xref: /dflybsd-src/sys/kern/kern_clock.c (revision 5270936ced7738caef7b7302e4b02466f8e913bc)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
68  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
69  */
70 
71 #include "opt_ntp.h"
72 #include "opt_ifpoll.h"
73 #include "opt_pctrack.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/callout.h>
78 #include <sys/kernel.h>
79 #include <sys/kinfo.h>
80 #include <sys/proc.h>
81 #include <sys/malloc.h>
82 #include <sys/resource.h>
83 #include <sys/resourcevar.h>
84 #include <sys/signalvar.h>
85 #include <sys/timex.h>
86 #include <sys/timepps.h>
87 #include <sys/upmap.h>
88 #include <vm/vm.h>
89 #include <sys/lock.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_extern.h>
93 #include <sys/sysctl.h>
94 
95 #include <sys/thread2.h>
96 #include <sys/mplock2.h>
97 
98 #include <machine/cpu.h>
99 #include <machine/limits.h>
100 #include <machine/smp.h>
101 #include <machine/cpufunc.h>
102 #include <machine/specialreg.h>
103 #include <machine/clock.h>
104 
105 #ifdef GPROF
106 #include <sys/gmon.h>
107 #endif
108 
109 #ifdef IFPOLL_ENABLE
110 extern void ifpoll_init_pcpu(int);
111 #endif
112 
113 #ifdef DEBUG_PCTRACK
114 static void do_pctrack(struct intrframe *frame, int which);
115 #endif
116 
117 static void initclocks (void *dummy);
118 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
119 
120 /*
121  * Some of these don't belong here, but it's easiest to concentrate them.
122  * Note that cpu_time counts in microseconds, but most userland programs
123  * just compare relative times against the total by delta.
124  */
125 struct kinfo_cputime cputime_percpu[MAXCPU];
126 #ifdef DEBUG_PCTRACK
127 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
128 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
129 #endif
130 
131 static int
132 sysctl_cputime(SYSCTL_HANDLER_ARGS)
133 {
134 	int cpu, error = 0;
135 	size_t size = sizeof(struct kinfo_cputime);
136 	struct kinfo_cputime tmp;
137 
138 	for (cpu = 0; cpu < ncpus; ++cpu) {
139 		tmp = cputime_percpu[cpu];
140 		tmp.cp_sample_pc = (int64_t)globaldata_find(cpu)->gd_sample_pc;
141 		tmp.cp_sample_sp = (int64_t)globaldata_find(cpu)->gd_sample_sp;
142 		if ((error = SYSCTL_OUT(req, &tmp, size)) != 0)
143 			break;
144 	}
145 	smp_sniff();
146 
147 	return (error);
148 }
149 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
150 	sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
151 
152 static int
153 sysctl_cp_time(SYSCTL_HANDLER_ARGS)
154 {
155 	long cpu_states[5] = {0};
156 	int cpu, error = 0;
157 	size_t size = sizeof(cpu_states);
158 
159 	for (cpu = 0; cpu < ncpus; ++cpu) {
160 		cpu_states[CP_USER] += cputime_percpu[cpu].cp_user;
161 		cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice;
162 		cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys;
163 		cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr;
164 		cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle;
165 	}
166 
167 	error = SYSCTL_OUT(req, cpu_states, size);
168 
169 	return (error);
170 }
171 
172 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
173 	sysctl_cp_time, "LU", "CPU time statistics");
174 
175 /*
176  * boottime is used to calculate the 'real' uptime.  Do not confuse this with
177  * microuptime().  microtime() is not drift compensated.  The real uptime
178  * with compensation is nanotime() - bootime.  boottime is recalculated
179  * whenever the real time is set based on the compensated elapsed time
180  * in seconds (gd->gd_time_seconds).
181  *
182  * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
183  * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
184  * the real time.
185  *
186  * WARNING! time_second can backstep on time corrections. Also, unlike
187  *          time_second, time_uptime is not a "real" time_t (seconds
188  *          since the Epoch) but seconds since booting.
189  */
190 struct timespec boottime;	/* boot time (realtime) for reference only */
191 time_t time_second;		/* read-only 'passive' realtime in seconds */
192 time_t time_uptime;		/* read-only 'passive' uptime in seconds */
193 
194 /*
195  * basetime is used to calculate the compensated real time of day.  The
196  * basetime can be modified on a per-tick basis by the adjtime(),
197  * ntp_adjtime(), and sysctl-based time correction APIs.
198  *
199  * Note that frequency corrections can also be made by adjusting
200  * gd_cpuclock_base.
201  *
202  * basetime is a tail-chasing FIFO, updated only by cpu #0.  The FIFO is
203  * used on both SMP and UP systems to avoid MP races between cpu's and
204  * interrupt races on UP systems.
205  */
206 struct hardtime {
207 	__uint32_t time_second;
208 	sysclock_t cpuclock_base;
209 };
210 
211 #define BASETIME_ARYSIZE	16
212 #define BASETIME_ARYMASK	(BASETIME_ARYSIZE - 1)
213 static struct timespec basetime[BASETIME_ARYSIZE];
214 static struct hardtime hardtime[BASETIME_ARYSIZE];
215 static volatile int basetime_index;
216 
217 static int
218 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
219 {
220 	struct timespec *bt;
221 	int error;
222 	int index;
223 
224 	/*
225 	 * Because basetime data and index may be updated by another cpu,
226 	 * a load fence is required to ensure that the data we read has
227 	 * not been speculatively read relative to a possibly updated index.
228 	 */
229 	index = basetime_index;
230 	cpu_lfence();
231 	bt = &basetime[index];
232 	error = SYSCTL_OUT(req, bt, sizeof(*bt));
233 	return (error);
234 }
235 
236 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
237     &boottime, timespec, "System boottime");
238 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
239     sysctl_get_basetime, "S,timespec", "System basetime");
240 
241 static void hardclock(systimer_t info, int, struct intrframe *frame);
242 static void statclock(systimer_t info, int, struct intrframe *frame);
243 static void schedclock(systimer_t info, int, struct intrframe *frame);
244 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
245 
246 int	ticks;			/* system master ticks at hz */
247 int	clocks_running;		/* tsleep/timeout clocks operational */
248 int64_t	nsec_adj;		/* ntpd per-tick adjustment in nsec << 32 */
249 int64_t	nsec_acc;		/* accumulator */
250 int	sched_ticks;		/* global schedule clock ticks */
251 
252 /* NTPD time correction fields */
253 int64_t	ntp_tick_permanent;	/* per-tick adjustment in nsec << 32 */
254 int64_t	ntp_tick_acc;		/* accumulator for per-tick adjustment */
255 int64_t	ntp_delta;		/* one-time correction in nsec */
256 int64_t ntp_big_delta = 1000000000;
257 int32_t	ntp_tick_delta;		/* current adjustment rate */
258 int32_t	ntp_default_tick_delta;	/* adjustment rate for ntp_delta */
259 time_t	ntp_leap_second;	/* time of next leap second */
260 int	ntp_leap_insert;	/* whether to insert or remove a second */
261 
262 /*
263  * Finish initializing clock frequencies and start all clocks running.
