leap; 472 int ni; 473 474 ++ticks; 475 476 #if 0 477 if (tco->tc_poll_pps) 478 tco->tc_poll_pps(tco); 479 #endif 480 481 /* 482 * Calculate the new basetime index. We are in a critical section 483 * on cpu #0 and can safely play with basetime_index. Start 484 * with the current basetime and then make adjustments. 485 */ 486 ni = (basetime_index + 1) & BASETIME_ARYMASK; 487 nbt = &basetime[ni]; 488 *nbt = basetime[basetime_index]; 489 490 /* 491 * Apply adjtime corrections. (adjtime() API) 492 * 493 * adjtime() only runs on cpu #0 so our critical section is 494 * sufficient to access these variables. 495 */ 496 if (ntp_delta != 0) { 497 nbt->tv_nsec += ntp_tick_delta; 498 ntp_delta -= ntp_tick_delta; 499 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 500 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 501 ntp_tick_delta = ntp_delta; 502 } 503 } 504 505 /* 506 * Apply permanent frequency corrections. (sysctl API) 507 */ 508 if (ntp_tick_permanent != 0) { 509 ntp_tick_acc += ntp_tick_permanent; 510 if (ntp_tick_acc >= (1LL << 32)) { 511 nbt->tv_nsec += ntp_tick_acc >> 32; 512 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 513 } else if (ntp_tick_acc <= -(1LL << 32)) { 514 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 515 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 516 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 517 } 518 } 519 520 if (nbt->tv_nsec >= 1000000000) { 521 nbt->tv_sec++; 522 nbt->tv_nsec -= 1000000000; 523 } else if (nbt->tv_nsec < 0) { 524 nbt->tv_sec--; 525 nbt->tv_nsec += 1000000000; 526 } 527 528 /* 529 * Another per-tick compensation. (for ntp_adjtime() API) 530 */ 531 if (nsec_adj != 0) { 532 nsec_acc += nsec_adj; 533 if (nsec_acc >= 0x100000000LL) { 534 nbt->tv_nsec += nsec_acc >> 32; 535 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 536 } else if (nsec_acc <= -0x100000000LL) { 537 nbt->tv_nsec -= -nsec_acc >> 32; 538 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 539 } 540 if (nbt->tv_nsec >= 1000000000) { 541 nbt->tv_nsec -= 1000000000; 542 ++nbt->tv_sec; 543 } else if (nbt->tv_nsec < 0) { 544 nbt->tv_nsec += 1000000000; 545 --nbt->tv_sec; 546 } 547 } 548 549 /************************************************************ 550 * LEAP SECOND CORRECTION * 551 ************************************************************ 552 * 553 * Taking into account all the corrections made above, figure 554 * out the new real time. If the seconds field has changed 555 * then apply any pending leap-second corrections. 556 */ 557 getnanotime_nbt(nbt, &nts); 558 559 if (time_second != nts.tv_sec) { 560 /* 561 * Apply leap second (sysctl API). Adjust nts for changes 562 * so we do not have to call getnanotime_nbt again. 563 */ 564 if (ntp_leap_second) { 565 if (ntp_leap_second == nts.tv_sec) { 566 if (ntp_leap_insert) { 567 nbt->tv_sec++; 568 nts.tv_sec++; 569 } else { 570 nbt->tv_sec--; 571 nts.tv_sec--; 572 } 573 ntp_leap_second--; 574 } 575 } 576 577 /* 578 * Apply leap second (ntp_adjtime() API), calculate a new 579 * nsec_adj field. ntp_update_second() returns nsec_adj 580 * as a per-second value but we need it as a per-tick value. 581 */ 582 leap = ntp_update_second(time_second, &nsec_adj); 583 nsec_adj /= hz; 584 nbt->tv_sec += leap; 585 nts.tv_sec += leap; 586 587 /* 588 * Update the time_second 'approximate time' global. 589 */ 590 time_second = nts.tv_sec; 591 } 592 593 /* 594 * Finally, our new basetime is ready to go live! 595 */ 596 cpu_sfence(); 597 basetime_index = ni; 598 599 /* 600 * Update kpmap on each tick. TS updates are integrated with 601 * fences and upticks allowing userland to read the data 602 * deterministically. 