1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.62 2008/09/09 04:06:13 dillon Exp $ 74 */ 75 76 #include "opt_ntp.h" 77 #include "opt_polling.h" 78 #include "opt_ifpoll.h" 79 #include "opt_pctrack.h" 80 81 #include <sys/param.h> 82 #include <sys/systm.h> 83 #include <sys/callout.h> 84 #include <sys/kernel.h> 85 #include <sys/kinfo.h> 86 #include <sys/proc.h> 87 #include <sys/malloc.h> 88 #include <sys/resourcevar.h> 89 #include <sys/signalvar.h> 90 #include <sys/timex.h> 91 #include <sys/timepps.h> 92 #include <vm/vm.h> 93 #include <sys/lock.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_extern.h> 97 #include <sys/sysctl.h> 98 99 #include <sys/thread2.h> 100 #include <sys/mplock2.h> 101 102 #include <machine/cpu.h> 103 #include <machine/limits.h> 104 #include <machine/smp.h> 105 #include <machine/cpufunc.h> 106 #include <machine/specialreg.h> 107 #include <machine/clock.h> 108 109 #ifdef GPROF 110 #include <sys/gmon.h> 111 #endif 112 113 #ifdef DEVICE_POLLING 114 extern void init_device_poll_pcpu(int); 115 #endif 116 117 #ifdef IFPOLL_ENABLE 118 extern void ifpoll_init_pcpu(int); 119 #endif 120 121 #ifdef DEBUG_PCTRACK 122 static void do_pctrack(struct intrframe *frame, int which); 123 #endif 124 125 static void initclocks (void *dummy); 126 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 127 128 /* 129 * Some of these don't belong here, but it's easiest to concentrate them. 130 * Note that cpu_time counts in microseconds, but most userland programs 131 * just compare relative times against the total by delta. 132 */ 133 struct kinfo_cputime cputime_percpu[MAXCPU]; 134 #ifdef DEBUG_PCTRACK 135 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 136 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 137 #endif 138 139 #ifdef SMP 140 static int 141 sysctl_cputime(SYSCTL_HANDLER_ARGS) 142 { 143 int cpu, error = 0; 144 size_t size = sizeof(struct kinfo_cputime); 145 146 for (cpu = 0; cpu < ncpus; ++cpu) { 147 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size))) 148 break; 149 } 150 151 return (error); 152 } 153 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 154 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 155 #else 156 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime, 157 "CPU time statistics"); 158 #endif 159 160 /* 161 * boottime is used to calculate the 'real' uptime. Do not confuse this with 162 * microuptime(). microtime() is not drift compensated. The real uptime 163 * with compensation is nanotime() - bootime. boottime is recalculated 164 * whenever the real time is set based on the compensated elapsed time 165 * in seconds (gd->gd_time_seconds). 166 * 167 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 168 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 169 * the real time. 170 */ 171 struct timespec boottime; /* boot time (realtime) for reference only */ 172 time_t time_second; /* read-only 'passive' uptime in seconds */ 173 174 /* 175 * basetime is used to calculate the compensated real time of day. The 176 * basetime can be modified on a per-tick basis by the adjtime(), 177 * ntp_adjtime(), and sysctl-based time correction APIs. 178 * 179 * Note that frequency corrections can also be made by adjusting 180 * gd_cpuclock_base. 181 * 182 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 183 * used on both SMP and UP systems to avoid MP races between cpu's and 184 * interrupt races on UP systems. 185 */ 186 #define BASETIME_ARYSIZE 16 187 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 188 static struct timespec basetime[BASETIME_ARYSIZE]; 189 static volatile int basetime_index; 190 191 static int 192 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 193 { 194 struct timespec *bt; 195 int error; 196 int index; 197 198 /* 199 * Because basetime data and index may be updated by another cpu, 200 * a load fence is required to ensure that the data we read has 201 * not been speculatively read relative to a possibly updated index. 