1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 69 */ 70 71 #include "opt_ntp.h" 72 #include "opt_ifpoll.h" 73 #include "opt_pctrack.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/callout.h> 78 #include <sys/kernel.h> 79 #include <sys/kinfo.h> 80 #include <sys/proc.h> 81 #include <sys/malloc.h> 82 #include <sys/resource.h> 83 #include <sys/resourcevar.h> 84 #include <sys/signalvar.h> 85 #include <sys/timex.h> 86 #include <sys/timepps.h> 87 #include <vm/vm.h> 88 #include <sys/lock.h> 89 #include <vm/pmap.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_extern.h> 92 #include <sys/sysctl.h> 93 94 #include <sys/thread2.h> 95 #include <sys/mplock2.h> 96 97 #include <machine/cpu.h> 98 #include <machine/limits.h> 99 #include <machine/smp.h> 100 #include <machine/cpufunc.h> 101 #include <machine/specialreg.h> 102 #include <machine/clock.h> 103 104 #ifdef GPROF 105 #include <sys/gmon.h> 106 #endif 107 108 #ifdef IFPOLL_ENABLE 109 extern void ifpoll_init_pcpu(int); 110 #endif 111 112 #ifdef DEBUG_PCTRACK 113 static void do_pctrack(struct intrframe *frame, int which); 114 #endif 115 116 static void initclocks (void *dummy); 117 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 118 119 /* 120 * Some of these don't belong here, but it's easiest to concentrate them. 121 * Note that cpu_time counts in microseconds, but most userland programs 122 * just compare relative times against the total by delta. 123 */ 124 struct kinfo_cputime cputime_percpu[MAXCPU]; 125 #ifdef DEBUG_PCTRACK 126 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 127 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 128 #endif 129 130 static int 131 sysctl_cputime(SYSCTL_HANDLER_ARGS) 132 { 133 int cpu, error = 0; 134 size_t size = sizeof(struct kinfo_cputime); 135 136 for (cpu = 0; cpu < ncpus; ++cpu) { 137 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size))) 138 break; 139 } 140 141 return (error); 142 } 143 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 144 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 145 146 static int 147 sysctl_cp_time(SYSCTL_HANDLER_ARGS) 148 { 149 long cpu_states[5] = {0}; 150 int cpu, error = 0; 151 size_t size = sizeof(cpu_states); 152 153 for (cpu = 0; cpu < ncpus; ++cpu) { 154 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user; 155 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice; 156 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys; 157 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr; 158 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle; 159 } 160 161 error = SYSCTL_OUT(req, cpu_states, size); 162 163 return (error); 164 } 165 166 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 167 sysctl_cp_time, "LU", "CPU time statistics"); 168 169 /* 170 * boottime is used to calculate the 'real' uptime. Do not confuse this with 171 * microuptime(). microtime() is not drift compensated. The real uptime 172 * with compensation is nanotime() - bootime. boottime is recalculated 173 * whenever the real time is set based on the compensated elapsed time 174 * in seconds (gd->gd_time_seconds). 175 * 176 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 177 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 178 * the real time. 179 */ 180 struct timespec boottime; /* boot time (realtime) for reference only */ 181 time_t time_second; /* read-only 'passive' uptime in seconds */ 182 time_t time_uptime; /* read-only 'passive' uptime in seconds */ 183 184 /* 185 * basetime is used to calculate the compensated real time of day. The 186 * basetime can be modified on a per-tick basis by the adjtime(), 187 * ntp_adjtime(), and sysctl-based time correction APIs. 188 * 189 * Note that frequency corrections can also be made by adjusting 190 * gd_cpuclock_base. 191 * 192 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 193 * used on both SMP and UP systems to avoid MP races between cpu's and 194 * interrupt races on UP systems. 195 */ 196 #define BASETIME_ARYSIZE 16 197 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 198 static struct timespec basetime[BASETIME_ARYSIZE]; 199 static volatile int basetime_index; 200 201 static int 202 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 203 { 204 struct timespec *bt; 205 int error; 206 int index; 207 208 /* 209 * Because basetime data and index may be updated by another cpu, 210 * a load fence is required to ensure that the data we read has 211 * not been speculatively read relative to a possibly updated index. 