264  */
265 /* ARGSUSED*/
266 static void
267 initclocks(void *dummy)
268 {
269 	/*psratio = profhz / stathz;*/
270 	initclocks_pcpu();
271 	clocks_running = 1;
272 	if (kpmap) {
273 	    kpmap->tsc_freq = (uint64_t)tsc_frequency;
274 	    kpmap->tick_freq = hz;
275 	}
276 }
277 
278 /*
279  * Called on a per-cpu basis from the idle thread bootstrap on each cpu
280  * during SMP initialization.
281  *
282  * This routine is called concurrently during low-level SMP initialization
283  * and may not block in any way.  Meaning, among other things, we can't
284  * acquire any tokens.
285  */
286 void
287 initclocks_pcpu(void)
288 {
289 	struct globaldata *gd = mycpu;
290 
291 	crit_enter();
292 	if (gd->gd_cpuid == 0) {
293 	    gd->gd_time_seconds = 1;
294 	    gd->gd_cpuclock_base = sys_cputimer->count();
295 	    hardtime[0].time_second = gd->gd_time_seconds;
296 	    hardtime[0].cpuclock_base = gd->gd_cpuclock_base;
297 	} else {
298 	    gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
299 	    gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
300 	}
301 
302 	systimer_intr_enable();
303 
304 	crit_exit();
305 }
306 
307 /*
308  * This routine is called on just the BSP, just after SMP initialization
309  * completes to * finish initializing any clocks that might contend/block
310  * (e.g. like on a token).  We can't do this in initclocks_pcpu() because
311  * that function is called from the idle thread bootstrap for each cpu and
312  * not allowed to block at all.
313  */
314 static
315 void
316 initclocks_other(void *dummy)
317 {
318 	struct globaldata *ogd = mycpu;
319 	struct globaldata *gd;
320 	int n;
321 
322 	for (n = 0; n < ncpus; ++n) {
323 		lwkt_setcpu_self(globaldata_find(n));
324 		gd = mycpu;
325 
326 		/*
327 		 * Use a non-queued periodic systimer to prevent multiple
328 		 * ticks from building up if the sysclock jumps forward
329 		 * (8254 gets reset).  The sysclock will never jump backwards.
330 		 * Our time sync is based on the actual sysclock, not the
331 		 * ticks count.
332 		 */
333 		systimer_init_periodic_nq(&gd->gd_hardclock, hardclock,
334 					  NULL, hz);
335 		systimer_init_periodic_nq(&gd->gd_statclock, statclock,
336 					  NULL, stathz);
337 		/* XXX correct the frequency for scheduler / estcpu tests */
338 		systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
339 					  NULL, ESTCPUFREQ);
340 #ifdef IFPOLL_ENABLE
341 		ifpoll_init_pcpu(gd->gd_cpuid);
342 #endif
343 	}
344 	lwkt_setcpu_self(ogd);
345 }
346 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL);
347 
348 /*
349  * This sets the current real time of day.  Timespecs are in seconds and
350  * nanoseconds.  We do not mess with gd_time_seconds and gd_cpuclock_base,
351  * instead we adjust basetime so basetime + gd_* results in the current
352  * time of day.  This way the gd_* fields are guaranteed to represent
353  * a monotonically increasing 'uptime' value.
354  *
355  * When set_timeofday() is called from userland, the system call forces it
356  * onto cpu #0 since only cpu #0 can update basetime_index.
357  */
358 void
359 set_timeofday(struct timespec *ts)
360 {
361 	struct timespec *nbt;
362 	int ni;
363 
364 	/*
365 	 * XXX SMP / non-atomic basetime updates
366 	 */
367 	crit_enter();
368 	ni = (basetime_index + 1) & BASETIME_ARYMASK;
369 	cpu_lfence();
370 	nbt = &basetime[ni];
371 	nanouptime(nbt);
372 	nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
373 	nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
374 	if (nbt->tv_nsec < 0) {
375 	    nbt->tv_nsec += 1000000000;
376 	    --nbt->tv_sec;
377 	}
378 
379 	/*
380 	 * Note that basetime diverges from boottime as the clock drift is
381 	 * compensated for, so we cannot do away with boottime.  When setting
382 	 * the absolute time of day the drift is 0 (for an instant) and we
383 	 * can simply assign boottime to basetime.
384 	 *
385 	 * Note that nanouptime() is based on gd_time_seconds which is drift
386 	 * compensated up to a point (it is guaranteed to remain monotonically
387 	 * increasing).  gd_time_seconds is thus our best uptime guess and
388 	 * suitable for use in the boottime calculation.  It is already taken
389 	 * into account in the basetime calculation above.
390 	 */
391 	boottime.tv_sec = nbt->tv_sec;
392 	ntp_delta = 0;
393 
394 	/*
395 	 * We now have a new basetime, make sure all other cpus have it,
396 	 * then update the index.
397 	 */
398 	cpu_sfence();
399 	basetime_index = ni;
400 
401 	crit_exit();
402 }
403 
404 /*
405  * Each cpu has its own hardclock, but we only increments ticks and softticks
406  * on cpu #0.
407  *
408  * NOTE! systimer! the MP lock might not be held here.  We can only safely
409  * manipulate objects owned by the current cpu.
410  */
411 static void
412 hardclock(systimer_t info, int in_ipi, struct intrframe *frame)
413 {
414 	sysclock_t cputicks;
415 	struct proc *p;
416 	struct globaldata *gd = mycpu;
417 
418 	if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) {
419 		/* Defer to doreti on passive IPIQ processing */
420 		need_ipiq();
421 	}
422 
423 	/*
424 	 * We update the compensation base to calculate fine-grained time
425 	 * from the sys_cputimer on a per-cpu basis in order to avoid
426 	 * having to mess around with locks.  sys_cputimer is assumed to
427 	 * be consistent across all cpus.  CPU N copies the base state from
428 	 * CPU 0 using the same FIFO trick that we use for basetime (so we
429 	 * don't catch a CPU 0 update in the middle).