202 */ 203 index = basetime_index; 204 cpu_lfence(); 205 bt = &basetime[index]; 206 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 207 return (error); 208 } 209 210 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 211 &boottime, timespec, "System boottime"); 212 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 213 sysctl_get_basetime, "S,timespec", "System basetime"); 214 215 static void hardclock(systimer_t info, struct intrframe *frame); 216 static void statclock(systimer_t info, struct intrframe *frame); 217 static void schedclock(systimer_t info, struct intrframe *frame); 218 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 219 220 int ticks; /* system master ticks at hz */ 221 int clocks_running; /* tsleep/timeout clocks operational */ 222 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 223 int64_t nsec_acc; /* accumulator */ 224 225 /* NTPD time correction fields */ 226 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 227 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 228 int64_t ntp_delta; /* one-time correction in nsec */ 229 int64_t ntp_big_delta = 1000000000; 230 int32_t ntp_tick_delta; /* current adjustment rate */ 231 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 232 time_t ntp_leap_second; /* time of next leap second */ 233 int ntp_leap_insert; /* whether to insert or remove a second */ 234 235 /* 236 * Finish initializing clock frequencies and start all clocks running. 237 */ 238 /* ARGSUSED*/ 239 static void 240 initclocks(void *dummy) 241 { 242 /*psratio = profhz / stathz;*/ 243 initclocks_pcpu(); 244 clocks_running = 1; 245 } 246 247 /* 248 * Called on a per-cpu basis 249 */ 250 void 251 initclocks_pcpu(void) 252 { 253 struct globaldata *gd = mycpu; 254 255 crit_enter(); 256 if (gd->gd_cpuid == 0) { 257 gd->gd_time_seconds = 1; 258 gd->gd_cpuclock_base = sys_cputimer->count(); 259 } else { 260 /* XXX */ 261 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 262 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 263 } 264 265 systimer_intr_enable(); 266 267 #ifdef DEVICE_POLLING 268 init_device_poll_pcpu(gd->gd_cpuid); 269 #endif 270 271 #ifdef IFPOLL_ENABLE 272 ifpoll_init_pcpu(gd->gd_cpuid); 273 #endif 274 275 /* 276 * Use a non-queued periodic systimer to prevent multiple ticks from 277 * building up if the sysclock jumps forward (8254 gets reset). The 278 * sysclock will never jump backwards. Our time sync is based on 279 * the actual sysclock, not the ticks count. 280 */ 281 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz); 282 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz); 283 /* XXX correct the frequency for scheduler / estcpu tests */ 284 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock, 285 NULL, ESTCPUFREQ); 286 crit_exit(); 287 } 288 289 /* 290 * This sets the current real time of day. Timespecs are in seconds and 291 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 292 * instead we adjust basetime so basetime + gd_* results in the current 293 * time of day. This way the gd_* fields are guarenteed to represent 294 * a monotonically increasing 'uptime' value. 295 * 296 * When set_timeofday() is called from userland, the system call forces it 297 * onto cpu #0 since only cpu #0 can update basetime_index. 298 */ 299 void 300 set_timeofday(struct timespec *ts) 301 { 302 struct timespec *nbt; 303 int ni; 304 305 /* 306 * XXX SMP / non-atomic basetime updates 307 */ 308 crit_enter(); 309 ni = (basetime_index + 1) & BASETIME_ARYMASK; 310 nbt = &basetime[ni]; 311 nanouptime(nbt); 312 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 313 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 314 if (nbt->tv_nsec < 0) { 315 nbt->tv_nsec += 1000000000; 316 --nbt->tv_sec; 317 } 318 319 /* 320 * Note that basetime diverges from boottime as the clock drift is 321 * compensated for, so we cannot do away with boottime. When setting 322 * the absolute time of day the drift is 0 (for an instant) and we 323 * can simply assign boottime to basetime. 324 * 325 * Note that nanouptime() is based on gd_time_seconds which is drift 326 * compensated up to a point (it is guarenteed to remain monotonically 327 * increasing). gd_time_seconds is thus our best uptime guess and 328 * suitable for use in the boottime calculation. It is already taken 329 * into account in the basetime calculation above. 330 */ 331 boottime.tv_sec = nbt->tv_sec; 332 ntp_delta = 0; 333 334 /* 335 * We now have a new basetime, make sure all other cpus have it, 336 * then update the index. 337 */ 338 cpu_sfence(); 339 basetime_index = ni; 340 341 crit_exit(); 342 } 343 344 /* 345 * Each cpu has its own hardclock, but we only increments ticks and softticks 346 * on cpu #0. 347 * 348 * NOTE! systimer! the MP lock might not be held here. We can only safely 349 * manipulate objects owned by the current cpu. 350 */ 351 static void 352 hardclock(systimer_t info, struct intrframe *frame) 353 { 354 sysclock_t cputicks; 355 struct proc *p; 356 struct globaldata *gd = mycpu; 357 358 /* 359 * Realtime updates are per-cpu. Note that timer corrections as 360 * returned by microtime() and friends make an additional adjustment 361 * using a system-wise 'basetime', but the running time is always 362 * taken from the per-cpu globaldata area. Since the same clock 363 * is distributing (XXX SMP) to all cpus, the per-cpu timebases 364 * stay in synch. 