603 */ 604 if (kpmap) { 605 int w; 606 607 w = (kpmap->upticks + 1) & 1; 608 getnanouptime(&kpmap->ts_uptime[w]); 609 getnanotime(&kpmap->ts_realtime[w]); 610 cpu_sfence(); 611 ++kpmap->upticks; 612 cpu_sfence(); 613 } 614 } 615 616 /* 617 * lwkt thread scheduler fair queueing 618 */ 619 lwkt_schedulerclock(curthread); 620 621 /* 622 * softticks are handled for all cpus 623 */ 624 hardclock_softtick(gd); 625 626 /* 627 * ITimer handling is per-tick, per-cpu. 628 * 629 * We must acquire the per-process token in order for ksignal() 630 * to be non-blocking. For the moment this requires an AST fault, 631 * the ksignal() cannot be safely issued from this hard interrupt. 632 * 633 * XXX Even the trytoken here isn't right, and itimer operation in 634 * a multi threaded environment is going to be weird at the 635 * very least. 636 */ 637 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) { 638 crit_enter_hard(); 639 if (p->p_upmap) 640 ++p->p_upmap->runticks; 641 642 if (frame && CLKF_USERMODE(frame) && 643 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 644 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) { 645 p->p_flags |= P_SIGVTALRM; 646 need_user_resched(); 647 } 648 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 649 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) { 650 p->p_flags |= P_SIGPROF; 651 need_user_resched(); 652 } 653 crit_exit_hard(); 654 lwkt_reltoken(&p->p_token); 655 } 656 setdelayed(); 657 } 658 659 /* 660 * The statistics clock typically runs at a 125Hz rate, and is intended 661 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 662 * 663 * NOTE! systimer! the MP lock might not be held here. We can only safely 664 * manipulate objects owned by the current cpu. 665 * 666 * The stats clock is responsible for grabbing a profiling sample. 667 * Most of the statistics are only used by user-level statistics programs. 668 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 669 * p->p_estcpu. 670 * 671 * Like the other clocks, the stat clock is called from what is effectively 672 * a fast interrupt, so the context should be the thread/process that got 673 * interrupted. 674 */ 675 static void 676 statclock(systimer_t info, int in_ipi, struct intrframe *frame) 677 { 678 #ifdef GPROF 679 struct gmonparam *g; 680 int i; 681 #endif 682 thread_t td; 683 struct proc *p; 684 int bump; 685 sysclock_t cv; 686 sysclock_t scv; 687 688 /* 689 * How big was our timeslice relative to the last time? Calculate 690 * in microseconds. 691 * 692 * NOTE: Use of microuptime() is typically MPSAFE, but usually not 693 * during early boot. Just use the systimer count to be nice 694 * to e.g. qemu. The systimer has a better chance of being 695 * MPSAFE at early boot. 696 */ 697 cv = sys_cputimer->count(); 698 scv = mycpu->statint.gd_statcv; 699 if (scv == 0) { 700 bump = 1; 701 } else { 702 bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32; 703 if (bump < 0) 704 bump = 0; 705 if (bump > 1000000) 706 bump = 1000000; 707 } 708 mycpu->statint.gd_statcv = cv; 709 710 #if 0 711 stv = &mycpu->gd_stattv; 712 if (stv->tv_sec == 0) { 713 bump = 1; 714 } else { 715 bump = tv.tv_usec - stv->tv_usec + 716 (tv.tv_sec - stv->tv_sec) * 1000000; 717 if (bump < 0) 718 bump = 0; 719 if (bump > 1000000) 720 bump = 1000000; 721 } 722 *stv = tv; 723 #endif 724 725 td = curthread; 726 p = td->td_proc; 727 728 if (frame && CLKF_USERMODE(frame)) { 729 /* 730 * Came from userland, handle user time and deal with 731 * possible process. 