212 */ 213 index = basetime_index; 214 cpu_lfence(); 215 bt = &basetime[index]; 216 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 217 return (error); 218 } 219 220 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 221 &boottime, timespec, "System boottime"); 222 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 223 sysctl_get_basetime, "S,timespec", "System basetime"); 224 225 static void hardclock(systimer_t info, int, struct intrframe *frame); 226 static void statclock(systimer_t info, int, struct intrframe *frame); 227 static void schedclock(systimer_t info, int, struct intrframe *frame); 228 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 229 230 int ticks; /* system master ticks at hz */ 231 int clocks_running; /* tsleep/timeout clocks operational */ 232 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 233 int64_t nsec_acc; /* accumulator */ 234 int sched_ticks; /* global schedule clock ticks */ 235 236 /* NTPD time correction fields */ 237 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 238 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 239 int64_t ntp_delta; /* one-time correction in nsec */ 240 int64_t ntp_big_delta = 1000000000; 241 int32_t ntp_tick_delta; /* current adjustment rate */ 242 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 243 time_t ntp_leap_second; /* time of next leap second */ 244 int ntp_leap_insert; /* whether to insert or remove a second */ 245 246 /* 247 * Finish initializing clock frequencies and start all clocks running. 248 */ 249 /* ARGSUSED*/ 250 static void 251 initclocks(void *dummy) 252 { 253 /*psratio = profhz / stathz;*/ 254 initclocks_pcpu(); 255 clocks_running = 1; 256 } 257 258 /* 259 * Called on a per-cpu basis from the idle thread bootstrap on each cpu 260 * during SMP initialization. 261 * 262 * This routine is called concurrently during low-level SMP initialization 263 * and may not block in any way. Meaning, among other things, we can't 264 * acquire any tokens. 265 */ 266 void 267 initclocks_pcpu(void) 268 { 269 struct globaldata *gd = mycpu; 270 271 crit_enter(); 272 if (gd->gd_cpuid == 0) { 273 gd->gd_time_seconds = 1; 274 gd->gd_cpuclock_base = sys_cputimer->count(); 275 } else { 276 /* XXX */ 277 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 278 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 279 } 280 281 systimer_intr_enable(); 282 283 crit_exit(); 284 } 285 286 /* 287 * This routine is called on just the BSP, just after SMP initialization 288 * completes to * finish initializing any clocks that might contend/block 289 * (e.g. like on a token). We can't do this in initclocks_pcpu() because 290 * that function is called from the idle thread bootstrap for each cpu and 291 * not allowed to block at all. 292 */ 293 static 294 void 295 initclocks_other(void *dummy) 296 { 297 struct globaldata *ogd = mycpu; 298 struct globaldata *gd; 299 int n; 300 301 for (n = 0; n < ncpus; ++n) { 302 lwkt_setcpu_self(globaldata_find(n)); 303 gd = mycpu; 304 305 /* 306 * Use a non-queued periodic systimer to prevent multiple 307 * ticks from building up if the sysclock jumps forward 308 * (8254 gets reset). The sysclock will never jump backwards. 309 * Our time sync is based on the actual sysclock, not the 310 * ticks count. 311 */ 312 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, 313 NULL, hz); 314 systimer_init_periodic_nq(&gd->gd_statclock, statclock, 315 NULL, stathz); 316 /* XXX correct the frequency for scheduler / estcpu tests */ 317 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock, 318 NULL, ESTCPUFREQ); 319 #ifdef IFPOLL_ENABLE 320 ifpoll_init_pcpu(gd->gd_cpuid); 321 #endif 322 } 323 lwkt_setcpu_self(ogd); 324 } 325 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL) 326 327 /* 328 * This sets the current real time of day. Timespecs are in seconds and 329 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 330 * instead we adjust basetime so basetime + gd_* results in the current 331 * time of day. This way the gd_* fields are guarenteed to represent 332 * a monotonically increasing 'uptime' value. 333 * 334 * When set_timeofday() is called from userland, the system call forces it 335 * onto cpu #0 since only cpu #0 can update basetime_index. 336 */ 337 void 338 set_timeofday(struct timespec *ts) 339 { 340 struct timespec *nbt; 341 int ni; 342 343 /* 344 * XXX SMP / non-atomic basetime updates 345 */ 346 crit_enter(); 347 ni = (basetime_index + 1) & BASETIME_ARYMASK; 348 nbt = &basetime[ni]; 349 nanouptime(nbt); 350 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 351 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 352 if (nbt->tv_nsec < 0) { 353 nbt->tv_nsec += 1000000000; 354 --nbt->tv_sec; 355 } 356 357 /* 358 * Note that basetime diverges from boottime as the clock drift is 359 * compensated for, so we cannot do away with boottime. When setting 360 * the absolute time of day the drift is 0 (for an instant) and we 361 * can simply assign boottime to basetime. 362 * 363 * Note that nanouptime() is based on gd_time_seconds which is drift 364 * compensated up to a point (it is guarenteed to remain monotonically 365 * increasing). gd_time_seconds is thus our best uptime guess and 366 * suitable for use in the boottime calculation. It is already taken 367 * into account in the basetime calculation above. 368 */ 369 boottime.tv_sec = nbt->tv_sec; 370 ntp_delta = 0; 371 372 /* 373 * We now have a new basetime, make sure all other cpus have it, 374 * then update the index. 375 */ 376 cpu_sfence(); 377 basetime_index = ni; 378 379 crit_exit(); 380 } 381 382 /* 383 * Each cpu has its own hardclock, but we only increments ticks and softticks 384 * on cpu #0. 