365 * 366 * Note that we never allow info->time (aka gd->gd_hardclock.time) 367 * to reverse index gd_cpuclock_base, but that it is possible for 368 * it to temporarily get behind in the seconds if something in the 369 * system locks interrupts for a long period of time. Since periodic 370 * timers count events, though everything should resynch again 371 * immediately. 372 */ 373 cputicks = info->time - gd->gd_cpuclock_base; 374 if (cputicks >= sys_cputimer->freq) { 375 ++gd->gd_time_seconds; 376 gd->gd_cpuclock_base += sys_cputimer->freq; 377 } 378 379 /* 380 * The system-wide ticks counter and NTP related timedelta/tickdelta 381 * adjustments only occur on cpu #0. NTP adjustments are accomplished 382 * by updating basetime. 383 */ 384 if (gd->gd_cpuid == 0) { 385 struct timespec *nbt; 386 struct timespec nts; 387 int leap; 388 int ni; 389 390 ++ticks; 391 392 #if 0 393 if (tco->tc_poll_pps) 394 tco->tc_poll_pps(tco); 395 #endif 396 397 /* 398 * Calculate the new basetime index. We are in a critical section 399 * on cpu #0 and can safely play with basetime_index. Start 400 * with the current basetime and then make adjustments. 401 */ 402 ni = (basetime_index + 1) & BASETIME_ARYMASK; 403 nbt = &basetime[ni]; 404 *nbt = basetime[basetime_index]; 405 406 /* 407 * Apply adjtime corrections. (adjtime() API) 408 * 409 * adjtime() only runs on cpu #0 so our critical section is 410 * sufficient to access these variables. 411 */ 412 if (ntp_delta != 0) { 413 nbt->tv_nsec += ntp_tick_delta; 414 ntp_delta -= ntp_tick_delta; 415 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 416 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 417 ntp_tick_delta = ntp_delta; 418 } 419 } 420 421 /* 422 * Apply permanent frequency corrections. (sysctl API) 423 */ 424 if (ntp_tick_permanent != 0) { 425 ntp_tick_acc += ntp_tick_permanent; 426 if (ntp_tick_acc >= (1LL << 32)) { 427 nbt->tv_nsec += ntp_tick_acc >> 32; 428 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 429 } else if (ntp_tick_acc <= -(1LL << 32)) { 430 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 431 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 432 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 433 } 434 } 435 436 if (nbt->tv_nsec >= 1000000000) { 437 nbt->tv_sec++; 438 nbt->tv_nsec -= 1000000000; 439 } else if (nbt->tv_nsec < 0) { 440 nbt->tv_sec--; 441 nbt->tv_nsec += 1000000000; 442 } 443 444 /* 445 * Another per-tick compensation. (for ntp_adjtime() API) 446 */ 447 if (nsec_adj != 0) { 448 nsec_acc += nsec_adj; 449 if (nsec_acc >= 0x100000000LL) { 450 nbt->tv_nsec += nsec_acc >> 32; 451 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 452 } else if (nsec_acc <= -0x100000000LL) { 453 nbt->tv_nsec -= -nsec_acc >> 32; 454 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 455 } 456 if (nbt->tv_nsec >= 1000000000) { 457 nbt->tv_nsec -= 1000000000; 458 ++nbt->tv_sec; 459 } else if (nbt->tv_nsec < 0) { 460 nbt->tv_nsec += 1000000000; 461 --nbt->tv_sec; 462 } 463 } 464 465 /************************************************************ 466 * LEAP SECOND CORRECTION * 467 ************************************************************ 468 * 469 * Taking into account all the corrections made above, figure 470 * out the new real time. If the seconds field has changed 471 * then apply any pending leap-second corrections. 472 */ 473 getnanotime_nbt(nbt, &nts); 474 475 if (time_second != nts.tv_sec) { 476 /* 477 * Apply leap second (sysctl API). Adjust nts for changes 478 * so we do not have to call getnanotime_nbt again. 479 */ 480 if (ntp_leap_second) { 481 if (ntp_leap_second == nts.tv_sec) { 482 if (ntp_leap_insert) { 483 nbt->tv_sec++; 484 nts.tv_sec++; 485 } else { 486 nbt->tv_sec--; 487 nts.tv_sec--; 488 } 489 ntp_leap_second--; 490 } 491 } 492 493 /* 494 * Apply leap second (ntp_adjtime() API), calculate a new 495 * nsec_adj field. ntp_update_second() returns nsec_adj 496 * as a per-second value but we need it as a per-tick value. 497 */ 498 leap = ntp_update_second(time_second, &nsec_adj); 499 nsec_adj /= hz; 500 nbt->tv_sec += leap; 501 nts.tv_sec += leap; 502 503 /* 504 * Update the time_second 'approximate time' global. 