1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.62 2008/09/09 04:06:13 dillon Exp $ 74 */ 75 76 #include "opt_ntp.h" 77 #include "opt_polling.h" 78 #include "opt_ifpoll.h" 79 #include "opt_pctrack.h" 80 81 #include <sys/param.h> 82 #include <sys/systm.h> 83 #include <sys/callout.h> 84 #include <sys/kernel.h> 85 #include <sys/kinfo.h> 86 #include <sys/proc.h> 87 #include <sys/malloc.h> 88 #include <sys/resourcevar.h> 89 #include <sys/signalvar.h> 90 #include <sys/timex.h> 91 #include <sys/timepps.h> 92 #include <vm/vm.h> 93 #include <sys/lock.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_extern.h> 97 #include <sys/sysctl.h> 98 99 #include <sys/thread2.h> 100 101 #include <machine/cpu.h> 102 #include <machine/limits.h> 103 #include <machine/smp.h> 104 #include <machine/cpufunc.h> 105 #include <machine/specialreg.h> 106 #include <machine/clock.h> 107 108 #ifdef GPROF 109 #include <sys/gmon.h> 110 #endif 111 112 #ifdef DEVICE_POLLING 113 extern void init_device_poll_pcpu(int); 114 #endif 115 116 #ifdef IFPOLL_ENABLE 117 extern void ifpoll_init_pcpu(int); 118 #endif 119 120 #ifdef DEBUG_PCTRACK 121 static void do_pctrack(struct intrframe *frame, int which); 122 #endif 123 124 static void initclocks (void *dummy); 125 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 126 127 /* 128 * Some of these don't belong here, but it's easiest to concentrate them. 129 * Note that cpu_time counts in microseconds, but most userland programs 130 * just compare relative times against the total by delta. 131 */ 132 struct kinfo_cputime cputime_percpu[MAXCPU]; 133 #ifdef DEBUG_PCTRACK 134 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 135 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 136 #endif 137 138 #ifdef SMP 139 static int 140 sysctl_cputime(SYSCTL_HANDLER_ARGS) 141 { 142 int cpu, error = 0; 143 size_t size = sizeof(struct kinfo_cputime); 144 145 for (cpu = 0; cpu < ncpus; ++cpu) { 146 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size))) 147 break; 148 } 149 150 return (error); 151 } 152 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 153 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 154 #else 155 SYSCTL_STRUCT(_kern, OID_AUTO, cputime, CTLFLAG_RD, &cpu_time, kinfo_cputime, 156 "CPU time statistics"); 157 #endif 158 159 /* 160 * boottime is used to calculate the 'real' uptime. Do not confuse this with 161 * microuptime(). microtime() is not drift compensated. The real uptime 162 * with compensation is nanotime() - bootime. boottime is recalculated 163 * whenever the real time is set based on the compensated elapsed time 164 * in seconds (gd->gd_time_seconds). 165 * 166 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 167 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 168 * the real time. 169 */ 170 struct timespec boottime; /* boot time (realtime) for reference only */ 171 time_t time_second; /* read-only 'passive' uptime in seconds */ 172 173 /* 174 * basetime is used to calculate the compensated real time of day. The 175 * basetime can be modified on a per-tick basis by the adjtime(), 176 * ntp_adjtime(), and sysctl-based time correction APIs. 177 * 178 * Note that frequency corrections can also be made by adjusting 179 * gd_cpuclock_base. 180 * 181 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 182 * used on both SMP and UP systems to avoid MP races between cpu's and 183 * interrupt races on UP systems. 184 */ 185 #define BASETIME_ARYSIZE 16 186 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 187 static struct timespec basetime[BASETIME_ARYSIZE]; 188 static volatile int basetime_index; 189 190 static int 191 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 192 { 193 struct timespec *bt; 194 int error; 195 int index; 196 197 /* 198 * Because basetime data and index may be updated by another cpu, 199 * a load fence is required to ensure that the data we read has 200 * not been speculatively read relative to a possibly updated index. 