732 */ 733 if (p && (p->p_flags & P_PROFIL)) 734 addupc_intr(p, CLKF_PC(frame), 1); 735 td->td_uticks += bump; 736 737 /* 738 * Charge the time as appropriate 739 */ 740 if (p && p->p_nice > NZERO) 741 cpu_time.cp_nice += bump; 742 else 743 cpu_time.cp_user += bump; 744 } else { 745 int intr_nest = mycpu->gd_intr_nesting_level; 746 747 if (in_ipi) { 748 /* 749 * IPI processing code will bump gd_intr_nesting_level 750 * up by one, which breaks following CLKF_INTR testing, 751 * so we subtract it by one here. 752 */ 753 --intr_nest; 754 } 755 #ifdef GPROF 756 /* 757 * Kernel statistics are just like addupc_intr, only easier. 758 */ 759 g = &_gmonparam; 760 if (g->state == GMON_PROF_ON && frame) { 761 i = CLKF_PC(frame) - g->lowpc; 762 if (i < g->textsize) { 763 i /= HISTFRACTION * sizeof(*g->kcount); 764 g->kcount[i]++; 765 } 766 } 767 #endif 768 769 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td)) 770 771 /* 772 * Came from kernel mode, so we were: 773 * - handling an interrupt, 774 * - doing syscall or trap work on behalf of the current 775 * user process, or 776 * - spinning in the idle loop. 777 * Whichever it is, charge the time as appropriate. 778 * Note that we charge interrupts to the current process, 779 * regardless of whether they are ``for'' that process, 780 * so that we know how much of its real time was spent 781 * in ``non-process'' (i.e., interrupt) work. 782 * 783 * XXX assume system if frame is NULL. A NULL frame 784 * can occur if ipi processing is done from a crit_exit(). 785 */ 786 if (IS_INTR_RUNNING) 787 td->td_iticks += bump; 788 else 789 td->td_sticks += bump; 790 791 if (IS_INTR_RUNNING) { 792 /* 793 * If we interrupted an interrupt thread, well, 794 * count it as interrupt time. 795 */ 796 #ifdef DEBUG_PCTRACK 797 if (frame) 798 do_pctrack(frame, PCTRACK_INT); 799 #endif 800 cpu_time.cp_intr += bump; 801 } else { 802 if (td == &mycpu->gd_idlethread) { 803 /* 804 * Even if the current thread is the idle 805 * thread it could be due to token contention 806 * in the LWKT scheduler. Count such as 807 * system time. 808 */ 809 if (mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK) 810 cpu_time.cp_sys += bump; 811 else 812 cpu_time.cp_idle += bump; 813 } else { 814 /* 815 * System thread was running. 816 */ 817 #ifdef DEBUG_PCTRACK 818 if (frame) 819 do_pctrack(frame, PCTRACK_SYS); 820 #endif 821 cpu_time.cp_sys += bump; 822 } 823 } 824 825 #undef IS_INTR_RUNNING 826 } 827 } 828 829 #ifdef DEBUG_PCTRACK 830 /* 831 * Sample the PC when in the kernel or in an interrupt. User code can 832 * retrieve the information and generate a histogram or other output. 833 */ 834 835 static void 836 do_pctrack(struct intrframe *frame, int which) 837 { 838 struct kinfo_pctrack *pctrack; 839 840 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 841 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 842 (void *)CLKF_PC(frame); 843 ++pctrack->pc_index; 844 } 845 846 static int 847 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 848 { 849 struct kinfo_pcheader head; 850 int error; 851 int cpu; 852 int ntrack; 853 854 head.pc_ntrack = PCTRACK_SIZE; 855 head.pc_arysize = PCTRACK_ARYSIZE; 856 857 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 858 return (error); 859 860 for (cpu = 0; cpu < ncpus; ++cpu) { 861 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 862 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 863 sizeof(struct kinfo_pctrack)); 864 if (error) 865 break; 866 } 867 if (error) 868 break; 869 } 870 return (error); 871 } 872 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 873 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 874 875 #endif 876 877 /* 878 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 879 * the MP lock might not be held. We can safely manipulate parts of curproc 880 * but that's about it. 881 * 882 * Each cpu has its own scheduler clock. 