505 */ 506 time_second = nts.tv_sec; 507 } 508 509 /* 510 * Finally, our new basetime is ready to go live! 511 */ 512 cpu_sfence(); 513 basetime_index = ni; 514 515 /* 516 * Figure out how badly the system is starved for memory 517 */ 518 vm_fault_ratecheck(); 519 } 520 521 /* 522 * lwkt thread scheduler fair queueing 523 */ 524 lwkt_fairq_schedulerclock(curthread); 525 526 /* 527 * softticks are handled for all cpus 528 */ 529 hardclock_softtick(gd); 530 531 /* 532 * The LWKT scheduler will generally allow the current process to 533 * return to user mode even if there are other runnable LWKT threads 534 * running in kernel mode on behalf of a user process. This will 535 * ensure that those other threads have an opportunity to run in 536 * fairly short order (but not instantly). 537 */ 538 need_lwkt_resched(); 539 540 /* 541 * ITimer handling is per-tick, per-cpu. I don't think ksignal() 542 * is mpsafe on curproc, so XXX get the mplock. 543 */ 544 if ((p = curproc) != NULL && try_mplock()) { 545 if (frame && CLKF_USERMODE(frame) && 546 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 547 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) 548 ksignal(p, SIGVTALRM); 549 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 550 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) 551 ksignal(p, SIGPROF); 552 rel_mplock(); 553 } 554 setdelayed(); 555 } 556 557 /* 558 * The statistics clock typically runs at a 125Hz rate, and is intended 559 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 560 * 561 * NOTE! systimer! the MP lock might not be held here. We can only safely 562 * manipulate objects owned by the current cpu. 563 * 564 * The stats clock is responsible for grabbing a profiling sample. 565 * Most of the statistics are only used by user-level statistics programs. 566 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 567 * p->p_estcpu. 568 * 569 * Like the other clocks, the stat clock is called from what is effectively 570 * a fast interrupt, so the context should be the thread/process that got 571 * interrupted. 572 */ 573 static void 574 statclock(systimer_t info, struct intrframe *frame) 575 { 576 #ifdef GPROF 577 struct gmonparam *g; 578 int i; 579 #endif 580 thread_t td; 581 struct proc *p; 582 int bump; 583 struct timeval tv; 584 struct timeval *stv; 585 586 /* 587 * How big was our timeslice relative to the last time? 588 */ 589 microuptime(&tv); /* mpsafe */ 590 stv = &mycpu->gd_stattv; 591 if (stv->tv_sec == 0) { 592 bump = 1; 593 } else { 594 bump = tv.tv_usec - stv->tv_usec + 595 (tv.tv_sec - stv->tv_sec) * 1000000; 596 if (bump < 0) 597 bump = 0; 598 if (bump > 1000000) 599 bump = 1000000; 600 } 601 *stv = tv; 602 603 td = curthread; 604 p = td->td_proc; 605 606 if (frame && CLKF_USERMODE(frame)) { 607 /* 608 * Came from userland, handle user time and deal with 609 * possible process. 610 */ 611 if (p && (p->p_flag & P_PROFIL)) 612 addupc_intr(p, CLKF_PC(frame), 1); 613 td->td_uticks += bump; 614 615 /* 616 * Charge the time as appropriate 617 */ 618 if (p && p->p_nice > NZERO) 619 cpu_time.cp_nice += bump; 620 else 621 cpu_time.cp_user += bump; 622 } else { 623 #ifdef GPROF 624 /* 625 * Kernel statistics are just like addupc_intr, only easier. 626 */ 627 g = &_gmonparam; 628 if (g->state == GMON_PROF_ON && frame) { 629 i = CLKF_PC(frame) - g->lowpc; 630 if (i < g->textsize) { 631 i /= HISTFRACTION * sizeof(*g->kcount); 632 g->kcount[i]++; 633 } 634 } 635 #endif 636 /* 637 * Came from kernel mode, so we were: 638 * - handling an interrupt, 639 * - doing syscall or trap work on behalf of the current 640 * user process, or 641 * - spinning in the idle loop. 642 * Whichever it is, charge the time as appropriate. 643 * Note that we charge interrupts to the current process, 644 * regardless of whether they are ``for'' that process, 645 * so that we know how much of its real time was spent 646 * in ``non-process'' (i.e., interrupt) work. 647 * 648 * XXX assume system if frame is NULL. A NULL frame 649 * can occur if ipi processing is done from a crit_exit(). 650 */ 651 if (frame && CLKF_INTR(frame)) 652 td->td_iticks += bump; 653 else 654 td->td_sticks += bump; 655 656 if (frame && CLKF_INTR(frame)) { 657 #ifdef DEBUG_PCTRACK 658 do_pctrack(frame, PCTRACK_INT); 659 #endif 660 cpu_time.cp_intr += bump; 661 } else { 662 if (td == &mycpu->gd_idlethread) { 663 cpu_time.cp_idle += bump; 664 } else { 665 #ifdef DEBUG_PCTRACK 666 if (frame) 667 do_pctrack(frame, PCTRACK_SYS); 668 #endif 669 cpu_time.cp_sys += bump; 670 } 671 } 672 } 673 } 674 675 #ifdef DEBUG_PCTRACK 676 /* 677 * Sample the PC when in the kernel or in an interrupt. User code can 678 * retrieve the information and generate a histogram or other output. 