201 */ 202 index = basetime_index; 203 cpu_lfence(); 204 bt = &basetime[index]; 205 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 206 return (error); 207 } 208 209 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 210 &boottime, timespec, "System boottime"); 211 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 212 sysctl_get_basetime, "S,timespec", "System basetime"); 213 214 static void hardclock(systimer_t info, struct intrframe *frame); 215 static void statclock(systimer_t info, struct intrframe *frame); 216 static void schedclock(systimer_t info, struct intrframe *frame); 217 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 218 219 int ticks; /* system master ticks at hz */ 220 int clocks_running; /* tsleep/timeout clocks operational */ 221 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 222 int64_t nsec_acc; /* accumulator */ 223 224 /* NTPD time correction fields */ 225 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 226 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 227 int64_t ntp_delta; /* one-time correction in nsec */ 228 int64_t ntp_big_delta = 1000000000; 229 int32_t ntp_tick_delta; /* current adjustment rate */ 230 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 231 time_t ntp_leap_second; /* time of next leap second */ 232 int ntp_leap_insert; /* whether to insert or remove a second */ 233 234 /* 235 * Finish initializing clock frequencies and start all clocks running. 236 */ 237 /* ARGSUSED*/ 238 static void 239 initclocks(void *dummy) 240 { 241 /*psratio = profhz / stathz;*/ 242 initclocks_pcpu(); 243 clocks_running = 1; 244 } 245 246 /* 247 * Called on a per-cpu basis 248 */ 249 void 250 initclocks_pcpu(void) 251 { 252 struct globaldata *gd = mycpu; 253 254 crit_enter(); 255 if (gd->gd_cpuid == 0) { 256 gd->gd_time_seconds = 1; 257 gd->gd_cpuclock_base = sys_cputimer->count(); 258 } else { 259 /* XXX */ 260 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 261 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 262 } 263 264 systimer_intr_enable(); 265 266 #ifdef DEVICE_POLLING 267 init_device_poll_pcpu(gd->gd_cpuid); 268 #endif 269 270 #ifdef IFPOLL_ENABLE 271 ifpoll_init_pcpu(gd->gd_cpuid); 272 #endif 273 274 /* 275 * Use a non-queued periodic systimer to prevent multiple ticks from 276 * building up if the sysclock jumps forward (8254 gets reset). The 277 * sysclock will never jump backwards. Our time sync is based on 278 * the actual sysclock, not the ticks count. 279 */ 280 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz); 281 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz); 282 /* XXX correct the frequency for scheduler / estcpu tests */ 283 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock, 284 NULL, ESTCPUFREQ); 285 crit_exit(); 286 } 287 288 /* 289 * This sets the current real time of day. Timespecs are in seconds and 290 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 291 * instead we adjust basetime so basetime + gd_* results in the current 292 * time of day. This way the gd_* fields are guarenteed to represent 293 * a monotonically increasing 'uptime' value. 294 * 295 * When set_timeofday() is called from userland, the system call forces it 296 * onto cpu #0 since only cpu #0 can update basetime_index. 297 */ 298 void 299 set_timeofday(struct timespec *ts) 300 { 301 struct timespec *nbt; 302 int ni; 303 304 /* 305 * XXX SMP / non-atomic basetime updates 306 */ 307 crit_enter(); 308 ni = (basetime_index + 1) & BASETIME_ARYMASK; 309 nbt = &basetime[ni]; 310 nanouptime(nbt); 311 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 312 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 313 if (nbt->tv_nsec < 0) { 314 nbt->tv_nsec += 1000000000; 315 --nbt->tv_sec; 316 } 317 318 /* 319 * Note that basetime diverges from boottime as the clock drift is 320 * compensated for, so we cannot do away with boottime. When setting 321 * the absolute time of day the drift is 0 (for an instant) and we 322 * can simply assign boottime to basetime. 323 * 324 * Note that nanouptime() is based on gd_time_seconds which is drift 325 * compensated up to a point (it is guarenteed to remain monotonically 326 * increasing). gd_time_seconds is thus our best uptime guess and 327 * suitable for use in the boottime calculation. It is already taken 328 * into account in the basetime calculation above. 329 */ 330 boottime.tv_sec = nbt->tv_sec; 331 ntp_delta = 0; 332 333 /* 334 * We now have a new basetime, make sure all other cpus have it, 335 * then update the index. 336 */ 337 cpu_sfence(); 338 basetime_index = ni; 339 340 crit_exit(); 341 } 342 343 /* 344 * Each cpu has its own hardclock, but we only increments ticks and softticks 345 * on cpu #0. 346 * 347 * NOTE! systimer! the MP lock might not be held here. We can only safely 348 * manipulate objects owned by the current cpu. 349 */ 350 static void 351 hardclock(systimer_t info, struct intrframe *frame) 352 { 353 sysclock_t cputicks; 354 struct proc *p; 355 struct globaldata *gd = mycpu; 356 357 /* 358 * Realtime updates are per-cpu. Note that timer corrections as 359 * returned by microtime() and friends make an additional adjustment 360 * using a system-wise 'basetime', but the running time is always 361 * taken from the per-cpu globaldata area. Since the same clock 362 * is distributing (XXX SMP) to all cpus, the per-cpu timebases 363 * stay in synch. 