430 	 *
431 	 * Note that we never allow info->time (aka gd->gd_hardclock.time)
432 	 * to reverse index gd_cpuclock_base, but that it is possible for
433 	 * it to temporarily get behind in the seconds if something in the
434 	 * system locks interrupts for a long period of time.  Since periodic
435 	 * timers count events, though everything should resynch again
436 	 * immediately.
437 	 */
438 	if (gd->gd_cpuid == 0) {
439 		int ni;
440 
441 		cputicks = info->time - gd->gd_cpuclock_base;
442 		if (cputicks >= sys_cputimer->freq) {
443 			cputicks /= sys_cputimer->freq;
444 			if (cputicks != 0 && cputicks != 1)
445 				kprintf("Warning: hardclock missed > 1 sec\n");
446 			gd->gd_time_seconds += cputicks;
447 			gd->gd_cpuclock_base += sys_cputimer->freq * cputicks;
448 			/* uncorrected monotonic 1-sec gran */
449 			time_uptime += cputicks;
450 		}
451 		ni = (basetime_index + 1) & BASETIME_ARYMASK;
452 		hardtime[ni].time_second = gd->gd_time_seconds;
453 		hardtime[ni].cpuclock_base = gd->gd_cpuclock_base;
454 	} else {
455 		int ni;
456 
457 		ni = basetime_index;
458 		cpu_lfence();
459 		gd->gd_time_seconds = hardtime[ni].time_second;
460 		gd->gd_cpuclock_base = hardtime[ni].cpuclock_base;
461 	}
462 
463 	/*
464 	 * The system-wide ticks counter and NTP related timedelta/tickdelta
465 	 * adjustments only occur on cpu #0.  NTP adjustments are accomplished
466 	 * by updating basetime.
467 	 */
468 	if (gd->gd_cpuid == 0) {
469 	    struct timespec *nbt;
470 	    struct timespec nts;
471 	    int leap;
472 	    int ni;
473 
474 	    ++ticks;
475 
476 #if 0
477 	    if (tco->tc_poll_pps)
478 		tco->tc_poll_pps(tco);
479 #endif
480 
481 	    /*
482 	     * Calculate the new basetime index.  We are in a critical section
483 	     * on cpu #0 and can safely play with basetime_index.  Start
484 	     * with the current basetime and then make adjustments.
485 	     */
486 	    ni = (basetime_index + 1) & BASETIME_ARYMASK;
487 	    nbt = &basetime[ni];
488 	    *nbt = basetime[basetime_index];
489 
490 	    /*
491 	     * Apply adjtime corrections.  (adjtime() API)
492 	     *
493 	     * adjtime() only runs on cpu #0 so our critical section is
494 	     * sufficient to access these variables.
495 	     */
496 	    if (ntp_delta != 0) {
497 		nbt->tv_nsec += ntp_tick_delta;
498 		ntp_delta -= ntp_tick_delta;
499 		if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
500 		    (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
501 			ntp_tick_delta = ntp_delta;
502  		}
503  	    }
504 
505 	    /*
506 	     * Apply permanent frequency corrections.  (sysctl API)
507 	     */
508 	    if (ntp_tick_permanent != 0) {
509 		ntp_tick_acc += ntp_tick_permanent;
510 		if (ntp_tick_acc >= (1LL << 32)) {
511 		    nbt->tv_nsec += ntp_tick_acc >> 32;
512 		    ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
513 		} else if (ntp_tick_acc <= -(1LL << 32)) {
514 		    /* Negate ntp_tick_acc to avoid shifting the sign bit. */
515 		    nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
516 		    ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
517 		}
518  	    }
519 
520 	    if (nbt->tv_nsec >= 1000000000) {
521 		    nbt->tv_sec++;
522 		    nbt->tv_nsec -= 1000000000;
523 	    } else if (nbt->tv_nsec < 0) {
524 		    nbt->tv_sec--;
525 		    nbt->tv_nsec += 1000000000;
526 	    }
527 
528 	    /*
529 	     * Another per-tick compensation.  (for ntp_adjtime() API)
530 	     */
531 	    if (nsec_adj != 0) {
532 		nsec_acc += nsec_adj;
533 		if (nsec_acc >= 0x100000000LL) {
534 		    nbt->tv_nsec += nsec_acc >> 32;
535 		    nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
536 		} else if (nsec_acc <= -0x100000000LL) {
537 		    nbt->tv_nsec -= -nsec_acc >> 32;
538 		    nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
539 		}
540 		if (nbt->tv_nsec >= 1000000000) {
541 		    nbt->tv_nsec -= 1000000000;
542 		    ++nbt->tv_sec;
543 		} else if (nbt->tv_nsec < 0) {
544 		    nbt->tv_nsec += 1000000000;
545 		    --nbt->tv_sec;
546 		}
547 	    }
548 
549 	    /************************************************************
550 	     *			LEAP SECOND CORRECTION			*
551 	     ************************************************************
552 	     *
553 	     * Taking into account all the corrections made above, figure
554 	     * out the new real time.  If the seconds field has changed
555 	     * then apply any pending leap-second corrections.
556 	     */
557 	    getnanotime_nbt(nbt, &nts);
558 
559 	    if (time_second != nts.tv_sec) {
560 		/*
561 		 * Apply leap second (sysctl API).  Adjust nts for changes
562 		 * so we do not have to call getnanotime_nbt again.
563 		 */
564 		if (ntp_leap_second) {
565 		    if (ntp_leap_second == nts.tv_sec) {
566 			if (ntp_leap_insert) {
567 			    nbt->tv_sec++;
568 			    nts.tv_sec++;
569 			} else {
570 			    nbt->tv_sec--;
571 			    nts.tv_sec--;
572 			}
573 			ntp_leap_second--;
574 		    }
575 		}
576 
577 		/*
578 		 * Apply leap second (ntp_adjtime() API), calculate a new
579 		 * nsec_adj field.  ntp_update_second() returns nsec_adj
580 		 * as a per-second value but we need it as a per-tick value.
581 		 */
582 		leap = ntp_update_second(time_second, &nsec_adj);
583 		nsec_adj /= hz;
584 		nbt->tv_sec += leap;
585 		nts.tv_sec += leap;
586 
587 		/*
588 		 * Update the time_second 'approximate time' global.
589 		 */
590 		time_second = nts.tv_sec;
591 	    }
592 
593 	    /*
594 	     * Finally, our new basetime is ready to go live!
595 	     */
596 	    cpu_sfence();
597 	    basetime_index = ni;
598 
599 	    /*
600 	     * Update kpmap on each tick.  TS updates are integrated with
601 	     * fences and upticks allowing userland to read the data
602 	     * deterministically.