679 */ 680 681 static void 682 do_pctrack(struct intrframe *frame, int which) 683 { 684 struct kinfo_pctrack *pctrack; 685 686 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 687 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 688 (void *)CLKF_PC(frame); 689 ++pctrack->pc_index; 690 } 691 692 static int 693 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 694 { 695 struct kinfo_pcheader head; 696 int error; 697 int cpu; 698 int ntrack; 699 700 head.pc_ntrack = PCTRACK_SIZE; 701 head.pc_arysize = PCTRACK_ARYSIZE; 702 703 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 704 return (error); 705 706 for (cpu = 0; cpu < ncpus; ++cpu) { 707 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 708 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 709 sizeof(struct kinfo_pctrack)); 710 if (error) 711 break; 712 } 713 if (error) 714 break; 715 } 716 return (error); 717 } 718 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 719 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 720 721 #endif 722 723 /* 724 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 725 * the MP lock might not be held. We can safely manipulate parts of curproc 726 * but that's about it. 727 * 728 * Each cpu has its own scheduler clock. 729 */ 730 static void 731 schedclock(systimer_t info, struct intrframe *frame) 732 { 733 struct lwp *lp; 734 struct rusage *ru; 735 struct vmspace *vm; 736 long rss; 737 738 if ((lp = lwkt_preempted_proc()) != NULL) { 739 /* 740 * Account for cpu time used and hit the scheduler. Note 741 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 742 * HERE. 743 */ 744 ++lp->lwp_cpticks; 745 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic, 746 info->time); 747 } 748 if ((lp = curthread->td_lwp) != NULL) { 749 /* 750 * Update resource usage integrals and maximums. 751 */ 752 if ((ru = &lp->lwp_proc->p_ru) && 753 (vm = lp->lwp_proc->p_vmspace) != NULL) { 754 ru->ru_ixrss += pgtok(vm->vm_tsize); 755 ru->ru_idrss += pgtok(vm->vm_dsize); 756 ru->ru_isrss += pgtok(vm->vm_ssize); 757 rss = pgtok(vmspace_resident_count(vm)); 758 if (ru->ru_maxrss < rss) 759 ru->ru_maxrss = rss; 760 } 761 } 762 } 763 764 /* 765 * Compute number of ticks for the specified amount of time. The 766 * return value is intended to be used in a clock interrupt timed 767 * operation and guarenteed to meet or exceed the requested time. 768 * If the representation overflows, return INT_MAX. The minimum return 769 * value is 1 ticks and the function will average the calculation up. 770 * If any value greater then 0 microseconds is supplied, a value 771 * of at least 2 will be returned to ensure that a near-term clock 772 * interrupt does not cause the timeout to occur (degenerately) early. 773 * 774 * Note that limit checks must take into account microseconds, which is 775 * done simply by using the smaller signed long maximum instead of 776 * the unsigned long maximum. 777 * 778 * If ints have 32 bits, then the maximum value for any timeout in 779 * 10ms ticks is 248 days. 780 */ 781 int 782 tvtohz_high(struct timeval *tv) 783 { 784 int ticks; 785 long sec, usec; 786 787 sec = tv->tv_sec; 788 usec = tv->tv_usec; 789 if (usec < 0) { 790 sec--; 791 usec += 1000000; 792 } 793 if (sec < 0) { 794 #ifdef DIAGNOSTIC 795 if (usec > 0) { 796 sec++; 797 usec -= 1000000; 798 } 799 kprintf("tvtohz_high: negative time difference " 800 "%ld sec %ld usec\n", 801 sec, usec); 802 #endif 803 ticks = 1; 804 } else if (sec <= INT_MAX / hz) { 805 ticks = (int)(sec * hz + 806 ((u_long)usec + (ustick - 1)) / ustick) + 1; 807 } else { 808 ticks = INT_MAX; 809 } 810 return (ticks); 811 } 812 813 int 814 tstohz_high(struct timespec *ts) 815 { 816 int ticks; 817 long sec, nsec; 818 819 sec = ts->tv_sec; 820 nsec = ts->tv_nsec; 821 if (nsec < 0) { 822 sec--; 823 nsec += 1000000000; 824 } 825 if (sec < 0) { 826 #ifdef DIAGNOSTIC 827 if (nsec > 0) { 828 sec++; 829 nsec -= 1000000000; 830 } 831 kprintf("tstohz_high: negative time difference " 832 "%ld sec %ld nsec\n", 833 sec, nsec); 834 #endif 835 ticks = 1; 836 } else if (sec <= INT_MAX / hz) { 837 ticks = (int)(sec * hz + 838 ((u_long)nsec + (nstick - 1)) / nstick) + 1; 839 } else { 840 ticks = INT_MAX; 841 } 842 return (ticks); 843 } 844 845 846 /* 847 * Compute number of ticks for the specified amount of time, erroring on 848 * the side of it being too low to ensure that sleeping the returned number 849 * of ticks will not result in a late return. 850 * 851 * The supplied timeval may not be negative and should be normalized. A 852 * return value of 0 is possible if the timeval converts to less then 853 * 1 tick. 854 * 855 * If ints have 32 bits, then the maximum value for any timeout in 856 * 10ms ticks is 248 days. 857 */ 858 int 859 tvtohz_low(struct timeval *tv) 860 { 861 int ticks; 862 long sec; 863 864 sec = tv->tv_sec; 865 if (sec <= INT_MAX / hz) 866 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 867 else 868 ticks = INT_MAX; 869 return (ticks); 870 } 871 872 int 873 tstohz_low(struct timespec *ts) 874 { 875 int ticks; 876 long sec; 877 878 sec = ts->tv_sec; 879 if (sec <= INT_MAX / hz) 880 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 881 else 882 ticks = INT_MAX; 883 return (ticks); 884 } 885 886 /* 887 * Start profiling on a process. 