385 * 386 * NOTE! systimer! the MP lock might not be held here. We can only safely 387 * manipulate objects owned by the current cpu. 388 */ 389 static void 390 hardclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 391 { 392 sysclock_t cputicks; 393 struct proc *p; 394 struct globaldata *gd = mycpu; 395 396 /* 397 * Realtime updates are per-cpu. Note that timer corrections as 398 * returned by microtime() and friends make an additional adjustment 399 * using a system-wise 'basetime', but the running time is always 400 * taken from the per-cpu globaldata area. Since the same clock 401 * is distributing (XXX SMP) to all cpus, the per-cpu timebases 402 * stay in synch. 403 * 404 * Note that we never allow info->time (aka gd->gd_hardclock.time) 405 * to reverse index gd_cpuclock_base, but that it is possible for 406 * it to temporarily get behind in the seconds if something in the 407 * system locks interrupts for a long period of time. Since periodic 408 * timers count events, though everything should resynch again 409 * immediately. 410 */ 411 cputicks = info->time - gd->gd_cpuclock_base; 412 if (cputicks >= sys_cputimer->freq) { 413 ++gd->gd_time_seconds; 414 gd->gd_cpuclock_base += sys_cputimer->freq; 415 if (gd->gd_cpuid == 0) 416 ++time_uptime; /* uncorrected monotonic 1-sec gran */ 417 } 418 419 /* 420 * The system-wide ticks counter and NTP related timedelta/tickdelta 421 * adjustments only occur on cpu #0. NTP adjustments are accomplished 422 * by updating basetime. 423 */ 424 if (gd->gd_cpuid == 0) { 425 struct timespec *nbt; 426 struct timespec nts; 427 int leap; 428 int ni; 429 430 ++ticks; 431 432 #if 0 433 if (tco->tc_poll_pps) 434 tco->tc_poll_pps(tco); 435 #endif 436 437 /* 438 * Calculate the new basetime index. We are in a critical section 439 * on cpu #0 and can safely play with basetime_index. Start 440 * with the current basetime and then make adjustments. 441 */ 442 ni = (basetime_index + 1) & BASETIME_ARYMASK; 443 nbt = &basetime[ni]; 444 *nbt = basetime[basetime_index]; 445 446 /* 447 * Apply adjtime corrections. (adjtime() API) 448 * 449 * adjtime() only runs on cpu #0 so our critical section is 450 * sufficient to access these variables. 451 */ 452 if (ntp_delta != 0) { 453 nbt->tv_nsec += ntp_tick_delta; 454 ntp_delta -= ntp_tick_delta; 455 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 456 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 457 ntp_tick_delta = ntp_delta; 458 } 459 } 460 461 /* 462 * Apply permanent frequency corrections. (sysctl API) 463 */ 464 if (ntp_tick_permanent != 0) { 465 ntp_tick_acc += ntp_tick_permanent; 466 if (ntp_tick_acc >= (1LL << 32)) { 467 nbt->tv_nsec += ntp_tick_acc >> 32; 468 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 469 } else if (ntp_tick_acc <= -(1LL << 32)) { 470 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 471 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 472 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 473 } 474 } 475 476 if (nbt->tv_nsec >= 1000000000) { 477 nbt->tv_sec++; 478 nbt->tv_nsec -= 1000000000; 479 } else if (nbt->tv_nsec < 0) { 480 nbt->tv_sec--; 481 nbt->tv_nsec += 1000000000; 482 } 483 484 /* 485 * Another per-tick compensation. (for ntp_adjtime() API) 486 */ 487 if (nsec_adj != 0) { 488 nsec_acc += nsec_adj; 489 if (nsec_acc >= 0x100000000LL) { 490 nbt->tv_nsec += nsec_acc >> 32; 491 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 492 } else if (nsec_acc <= -0x100000000LL) { 493 nbt->tv_nsec -= -nsec_acc >> 32; 494 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 495 } 496 if (nbt->tv_nsec >= 1000000000) { 497 nbt->tv_nsec -= 1000000000; 498 ++nbt->tv_sec; 499 } else if (nbt->tv_nsec < 0) { 500 nbt->tv_nsec += 1000000000; 501 --nbt->tv_sec; 502 } 503 } 504 505 /************************************************************ 506 * LEAP SECOND CORRECTION * 507 ************************************************************ 508 * 509 * Taking into account all the corrections made above, figure 510 * out the new real time. If the seconds field has changed 511 * then apply any pending leap-second corrections. 512 */ 513 getnanotime_nbt(nbt, &nts); 514 515 if (time_second != nts.tv_sec) { 516 /* 517 * Apply leap second (sysctl API). Adjust nts for changes 518 * so we do not have to call getnanotime_nbt again. 519 */ 520 if (ntp_leap_second) { 521 if (ntp_leap_second == nts.tv_sec) { 522 if (ntp_leap_insert) { 523 nbt->tv_sec++; 524 nts.tv_sec++; 525 } else { 526 nbt->tv_sec--; 527 nts.tv_sec--; 528 } 529 ntp_leap_second--; 530 } 531 } 532 533 /* 534 * Apply leap second (ntp_adjtime() API), calculate a new 535 * nsec_adj field. ntp_update_second() returns nsec_adj 536 * as a per-second value but we need it as a per-tick value. 537 */ 538 leap = ntp_update_second(time_second, &nsec_adj); 539 nsec_adj /= hz; 540 nbt->tv_sec += leap; 541 nts.tv_sec += leap; 542 543 /* 544 * Update the time_second 'approximate time' global. 