883 */ 884 static void 885 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 886 { 887 struct lwp *lp; 888 struct rusage *ru; 889 struct vmspace *vm; 890 long rss; 891 892 if ((lp = lwkt_preempted_proc()) != NULL) { 893 /* 894 * Account for cpu time used and hit the scheduler. Note 895 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 896 * HERE. 897 */ 898 ++lp->lwp_cpticks; 899 usched_schedulerclock(lp, info->periodic, info->time); 900 } else { 901 usched_schedulerclock(NULL, info->periodic, info->time); 902 } 903 if ((lp = curthread->td_lwp) != NULL) { 904 /* 905 * Update resource usage integrals and maximums. 906 */ 907 if ((ru = &lp->lwp_proc->p_ru) && 908 (vm = lp->lwp_proc->p_vmspace) != NULL) { 909 ru->ru_ixrss += pgtok(vm->vm_tsize); 910 ru->ru_idrss += pgtok(vm->vm_dsize); 911 ru->ru_isrss += pgtok(vm->vm_ssize); 912 if (lwkt_trytoken(&vm->vm_map.token)) { 913 rss = pgtok(vmspace_resident_count(vm)); 914 if (ru->ru_maxrss < rss) 915 ru->ru_maxrss = rss; 916 lwkt_reltoken(&vm->vm_map.token); 917 } 918 } 919 } 920 /* Increment the global sched_ticks */ 921 if (mycpu->gd_cpuid == 0) 922 ++sched_ticks; 923 } 924 925 /* 926 * Compute number of ticks for the specified amount of time. The 927 * return value is intended to be used in a clock interrupt timed 928 * operation and guaranteed to meet or exceed the requested time. 929 * If the representation overflows, return INT_MAX. The minimum return 930 * value is 1 ticks and the function will average the calculation up. 931 * If any value greater then 0 microseconds is supplied, a value 932 * of at least 2 will be returned to ensure that a near-term clock 933 * interrupt does not cause the timeout to occur (degenerately) early. 934 * 935 * Note that limit checks must take into account microseconds, which is 936 * done simply by using the smaller signed long maximum instead of 937 * the unsigned long maximum. 938 * 939 * If ints have 32 bits, then the maximum value for any timeout in 940 * 10ms ticks is 248 days. 941 */ 942 int 943 tvtohz_high(struct timeval *tv) 944 { 945 int ticks; 946 long sec, usec; 947 948 sec = tv->tv_sec; 949 usec = tv->tv_usec; 950 if (usec < 0) { 951 sec--; 952 usec += 1000000; 953 } 954 if (sec < 0) { 955 #ifdef DIAGNOSTIC 956 if (usec > 0) { 957 sec++; 958 usec -= 1000000; 959 } 960 kprintf("tvtohz_high: negative time difference " 961 "%ld sec %ld usec\n", 962 sec, usec); 963 #endif 964 ticks = 1; 965 } else if (sec <= INT_MAX / hz) { 966 ticks = (int)(sec * hz + 967 ((u_long)usec + (ustick - 1)) / ustick) + 1; 968 } else { 969 ticks = INT_MAX; 970 } 971 return (ticks); 972 } 973 974 int 975 tstohz_high(struct timespec *ts) 976 { 977 int ticks; 978 long sec, nsec; 979 980 sec = ts->tv_sec; 981 nsec = ts->tv_nsec; 982 if (nsec < 0) { 983 sec--; 984 nsec += 1000000000; 985 } 986 if (sec < 0) { 987 #ifdef DIAGNOSTIC 988 if (nsec > 0) { 989 sec++; 990 nsec -= 1000000000; 991 } 992 kprintf("tstohz_high: negative time difference " 993 "%ld sec %ld nsec\n", 994 sec, nsec); 995 #endif 996 ticks = 1; 997 } else if (sec <= INT_MAX / hz) { 998 ticks = (int)(sec * hz + 999 ((u_long)nsec + (nstick - 1)) / nstick) + 1; 1000 } else { 1001 ticks = INT_MAX; 1002 } 1003 return (ticks); 1004 } 1005 1006 1007 /* 1008 * Compute number of ticks for the specified amount of time, erroring on 1009 * the side of it being too low to ensure that sleeping the returned number 1010 * of ticks will not result in a late return. 1011 * 1012 * The supplied timeval may not be negative and should be normalized. A 1013 * return value of 0 is possible if the timeval converts to less then 1014 * 1 tick. 1015 * 1016 * If ints have 32 bits, then the maximum value for any timeout in 1017 * 10ms ticks is 248 days. 1018 */ 1019 int 1020 tvtohz_low(struct timeval *tv) 1021 { 1022 int ticks; 1023 long sec; 1024 1025 sec = tv->tv_sec; 1026 if (sec <= INT_MAX / hz) 1027 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 1028 else 1029 ticks = INT_MAX; 1030 return (ticks); 1031 } 1032 1033 int 1034 tstohz_low(struct timespec *ts) 1035 { 1036 int ticks; 1037 long sec; 1038 1039 sec = ts->tv_sec; 1040 if (sec <= INT_MAX / hz) 1041 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 1042 else 1043 ticks = INT_MAX; 1044 return (ticks); 1045 } 1046 1047 /* 1048 * Start profiling on a process. 