364 * 365 * Note that we never allow info->time (aka gd->gd_hardclock.time) 366 * to reverse index gd_cpuclock_base, but that it is possible for 367 * it to temporarily get behind in the seconds if something in the 368 * system locks interrupts for a long period of time. Since periodic 369 * timers count events, though everything should resynch again 370 * immediately. 371 */ 372 cputicks = info->time - gd->gd_cpuclock_base; 373 if (cputicks >= sys_cputimer->freq) { 374 ++gd->gd_time_seconds; 375 gd->gd_cpuclock_base += sys_cputimer->freq; 376 } 377 378 /* 379 * The system-wide ticks counter and NTP related timedelta/tickdelta 380 * adjustments only occur on cpu #0. NTP adjustments are accomplished 381 * by updating basetime. 382 */ 383 if (gd->gd_cpuid == 0) { 384 struct timespec *nbt; 385 struct timespec nts; 386 int leap; 387 int ni; 388 389 ++ticks; 390 391 #if 0 392 if (tco->tc_poll_pps) 393 tco->tc_poll_pps(tco); 394 #endif 395 396 /* 397 * Calculate the new basetime index. We are in a critical section 398 * on cpu #0 and can safely play with basetime_index. Start 399 * with the current basetime and then make adjustments. 400 */ 401 ni = (basetime_index + 1) & BASETIME_ARYMASK; 402 nbt = &basetime[ni]; 403 *nbt = basetime[basetime_index]; 404 405 /* 406 * Apply adjtime corrections. (adjtime() API) 407 * 408 * adjtime() only runs on cpu #0 so our critical section is 409 * sufficient to access these variables. 410 */ 411 if (ntp_delta != 0) { 412 nbt->tv_nsec += ntp_tick_delta; 413 ntp_delta -= ntp_tick_delta; 414 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 415 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 416 ntp_tick_delta = ntp_delta; 417 } 418 } 419 420 /* 421 * Apply permanent frequency corrections. (sysctl API) 422 */ 423 if (ntp_tick_permanent != 0) { 424 ntp_tick_acc += ntp_tick_permanent; 425 if (ntp_tick_acc >= (1LL << 32)) { 426 nbt->tv_nsec += ntp_tick_acc >> 32; 427 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 428 } else if (ntp_tick_acc <= -(1LL << 32)) { 429 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 430 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 431 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 432 } 433 } 434 435 if (nbt->tv_nsec >= 1000000000) { 436 nbt->tv_sec++; 437 nbt->tv_nsec -= 1000000000; 438 } else if (nbt->tv_nsec < 0) { 439 nbt->tv_sec--; 440 nbt->tv_nsec += 1000000000; 441 } 442 443 /* 444 * Another per-tick compensation. (for ntp_adjtime() API) 445 */ 446 if (nsec_adj != 0) { 447 nsec_acc += nsec_adj; 448 if (nsec_acc >= 0x100000000LL) { 449 nbt->tv_nsec += nsec_acc >> 32; 450 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 451 } else if (nsec_acc <= -0x100000000LL) { 452 nbt->tv_nsec -= -nsec_acc >> 32; 453 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 454 } 455 if (nbt->tv_nsec >= 1000000000) { 456 nbt->tv_nsec -= 1000000000; 457 ++nbt->tv_sec; 458 } else if (nbt->tv_nsec < 0) { 459 nbt->tv_nsec += 1000000000; 460 --nbt->tv_sec; 461 } 462 } 463 464 /************************************************************ 465 * LEAP SECOND CORRECTION * 466 ************************************************************ 467 * 468 * Taking into account all the corrections made above, figure 469 * out the new real time. If the seconds field has changed 470 * then apply any pending leap-second corrections. 471 */ 472 getnanotime_nbt(nbt, &nts); 473 474 if (time_second != nts.tv_sec) { 475 /* 476 * Apply leap second (sysctl API). Adjust nts for changes 477 * so we do not have to call getnanotime_nbt again. 478 */ 479 if (ntp_leap_second) { 480 if (ntp_leap_second == nts.tv_sec) { 481 if (ntp_leap_insert) { 482 nbt->tv_sec++; 483 nts.tv_sec++; 484 } else { 485 nbt->tv_sec--; 486 nts.tv_sec--; 487 } 488 ntp_leap_second--; 489 } 490 } 491 492 /* 493 * Apply leap second (ntp_adjtime() API), calculate a new 494 * nsec_adj field. ntp_update_second() returns nsec_adj 495 * as a per-second value but we need it as a per-tick value. 496 */ 497 leap = ntp_update_second(time_second, &nsec_adj); 498 nsec_adj /= hz; 499 nbt->tv_sec += leap; 500 nts.tv_sec += leap; 501 502 /* 503 * Update the time_second 'approximate time' global. 504 */ 505 time_second = nts.tv_sec; 506 } 507 508 /* 509 * Finally, our new basetime is ready to go live! 510 */ 511 cpu_sfence(); 512 basetime_index = ni; 513 514 /* 515 * Figure out how badly the system is starved for memory 516 */ 517 vm_fault_ratecheck(); 518 } 519 520 /* 521 * lwkt thread scheduler fair queueing 522 */ 523 lwkt_fairq_schedulerclock(curthread); 524 525 /* 526 * softticks are handled for all cpus 527 */ 528 hardclock_softtick(gd); 529 530 /* 531 * The LWKT scheduler will generally allow the current process to 532 * return to user mode even if there are other runnable LWKT threads 533 * running in kernel mode on behalf of a user process. This will 534 * ensure that those other threads have an opportunity to run in 535 * fairly short order (but not instantly). 