545 */ 546 time_second = nts.tv_sec; 547 } 548 549 /* 550 * Finally, our new basetime is ready to go live! 551 */ 552 cpu_sfence(); 553 basetime_index = ni; 554 } 555 556 /* 557 * lwkt thread scheduler fair queueing 558 */ 559 lwkt_schedulerclock(curthread); 560 561 /* 562 * softticks are handled for all cpus 563 */ 564 hardclock_softtick(gd); 565 566 /* 567 * ITimer handling is per-tick, per-cpu. 568 * 569 * We must acquire the per-process token in order for ksignal() 570 * to be non-blocking. For the moment this requires an AST fault, 571 * the ksignal() cannot be safely issued from this hard interrupt. 572 * 573 * XXX Even the trytoken here isn't right, and itimer operation in 574 * a multi threaded environment is going to be weird at the 575 * very least. 576 */ 577 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) { 578 crit_enter_hard(); 579 if (frame && CLKF_USERMODE(frame) && 580 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 581 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) { 582 p->p_flags |= P_SIGVTALRM; 583 need_user_resched(); 584 } 585 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 586 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) { 587 p->p_flags |= P_SIGPROF; 588 need_user_resched(); 589 } 590 crit_exit_hard(); 591 lwkt_reltoken(&p->p_token); 592 } 593 setdelayed(); 594 } 595 596 /* 597 * The statistics clock typically runs at a 125Hz rate, and is intended 598 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 599 * 600 * NOTE! systimer! the MP lock might not be held here. We can only safely 601 * manipulate objects owned by the current cpu. 602 * 603 * The stats clock is responsible for grabbing a profiling sample. 604 * Most of the statistics are only used by user-level statistics programs. 605 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 606 * p->p_estcpu. 607 * 608 * Like the other clocks, the stat clock is called from what is effectively 609 * a fast interrupt, so the context should be the thread/process that got 610 * interrupted. 611 */ 612 static void 613 statclock(systimer_t info, int in_ipi, struct intrframe *frame) 614 { 615 #ifdef GPROF 616 struct gmonparam *g; 617 int i; 618 #endif 619 thread_t td; 620 struct proc *p; 621 int bump; 622 sysclock_t cv; 623 sysclock_t scv; 624 625 /* 626 * How big was our timeslice relative to the last time? Calculate 627 * in microseconds. 628 * 629 * NOTE: Use of microuptime() is typically MPSAFE, but usually not 630 * during early boot. Just use the systimer count to be nice 631 * to e.g. qemu. The systimer has a better chance of being 632 * MPSAFE at early boot. 633 */ 634 cv = sys_cputimer->count(); 635 scv = mycpu->statint.gd_statcv; 636 if (scv == 0) { 637 bump = 1; 638 } else { 639 bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32; 640 if (bump < 0) 641 bump = 0; 642 if (bump > 1000000) 643 bump = 1000000; 644 } 645 mycpu->statint.gd_statcv = cv; 646 647 #if 0 648 stv = &mycpu->gd_stattv; 649 if (stv->tv_sec == 0) { 650 bump = 1; 651 } else { 652 bump = tv.tv_usec - stv->tv_usec + 653 (tv.tv_sec - stv->tv_sec) * 1000000; 654 if (bump < 0) 655 bump = 0; 656 if (bump > 1000000) 657 bump = 1000000; 658 } 659 *stv = tv; 660 #endif 661 662 td = curthread; 663 p = td->td_proc; 664 665 if (frame && CLKF_USERMODE(frame)) { 666 /* 667 * Came from userland, handle user time and deal with 668 * possible process. 669 */ 670 if (p && (p->p_flags & P_PROFIL)) 671 addupc_intr(p, CLKF_PC(frame), 1); 672 td->td_uticks += bump; 673 674 /* 675 * Charge the time as appropriate 676 */ 677 if (p && p->p_nice > NZERO) 678 cpu_time.cp_nice += bump; 679 else 680 cpu_time.cp_user += bump; 681 } else { 682 int intr_nest = mycpu->gd_intr_nesting_level; 683 684 if (in_ipi) { 685 /* 686 * IPI processing code will bump gd_intr_nesting_level 687 * up by one, which breaks following CLKF_INTR testing, 688 * so we substract it by one here. 689 */ 690 --intr_nest; 691 } 692 #ifdef GPROF 693 /* 694 * Kernel statistics are just like addupc_intr, only easier. 695 */ 696 g = &_gmonparam; 697 if (g->state == GMON_PROF_ON && frame) { 698 i = CLKF_PC(frame) - g->lowpc; 699 if (i < g->textsize) { 700 i /= HISTFRACTION * sizeof(*g->kcount); 701 g->kcount[i]++; 702 } 703 } 704 #endif 705 706 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td)) 707 708 /* 709 * Came from kernel mode, so we were: 710 * - handling an interrupt, 711 * - doing syscall or trap work on behalf of the current 712 * user process, or 713 * - spinning in the idle loop. 714 * Whichever it is, charge the time as appropriate. 715 * Note that we charge interrupts to the current process, 716 * regardless of whether they are ``for'' that process, 717 * so that we know how much of its real time was spent 718 * in ``non-process'' (i.e., interrupt) work. 719 * 720 * XXX assume system if frame is NULL. A NULL frame 721 * can occur if ipi processing is done from a crit_exit(). 