603 	     */
604 	    if (kpmap) {
605 		int w;
606 
607 		w = (kpmap->upticks + 1) & 1;
608 		getnanouptime(&kpmap->ts_uptime[w]);
609 		getnanotime(&kpmap->ts_realtime[w]);
610 		cpu_sfence();
611 		++kpmap->upticks;
612 		cpu_sfence();
613 	    }
614 	}
615 
616 	/*
617 	 * lwkt thread scheduler fair queueing
618 	 */
619 	lwkt_schedulerclock(curthread);
620 
621 	/*
622 	 * softticks are handled for all cpus
623 	 */
624 	hardclock_softtick(gd);
625 
626 	/*
627 	 * ITimer handling is per-tick, per-cpu.
628 	 *
629 	 * We must acquire the per-process token in order for ksignal()
630 	 * to be non-blocking.  For the moment this requires an AST fault,
631 	 * the ksignal() cannot be safely issued from this hard interrupt.
632 	 *
633 	 * XXX Even the trytoken here isn't right, and itimer operation in
634 	 *     a multi threaded environment is going to be weird at the
635 	 *     very least.
636 	 */
637 	if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) {
638 		crit_enter_hard();
639 		if (p->p_upmap)
640 			++p->p_upmap->runticks;
641 
642 		if (frame && CLKF_USERMODE(frame) &&
643 		    timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
644 		    itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) {
645 			p->p_flags |= P_SIGVTALRM;
646 			need_user_resched();
647 		}
648 		if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
649 		    itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) {
650 			p->p_flags |= P_SIGPROF;
651 			need_user_resched();
652 		}
653 		crit_exit_hard();
654 		lwkt_reltoken(&p->p_token);
655 	}
656 	setdelayed();
657 }
658 
659 /*
660  * The statistics clock typically runs at a 125Hz rate, and is intended
661  * to be frequency offset from the hardclock (typ 100Hz).  It is per-cpu.
662  *
663  * NOTE! systimer! the MP lock might not be held here.  We can only safely
664  * manipulate objects owned by the current cpu.
665  *
666  * The stats clock is responsible for grabbing a profiling sample.
667  * Most of the statistics are only used by user-level statistics programs.
668  * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
669  * p->p_estcpu.
670  *
671  * Like the other clocks, the stat clock is called from what is effectively
672  * a fast interrupt, so the context should be the thread/process that got
673  * interrupted.
674  */
675 static void
676 statclock(systimer_t info, int in_ipi, struct intrframe *frame)
677 {
678 #ifdef GPROF
679 	struct gmonparam *g;
680 	int i;
681 #endif
682 	thread_t td;
683 	struct proc *p;
684 	int bump;
685 	sysclock_t cv;
686 	sysclock_t scv;
687 
688 	/*
689 	 * How big was our timeslice relative to the last time?  Calculate
690 	 * in microseconds.
691 	 *
692 	 * NOTE: Use of microuptime() is typically MPSAFE, but usually not
693 	 *	 during early boot.  Just use the systimer count to be nice
694 	 *	 to e.g. qemu.  The systimer has a better chance of being
695 	 *	 MPSAFE at early boot.
696 	 */
697 	cv = sys_cputimer->count();
698 	scv = mycpu->statint.gd_statcv;
699 	if (scv == 0) {
700 		bump = 1;
701 	} else {
702 		bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32;
703 		if (bump < 0)
704 			bump = 0;
705 		if (bump > 1000000)
706 			bump = 1000000;
707 	}
708 	mycpu->statint.gd_statcv = cv;
709 
710 #if 0
711 	stv = &mycpu->gd_stattv;
712 	if (stv->tv_sec == 0) {
713 	    bump = 1;
714 	} else {
715 	    bump = tv.tv_usec - stv->tv_usec +
716 		(tv.tv_sec - stv->tv_sec) * 1000000;
717 	    if (bump < 0)
718 		bump = 0;
719 	    if (bump > 1000000)
720 		bump = 1000000;
721 	}
722 	*stv = tv;
723 #endif
724 
725 	td = curthread;
726 	p = td->td_proc;
727 
728 	if (frame && CLKF_USERMODE(frame)) {
729 		/*
730 		 * Came from userland, handle user time and deal with
731 		 * possible process.
732 		 */
733 		if (p && (p->p_flags & P_PROFIL))
734 			addupc_intr(p, CLKF_PC(frame), 1);
735 		td->td_uticks += bump;
736 
737 		/*
738 		 * Charge the time as appropriate
739 		 */
740 		if (p && p->p_nice > NZERO)
741 			cpu_time.cp_nice += bump;
742 		else
743 			cpu_time.cp_user += bump;
744 	} else {
745 		int intr_nest = mycpu->gd_intr_nesting_level;
746 
747 		if (in_ipi) {
748 			/*
749 			 * IPI processing code will bump gd_intr_nesting_level
750 			 * up by one, which breaks following CLKF_INTR testing,
751 			 * so we subtract it by one here.
752 			 */
753 			--intr_nest;
754 		}
755 #ifdef GPROF
756 		/*
757 		 * Kernel statistics are just like addupc_intr, only easier.
758 		 */
759 		g = &_gmonparam;
760 		if (g->state == GMON_PROF_ON && frame) {
761 			i = CLKF_PC(frame) - g->lowpc;
762 			if (i < g->textsize) {
763 				i /= HISTFRACTION * sizeof(*g->kcount);
764 				g->kcount[i]++;
765 			}
766 		}
767 #endif
768 
769 #define IS_INTR_RUNNING	((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td))
770 
771 		/*
772 		 * Came from kernel mode, so we were:
773 		 * - handling an interrupt,
774 		 * - doing syscall or trap work on behalf of the current
775 		 *   user process, or
776 		 * - spinning in the idle loop.
777 		 * Whichever it is, charge the time as appropriate.
778 		 * Note that we charge interrupts to the current process,
779 		 * regardless of whether they are ``for'' that process,
780 		 * so that we know how much of its real time was spent
781 		 * in ``non-process'' (i.e., interrupt) work.
782 		 *
783 		 * XXX assume system if frame is NULL.  A NULL frame
784 		 * can occur if ipi processing is done from a crit_exit().
785 		 */
786 		if (IS_INTR_RUNNING)
787 			td->td_iticks += bump;
788 		else
789 			td->td_sticks += bump;
790 
791 		if (IS_INTR_RUNNING) {
792 			/*
793 			 * If we interrupted an interrupt thread, well,
794 			 * count it as interrupt time.