536 */ 537 need_lwkt_resched(); 538 539 /* 540 * ITimer handling is per-tick, per-cpu. 541 * 542 * We must acquire the per-process token in order for ksignal() 543 * to be non-blocking. 544 */ 545 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) { 546 crit_enter_hard(); 547 if (frame && CLKF_USERMODE(frame) && 548 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 549 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) 550 ksignal(p, SIGVTALRM); 551 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 552 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) 553 ksignal(p, SIGPROF); 554 crit_exit_hard(); 555 lwkt_reltoken(&p->p_token); 556 } 557 setdelayed(); 558 } 559 560 /* 561 * The statistics clock typically runs at a 125Hz rate, and is intended 562 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 563 * 564 * NOTE! systimer! the MP lock might not be held here. We can only safely 565 * manipulate objects owned by the current cpu. 566 * 567 * The stats clock is responsible for grabbing a profiling sample. 568 * Most of the statistics are only used by user-level statistics programs. 569 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 570 * p->p_estcpu. 571 * 572 * Like the other clocks, the stat clock is called from what is effectively 573 * a fast interrupt, so the context should be the thread/process that got 574 * interrupted. 575 */ 576 static void 577 statclock(systimer_t info, struct intrframe *frame) 578 { 579 #ifdef GPROF 580 struct gmonparam *g; 581 int i; 582 #endif 583 thread_t td; 584 struct proc *p; 585 int bump; 586 struct timeval tv; 587 struct timeval *stv; 588 589 /* 590 * How big was our timeslice relative to the last time? 591 */ 592 microuptime(&tv); /* mpsafe */ 593 stv = &mycpu->gd_stattv; 594 if (stv->tv_sec == 0) { 595 bump = 1; 596 } else { 597 bump = tv.tv_usec - stv->tv_usec + 598 (tv.tv_sec - stv->tv_sec) * 1000000; 599 if (bump < 0) 600 bump = 0; 601 if (bump > 1000000) 602 bump = 1000000; 603 } 604 *stv = tv; 605 606 td = curthread; 607 p = td->td_proc; 608 609 if (frame && CLKF_USERMODE(frame)) { 610 /* 611 * Came from userland, handle user time and deal with 612 * possible process. 613 */ 614 if (p && (p->p_flag & P_PROFIL)) 615 addupc_intr(p, CLKF_PC(frame), 1); 616 td->td_uticks += bump; 617 618 /* 619 * Charge the time as appropriate 620 */ 621 if (p && p->p_nice > NZERO) 622 cpu_time.cp_nice += bump; 623 else 624 cpu_time.cp_user += bump; 625 } else { 626 #ifdef GPROF 627 /* 628 * Kernel statistics are just like addupc_intr, only easier. 629 */ 630 g = &_gmonparam; 631 if (g->state == GMON_PROF_ON && frame) { 632 i = CLKF_PC(frame) - g->lowpc; 633 if (i < g->textsize) { 634 i /= HISTFRACTION * sizeof(*g->kcount); 635 g->kcount[i]++; 636 } 637 } 638 #endif 639 /* 640 * Came from kernel mode, so we were: 641 * - handling an interrupt, 642 * - doing syscall or trap work on behalf of the current 643 * user process, or 644 * - spinning in the idle loop. 645 * Whichever it is, charge the time as appropriate. 646 * Note that we charge interrupts to the current process, 647 * regardless of whether they are ``for'' that process, 648 * so that we know how much of its real time was spent 649 * in ``non-process'' (i.e., interrupt) work. 650 * 651 * XXX assume system if frame is NULL. A NULL frame 652 * can occur if ipi processing is done from a crit_exit(). 653 */ 654 if (frame && CLKF_INTR(frame)) 655 td->td_iticks += bump; 656 else 657 td->td_sticks += bump; 658 659 if (frame && CLKF_INTR(frame)) { 660 #ifdef DEBUG_PCTRACK 661 do_pctrack(frame, PCTRACK_INT); 662 #endif 663 cpu_time.cp_intr += bump; 664 } else { 665 if (td == &mycpu->gd_idlethread) { 666 cpu_time.cp_idle += bump; 667 } else { 668 #ifdef DEBUG_PCTRACK 669 if (frame) 670 do_pctrack(frame, PCTRACK_SYS); 671 #endif 672 cpu_time.cp_sys += bump; 673 } 674 } 675 } 676 } 677 678 #ifdef DEBUG_PCTRACK 679 /* 680 * Sample the PC when in the kernel or in an interrupt. User code can 681 * retrieve the information and generate a histogram or other output. 