722 */ 723 if (IS_INTR_RUNNING) 724 td->td_iticks += bump; 725 else 726 td->td_sticks += bump; 727 728 if (IS_INTR_RUNNING) { 729 /* 730 * If we interrupted an interrupt thread, well, 731 * count it as interrupt time. 732 */ 733 #ifdef DEBUG_PCTRACK 734 if (frame) 735 do_pctrack(frame, PCTRACK_INT); 736 #endif 737 cpu_time.cp_intr += bump; 738 } else { 739 if (td == &mycpu->gd_idlethread) { 740 /* 741 * Even if the current thread is the idle 742 * thread it could be due to token contention 743 * in the LWKT scheduler. Count such as 744 * system time. 745 */ 746 if (mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK) 747 cpu_time.cp_sys += bump; 748 else 749 cpu_time.cp_idle += bump; 750 } else { 751 /* 752 * System thread was running. 753 */ 754 #ifdef DEBUG_PCTRACK 755 if (frame) 756 do_pctrack(frame, PCTRACK_SYS); 757 #endif 758 cpu_time.cp_sys += bump; 759 } 760 } 761 762 #undef IS_INTR_RUNNING 763 } 764 } 765 766 #ifdef DEBUG_PCTRACK 767 /* 768 * Sample the PC when in the kernel or in an interrupt. User code can 769 * retrieve the information and generate a histogram or other output. 770 */ 771 772 static void 773 do_pctrack(struct intrframe *frame, int which) 774 { 775 struct kinfo_pctrack *pctrack; 776 777 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 778 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 779 (void *)CLKF_PC(frame); 780 ++pctrack->pc_index; 781 } 782 783 static int 784 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 785 { 786 struct kinfo_pcheader head; 787 int error; 788 int cpu; 789 int ntrack; 790 791 head.pc_ntrack = PCTRACK_SIZE; 792 head.pc_arysize = PCTRACK_ARYSIZE; 793 794 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 795 return (error); 796 797 for (cpu = 0; cpu < ncpus; ++cpu) { 798 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 799 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 800 sizeof(struct kinfo_pctrack)); 801 if (error) 802 break; 803 } 804 if (error) 805 break; 806 } 807 return (error); 808 } 809 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 810 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 811 812 #endif 813 814 /* 815 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 816 * the MP lock might not be held. We can safely manipulate parts of curproc 817 * but that's about it. 818 * 819 * Each cpu has its own scheduler clock. 820 */ 821 static void 822 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 823 { 824 struct lwp *lp; 825 struct rusage *ru; 826 struct vmspace *vm; 827 long rss; 828 829 if ((lp = lwkt_preempted_proc()) != NULL) { 830 /* 831 * Account for cpu time used and hit the scheduler. Note 832 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 833 * HERE. 834 */ 835 ++lp->lwp_cpticks; 836 usched_schedulerclock(lp, info->periodic, info->time); 837 } else { 838 usched_schedulerclock(NULL, info->periodic, info->time); 839 } 840 if ((lp = curthread->td_lwp) != NULL) { 841 /* 842 * Update resource usage integrals and maximums. 843 */ 844 if ((ru = &lp->lwp_proc->p_ru) && 845 (vm = lp->lwp_proc->p_vmspace) != NULL) { 846 ru->ru_ixrss += pgtok(vm->vm_tsize); 847 ru->ru_idrss += pgtok(vm->vm_dsize); 848 ru->ru_isrss += pgtok(vm->vm_ssize); 849 if (lwkt_trytoken(&vm->vm_map.token)) { 850 rss = pgtok(vmspace_resident_count(vm)); 851 if (ru->ru_maxrss < rss) 852 ru->ru_maxrss = rss; 853 lwkt_reltoken(&vm->vm_map.token); 854 } 855 } 856 } 857 /* Increment the global sched_ticks */ 858 if (mycpu->gd_cpuid == 0) 859 ++sched_ticks; 860 } 861 862 /* 863 * Compute number of ticks for the specified amount of time. The 864 * return value is intended to be used in a clock interrupt timed 865 * operation and guarenteed to meet or exceed the requested time. 866 * If the representation overflows, return INT_MAX. The minimum return 867 * value is 1 ticks and the function will average the calculation up. 868 * If any value greater then 0 microseconds is supplied, a value 869 * of at least 2 will be returned to ensure that a near-term clock 870 * interrupt does not cause the timeout to occur (degenerately) early. 871 * 872 * Note that limit checks must take into account microseconds, which is 873 * done simply by using the smaller signed long maximum instead of 874 * the unsigned long maximum. 875 * 876 * If ints have 32 bits, then the maximum value for any timeout in 877 * 10ms ticks is 248 days. 878 */ 879 int 880 tvtohz_high(struct timeval *tv) 881 { 882 int ticks; 883 long sec, usec; 884 885 sec = tv->tv_sec; 886 usec = tv->tv_usec; 887 if (usec < 0) { 888 sec--; 889 usec += 1000000; 890 } 891 if (sec < 0) { 892 #ifdef DIAGNOSTIC 893 if (usec > 0) { 894 sec++; 895 usec -= 1000000; 896 } 897 kprintf("tvtohz_high: negative time difference " 898 "%ld sec %ld usec\n", 899 sec, usec); 900 #endif 901 ticks = 1; 902 } else if (sec <= INT_MAX / hz) { 903 ticks = (int)(sec * hz + 904 ((u_long)usec + (ustick - 1)) / ustick) + 1; 905 } else { 906 ticks = INT_MAX; 907 } 908 return (ticks); 909 } 910 911 int 912 tstohz_high(struct timespec *ts) 913 { 914 int ticks; 915 long sec, nsec; 916 917 sec = ts->tv_sec; 918 nsec = ts->tv_nsec; 919 if (nsec < 0) { 920 sec--; 921 nsec += 1000000000; 922 } 923 if (sec < 0) { 924 #ifdef DIAGNOSTIC 925 if (nsec > 0) { 926 sec++; 927 nsec -= 1000000000; 928 } 929 kprintf("tstohz_high: negative time difference " 930 "%ld sec %ld nsec\n", 931 sec, nsec); 932 #endif 933 ticks = 1; 934 } else if (sec <= INT_MAX / hz) { 935 ticks = (int)(sec * hz + 936 ((u_long)nsec + (nstick - 1)) / nstick) + 1; 937 } else { 938 ticks = INT_MAX; 939 } 940 return (ticks); 941 } 942 943 944 /* 945 * Compute number of ticks for the specified amount of time, erroring on 946 * the side of it being too low to ensure that sleeping the returned number 947 * of ticks will not result in a late return. 