1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.24 2004/09/17 00:18:09 dillon Exp $ 74 */ 75 76 #include "opt_ntp.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/dkstat.h> 81 #include <sys/callout.h> 82 #include <sys/kernel.h> 83 #include <sys/proc.h> 84 #include <sys/malloc.h> 85 #include <sys/resourcevar.h> 86 #include <sys/signalvar.h> 87 #include <sys/timex.h> 88 #include <sys/timepps.h> 89 #include <vm/vm.h> 90 #include <sys/lock.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <sys/sysctl.h> 94 #include <sys/thread2.h> 95 96 #include <machine/cpu.h> 97 #include <machine/limits.h> 98 #include <machine/smp.h> 99 100 #ifdef GPROF 101 #include <sys/gmon.h> 102 #endif 103 104 #ifdef DEVICE_POLLING 105 extern void init_device_poll(void); 106 extern void hardclock_device_poll(void); 107 #endif /* DEVICE_POLLING */ 108 109 static void initclocks (void *dummy); 110 SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL) 111 112 /* 113 * Some of these don't belong here, but it's easiest to concentrate them. 114 * Note that cp_time[] counts in microseconds, but most userland programs 115 * just compare relative times against the total by delta. 116 */ 117 long cp_time[CPUSTATES]; 118 119 SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time), 120 "LU", "CPU time statistics"); 121 122 long tk_cancc; 123 long tk_nin; 124 long tk_nout; 125 long tk_rawcc; 126 127 /* 128 * boottime is used to calculate the 'real' uptime. Do not confuse this with 129 * microuptime(). microtime() is not drift compensated. The real uptime 130 * with compensation is nanotime() - bootime. boottime is recalculated 131 * whenever the real time is set based on the compensated elapsed time 132 * in seconds (gd->gd_time_seconds). 133 * 134 * basetime is used to calculate the compensated real time of day. Chunky 135 * changes to the time, aka settimeofday(), are made by modifying basetime. 136 * 137 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 138 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 139 * the real time. 140 */ 141 struct timespec boottime; /* boot time (realtime) for reference only */ 142 struct timespec basetime; /* base time adjusts uptime -> realtime */ 143 time_t time_second; /* read-only 'passive' uptime in seconds */ 144 145 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 146 &boottime, timeval, "System boottime"); 147 SYSCTL_STRUCT(_kern, OID_AUTO, basetime, CTLFLAG_RD, 148 &basetime, timeval, "System basetime"); 149 150 static void hardclock(systimer_t info, struct intrframe *frame); 151 static void statclock(systimer_t info, struct intrframe *frame); 152 static void schedclock(systimer_t info, struct intrframe *frame); 153 154 int ticks; /* system master ticks at hz */ 155 int clocks_running; /* tsleep/timeout clocks operational */ 156 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 157 int64_t nsec_acc; /* accumulator */ 158 159 /* 160 * Finish initializing clock frequencies and start all clocks running. 161 */ 162 /* ARGSUSED*/ 163 static void 164 initclocks(void *dummy) 165 { 166 cpu_initclocks(); 167 #ifdef DEVICE_POLLING 168 init_device_poll(); 169 #endif 170 /*psratio = profhz / stathz;*/ 171 initclocks_pcpu(); 172 clocks_running = 1; 173 } 174 175 /* 176 * Called on a per-cpu basis 177 */ 178 void 179 initclocks_pcpu(void) 180 { 181 struct globaldata *gd = mycpu; 182 183 crit_enter(); 184 if (gd->gd_cpuid == 0) { 185 gd->gd_time_seconds = 1; 186 gd->gd_cpuclock_base = cputimer_count(); 187 } else { 188 /* XXX */ 189 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 190 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 191 } 192 systimer_init_periodic(&gd->gd_hardclock, hardclock, NULL, hz); 193 systimer_init_periodic(&gd->gd_statclock, statclock, NULL, stathz); 194 /* XXX correct the frequency for scheduler / estcpu tests */ 195 systimer_init_periodic(&gd->gd_schedclock, schedclock, 196 NULL, ESTCPUFREQ); 197 crit_exit(); 198 } 199 200 /* 201 * Resynchronize gd_cpuclock_base after