1049 * 1050 * Kernel profiling passes proc0 which never exits and hence 1051 * keeps the profile clock running constantly. 1052 */ 1053 void 1054 startprofclock(struct proc *p) 1055 { 1056 if ((p->p_flags & P_PROFIL) == 0) { 1057 p->p_flags |= P_PROFIL; 1058 #if 0 /* XXX */ 1059 if (++profprocs == 1 && stathz != 0) { 1060 crit_enter(); 1061 psdiv = psratio; 1062 setstatclockrate(profhz); 1063 crit_exit(); 1064 } 1065 #endif 1066 } 1067 } 1068 1069 /* 1070 * Stop profiling on a process. 1071 * 1072 * caller must hold p->p_token 1073 */ 1074 void 1075 stopprofclock(struct proc *p) 1076 { 1077 if (p->p_flags & P_PROFIL) { 1078 p->p_flags &= ~P_PROFIL; 1079 #if 0 /* XXX */ 1080 if (--profprocs == 0 && stathz != 0) { 1081 crit_enter(); 1082 psdiv = 1; 1083 setstatclockrate(stathz); 1084 crit_exit(); 1085 } 1086 #endif 1087 } 1088 } 1089 1090 /* 1091 * Return information about system clocks. 1092 */ 1093 static int 1094 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 1095 { 1096 struct kinfo_clockinfo clkinfo; 1097 /* 1098 * Construct clockinfo structure. 1099 */ 1100 clkinfo.ci_hz = hz; 1101 clkinfo.ci_tick = ustick; 1102 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 1103 clkinfo.ci_profhz = profhz; 1104 clkinfo.ci_stathz = stathz ? stathz : hz; 1105 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 1106 } 1107 1108 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 1109 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 1110 1111 /* 1112 * We have eight functions for looking at the clock, four for 1113 * microseconds and four for nanoseconds. For each there is fast 1114 * but less precise version "get{nano|micro}[up]time" which will 1115 * return a time which is up to 1/HZ previous to the call, whereas 1116 * the raw version "{nano|micro}[up]time" will return a timestamp 1117 * which is as precise as possible. The "up" variants return the 1118 * time relative to system boot, these are well suited for time 1119 * interval measurements. 1120 * 1121 * Each cpu independently maintains the current time of day, so all 1122 * we need to do to protect ourselves from changes is to do a loop 1123 * check on the seconds field changing out from under us. 1124 * 1125 * The system timer maintains a 32 bit count and due to various issues 1126 * it is possible for the calculated delta to occasionally exceed 1127 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 1128 * multiplication can easily overflow, so we deal with the case. For 1129 * uniformity we deal with the case in the usec case too. 1130 * 1131 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 1132 */ 1133 void 1134 getmicrouptime(struct timeval *tvp) 1135 { 1136 struct globaldata *gd = mycpu; 1137 sysclock_t delta; 1138 1139 do { 1140 tvp->tv_sec = gd->gd_time_seconds; 1141 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1142 } while (tvp->tv_sec != gd->gd_time_seconds); 1143 1144 if (delta >= sys_cputimer->freq) { 1145 tvp->tv_sec += delta / sys_cputimer->freq; 1146 delta %= sys_cputimer->freq; 1147 } 1148 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1149 if (tvp->tv_usec >= 1000000) { 1150 tvp->tv_usec -= 1000000; 1151 ++tvp->tv_sec; 1152 } 1153 } 1154 1155 void 1156 getnanouptime(struct timespec *tsp) 1157 { 1158 struct globaldata *gd = mycpu; 1159 