948 * 949 * The supplied timeval may not be negative and should be normalized. A 950 * return value of 0 is possible if the timeval converts to less then 951 * 1 tick. 952 * 953 * If ints have 32 bits, then the maximum value for any timeout in 954 * 10ms ticks is 248 days. 955 */ 956 int 957 tvtohz_low(struct timeval *tv) 958 { 959 int ticks; 960 long sec; 961 962 sec = tv->tv_sec; 963 if (sec <= INT_MAX / hz) 964 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 965 else 966 ticks = INT_MAX; 967 return (ticks); 968 } 969 970 int 971 tstohz_low(struct timespec *ts) 972 { 973 int ticks; 974 long sec; 975 976 sec = ts->tv_sec; 977 if (sec <= INT_MAX / hz) 978 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 979 else 980 ticks = INT_MAX; 981 return (ticks); 982 } 983 984 /* 985 * Start profiling on a process. 986 * 987 * Kernel profiling passes proc0 which never exits and hence 988 * keeps the profile clock running constantly. 989 */ 990 void 991 startprofclock(struct proc *p) 992 { 993 if ((p->p_flags & P_PROFIL) == 0) { 994 p->p_flags |= P_PROFIL; 995 #if 0 /* XXX */ 996 if (++profprocs == 1 && stathz != 0) { 997 crit_enter(); 998 psdiv = psratio; 999 setstatclockrate(profhz); 1000 crit_exit(); 1001 } 1002 #endif 1003 } 1004 } 1005 1006 /* 1007 * Stop profiling on a process. 1008 * 1009 * caller must hold p->p_token 1010 */ 1011 void 1012 stopprofclock(struct proc *p) 1013 { 1014 if (p->p_flags & P_PROFIL) { 1015 p->p_flags &= ~P_PROFIL; 1016 #if 0 /* XXX */ 1017 if (--profprocs == 0 && stathz != 0) { 1018 crit_enter(); 1019 psdiv = 1; 1020 setstatclockrate(stathz); 1021 crit_exit(); 1022 } 1023 #endif 1024 } 1025 } 1026 1027 /* 1028 * Return information about system clocks. 1029 */ 1030 static int 1031 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 1032 { 1033 struct kinfo_clockinfo clkinfo; 1034 /* 1035 * Construct clockinfo structure. 1036 */ 1037 clkinfo.ci_hz = hz; 1038 clkinfo.ci_tick = ustick; 1039 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 1040 clkinfo.ci_profhz = profhz; 1041 clkinfo.ci_stathz = stathz ? stathz : hz; 1042 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 1043 } 1044 1045 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 1046 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 1047 1048 /* 1049 * We have eight functions for looking at the clock, four for 1050 * microseconds and four for nanoseconds. For each there is fast 1051 * but less precise version "get{nano|micro}[up]time" which will 1052 * return a time which is up to 1/HZ previous to the call, whereas 1053 * the raw version "{nano|micro}[up]time" will return a timestamp 1054 * which is as precise as possible. The "up" variants return the 1055 * time relative to system boot, these are well suited for time 1056 * interval measurements. 1057 * 1058 * Each cpu independantly maintains the current time of day, so all 1059 * we need to do to protect ourselves from changes is to do a loop 1060 * check on the seconds field changing out from under us. 1061 * 1062 * The system timer maintains a 32 bit count and due to various issues 1063 * it is possible for the calculated delta to occassionally exceed 1064 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 1065 * multiplication can easily overflow, so we deal with the case. For 1066 * uniformity we deal with the case in the usec case too. 1067 * 1068 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 1069 */ 1070 void 1071 getmicrouptime(struct timeval *tvp) 1072 { 1073 struct globaldata *gd = mycpu; 1074 sysclock_t delta; 1075 1076 do { 1077 tvp->tv_sec = gd->gd_time_seconds; 1078 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1079 } while (tvp->tv_sec != gd->gd_time_seconds); 1080 1081 if (delta >= sys_cputimer->freq) { 1082 tvp->tv_sec += delta / sys_cputimer->freq; 1083 delta %= sys_cputimer->freq; 1084 } 1085 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1086 if (tvp->tv_usec >= 1000000) { 1087 tvp->tv_usec -= 1000000; 1088 ++tvp->tv_sec; 1089 } 1090 } 1091 1092 void 1093 getnanouptime(struct timespec *tsp) 1094 { 1095 struct globaldata *gd = mycpu; 1096 sysclock_t delta; 1097 1098 do { 1099 tsp->tv_sec = gd->gd_time_seconds; 1100 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1101 } while (tsp->tv_sec != gd->gd_time_seconds); 1102 1103 if (delta >= sys_cputimer->freq) { 1104 tsp->tv_sec += delta / sys_cputimer->freq; 1105 delta %= sys_cputimer->freq; 1106 } 1107 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1108 } 1109 1110 void 1111 microuptime(struct timeval *tvp) 1112 { 1113 struct globaldata *gd = mycpu; 1114 sysclock_t delta; 1115 1116 do { 1117 tvp->tv_sec = gd->gd_time_seconds; 1118 