795 			 */
796 #ifdef DEBUG_PCTRACK
797 			if (frame)
798 				do_pctrack(frame, PCTRACK_INT);
799 #endif
800 			cpu_time.cp_intr += bump;
801 		} else {
802 			if (td == &mycpu->gd_idlethread) {
803 				/*
804 				 * Even if the current thread is the idle
805 				 * thread it could be due to token contention
806 				 * in the LWKT scheduler.  Count such as
807 				 * system time.
808 				 */
809 				if (mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK)
810 					cpu_time.cp_sys += bump;
811 				else
812 					cpu_time.cp_idle += bump;
813 			} else {
814 				/*
815 				 * System thread was running.
816 				 */
817 #ifdef DEBUG_PCTRACK
818 				if (frame)
819 					do_pctrack(frame, PCTRACK_SYS);
820 #endif
821 				cpu_time.cp_sys += bump;
822 			}
823 		}
824 
825 #undef IS_INTR_RUNNING
826 	}
827 }
828 
829 #ifdef DEBUG_PCTRACK
830 /*
831  * Sample the PC when in the kernel or in an interrupt.  User code can
832  * retrieve the information and generate a histogram or other output.
833  */
834 
835 static void
836 do_pctrack(struct intrframe *frame, int which)
837 {
838 	struct kinfo_pctrack *pctrack;
839 
840 	pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
841 	pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
842 		(void *)CLKF_PC(frame);
843 	++pctrack->pc_index;
844 }
845 
846 static int
847 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
848 {
849 	struct kinfo_pcheader head;
850 	int error;
851 	int cpu;
852 	int ntrack;
853 
854 	head.pc_ntrack = PCTRACK_SIZE;
855 	head.pc_arysize = PCTRACK_ARYSIZE;
856 
857 	if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
858 		return (error);
859 
860 	for (cpu = 0; cpu < ncpus; ++cpu) {
861 		for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
862 			error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
863 					   sizeof(struct kinfo_pctrack));
864 			if (error)
865 				break;
866 		}
867 		if (error)
868 			break;
869 	}
870 	return (error);
871 }
872 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
873 	sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
874 
875 #endif
876 
877 /*
878  * The scheduler clock typically runs at a 50Hz rate.  NOTE! systimer,
879  * the MP lock might not be held.  We can safely manipulate parts of curproc
880  * but that's about it.
881  *
882  * Each cpu has its own scheduler clock.
883  */
884 static void
885 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
886 {
887 	struct lwp *lp;
888 	struct rusage *ru;
889 	struct vmspace *vm;
890 	long rss;
891 
892 	if ((lp = lwkt_preempted_proc()) != NULL) {
893 		/*
894 		 * Account for cpu time used and hit the scheduler.  Note
895 		 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
896 		 * HERE.
897 		 */
898 		++lp->lwp_cpticks;
899 		usched_schedulerclock(lp, info->periodic, info->time);
900 	} else {
901 		usched_schedulerclock(NULL, info->periodic, info->time);
902 	}
903 	if ((lp = curthread->td_lwp) != NULL) {
904 		/*
905 		 * Update resource usage integrals and maximums.
906 		 */
907 		if ((ru = &lp->lwp_proc->p_ru) &&
908 		    (vm = lp->lwp_proc->p_vmspace) != NULL) {
909 			ru->ru_ixrss += pgtok(vm->vm_tsize);
910 			ru->ru_idrss += pgtok(vm->vm_dsize);
911 			ru->ru_isrss += pgtok(vm->vm_ssize);
912 			if (lwkt_trytoken(&vm->vm_map.token)) {
913 				rss = pgtok(vmspace_resident_count(vm));
914 				if (ru->ru_maxrss < rss)
915 					ru->ru_maxrss = rss;
916 				lwkt_reltoken(&vm->vm_map.token);
917 			}
918 		}
919 	}
920 	/* Increment the global sched_ticks */
921 	if (mycpu->gd_cpuid == 0)
922 		++sched_ticks;
923 }
924 
925 /*
926  * Compute number of ticks for the specified amount of time.  The
927  * return value is intended to be used in a clock interrupt timed
928  * operation and guaranteed to meet or exceed the requested time.
929  * If the representation overflows, return INT_MAX.  The minimum return
930  * value is 1 ticks and the function will average the calculation up.
931  * If any value greater then 0 microseconds is supplied, a value
932  * of at least 2 will be returned to ensure that a near-term clock
933  * interrupt does not cause the timeout to occur (degenerately) early.
934  *
935  * Note that limit checks must take into account microseconds, which is
936  * done simply by using the smaller signed long maximum instead of
937  * the unsigned long maximum.
938  *
939  * If ints have 32 bits, then the maximum value for any timeout in
940  * 10ms ticks is 248 days.
941  */
942 int
943 tvtohz_high(struct timeval *tv)
944 {
945 	int ticks;
946 	long sec, usec;
947 
948 	sec = tv->tv_sec;
949 	usec = tv->tv_usec;
950 	if (usec < 0) {
951 		sec--;
952 		usec += 1000000;
953 	}
954 	if (sec < 0) {
955 #ifdef DIAGNOSTIC
956 		if (usec > 0) {
957 			sec++;
958 			usec -= 1000000;
959 		}
960 		kprintf("tvtohz_high: negative time difference "
961 			"%ld sec %ld usec\n",
962 			sec, usec);
963 #endif
964 		ticks = 1;
965 	} else if (sec <= INT_MAX / hz) {
966 		ticks = (int)(sec * hz +
967 			    ((u_long)usec + (ustick - 1)) / ustick) + 1;
968 	} else {
969 		ticks = INT_MAX;
970 	}
971 	return (ticks);
972 }
973 
974 int
975 tstohz_high(struct timespec *ts)
976 {
977 	int ticks;
978 	long sec, nsec;
979 
980 	sec = ts->tv_sec;
981 	nsec = ts->tv_nsec;
982 	if (nsec < 0) {
983 		sec--;
984 		nsec += 1000000000;
985 	}
986 	if (sec < 0) {
987 #ifdef DIAGNOSTIC
988 		if (nsec > 0) {
989 			sec++;
990 			nsec -= 1000000000;
991 		}
992 		kprintf("tstohz_high: negative time difference "
993 			"%ld sec %ld nsec\n",
994 			sec, nsec);
995 #endif
996 		ticks = 1;
997 	} else if (sec <= INT_MAX / hz) {
998 		ticks = (int)(sec * hz +
999 			    ((u_long)nsec + (nstick - 1)) / nstick) + 1;
1000 	} else {
1001 		ticks = INT_MAX;
1002 	}
1003 	return (ticks);
1004 }
1005 
1006 
1007 /*
1008  * Compute number of ticks for the specified amount of time, erroring on
1009  * the side of it being too low to ensure that sleeping the returned number
1010  * of ticks will not result in a late return.