sysclock_t delta; 1160 1161 do { 1162 tsp->tv_sec = gd->gd_time_seconds; 1163 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1164 } while (tsp->tv_sec != gd->gd_time_seconds); 1165 1166 if (delta >= sys_cputimer->freq) { 1167 tsp->tv_sec += delta / sys_cputimer->freq; 1168 delta %= sys_cputimer->freq; 1169 } 1170 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1171 } 1172 1173 void 1174 microuptime(struct timeval *tvp) 1175 { 1176 struct globaldata *gd = mycpu; 1177 sysclock_t delta; 1178 1179 do { 1180 tvp->tv_sec = gd->gd_time_seconds; 1181 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1182 } while (tvp->tv_sec != gd->gd_time_seconds); 1183 1184 if (delta >= sys_cputimer->freq) { 1185 tvp->tv_sec += delta / sys_cputimer->freq; 1186 delta %= sys_cputimer->freq; 1187 } 1188 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1189 } 1190 1191 void 1192 nanouptime(struct timespec *tsp) 1193 { 1194 struct globaldata *gd = mycpu; 1195 sysclock_t delta; 1196 1197 do { 1198 tsp->tv_sec = gd->gd_time_seconds; 1199 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1200 } while (tsp->tv_sec != gd->gd_time_seconds); 1201 1202 if (delta >= sys_cputimer->freq) { 1203 tsp->tv_sec += delta / sys_cputimer->freq; 1204 delta %= sys_cputimer->freq; 1205 } 1206 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1207 } 1208 1209 /* 1210 * realtime routines 1211 */ 1212 void 1213 getmicrotime(struct timeval *tvp) 1214 { 1215 struct globaldata *gd = mycpu; 1216 struct timespec *bt; 1217 sysclock_t delta; 1218 1219 do { 1220 tvp->tv_sec = gd->gd_time_seconds; 1221 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1222 } while (tvp->tv_sec != gd->gd_time_seconds); 1223 1224 if (delta >= sys_cputimer->freq) { 1225 tvp->tv_sec += delta / sys_cputimer->freq; 1226 delta %= sys_cputimer->freq; 1227 } 1228 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1229 1230 bt = &basetime[basetime_index]; 1231 cpu_lfence(); 1232 tvp->tv_sec += bt->tv_sec; 1233 tvp->tv_usec += bt->tv_nsec / 1000; 1234 while (tvp->tv_usec >= 1000000) { 1235 tvp->tv_usec -= 1000000; 1236 ++tvp->tv_sec; 1237 } 1238 } 1239 1240 void 1241 getnanotime(struct timespec *tsp) 1242 { 1243 struct globaldata *gd = mycpu; 1244 struct timespec *bt; 1245 sysclock_t delta; 1246 1247 do { 1248 tsp->tv_sec = gd->gd_time_seconds; 1249 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1250 } while (tsp->tv_sec != gd->gd_time_seconds); 1251 1252 if (delta >= sys_cputimer->freq) { 1253 tsp->tv_sec += delta / sys_cputimer->freq; 1254 delta %= sys_cputimer->freq; 1255 } 1256 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1257 1258 bt = &basetime[basetime_index]; 1259 cpu_lfence(); 1260 tsp->tv_sec += bt->tv_sec; 1261 tsp->tv_nsec += bt->tv_nsec; 1262 while (tsp->tv_nsec >= 1000000000) { 1263 tsp->tv_nsec -= 1000000000; 1264 ++tsp->tv_sec; 1265 } 1266 } 1267 1268 static void 1269 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1270 { 1271 struct globaldata *gd = mycpu; 1272 sysclock_t delta; 1273 1274 do { 1275 tsp->tv_sec = gd->gd_time_seconds; 1276 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1277 } while (tsp->tv_sec != gd->gd_time_seconds); 1278 1279 if (delta >= sys_cputimer->freq) { 1280 tsp->tv_sec += delta / sys_cputimer->freq; 1281 delta %= sys_cputimer->freq; 1282 } 1283 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1284 1285 tsp->tv_sec += nbt->tv_sec; 1286 tsp->tv_nsec += nbt->tv_nsec; 1287 while (tsp->tv_nsec >= 1000000000) { 1288 tsp->tv_nsec -= 1000000000; 1289 ++tsp->tv_sec; 1290 } 1291 } 1292 1293 1294 void 1295 microtime(struct timeval *tvp) 1296 { 1297 struct globaldata *gd = mycpu; 1298 struct timespec *bt; 1299 sysclock_t delta; 1300 1301 do { 1302 tvp->tv_sec = gd->gd_time_seconds; 1303 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1304 } while (tvp->tv_sec != gd->gd_time_seconds); 1305 1306 if (delta >= sys_cputimer->freq) { 1307 tvp->tv_sec += delta / sys_cputimer->freq; 1308 delta %= sys_cputimer->freq; 1309 } 1310 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1311 1312 bt = &basetime[basetime_index]; 1313 cpu_lfence(); 1314 tvp->tv_sec += bt->tv_sec; 1315 tvp->tv_usec += bt->tv_nsec / 1000; 1316 while (tvp->tv_usec >= 1000000) { 1317 tvp->tv_usec -= 1000000; 1318 ++tvp->tv_sec; 1319 } 1320 } 1321 1322 void 1323 nanotime(struct timespec *tsp) 1324 { 1325 struct globaldata *gd = mycpu; 1326 struct timespec *bt; 1327 sysclock_t delta; 1328 1329 do { 1330 tsp->tv_sec = gd->gd_time_seconds; 1331 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1332 } while (tsp->tv_sec != gd->gd_time_seconds); 1333 1334 if (delta >= sys_cputimer->freq) { 1335 tsp->tv_sec += delta / sys_cputimer->freq; 1336 delta %= sys_cputimer->freq; 1337 } 1338 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1339 1340 bt = &basetime[basetime_index]; 1341 cpu_lfence(); 1342 tsp->tv_sec += bt->tv_sec; 1343 tsp->tv_nsec += bt->tv_nsec; 1344 while (tsp->tv_nsec >= 1000000000) { 1345 tsp->tv_nsec -= 1000000000; 1346 ++tsp->tv_sec; 1347 } 1348 } 1349 1350 /* 1351 * Get an approximate time_t. It does not have to be accurate. This 1352 * function is called only from KTR and can be called with the system in 1353 * any state so do not use a critical section or other complex operation 1354 * here. 1355 * 1356 * NOTE: This is not exactly synchronized with real time. To do that we 1357 * would have to do what microtime does and check for a nanoseconds 1358 * overflow. 1359 */ 1360 time_t 1361 get_approximate_time_t(void) 1362 { 1363 struct globaldata *gd = mycpu; 1364 struct timespec *bt; 1365 1366 bt = &basetime[basetime_index]; 1367 return(gd->gd_time_seconds + bt->tv_sec); 1368 } 1369 1370 int 1371 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1372 { 1373 pps_params_t *app; 1374 struct pps_fetch_args *fapi; 1375 #ifdef PPS_SYNC 1376 struct pps_kcbind_args *kapi; 1377 #endif 1378 1379 switch (cmd) { 1380 case PPS_IOC_CREATE: 1381 return (0); 1382 case PPS_IOC_DESTROY: 1383 return (0); 1384 case PPS_IOC_SETPARAMS: 1385 app = (pps_params_t *)data; 1386 if (app->mode & ~pps->ppscap) 1387 return (EINVAL); 1388 pps->ppsparam = *app; 1389 return (0); 1390 case PPS_IOC_GETPARAMS: 1391 app = (pps_params_t *)data; 1392 *app = pps->ppsparam; 1393 app->api_version = PPS_API_VERS_1; 1394 return (0); 1395 case PPS_IOC_GETCAP: 1396 *(int*)data = pps->ppscap; 1397 return (0); 1398 case PPS_IOC_FETCH: 1399 fapi = (struct pps_fetch_args *)data; 1400 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1401 return (EINVAL); 1402 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1403 return (EOPNOTSUPP); 1404 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1405 fapi->pps_info_buf = pps->ppsinfo; 1406 return (0); 1407 case PPS_IOC_KCBIND: 1408 #ifdef PPS_SYNC 1409 kapi = (struct pps_kcbind_args *)data; 1410 /* XXX Only root should be able to do this */ 1411 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1412 return (EINVAL); 1413 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1414 return (EINVAL); 1415 if (kapi->edge & ~pps->ppscap) 1416 return (EINVAL); 1417 pps->kcmode = kapi->edge; 1418 return (0); 1419 #else 1420 return (EOPNOTSUPP); 1421 #endif 1422 default: 1423 return (ENOTTY); 1424 } 1425 } 1426 1427 void 1428 pps_init(struct pps_state *pps) 1429 { 1430 pps->ppscap |= PPS_TSFMT_TSPEC; 1431 if (pps->ppscap & PPS_CAPTUREASSERT) 1432 pps->ppscap |= PPS_OFFSETASSERT; 1433 if (pps->ppscap & PPS_CAPTURECLEAR) 1434 pps->ppscap |= PPS_OFFSETCLEAR; 