682 */ 683 684 static void 685 do_pctrack(struct intrframe *frame, int which) 686 { 687 struct kinfo_pctrack *pctrack; 688 689 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 690 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 691 (void *)CLKF_PC(frame); 692 ++pctrack->pc_index; 693 } 694 695 static int 696 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 697 { 698 struct kinfo_pcheader head; 699 int error; 700 int cpu; 701 int ntrack; 702 703 head.pc_ntrack = PCTRACK_SIZE; 704 head.pc_arysize = PCTRACK_ARYSIZE; 705 706 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 707 return (error); 708 709 for (cpu = 0; cpu < ncpus; ++cpu) { 710 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 711 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 712 sizeof(struct kinfo_pctrack)); 713 if (error) 714 break; 715 } 716 if (error) 717 break; 718 } 719 return (error); 720 } 721 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 722 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 723 724 #endif 725 726 /* 727 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 728 * the MP lock might not be held. We can safely manipulate parts of curproc 729 * but that's about it. 730 * 731 * Each cpu has its own scheduler clock. 732 */ 733 static void 734 schedclock(systimer_t info, struct intrframe *frame) 735 { 736 struct lwp *lp; 737 struct rusage *ru; 738 struct vmspace *vm; 739 long rss; 740 741 if ((lp = lwkt_preempted_proc()) != NULL) { 742 /* 743 * Account for cpu time used and hit the scheduler. Note 744 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 745 * HERE. 746 */ 747 ++lp->lwp_cpticks; 748 lp->lwp_proc->p_usched->schedulerclock(lp, info->periodic, 749 info->time); 750 } 751 if ((lp = curthread->td_lwp) != NULL) { 752 /* 753 * Update resource usage integrals and maximums. 754 */ 755 if ((ru = &lp->lwp_proc->p_ru) && 756 (vm = lp->lwp_proc->p_vmspace) != NULL) { 757 ru->ru_ixrss += pgtok(vm->vm_tsize); 758 ru->ru_idrss += pgtok(vm->vm_dsize); 759 ru->ru_isrss += pgtok(vm->vm_ssize); 760 rss = pgtok(vmspace_resident_count(vm)); 761 if (ru->ru_maxrss < rss) 762 ru->ru_maxrss = rss; 763 } 764 } 765 } 766 767 /* 768 * Compute number of ticks for the specified amount of time. The 769 * return value is intended to be used in a clock interrupt timed 770 * operation and guarenteed to meet or exceed the requested time. 771 * If the representation overflows, return INT_MAX. The minimum return 772 * value is 1 ticks and the function will average the calculation up. 773 * If any value greater then 0 microseconds is supplied, a value 774 * of at least 2 will be returned to ensure that a near-term clock 775 * interrupt does not cause the timeout to occur (degenerately) early. 776 * 777 * Note that limit checks must take into account microseconds, which is 778 * done simply by using the smaller signed long maximum instead of 779 * the unsigned long maximum. 780 * 781 * If ints have 32 bits, then the maximum value for any timeout in 782 * 10ms ticks is 248 days. 783 */ 784 int 785 tvtohz_high(struct timeval *tv) 786 { 787 int ticks; 788 long sec, usec; 789 790 sec = tv->tv_sec; 791 usec = tv->tv_usec; 792 if (usec < 0) { 793 sec--; 794 usec += 1000000; 795 } 796 if (sec < 0) { 797 #ifdef DIAGNOSTIC 798 if (usec > 0) { 799 sec++; 800 usec -= 1000000; 801 } 802 kprintf("tvtohz_high: negative time difference " 803 "%ld sec %ld usec\n", 804 sec, usec); 805 #endif 806 ticks = 1; 807 } else if (sec <= INT_MAX / hz) { 808 ticks = (int)(sec * hz + 809 ((u_long)usec + (ustick - 1)) / ustick) + 1; 810 } else { 811 ticks = INT_MAX; 812 } 813 return (ticks); 814 } 815 816 int 817 tstohz_high(struct timespec *ts) 818 { 819 int ticks; 820 long sec, nsec; 821 822 sec = ts->tv_sec; 823 nsec = ts->tv_nsec; 824 if (nsec < 0) { 825 sec--; 826 nsec += 1000000000; 827 } 828 if (sec < 0) { 829 #ifdef DIAGNOSTIC 830 if (nsec > 0) { 831 sec++; 832 nsec -= 1000000000; 833 } 834 kprintf("tstohz_high: negative time difference " 835 "%ld sec %ld nsec\n", 836 sec, nsec); 837 #endif 838 ticks = 1; 839 } else if (sec <= INT_MAX / hz) { 840 ticks = (int)(sec * hz + 841 ((u_long)nsec + (nstick - 1)) / nstick) + 1; 842 } else { 843 ticks = INT_MAX; 844 } 845 return (ticks); 846 } 847 848 849 /* 850 * Compute number of ticks for the specified amount of time, erroring on 851 * the side of it being too low to ensure that sleeping the returned number 852 * of ticks will not result in a late return. 