1011  *
1012  * The supplied timeval may not be negative and should be normalized.  A
1013  * return value of 0 is possible if the timeval converts to less then
1014  * 1 tick.
1015  *
1016  * If ints have 32 bits, then the maximum value for any timeout in
1017  * 10ms ticks is 248 days.
1018  */
1019 int
1020 tvtohz_low(struct timeval *tv)
1021 {
1022 	int ticks;
1023 	long sec;
1024 
1025 	sec = tv->tv_sec;
1026 	if (sec <= INT_MAX / hz)
1027 		ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
1028 	else
1029 		ticks = INT_MAX;
1030 	return (ticks);
1031 }
1032 
1033 int
1034 tstohz_low(struct timespec *ts)
1035 {
1036 	int ticks;
1037 	long sec;
1038 
1039 	sec = ts->tv_sec;
1040 	if (sec <= INT_MAX / hz)
1041 		ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
1042 	else
1043 		ticks = INT_MAX;
1044 	return (ticks);
1045 }
1046 
1047 /*
1048  * Start profiling on a process.
1049  *
1050  * Kernel profiling passes proc0 which never exits and hence
1051  * keeps the profile clock running constantly.
1052  */
1053 void
1054 startprofclock(struct proc *p)
1055 {
1056 	if ((p->p_flags & P_PROFIL) == 0) {
1057 		p->p_flags |= P_PROFIL;
1058 #if 0	/* XXX */
1059 		if (++profprocs == 1 && stathz != 0) {
1060 			crit_enter();
1061 			psdiv = psratio;
1062 			setstatclockrate(profhz);
1063 			crit_exit();
1064 		}
1065 #endif
1066 	}
1067 }
1068 
1069 /*
1070  * Stop profiling on a process.
1071  *
1072  * caller must hold p->p_token
1073  */
1074 void
1075 stopprofclock(struct proc *p)
1076 {
1077 	if (p->p_flags & P_PROFIL) {
1078 		p->p_flags &= ~P_PROFIL;
1079 #if 0	/* XXX */
1080 		if (--profprocs == 0 && stathz != 0) {
1081 			crit_enter();
1082 			psdiv = 1;
1083 			setstatclockrate(stathz);
1084 			crit_exit();
1085 		}
1086 #endif
1087 	}
1088 }
1089 
1090 /*
1091  * Return information about system clocks.
1092  */
1093 static int
1094 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
1095 {
1096 	struct kinfo_clockinfo clkinfo;
1097 	/*
1098 	 * Construct clockinfo structure.
1099 	 */
1100 	clkinfo.ci_hz = hz;
1101 	clkinfo.ci_tick = ustick;
1102 	clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
1103 	clkinfo.ci_profhz = profhz;
1104 	clkinfo.ci_stathz = stathz ? stathz : hz;
1105 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
1106 }
1107 
1108 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
1109 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
1110 
1111 /*
1112  * We have eight functions for looking at the clock, four for
1113  * microseconds and four for nanoseconds.  For each there is fast
1114  * but less precise version "get{nano|micro}[up]time" which will
1115  * return a time which is up to 1/HZ previous to the call, whereas
1116  * the raw version "{nano|micro}[up]time" will return a timestamp
1117  * which is as precise as possible.  The "up" variants return the
1118  * time relative to system boot, these are well suited for time
1119  * interval measurements.
1120  *
1121  * Each cpu independently maintains the current time of day, so all
1122  * we need to do to protect ourselves from changes is to do a loop
1123  * check on the seconds field changing out from under us.
1124  *
1125  * The system timer maintains a 32 bit count and due to various issues
1126  * it is possible for the calculated delta to occasionally exceed
1127  * sys_cputimer->freq.  If this occurs the sys_cputimer->freq64_nsec
1128  * multiplication can easily overflow, so we deal with the case.  For
1129  * uniformity we deal with the case in the usec case too.
1130  *
1131  * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
1132  */
1133 void
1134 getmicrouptime(struct timeval *tvp)
1135 {
1136 	struct globaldata *gd = mycpu;
1137 	sysclock_t delta;
1138 
1139 	do {
1140 		tvp->tv_sec = gd->gd_time_seconds;
1141 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1142 	} while (tvp->tv_sec != gd->gd_time_seconds);
1143 
1144 	if (delta >= sys_cputimer->freq) {
1145 		tvp->tv_sec += delta / sys_cputimer->freq;
1146 		delta %= sys_cputimer->freq;
1147 	}
1148 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1149 	if (tvp->tv_usec >= 1000000) {
1150 		tvp->tv_usec -= 1000000;
1151 		++tvp->tv_sec;
1152 	}
1153 }
1154 
1155 void
1156 getnanouptime(struct timespec *tsp)
1157 {
1158 	struct globaldata *gd = mycpu;
1159 	sysclock_t delta;
1160 
1161 	do {
1162 		tsp->tv_sec = gd->gd_time_seconds;
1163 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1164 	} while (tsp->tv_sec != gd->gd_time_seconds);
1165 
1166 	if (delta >= sys_cputimer->freq) {
1167 		tsp->tv_sec += delta / sys_cputimer->freq;
1168 		delta %= sys_cputimer->freq;
1169 	}
1170 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1171 }
1172 
1173 void
1174 microuptime(struct timeval *tvp)
1175 {
1176 	struct globaldata *gd = mycpu;
1177 	sysclock_t delta;
1178 
1179 	do {
1180 		tvp->tv_sec = gd->gd_time_seconds;
1181 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1182 	} while (tvp->tv_sec != gd->gd_time_seconds);