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1119 } while (tvp->tv_sec != gd->gd_time_seconds); 1120 1121 if (delta >= sys_cputimer->freq) { 1122 tvp->tv_sec += delta / sys_cputimer->freq; 1123 delta %= sys_cputimer->freq; 1124 } 1125 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1126 } 1127 1128 void 1129 nanouptime(struct timespec *tsp) 1130 { 1131 struct globaldata *gd = mycpu; 1132 sysclock_t delta; 1133 1134 do { 1135 tsp->tv_sec = gd->gd_time_seconds; 1136 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1137 } while (tsp->tv_sec != gd->gd_time_seconds); 1138 1139 if (delta >= sys_cputimer->freq) { 1140 tsp->tv_sec += delta / sys_cputimer->freq; 1141 delta %= sys_cputimer->freq; 1142 } 1143 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1144 } 1145 1146 /* 1147 * realtime routines 1148 */ 1149 void 1150 getmicrotime(struct timeval *tvp) 1151 { 1152 struct globaldata *gd = mycpu; 1153 struct timespec *bt; 1154 sysclock_t delta; 1155 1156 do { 1157 tvp->tv_sec = gd->gd_time_seconds; 1158 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1159 } while (tvp->tv_sec != gd->gd_time_seconds); 1160 1161 if (delta >= sys_cputimer->freq) { 1162 tvp->tv_sec += delta / sys_cputimer->freq; 1163 delta %= sys_cputimer->freq; 1164 } 1165 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1166 1167 bt = &basetime[basetime_index]; 1168 tvp->tv_sec += bt->tv_sec; 1169 tvp->tv_usec += bt->tv_nsec / 1000; 1170 while (tvp->tv_usec >= 1000000) { 1171 tvp->tv_usec -= 1000000; 1172 ++tvp->tv_sec; 1173 } 1174 } 1175 1176 void 1177 getnanotime(struct timespec *tsp) 1178 { 1179 struct globaldata *gd = mycpu; 1180 struct timespec *bt; 1181 sysclock_t delta; 1182 1183 do { 1184 tsp->tv_sec = gd->gd_time_seconds; 1185 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1186 } while (tsp->tv_sec != gd->gd_time_seconds); 1187 1188 if (delta >= sys_cputimer->freq) { 1189 tsp->tv_sec += delta / sys_cputimer->freq; 1190 delta %= sys_cputimer->freq; 1191 } 1192 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1193 1194 bt = &basetime[basetime_index]; 1195 tsp->tv_sec += bt->tv_sec; 1196 tsp->tv_nsec += bt->tv_nsec; 1197 while (tsp->tv_nsec >= 1000000000) { 1198 tsp->tv_nsec -= 1000000000; 1199 ++tsp->tv_sec; 1200 } 1201 } 1202 1203 static void 1204 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1205 { 1206 struct globaldata *gd = mycpu; 1207 sysclock_t delta; 1208 1209 do { 1210 tsp->tv_sec = gd->gd_time_seconds; 1211 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1212 } while (tsp->tv_sec != gd->gd_time_seconds); 1213 1214 if (delta >= sys_cputimer->freq) { 1215 tsp->tv_sec += delta / sys_cputimer->freq; 1216 delta %= sys_cputimer->freq; 1217 } 1218 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1219 1220 tsp->tv_sec += nbt->tv_sec; 1221 tsp->tv_nsec += nbt->tv_nsec; 1222 while (tsp->tv_nsec >= 1000000000) { 1223 tsp->tv_nsec -= 1000000000; 1224 ++tsp->tv_sec; 1225 } 1226 } 1227 1228 1229 void 1230 microtime(struct timeval *tvp) 1231 { 1232 struct globaldata *gd = mycpu; 1233 struct timespec *bt; 1234 sysclock_t delta; 1235 1236 do { 1237 tvp->tv_sec = gd->gd_time_seconds; 1238 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1239 } while (tvp->tv_sec != gd->gd_time_seconds); 1240 1241 if (delta >= sys_cputimer->freq) { 1242 tvp->tv_sec += delta / sys_cputimer->freq; 1243 delta %= sys_cputimer->freq; 1244 } 1245 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1246 1247 bt = &basetime[basetime_index]; 1248 tvp->tv_sec += bt->tv_sec; 1249 tvp->tv_usec += bt->tv_nsec / 1000; 1250 while (tvp->tv_usec >= 1000000) { 1251 tvp->tv_usec -= 1000000; 1252 ++tvp->tv_sec; 1253 } 1254 } 1255 1256 void 1257 nanotime(struct timespec *tsp) 1258 { 1259 struct globaldata *gd = mycpu; 1260 struct timespec *bt; 1261 sysclock_t delta; 1262 1263 do { 1264 tsp->tv_sec = gd->gd_time_seconds; 1265 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1266 } while (tsp->tv_sec != gd->gd_time_seconds); 1267 1268 if (delta >= sys_cputimer->freq) { 1269 tsp->tv_sec += delta / sys_cputimer->freq; 1270 delta %= sys_cputimer->freq; 1271 } 1272 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1273 1274 bt = &basetime[basetime_index]; 1275 tsp->tv_sec += bt->tv_sec; 1276 tsp->tv_nsec += bt->tv_nsec; 1277 while (tsp->tv_nsec >= 1000000000) { 1278 tsp->tv_nsec -= 1000000000; 1279 ++tsp->tv_sec; 1280 } 1281 } 1282 1283 /* 1284 * note: this is not exactly synchronized with real time. To do that we 1285 * would have to do what microtime does and check for a nanoseconds overflow. 