853 * 854 * The supplied timeval may not be negative and should be normalized. A 855 * return value of 0 is possible if the timeval converts to less then 856 * 1 tick. 857 * 858 * If ints have 32 bits, then the maximum value for any timeout in 859 * 10ms ticks is 248 days. 860 */ 861 int 862 tvtohz_low(struct timeval *tv) 863 { 864 int ticks; 865 long sec; 866 867 sec = tv->tv_sec; 868 if (sec <= INT_MAX / hz) 869 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 870 else 871 ticks = INT_MAX; 872 return (ticks); 873 } 874 875 int 876 tstohz_low(struct timespec *ts) 877 { 878 int ticks; 879 long sec; 880 881 sec = ts->tv_sec; 882 if (sec <= INT_MAX / hz) 883 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 884 else 885 ticks = INT_MAX; 886 return (ticks); 887 } 888 889 /* 890 * Start profiling on a process. 891 * 892 * Kernel profiling passes proc0 which never exits and hence 893 * keeps the profile clock running constantly. 894 */ 895 void 896 startprofclock(struct proc *p) 897 { 898 if ((p->p_flag & P_PROFIL) == 0) { 899 p->p_flag |= P_PROFIL; 900 #if 0 /* XXX */ 901 if (++profprocs == 1 && stathz != 0) { 902 crit_enter(); 903 psdiv = psratio; 904 setstatclockrate(profhz); 905 crit_exit(); 906 } 907 #endif 908 } 909 } 910 911 /* 912 * Stop profiling on a process. 913 */ 914 void 915 stopprofclock(struct proc *p) 916 { 917 if (p->p_flag & P_PROFIL) { 918 p->p_flag &= ~P_PROFIL; 919 #if 0 /* XXX */ 920 if (--profprocs == 0 && stathz != 0) { 921 crit_enter(); 922 psdiv = 1; 923 setstatclockrate(stathz); 924 crit_exit(); 925 } 926 #endif 927 } 928 } 929 930 /* 931 * Return information about system clocks. 932 */ 933 static int 934 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 935 { 936 struct kinfo_clockinfo clkinfo; 937 /* 938 * Construct clockinfo structure. 939 */ 940 clkinfo.ci_hz = hz; 941 clkinfo.ci_tick = ustick; 942 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 943 clkinfo.ci_profhz = profhz; 944 clkinfo.ci_stathz = stathz ? stathz : hz; 945 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 946 } 947 948 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 949 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 950 951 /* 952 * We have eight functions for looking at the clock, four for 953 * microseconds and four for nanoseconds. For each there is fast 954 * but less precise version "get{nano|micro}[up]time" which will 955 * return a time which is up to 1/HZ previous to the call, whereas 956 * the raw version "{nano|micro}[up]time" will return a timestamp 957 * which is as precise as possible. The "up" variants return the 958 * time relative to system boot, these are well suited for time 959 * interval measurements. 960 * 961 * Each cpu independantly maintains the current time of day, so all 962 * we need to do to protect ourselves from changes is to do a loop 963 * check on the seconds field changing out from under us. 964 * 965 * The system timer maintains a 32 bit count and due to various issues 966 * it is possible for the calculated delta to occassionally exceed 967 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 968 * multiplication can easily overflow, so we deal with the case. For 969 * uniformity we deal with the case in the usec case too. 970 * 971 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 972 */ 973 void 974 getmicrouptime(struct timeval *tvp) 975 { 976 struct globaldata *gd = mycpu; 977 sysclock_t delta; 978 979 do { 980 tvp->tv_sec = gd->gd_time_seconds; 981 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 982 } while (tvp->tv_sec != gd->gd_time_seconds); 983 984 if (delta >= sys_cputimer->freq) { 985 tvp->tv_sec += delta / sys_cputimer->freq; 986 delta %= sys_cputimer->freq; 987 } 988 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 989 if (tvp->tv_usec >= 1000000) { 990 tvp->tv_usec -= 1000000; 991 ++tvp->tv_sec; 992 } 993 } 994 995 void 996 getnanouptime(struct timespec *tsp) 997 { 998 struct globaldata *gd = mycpu; 999 sysclock_t delta; 1000 1001 do { 1002 tsp->tv_sec = gd->gd_time_seconds; 1003 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1004 } while (tsp->tv_sec != gd->gd_time_seconds); 1005 1006 if (delta >= sys_cputimer->freq) { 1007 tsp->tv_sec += delta / sys_cputimer->freq; 1008 delta %= sys_cputimer->freq; 1009 } 1010 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1011 } 1012 1013 void 1014 microuptime(struct timeval *tvp) 1015 { 1016 struct globaldata *gd = mycpu; 1017 sysclock_t delta; 1018 1019 do { 1020 tvp->tv_sec = gd->gd_time_seconds; 1021 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1022 } while (tvp->tv_sec != gd->gd_time_seconds); 1023 1024 if (delta >= sys_cputimer->freq) { 1025 tvp->tv_sec += delta / sys_cputimer->freq; 1026 delta %= sys_cputimer->freq; 1027 } 1028 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1029 } 1030 1031 void 1032 nanouptime(struct timespec *tsp) 1033 { 1034 struct globaldata *gd = mycpu; 1035 sysclock_t delta; 1036 1037 do { 1038 tsp->tv_sec = gd->gd_time_seconds; 1039 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1040 } while (tsp->tv_sec != gd->gd_time_seconds); 1041 1042 if (delta >= sys_cputimer->freq) { 1043 tsp->tv_sec += delta / sys_cputimer->freq; 1044 delta %= sys_cputimer->freq; 1045 } 1046 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1047 } 1048 1049 /* 1050 * realtime routines 1051 */ 1052 void 1053 getmicrotime(struct timeval *tvp) 1054 { 1055 struct globaldata *gd = mycpu; 1056 struct timespec *bt; 1057 sysclock_t delta; 1058 1059 do { 1060 tvp->tv_sec = gd->gd_time_seconds; 1061 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1062 } while (tvp->tv_sec != gd->gd_time_seconds); 1063 1064 if (delta >= sys_cputimer->freq) { 1065 tvp->tv_sec += delta / sys_cputimer->freq; 1066 delta %= sys_cputimer->freq; 1067 } 1068 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1069 1070 bt = &basetime[basetime_index]; 1071 tvp->tv_sec += bt->tv_sec; 1072 tvp->tv_usec += bt->tv_nsec / 1000; 1073 while (tvp->tv_usec >= 1000000) { 1074 tvp->tv_usec -= 1000000; 1075 ++tvp->tv_sec; 1076 } 1077 } 1078 1079 void 1080 getnanotime(struct timespec *tsp) 1081 { 1082 struct globaldata *gd = mycpu; 1083 struct timespec *bt; 1084 sysclock_t delta; 1085 1086 do { 1087 tsp->tv_sec = gd->gd_time_seconds; 1088 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1089 } while (tsp->tv_sec != gd->gd_time_seconds); 1090 1091 if (delta >= sys_cputimer->freq) { 1092 tsp->tv_sec += delta / sys_cputimer->freq; 1093 delta %= sys_cputimer->freq; 1094 } 1095 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1096 1097 bt = &basetime[basetime_index]; 1098 tsp->tv_sec += bt->tv_sec; 1099 tsp->tv_nsec += bt->tv_nsec; 1100 while (tsp->tv_nsec >= 1000000000) { 1101 tsp->tv_nsec -= 1000000000; 1102 ++tsp->tv_sec; 1103 } 1104 } 1105 1106 static void 1107 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1108 { 1109 struct globaldata *gd = mycpu; 1110 sysclock_t delta; 1111 1112 do { 1113 tsp->tv_sec = gd->gd_time_seconds; 1114 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1115 } while (tsp->tv_sec != gd->gd_time_seconds); 1116 1117 if (delta >= sys_cputimer->freq) { 1118 tsp->tv_sec += delta / sys_cputimer->freq; 1119 delta %= sys_cputimer->freq; 1120 } 1121 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1122 1123 tsp->tv_sec += nbt->tv_sec; 1124 tsp->tv_nsec += nbt->tv_nsec; 1125 while (tsp->tv_nsec >= 1000000000) { 1126 tsp->tv_nsec -= 1000000000; 1127 ++tsp->tv_sec; 1128 } 1129 } 1130 1131 1132 void 1133 microtime(struct timeval *tvp) 1134 { 1135 struct globaldata *gd = mycpu; 1136 struct timespec *bt; 1137 sysclock_t delta; 1138 1139 do { 1140 tvp->tv_sec = gd->gd_time_seconds; 1141 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1142 } while (tvp->tv_sec != gd->gd_time_seconds); 1143 1144 if (delta >= sys_cputimer->freq) { 1145 tvp->tv_sec += delta / sys_cputimer->freq; 1146 delta %= sys_cputimer->freq; 1147 } 1148 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1149 1150 bt = &basetime[basetime_index]; 1151 tvp->tv_sec += bt->tv_sec; 1152 tvp->tv_usec += bt->tv_nsec / 1000; 1153 while (tvp->tv_usec >= 1000000) { 1154 tvp->tv_usec -= 1000000; 1155 ++tvp->tv_sec; 1156 } 1157 } 1158 1159 void 1160 nanotime(struct timespec *tsp) 1161 { 1162 struct globaldata *gd = mycpu; 1163 struct timespec *bt; 1164 sysclock_t delta; 1165 1166 do { 1167 tsp->tv_sec = gd->gd_time_seconds; 1168 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1169 } while (tsp->tv_sec != gd->gd_time_seconds); 1170 1171 if (delta >= sys_cputimer->freq) { 1172 tsp->tv_sec += delta / sys_cputimer->freq; 1173 delta %= sys_cputimer->freq; 1174 } 1175 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1176 1177 bt = &basetime[basetime_index]; 1178 tsp->tv_sec += bt->tv_sec; 1179 tsp->tv_nsec += bt->tv_nsec; 1180 while (tsp->tv_nsec >= 1000000000) { 1181 tsp->tv_nsec -= 1000000000; 1182 ++tsp->tv_sec; 1183 } 1184 } 1185 1186 /* 1187 * note: this is not exactly synchronized with real time. To do that we 1188 * would have to do what microtime does and check for a nanoseconds overflow. 