1183 
1184 	if (delta >= sys_cputimer->freq) {
1185 		tvp->tv_sec += delta / sys_cputimer->freq;
1186 		delta %= sys_cputimer->freq;
1187 	}
1188 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1189 }
1190 
1191 void
1192 nanouptime(struct timespec *tsp)
1193 {
1194 	struct globaldata *gd = mycpu;
1195 	sysclock_t delta;
1196 
1197 	do {
1198 		tsp->tv_sec = gd->gd_time_seconds;
1199 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1200 	} while (tsp->tv_sec != gd->gd_time_seconds);
1201 
1202 	if (delta >= sys_cputimer->freq) {
1203 		tsp->tv_sec += delta / sys_cputimer->freq;
1204 		delta %= sys_cputimer->freq;
1205 	}
1206 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1207 }
1208 
1209 /*
1210  * realtime routines
1211  */
1212 void
1213 getmicrotime(struct timeval *tvp)
1214 {
1215 	struct globaldata *gd = mycpu;
1216 	struct timespec *bt;
1217 	sysclock_t delta;
1218 
1219 	do {
1220 		tvp->tv_sec = gd->gd_time_seconds;
1221 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1222 	} while (tvp->tv_sec != gd->gd_time_seconds);
1223 
1224 	if (delta >= sys_cputimer->freq) {
1225 		tvp->tv_sec += delta / sys_cputimer->freq;
1226 		delta %= sys_cputimer->freq;
1227 	}
1228 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1229 
1230 	bt = &basetime[basetime_index];
1231 	cpu_lfence();
1232 	tvp->tv_sec += bt->tv_sec;
1233 	tvp->tv_usec += bt->tv_nsec / 1000;
1234 	while (tvp->tv_usec >= 1000000) {
1235 		tvp->tv_usec -= 1000000;
1236 		++tvp->tv_sec;
1237 	}
1238 }
1239 
1240 void
1241 getnanotime(struct timespec *tsp)
1242 {
1243 	struct globaldata *gd = mycpu;
1244 	struct timespec *bt;
1245 	sysclock_t delta;
1246 
1247 	do {
1248 		tsp->tv_sec = gd->gd_time_seconds;
1249 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1250 	} while (tsp->tv_sec != gd->gd_time_seconds);
1251 
1252 	if (delta >= sys_cputimer->freq) {
1253 		tsp->tv_sec += delta / sys_cputimer->freq;
1254 		delta %= sys_cputimer->freq;
1255 	}
1256 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1257 
1258 	bt = &basetime[basetime_index];
1259 	cpu_lfence();
1260 	tsp->tv_sec += bt->tv_sec;
1261 	tsp->tv_nsec += bt->tv_nsec;
1262 	while (tsp->tv_nsec >= 1000000000) {
1263 		tsp->tv_nsec -= 1000000000;
1264 		++tsp->tv_sec;
1265 	}
1266 }
1267 
1268 static void
1269 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1270 {
1271 	struct globaldata *gd = mycpu;
1272 	sysclock_t delta;
1273 
1274 	do {
1275 		tsp->tv_sec = gd->gd_time_seconds;
1276 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1277 	} while (tsp->tv_sec != gd->gd_time_seconds);
1278 
1279 	if (delta >= sys_cputimer->freq) {
1280 		tsp->tv_sec += delta / sys_cputimer->freq;
1281 		delta %= sys_cputimer->freq;
1282 	}
1283 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1284 
1285 	tsp->tv_sec += nbt->tv_sec;
1286 	tsp->tv_nsec += nbt->tv_nsec;
1287 	while (tsp->tv_nsec >= 1000000000) {
1288 		tsp->tv_nsec -= 1000000000;
1289 		++tsp->tv_sec;
1290 	}
1291 }
1292 
1293 
1294 void
1295 microtime(struct timeval *tvp)
1296 {
1297 	struct globaldata *gd = mycpu;
1298 	struct timespec *bt;
1299 	sysclock_t delta;
1300 
1301 	do {
1302 		tvp->tv_sec = gd->gd_time_seconds;
1303 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1304 	} while (tvp->tv_sec != gd->gd_time_seconds);
1305 
1306 	if (delta >= sys_cputimer->freq) {
1307 		tvp->tv_sec += delta / sys_cputimer->freq;
1308 		delta %= sys_cputimer->freq;
1309 	}
1310 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1311 
1312 	bt = &basetime[basetime_index];
1313 	cpu_lfence();
1314 	tvp->tv_sec += bt->tv_sec;
1315 	tvp->tv_usec += bt->tv_nsec / 1000;
1316 	while (tvp->tv_usec >= 1000000) {
1317 		tvp->tv_usec -= 1000000;
1318 		++tvp->tv_sec;
1319 	}
1320 }
1321 
1322 void
1323 nanotime(struct timespec *tsp)
1324 {
1325 	struct globaldata *gd = mycpu;
1326 	struct timespec *bt;
1327 	sysclock_t delta;
1328 
1329 	do {
1330 		tsp->tv_sec = gd->gd_time_seconds;
1331 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1332 	} while (tsp->tv_sec != gd->gd_time_seconds);
1333 
1334 	if (delta >= sys_cputimer->freq) {
1335 		tsp->tv_sec += delta / sys_cputimer->freq;
1336 		delta %= sys_cputimer->freq;
1337 	}
1338 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1339 
1340 	bt = &basetime[basetime_index];
1341 	cpu_lfence();
1342 	tsp->tv_sec += bt->tv_sec;
1343 	tsp->tv_nsec += bt->tv_nsec;
1344 	while (tsp->tv_nsec >= 1000000000) {
1345 		tsp->tv_nsec -= 1000000000;
1346 		++tsp->tv_sec;
1347 	}
1348 }
1349 
1350 /*
1351  * Get an approximate time_t.  It does not have to be accurate.  This
1352  * function is called only from KTR and can be called with the system in
1353  * any state so do not use a critical section or other complex operation
1354  * here.
1355  *
1356  * NOTE: This is not exactly synchronized with real time.  To do that we
1357  *	 would have to do what microtime does and check for a nanoseconds
1358  *	 overflow.