1435 } 1436 1437 void 1438 pps_event(struct pps_state *pps, sysclock_t count, int event) 1439 { 1440 struct globaldata *gd; 1441 struct timespec *tsp; 1442 struct timespec *osp; 1443 struct timespec *bt; 1444 struct timespec ts; 1445 sysclock_t *pcount; 1446 #ifdef PPS_SYNC 1447 sysclock_t tcount; 1448 #endif 1449 sysclock_t delta; 1450 pps_seq_t *pseq; 1451 int foff; 1452 #ifdef PPS_SYNC 1453 int fhard; 1454 #else 1455 int fhard __unused; 1456 #endif 1457 int ni; 1458 1459 gd = mycpu; 1460 1461 /* Things would be easier with arrays... */ 1462 if (event == PPS_CAPTUREASSERT) { 1463 tsp = &pps->ppsinfo.assert_timestamp; 1464 osp = &pps->ppsparam.assert_offset; 1465 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1466 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1467 pcount = &pps->ppscount[0]; 1468 pseq = &pps->ppsinfo.assert_sequence; 1469 } else { 1470 tsp = &pps->ppsinfo.clear_timestamp; 1471 osp = &pps->ppsparam.clear_offset; 1472 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1473 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1474 pcount = &pps->ppscount[1]; 1475 pseq = &pps->ppsinfo.clear_sequence; 1476 } 1477 1478 /* Nothing really happened */ 1479 if (*pcount == count) 1480 return; 1481 1482 *pcount = count; 1483 1484 do { 1485 ts.tv_sec = gd->gd_time_seconds; 1486 delta = count - gd->gd_cpuclock_base; 1487 } while (ts.tv_sec != gd->gd_time_seconds); 1488 1489 if (delta >= sys_cputimer->freq) { 1490 ts.tv_sec += delta / sys_cputimer->freq; 1491 delta %= sys_cputimer->freq; 1492 } 1493 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1494 ni = basetime_index; 1495 cpu_lfence(); 1496 bt = &basetime[ni]; 1497 ts.tv_sec += bt->tv_sec; 1498 ts.tv_nsec += bt->tv_nsec; 1499 while (ts.tv_nsec >= 1000000000) { 1500 ts.tv_nsec -= 1000000000; 1501 ++ts.tv_sec; 1502 } 1503 1504 (*pseq)++; 1505 *tsp = ts; 1506 1507 if (foff) { 1508 timespecadd(tsp, osp); 1509 if (tsp->tv_nsec < 0) { 1510 tsp->tv_nsec += 1000000000; 1511 tsp->tv_sec -= 1; 1512 } 1513 } 1514 #ifdef PPS_SYNC 1515 if (fhard) { 1516 /* magic, at its best... */ 1517 tcount = count - pps->ppscount[2]; 1518 pps->ppscount[2] = count; 1519 if (tcount >= sys_cputimer->freq) { 1520 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1521 sys_cputimer->freq64_nsec * 1522 (tcount % sys_cputimer->freq)) >> 32; 1523 } else { 1524 delta = (sys_cputimer->freq64_nsec * tcount) >> 32; 1525 } 1526 hardpps(tsp, delta); 1527 } 1528 #endif 1529 } 1530 1531 /* 1532 * Return the tsc target value for a delay of (ns). 1533 * 1534 * Returns -1 if the TSC is not supported. 1535 */ 1536 int64_t 1537 tsc_get_target(int ns) 1538 { 1539 #if defined(_RDTSC_SUPPORTED_) 1540 if (cpu_feature & CPUID_TSC) { 1541 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1542 } 1543 #endif 1544 return(-1); 1545 } 1546 1547 /* 1548 * Compare the tsc against the passed target 1549 * 1550 * Returns +1 if the target has been reached 1551 * Returns 0 if the target has not yet been reached 1552 * Returns -1 if the TSC is not supported. 1553 * 1554 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1555 */ 1556 int 1557 tsc_test_target(int64_t target) 1558 { 1559 #if defined(_RDTSC_SUPPORTED_) 1560 if (cpu_feature & CPUID_TSC) { 1561 if ((int64_t)(target - rdtsc()) <= 0) 1562 return(1); 1563 return(0); 1564 } 1565 #endif 1566 return(-1); 1567 } 1568 1569 /* 1570 * Delay the specified number of nanoseconds using the tsc. This function 1571 * returns immediately if the TSC is not supported. At least one cpu_pause() 1572 * will be issued. 1573 */ 1574 void 1575 tsc_delay(int ns) 1576 { 1577 int64_t clk; 1578 1579 clk = tsc_get_target(ns); 1580 cpu_pause(); 1581 while (tsc_test_target(clk) == 0) 1582 cpu_pause(); 1583 } 1584