1189 */ 1190 time_t 1191 get_approximate_time_t(void) 1192 { 1193 struct globaldata *gd = mycpu; 1194 struct timespec *bt; 1195 1196 bt = &basetime[basetime_index]; 1197 return(gd->gd_time_seconds + bt->tv_sec); 1198 } 1199 1200 int 1201 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1202 { 1203 pps_params_t *app; 1204 struct pps_fetch_args *fapi; 1205 #ifdef PPS_SYNC 1206 struct pps_kcbind_args *kapi; 1207 #endif 1208 1209 switch (cmd) { 1210 case PPS_IOC_CREATE: 1211 return (0); 1212 case PPS_IOC_DESTROY: 1213 return (0); 1214 case PPS_IOC_SETPARAMS: 1215 app = (pps_params_t *)data; 1216 if (app->mode & ~pps->ppscap) 1217 return (EINVAL); 1218 pps->ppsparam = *app; 1219 return (0); 1220 case PPS_IOC_GETPARAMS: 1221 app = (pps_params_t *)data; 1222 *app = pps->ppsparam; 1223 app->api_version = PPS_API_VERS_1; 1224 return (0); 1225 case PPS_IOC_GETCAP: 1226 *(int*)data = pps->ppscap; 1227 return (0); 1228 case PPS_IOC_FETCH: 1229 fapi = (struct pps_fetch_args *)data; 1230 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1231 return (EINVAL); 1232 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1233 return (EOPNOTSUPP); 1234 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1235 fapi->pps_info_buf = pps->ppsinfo; 1236 return (0); 1237 case PPS_IOC_KCBIND: 1238 #ifdef PPS_SYNC 1239 kapi = (struct pps_kcbind_args *)data; 1240 /* XXX Only root should be able to do this */ 1241 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1242 return (EINVAL); 1243 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1244 return (EINVAL); 1245 if (kapi->edge & ~pps->ppscap) 1246 return (EINVAL); 1247 pps->kcmode = kapi->edge; 1248 return (0); 1249 #else 1250 return (EOPNOTSUPP); 1251 #endif 1252 default: 1253 return (ENOTTY); 1254 } 1255 } 1256 1257 void 1258 pps_init(struct pps_state *pps) 1259 { 1260 pps->ppscap |= PPS_TSFMT_TSPEC; 1261 if (pps->ppscap & PPS_CAPTUREASSERT) 1262 pps->ppscap |= PPS_OFFSETASSERT; 1263 if (pps->ppscap & PPS_CAPTURECLEAR) 1264 pps->ppscap |= PPS_OFFSETCLEAR; 1265 } 1266 1267 void 1268 pps_event(struct pps_state *pps, sysclock_t count, int event) 1269 { 1270 struct globaldata *gd; 1271 struct timespec *tsp; 1272 struct timespec *osp; 1273 struct timespec *bt; 1274 struct timespec ts; 1275 sysclock_t *pcount; 1276 #ifdef PPS_SYNC 1277 sysclock_t tcount; 1278 #endif 1279 sysclock_t delta; 1280 pps_seq_t *pseq; 1281 int foff; 1282 int fhard; 1283 1284 gd = mycpu; 1285 1286 /* Things would be easier with arrays... */ 1287 if (event == PPS_CAPTUREASSERT) { 1288 tsp = &pps->ppsinfo.assert_timestamp; 1289 osp = &pps->ppsparam.assert_offset; 1290 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1291 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1292 pcount = &pps->ppscount[0]; 1293 pseq = &pps->ppsinfo.assert_sequence; 1294 } else { 1295 tsp = &pps->ppsinfo.clear_timestamp; 1296 osp = &pps->ppsparam.clear_offset; 1297 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1298 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1299 pcount = &pps->ppscount[1]; 1300 pseq = &pps->ppsinfo.clear_sequence; 1301 } 1302 1303 /* Nothing really happened */ 1304 if (*pcount == count) 1305 return; 1306 1307 *pcount = count; 1308 1309 do { 1310 ts.tv_sec = gd->gd_time_seconds; 1311 delta = count - gd->gd_cpuclock_base; 1312 } while (ts.tv_sec != gd->gd_time_seconds); 1313 1314 if (delta >= sys_cputimer->freq) { 1315 ts.tv_sec += delta / sys_cputimer->freq; 1316 delta %= sys_cputimer->freq; 1317 } 1318 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1319 bt = &basetime[basetime_index]; 1320 ts.tv_sec += bt->tv_sec; 1321 ts.tv_nsec += bt->tv_nsec; 1322 while (ts.tv_nsec >= 1000000000) { 1323 ts.tv_nsec -= 1000000000; 1324 ++ts.tv_sec; 1325 } 1326 1327 (*pseq)++; 1328 *tsp = ts; 1329 1330 if (foff) { 1331 timespecadd(tsp, osp); 1332 if (tsp->tv_nsec < 0) { 1333 tsp->tv_nsec += 1000000000; 1334 tsp->tv_sec -= 1; 1335 } 1336 } 1337 #ifdef PPS_SYNC 1338 if (fhard) { 1339 /* magic, at its best... */ 1340 tcount = count - pps->ppscount[2]; 1341 pps->ppscount[2] = count; 1342 if (tcount >= sys_cputimer->freq) { 1343 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1344 sys_cputimer->freq64_nsec * 1345 (tcount % sys_cputimer->freq)) >> 32; 1346 } else { 1347 delta = (sys_cputimer->freq64_nsec * tcount) >> 32; 1348 } 1349 hardpps(tsp, delta); 1350 } 1351 #endif 1352 } 1353 1354 /* 1355 * Return the tsc target value for a delay of (ns). 1356 * 1357 * Returns -1 if the TSC is not supported. 1358 */ 1359 int64_t 1360 tsc_get_target(int ns) 1361 { 1362 #if defined(_RDTSC_SUPPORTED_) 1363 if (cpu_feature & CPUID_TSC) { 1364 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1365 } 1366 #endif 1367 return(-1); 1368 } 1369 1370 /* 1371 * Compare the tsc against the passed target 1372 * 1373 * Returns +1 if the target has been reached 1374 * Returns 0 if the target has not yet been reached 1375 * Returns -1 if the TSC is not supported. 1376 * 1377 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1378 */ 1379 int 1380 tsc_test_target(int64_t target) 1381 { 1382 #if defined(_RDTSC_SUPPORTED_) 1383 if (cpu_feature & CPUID_TSC) { 1384 if ((int64_t)(target - rdtsc()) <= 0) 1385 return(1); 1386 return(0); 1387 } 1388 #endif 1389 return(-1); 1390 } 1391