888 * 889 * Kernel profiling passes proc0 which never exits and hence 890 * keeps the profile clock running constantly. 891 */ 892 void 893 startprofclock(struct proc *p) 894 { 895 if ((p->p_flag & P_PROFIL) == 0) { 896 p->p_flag |= P_PROFIL; 897 #if 0 /* XXX */ 898 if (++profprocs == 1 && stathz != 0) { 899 crit_enter(); 900 psdiv = psratio; 901 setstatclockrate(profhz); 902 crit_exit(); 903 } 904 #endif 905 } 906 } 907 908 /* 909 * Stop profiling on a process. 910 */ 911 void 912 stopprofclock(struct proc *p) 913 { 914 if (p->p_flag & P_PROFIL) { 915 p->p_flag &= ~P_PROFIL; 916 #if 0 /* XXX */ 917 if (--profprocs == 0 && stathz != 0) { 918 crit_enter(); 919 psdiv = 1; 920 setstatclockrate(stathz); 921 crit_exit(); 922 } 923 #endif 924 } 925 } 926 927 /* 928 * Return information about system clocks. 929 */ 930 static int 931 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 932 { 933 struct kinfo_clockinfo clkinfo; 934 /* 935 * Construct clockinfo structure. 936 */ 937 clkinfo.ci_hz = hz; 938 clkinfo.ci_tick = ustick; 939 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 940 clkinfo.ci_profhz = profhz; 941 clkinfo.ci_stathz = stathz ? stathz : hz; 942 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 943 } 944 945 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 946 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 947 948 /* 949 * We have eight functions for looking at the clock, four for 950 * microseconds and four for nanoseconds. For each there is fast 951 * but less precise version "get{nano|micro}[up]time" which will 952 * return a time which is up to 1/HZ previous to the call, whereas 953 * the raw version "{nano|micro}[up]time" will return a timestamp 954 * which is as precise as possible. The "up" variants return the 955 * time relative to system boot, these are well suited for time 956 * interval measurements. 957 * 958 * Each cpu independantly maintains the current time of day, so all 959 * we need to do to protect ourselves from changes is to do a loop 960 * check on the seconds field changing out from under us. 961 * 962 * The system timer maintains a 32 bit count and due to various issues 963 * it is possible for the calculated delta to occassionally exceed 964 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 965 * multiplication can easily overflow, so we deal with the case. For 966 * uniformity we deal with the case in the usec case too. 967 * 968 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 969 */ 970 void 971 getmicrouptime(struct timeval *tvp) 972 { 973 struct globaldata *gd = mycpu; 974 sysclock_t delta; 975 976 do { 977 tvp->tv_sec = gd->gd_time_seconds; 978 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 979 } while (tvp->tv_sec != gd->gd_time_seconds); 980 981 if (delta >= sys_cputimer->freq) { 982 tvp->tv_sec += delta / sys_cputimer->freq; 983 delta %= sys_cputimer->freq; 984 } 985 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 986 if (tvp->tv_usec >= 1000000) { 987 tvp->tv_usec -= 1000000; 988 ++tvp->tv_sec; 989 } 990 } 991 992 void 993 getnanouptime(struct timespec *tsp) 994 { 995 struct globaldata *gd = mycpu; 996 sysclock_t delta; 997 998 do { 999 tsp->tv_sec = gd->gd_time_seconds; 1000 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1001 } while (tsp->tv_sec != gd->gd_time_seconds); 1002 1003 if (delta >= sys_cputimer->freq) { 1004 tsp->tv_sec += delta / sys_cputimer->freq; 1005 delta %= sys_cputimer->freq; 1006 } 1007 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1008 } 1009 1010 void 1011 microuptime(struct timeval *tvp) 1012 { 1013 struct globaldata *gd = mycpu; 1014 sysclock_t delta; 1015 1016 do { 1017 tvp->tv_sec = gd->gd_time_seconds; 1018 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1019 } while (tvp->tv_sec != gd->gd_time_seconds); 1020 1021 if (delta >= sys_cputimer->freq) { 1022 tvp->tv_sec += delta / sys_cputimer->freq; 1023 delta %= sys_cputimer->freq; 1024 } 1025 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1026 } 1027 1028 void 1029 nanouptime(struct timespec *tsp) 1030 { 1031 struct globaldata *gd = mycpu; 1032 sysclock_t delta; 1033 1034 do { 1035 tsp->tv_sec = gd->gd_time_seconds; 1036 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1037 } while (tsp->tv_sec != gd->gd_time_seconds); 1038 1039 if (delta >= sys_cputimer->freq) { 1040 tsp->tv_sec += delta / sys_cputimer->freq; 1041 delta %= sys_cputimer->freq; 1042 } 1043 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1044 } 1045 1046 /* 1047 * realtime routines 1048 */ 1049 void 1050 getmicrotime(struct timeval *tvp) 1051 { 1052 struct globaldata *gd = mycpu; 1053 struct timespec *bt; 1054 sysclock_t delta; 1055 1056 do { 1057 tvp->tv_sec = gd->gd_time_seconds; 1058 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1059 } while (tvp->tv_sec != gd->gd_time_seconds); 1060 1061 if (delta >= sys_cputimer->freq) { 1062 tvp->tv_sec += delta / sys_cputimer->freq; 1063 delta %= sys_cputimer->freq; 1064 } 1065 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1066 1067 bt = &basetime[basetime_index]; 1068 tvp->tv_sec += bt->tv_sec; 1069 tvp->tv_usec += bt->tv_nsec / 1000; 1070 while (tvp->tv_usec >= 1000000) { 1071 tvp->tv_usec -= 1000000; 1072 ++tvp->tv_sec; 1073 } 1074 } 1075 1076 void 1077 getnanotime(struct timespec *tsp) 1078 { 1079 struct globaldata *gd = mycpu; 1080 struct timespec *bt; 1081 sysclock_t delta; 1082 1083 do { 1084 tsp->tv_sec = gd->gd_time_seconds; 1085 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1086 } while (tsp->tv_sec != gd->gd_time_seconds); 1087 1088 if (delta >= sys_cputimer->freq) { 1089 tsp->tv_sec += delta / sys_cputimer->freq; 1090 delta %= sys_cputimer->freq; 1091 } 1092 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1093 1094 bt = &basetime[basetime_index]; 1095 tsp->tv_sec += bt->tv_sec; 1096 tsp->tv_nsec += bt->tv_nsec; 1097 while (tsp->tv_nsec >= 1000000000) { 1098 tsp->tv_nsec -= 1000000000; 1099 ++tsp->tv_sec; 1100 } 1101 } 1102 1103 static void 1104 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1105 { 1106 struct globaldata *gd = mycpu; 1107 sysclock_t delta; 1108 1109 do { 1110 tsp->tv_sec = gd->gd_time_seconds; 1111 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1112 } while (tsp->tv_sec != gd->gd_time_seconds); 1113 1114 if (delta >= sys_cputimer->freq) { 1115 tsp->tv_sec += delta / sys_cputimer->freq; 1116 delta %= sys_cputimer->freq; 1117 } 1118 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1119 1120 tsp->tv_sec += nbt->tv_sec; 1121 tsp->tv_nsec += nbt->tv_nsec; 1122 while (tsp->tv_nsec >= 1000000000) { 1123 tsp->tv_nsec -= 1000000000; 1124 ++tsp->tv_sec; 1125 } 1126 } 1127 1128 1129 void 1130 microtime(struct timeval *tvp) 1131 { 1132 struct globaldata *gd = mycpu; 1133 struct timespec *bt; 1134 sysclock_t delta; 1135 1136 do { 1137 tvp->tv_sec = gd->gd_time_seconds; 1138 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1139 } while (tvp->tv_sec != gd->gd_time_seconds); 1140 1141 if (delta >= sys_cputimer->freq) { 1142 tvp->tv_sec += delta / sys_cputimer->freq; 1143 delta %= sys_cputimer->freq; 1144 } 1145 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1146 1147 bt = &basetime[basetime_index]; 1148 tvp->tv_sec += bt->tv_sec; 1149 tvp->tv_usec += bt->tv_nsec / 1000; 1150 while (tvp->tv_usec >= 1000000) { 1151 tvp->tv_usec -= 1000000; 1152 ++tvp->tv_sec; 1153 } 1154 } 1155 1156 void 1157 nanotime(struct timespec *tsp) 1158 { 1159 struct globaldata *gd = mycpu; 1160 struct timespec *bt; 1161 sysclock_t delta; 1162 1163 do { 1164 tsp->tv_sec = gd->gd_time_seconds; 1165 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1166 } while (tsp->tv_sec != gd->gd_time_seconds); 1167 1168 if (delta >= sys_cputimer->freq) { 1169 tsp->tv_sec += delta / sys_cputimer->freq; 1170 delta %= sys_cputimer->freq; 1171 } 1172 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1173 1174 bt = &basetime[basetime_index]; 1175 tsp->tv_sec += bt->tv_sec; 1176 tsp->tv_nsec += bt->tv_nsec; 1177 while (tsp->tv_nsec >= 1000000000) { 1178 tsp->tv_nsec -= 1000000000; 1179 ++tsp->tv_sec; 1180 } 1181 } 1182 1183 /* 1184 * note: this is not exactly synchronized with real time. To do that we 1185 * would have to do what microtime does and check for a nanoseconds overflow. 