1286 */ 1287 time_t 1288 get_approximate_time_t(void) 1289 { 1290 struct globaldata *gd = mycpu; 1291 struct timespec *bt; 1292 1293 bt = &basetime[basetime_index]; 1294 return(gd->gd_time_seconds + bt->tv_sec); 1295 } 1296 1297 int 1298 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1299 { 1300 pps_params_t *app; 1301 struct pps_fetch_args *fapi; 1302 #ifdef PPS_SYNC 1303 struct pps_kcbind_args *kapi; 1304 #endif 1305 1306 switch (cmd) { 1307 case PPS_IOC_CREATE: 1308 return (0); 1309 case PPS_IOC_DESTROY: 1310 return (0); 1311 case PPS_IOC_SETPARAMS: 1312 app = (pps_params_t *)data; 1313 if (app->mode & ~pps->ppscap) 1314 return (EINVAL); 1315 pps->ppsparam = *app; 1316 return (0); 1317 case PPS_IOC_GETPARAMS: 1318 app = (pps_params_t *)data; 1319 *app = pps->ppsparam; 1320 app->api_version = PPS_API_VERS_1; 1321 return (0); 1322 case PPS_IOC_GETCAP: 1323 *(int*)data = pps->ppscap; 1324 return (0); 1325 case PPS_IOC_FETCH: 1326 fapi = (struct pps_fetch_args *)data; 1327 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1328 return (EINVAL); 1329 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1330 return (EOPNOTSUPP); 1331 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1332 fapi->pps_info_buf = pps->ppsinfo; 1333 return (0); 1334 case PPS_IOC_KCBIND: 1335 #ifdef PPS_SYNC 1336 kapi = (struct pps_kcbind_args *)data; 1337 /* XXX Only root should be able to do this */ 1338 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1339 return (EINVAL); 1340 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1341 return (EINVAL); 1342 if (kapi->edge & ~pps->ppscap) 1343 return (EINVAL); 1344 pps->kcmode = kapi->edge; 1345 return (0); 1346 #else 1347 return (EOPNOTSUPP); 1348 #endif 1349 default: 1350 return (ENOTTY); 1351 } 1352 } 1353 1354 void 1355 pps_init(struct pps_state *pps) 1356 { 1357 pps->ppscap |= PPS_TSFMT_TSPEC; 1358 if (pps->ppscap & PPS_CAPTUREASSERT) 1359 pps->ppscap |= PPS_OFFSETASSERT; 1360 if (pps->ppscap & PPS_CAPTURECLEAR) 1361 pps->ppscap |= PPS_OFFSETCLEAR; 1362 } 1363 1364 void 1365 pps_event(struct pps_state *pps, sysclock_t count, int event) 1366 { 1367 struct globaldata *gd; 1368 struct timespec *tsp; 1369 struct timespec *osp; 1370 struct timespec *bt; 1371 struct timespec ts; 1372 sysclock_t *pcount; 1373 #ifdef PPS_SYNC 1374 sysclock_t tcount; 1375 #endif 1376 sysclock_t delta; 1377 pps_seq_t *pseq; 1378 int foff; 1379 int fhard; 1380 1381 gd = mycpu; 1382 1383 /* Things would be easier with arrays... */ 1384 if (event == PPS_CAPTUREASSERT) { 1385 tsp = &pps->ppsinfo.assert_timestamp; 1386 osp = &pps->ppsparam.assert_offset; 1387 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1388 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1389 pcount = &pps->ppscount[0]; 1390 pseq = &pps->ppsinfo.assert_sequence; 1391 } else { 1392 tsp = &pps->ppsinfo.clear_timestamp; 1393 osp = &pps->ppsparam.clear_offset; 1394 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1395 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1396 pcount = &pps->ppscount[1]; 1397 pseq = &pps->ppsinfo.clear_sequence; 1398 } 1399 1400 /* Nothing really happened */ 1401 if (*pcount == count) 1402 return; 1403 1404 *pcount = count; 1405 1406 do { 1407 ts.tv_sec = gd->gd_time_seconds; 1408 delta = count - gd->gd_cpuclock_base; 1409 } while (ts.tv_sec != gd->gd_time_seconds); 1410 1411 if (delta >= sys_cputimer->freq) { 1412 ts.tv_sec += delta / sys_cputimer->freq; 1413 delta %= sys_cputimer->freq; 1414 } 1415 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1416 bt = &basetime[basetime_index]; 1417 ts.tv_sec += bt->tv_sec; 1418 ts.tv_nsec += bt->tv_nsec; 1419 while (ts.tv_nsec >= 1000000000) { 1420 ts.tv_nsec -= 1000000000; 1421 ++ts.tv_sec; 1422 } 1423 1424 (*pseq)++; 1425 *tsp = ts; 1426 1427 if (foff) { 1428 timespecadd(tsp, osp); 1429 if (tsp->tv_nsec < 0) { 1430 tsp->tv_nsec += 1000000000; 1431 tsp->tv_sec -= 1; 1432 } 1433 } 1434 #ifdef PPS_SYNC 1435 if (fhard) { 1436 /* magic, at its best... */ 1437 tcount = count - pps->ppscount[2]; 1438 pps->ppscount[2] = count; 1439 if (tcount >= sys_cputimer->freq) { 1440 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1441 sys_cputimer->freq64_nsec * 1442 (tcount % sys_cputimer->freq)) >> 32; 1443 } else { 1444 delta = (sys_cputimer->freq64_nsec * tcount) >> 32; 1445 } 1446 hardpps(tsp, delta); 1447 } 1448 #endif 1449 } 1450 1451 /* 1452 * Return the tsc target value for a delay of (ns). 1453 * 1454 * Returns -1 if the TSC is not supported. 1455 */ 1456 int64_t 1457 tsc_get_target(int ns) 1458 { 1459 #if defined(_RDTSC_SUPPORTED_) 1460 if (cpu_feature & CPUID_TSC) { 1461 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1462 } 1463 #endif 1464 return(-1); 1465 } 1466 1467 /* 1468 * Compare the tsc against the passed target 1469 * 1470 * Returns +1 if the target has been reached 1471 * Returns 0 if the target has not yet been reached 1472 * Returns -1 if the TSC is not supported. 1473 * 1474 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1475 */ 1476 int 1477 tsc_test_target(int64_t target) 1478 { 1479 #if defined(_RDTSC_SUPPORTED_) 1480 if (cpu_feature & CPUID_TSC) { 1481 if ((int64_t)(target - rdtsc()) <= 0) 1482 return(1); 1483 return(0); 1484 } 1485 #endif 1486 return(-1); 1487 } 1488 1489 /* 1490 * Delay the specified number of nanoseconds using the tsc. This function 1491 * returns immediately if the TSC is not supported. At least one cpu_pause() 1492 * will be issued. 1493 */ 1494 void 1495 tsc_delay(int ns) 1496 { 1497 int64_t clk; 1498 1499 clk = tsc_get_target(ns); 1500 cpu_pause(); 1501 while (tsc_test_target(clk) == 0) 1502 cpu_pause(); 1503 } 1504