1359  */
1360 time_t
1361 get_approximate_time_t(void)
1362 {
1363 	struct globaldata *gd = mycpu;
1364 	struct timespec *bt;
1365 
1366 	bt = &basetime[basetime_index];
1367 	return(gd->gd_time_seconds + bt->tv_sec);
1368 }
1369 
1370 int
1371 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1372 {
1373 	pps_params_t *app;
1374 	struct pps_fetch_args *fapi;
1375 #ifdef PPS_SYNC
1376 	struct pps_kcbind_args *kapi;
1377 #endif
1378 
1379 	switch (cmd) {
1380 	case PPS_IOC_CREATE:
1381 		return (0);
1382 	case PPS_IOC_DESTROY:
1383 		return (0);
1384 	case PPS_IOC_SETPARAMS:
1385 		app = (pps_params_t *)data;
1386 		if (app->mode & ~pps->ppscap)
1387 			return (EINVAL);
1388 		pps->ppsparam = *app;
1389 		return (0);
1390 	case PPS_IOC_GETPARAMS:
1391 		app = (pps_params_t *)data;
1392 		*app = pps->ppsparam;
1393 		app->api_version = PPS_API_VERS_1;
1394 		return (0);
1395 	case PPS_IOC_GETCAP:
1396 		*(int*)data = pps->ppscap;
1397 		return (0);
1398 	case PPS_IOC_FETCH:
1399 		fapi = (struct pps_fetch_args *)data;
1400 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1401 			return (EINVAL);
1402 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1403 			return (EOPNOTSUPP);
1404 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
1405 		fapi->pps_info_buf = pps->ppsinfo;
1406 		return (0);
1407 	case PPS_IOC_KCBIND:
1408 #ifdef PPS_SYNC
1409 		kapi = (struct pps_kcbind_args *)data;
1410 		/* XXX Only root should be able to do this */
1411 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1412 			return (EINVAL);
1413 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1414 			return (EINVAL);
1415 		if (kapi->edge & ~pps->ppscap)
1416 			return (EINVAL);
1417 		pps->kcmode = kapi->edge;
1418 		return (0);
1419 #else
1420 		return (EOPNOTSUPP);
1421 #endif
1422 	default:
1423 		return (ENOTTY);
1424 	}
1425 }
1426 
1427 void
1428 pps_init(struct pps_state *pps)
1429 {
1430 	pps->ppscap |= PPS_TSFMT_TSPEC;
1431 	if (pps->ppscap & PPS_CAPTUREASSERT)
1432 		pps->ppscap |= PPS_OFFSETASSERT;
1433 	if (pps->ppscap & PPS_CAPTURECLEAR)
1434 		pps->ppscap |= PPS_OFFSETCLEAR;
1435 }
1436 
1437 void
1438 pps_event(struct pps_state *pps, sysclock_t count, int event)
1439 {
1440 	struct globaldata *gd;
1441 	struct timespec *tsp;
1442 	struct timespec *osp;
1443 	struct timespec *bt;
1444 	struct timespec ts;
1445 	sysclock_t *pcount;
1446 #ifdef PPS_SYNC
1447 	sysclock_t tcount;
1448 #endif
1449 	sysclock_t delta;
1450 	pps_seq_t *pseq;
1451 	int foff;
1452 #ifdef PPS_SYNC
1453 	int fhard;
1454 #else
1455 	int fhard __unused;
1456 #endif
1457 	int ni;
1458 
1459 	gd = mycpu;
1460 
1461 	/* Things would be easier with arrays... */
1462 	if (event == PPS_CAPTUREASSERT) {
1463 		tsp = &pps->ppsinfo.assert_timestamp;
1464 		osp = &pps->ppsparam.assert_offset;
1465 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1466 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1467 		pcount = &pps->ppscount[0];
1468 		pseq = &pps->ppsinfo.assert_sequence;
1469 	} else {
1470 		tsp = &pps->ppsinfo.clear_timestamp;
1471 		osp = &pps->ppsparam.clear_offset;
1472 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1473 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1474 		pcount = &pps->ppscount[1];
1475 		pseq = &pps->ppsinfo.clear_sequence;
1476 	}
1477 
1478 	/* Nothing really happened */
1479 	if (*pcount == count)
1480 		return;
1481 
1482 	*pcount = count;
1483 
1484 	do {
1485 		ts.tv_sec = gd->gd_time_seconds;
1486 		delta = count - gd->gd_cpuclock_base;
1487 	} while (ts.tv_sec != gd->gd_time_seconds);
1488 
1489 	if (delta >= sys_cputimer->freq) {
1490 		ts.tv_sec += delta / sys_cputimer->freq;
1491 		delta %= sys_cputimer->freq;
1492 	}
1493 	ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1494 	ni = basetime_index;
1495 	cpu_lfence();
1496 	bt = &basetime[ni];
1497 	ts.tv_sec += bt->tv_sec;
1498 	ts.tv_nsec += bt->tv_nsec;
1499 	while (ts.tv_nsec >= 1000000000) {
1500 		ts.tv_nsec -= 1000000000;
1501 		++ts.tv_sec;
1502 	}
1503 
1504 	(*pseq)++;
1505 	*tsp = ts;
1506 
1507 	if (foff) {
1508 		timespecadd(tsp, osp);
1509 		if (tsp->tv_nsec < 0) {
1510 			tsp->tv_nsec += 1000000000;
1511 			tsp->tv_sec -= 1;
1512 		}
1513 	}
1514 #ifdef PPS_SYNC
1515 	if (fhard) {
1516 		/* magic, at its best... */
1517 		tcount = count - pps->ppscount[2];
1518 		pps->ppscount[2] = count;
1519 		if (tcount >= sys_cputimer->freq) {
1520 			delta = (1000000000 * (tcount / sys_cputimer->freq) +
1521 				 sys_cputimer->freq64_nsec *
1522 				 (tcount % sys_cputimer->freq)) >> 32;
1523 		} else {
1524 			delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1525 		}
1526 		hardpps(tsp, delta);
1527 	}
1528 #endif
1529 }
1530 
1531 /*
1532  * Return the tsc target value for a delay of (ns).
1533  *
1534  * Returns -1 if the TSC is not supported.
1535  */
1536 int64_t
1537 tsc_get_target(int ns)
1538 {
1539 #if defined(_RDTSC_SUPPORTED_)
1540 	if (cpu_feature & CPUID_TSC) {
1541 		return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1542 	}
1543 #endif
1544 	return(-1);
1545 }
1546 
1547 /*
1548  * Compare the tsc against the passed target
1549  *
1550  * Returns +1 if the target has been reached
1551  * Returns  0 if the target has not yet been reached
1552  * Returns -1 if the TSC is not supported.
1553  *
1554  * Typical use:		while (tsc_test_target(target) == 0) { ...poll... }
1555  */
1556 int
1557 tsc_test_target(int64_t target)
1558 {
1559 #if defined(_RDTSC_SUPPORTED_)
1560 	if (cpu_feature & CPUID_TSC) {
1561 		if ((int64_t)(target - rdtsc()) <= 0)
1562 			return(1);
1563 		return(0);
1564 	}
1565 #endif
1566 	return(-1);
1567 }
1568 
1569 /*
1570  * Delay the specified number of nanoseconds using the tsc.  This function
1571  * returns immediately if the TSC is not supported.  At least one cpu_pause()
1572  * will be issued.
1573  */
1574 void
1575 tsc_delay(int ns)
1576 {
1577 	int64_t clk;
1578 
1579 	clk = tsc_get_target(ns);
1580 	cpu_pause();
1581 	while (tsc_test_target(clk) == 0)
1582 		cpu_pause();
1583 }
1584