1186 */ 1187 time_t 1188 get_approximate_time_t(void) 1189 { 1190 struct globaldata *gd = mycpu; 1191 struct timespec *bt; 1192 1193 bt = &basetime[basetime_index]; 1194 return(gd->gd_time_seconds + bt->tv_sec); 1195 } 1196 1197 int 1198 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1199 { 1200 pps_params_t *app; 1201 struct pps_fetch_args *fapi; 1202 #ifdef PPS_SYNC 1203 struct pps_kcbind_args *kapi; 1204 #endif 1205 1206 switch (cmd) { 1207 case PPS_IOC_CREATE: 1208 return (0); 1209 case PPS_IOC_DESTROY: 1210 return (0); 1211 case PPS_IOC_SETPARAMS: 1212 app = (pps_params_t *)data; 1213 if (app->mode & ~pps->ppscap) 1214 return (EINVAL); 1215 pps->ppsparam = *app; 1216 return (0); 1217 case PPS_IOC_GETPARAMS: 1218 app = (pps_params_t *)data; 1219 *app = pps->ppsparam; 1220 app->api_version = PPS_API_VERS_1; 1221 return (0); 1222 case PPS_IOC_GETCAP: 1223 *(int*)data = pps->ppscap; 1224 return (0); 1225 case PPS_IOC_FETCH: 1226 fapi = (struct pps_fetch_args *)data; 1227 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1228 return (EINVAL); 1229 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1230 return (EOPNOTSUPP); 1231 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1232 fapi->pps_info_buf = pps->ppsinfo; 1233 return (0); 1234 case PPS_IOC_KCBIND: 1235 #ifdef PPS_SYNC 1236 kapi = (struct pps_kcbind_args *)data; 1237 /* XXX Only root should be able to do this */ 1238 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1239 return (EINVAL); 1240 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1241 return (EINVAL); 1242 if (kapi->edge & ~pps->ppscap) 1243 return (EINVAL); 1244 pps->kcmode = kapi->edge; 1245 return (0); 1246 #else 1247 return (EOPNOTSUPP); 1248 #endif 1249 default: 1250 return (ENOTTY); 1251 } 1252 } 1253 1254 void 1255 pps_init(struct pps_state *pps) 1256 { 1257 pps->ppscap |= PPS_TSFMT_TSPEC; 1258 if (pps->ppscap & PPS_CAPTUREASSERT) 1259 pps->ppscap |= PPS_OFFSETASSERT; 1260 if (pps->ppscap & PPS_CAPTURECLEAR) 1261 pps->ppscap |= PPS_OFFSETCLEAR; 1262 } 1263 1264 void 1265 pps_event(struct pps_state *pps, sysclock_t count, int event) 1266 { 1267 struct globaldata *gd; 1268 struct timespec *tsp; 1269 struct timespec *osp; 1270 struct timespec *bt; 1271 struct timespec ts; 1272 sysclock_t *pcount; 1273 #ifdef PPS_SYNC 1274 sysclock_t tcount; 1275 #endif 1276 sysclock_t delta; 1277 pps_seq_t *pseq; 1278 int foff; 1279 int fhard; 1280 1281 gd = mycpu; 1282 1283 /* Things would be easier with arrays... */ 1284 if (event == PPS_CAPTUREASSERT) { 1285 tsp = &pps->ppsinfo.assert_timestamp; 1286 osp = &pps->ppsparam.assert_offset; 1287 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1288 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1289 pcount = &pps->ppscount[0]; 1290 pseq = &pps->ppsinfo.assert_sequence; 1291 } else { 1292 tsp = &pps->ppsinfo.clear_timestamp; 1293 osp = &pps->ppsparam.clear_offset; 1294 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1295 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1296 pcount = &pps->ppscount[1]; 1297 pseq = &pps->ppsinfo.clear_sequence; 1298 } 1299 1300 /* Nothing really happened */ 1301 if (*pcount == count) 1302 return; 1303 1304 *pcount = count; 1305 1306 do { 1307 ts.tv_sec = gd->gd_time_seconds; 1308 delta = count - gd->gd_cpuclock_base; 1309 } while (ts.tv_sec != gd->gd_time_seconds); 1310 1311 if (delta >= sys_cputimer->freq) { 1312 ts.tv_sec += delta / sys_cputimer->freq; 1313 delta %= sys_cputimer->freq; 1314 } 1315 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1316 bt = &basetime[basetime_index]; 1317 ts.tv_sec += bt->tv_sec; 1318 ts.tv_nsec += bt->tv_nsec; 1319 while (ts.tv_nsec >= 1000000000) { 1320 ts.tv_nsec -= 1000000000; 1321 ++ts.tv_sec; 1322 } 1323 1324 (*pseq)++; 1325 *tsp = ts; 1326 1327 if (foff) { 1328 timespecadd(tsp, osp); 1329 if (tsp->tv_nsec < 0) { 1330 tsp->tv_nsec += 1000000000; 1331 tsp->tv_sec -= 1; 1332 } 1333 } 1334 #ifdef PPS_SYNC 1335 if (fhard) { 1336 /* magic, at its best... */ 1337 tcount = count - pps->ppscount[2]; 1338 pps->ppscount[2] = count; 1339 if (tcount >= sys_cputimer->freq) { 1340 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1341 sys_cputimer->freq64_nsec * 1342 (tcount % sys_cputimer->freq)) >> 32; 1343 } else { 1344 delta = (sys_cputimer->freq64_nsec * tcount) >> 32; 1345 } 1346 hardpps(tsp, delta); 1347 } 1348 #endif 1349 } 1350 1351 /* 1352 * Return the tsc target value for a delay of (ns). 1353 * 1354 * Returns -1 if the TSC is not supported. 1355 */ 1356 int64_t 1357 tsc_get_target(int ns) 1358 { 1359 #if defined(_RDTSC_SUPPORTED_) 1360 if (cpu_feature & CPUID_TSC) { 1361 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1362 } 1363 #endif 1364 return(-1); 1365 } 1366 1367 /* 1368 * Compare the tsc against the passed target 1369 * 1370 * Returns +1 if the target has been reached 1371 * Returns 0 if the target has not yet been reached 1372 * Returns -1 if the TSC is not supported. 1373 * 1374 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1375 */ 1376 int 1377 tsc_test_target(int64_t target) 1378 { 1379 #if defined(_RDTSC_SUPPORTED_) 1380 if (cpu_feature & CPUID_TSC) { 1381 if ((int64_t)(target - rdtsc()) <= 0) 1382 return(1); 1383 return(0); 1384 } 1385 #endif 1386 return(-1); 1387 } 1388