the system has been woken up from 202 * a sleep. It is absolutely essential that all the cpus be properly 203 * synchronized. Resynching is required because nanouptime() and friends 204 * will overflow intermediate multiplications if more then 2 seconds 205 * worth of cputimer_cont() delta has built up. 206 */ 207 #ifdef SMP 208 209 static 210 void 211 restoreclocks_remote(lwkt_cpusync_t poll) 212 { 213 mycpu->gd_cpuclock_base = *(sysclock_t *)poll->cs_data; 214 mycpu->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 215 } 216 217 #endif 218 219 void 220 restoreclocks(void) 221 { 222 sysclock_t base = cputimer_count(); 223 #ifdef SMP 224 lwkt_cpusync_simple(-1, restoreclocks_remote, &base); 225 #else 226 mycpu->gd_cpuclock_base = base; 227 #endif 228 } 229 230 /* 231 * This sets the current real time of day. Timespecs are in seconds and 232 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 233 * instead we adjust basetime so basetime + gd_* results in the current 234 * time of day. This way the gd_* fields are guarenteed to represent 235 * a monotonically increasing 'uptime' value. 236 */ 237 void 238 set_timeofday(struct timespec *ts) 239 { 240 struct timespec ts2; 241 242 /* 243 * XXX SMP / non-atomic basetime updates 244 */ 245 crit_enter(); 246 nanouptime(&ts2); 247 basetime.tv_sec = ts->tv_sec - ts2.tv_sec; 248 basetime.tv_nsec = ts->tv_nsec - ts2.tv_nsec; 249 if (basetime.tv_nsec < 0) { 250 basetime.tv_nsec += 1000000000; 251 --basetime.tv_sec; 252 } 253 boottime.tv_sec = basetime.tv_sec - mycpu->gd_time_seconds; 254 timedelta = 0; 255 crit_exit(); 256 } 257 258 /* 259 * Each cpu has its own hardclock, but we only increments ticks and softticks 260 * on cpu #0. 261 * 262 * NOTE! systimer! the MP lock might not be held here. We can only safely 263 * manipulate objects owned by the current cpu. 264 */ 265 static void 266 hardclock(systimer_t info, struct intrframe *frame) 267 { 268 sysclock_t cputicks; 269 struct proc *p; 270 struct pstats *pstats; 271 struct globaldata *gd = mycpu; 272 273 /* 274 * Realtime updates are per-cpu. Note that timer corrections as 275 * returned by microtime() and friends make an additional adjustment 276 * using a system-wise 'basetime', but the running time is always 277 * taken from the per-cpu globaldata area. Since the same clock 278 * is distributing (XXX SMP) to all cpus, the per-cpu timebases 279 * stay in synch. 280 * 281 * Note that we never allow info->time (aka gd->gd_hardclock.time) 282 * to reverse index gd_cpuclock_base. 283 */ 284 cputicks = info->time - gd->gd_cpuclock_base; 285 if (cputicks > cputimer_freq) { 286 ++gd->gd_time_seconds; 287 gd->gd_cpuclock_base += cputimer_freq; 288 } 289 290 /* 291 * The system-wide ticks counter and NTP related timedelta/tickdelta 292 * adjustments only occur on cpu #0. NTP adjustments are accomplished 293 * by updating basetime. 294 */ 295 if (gd->gd_cpuid == 0) { 296 struct timespec nts; 297 int leap; 298 299 ++ticks; 300 301 #ifdef DEVICE_POLLING 302 hardclock_device_poll(); /* mpsafe, short and quick */ 303 #endif /* DEVICE_POLLING */ 304 305 #if 0 306 if (tco->tc_poll_pps) 307 tco->tc_poll_pps(tco); 308 #endif 309 /* 310 * Apply adjtime corrections. At the moment only do this if 311 * we can get the MP lock to interlock with adjtime's modification 312 * of these variables. Note that basetime adjustments are not 313 * MP safe either XXX. 314 */ 315 if (timedelta != 0 && try_mplock()) { 316 basetime.tv_nsec += tickdelta * 1000; 317 if (basetime.tv_nsec >= 1000000000) { 318 basetime.tv_nsec -= 1000000000; 319 ++basetime.tv_sec; 320 } else if (basetime.tv_nsec < 0) { 321 basetime.tv_nsec += 1000000000; 322 --basetime.tv_sec; 323 } 324 timedelta -= tickdelta; 325 rel_mplock(); 326 } 327 328 /* 329 * Apply per-tick compensation. ticks_adj adjusts for both 330 * offset and frequency, and could be negative. 331 */ 332 if (nsec_adj != 0 && try_mplock()) { 333 nsec_acc += nsec_adj; 334 if (nsec_acc >= 0x100000000LL) { 335 basetime.tv_nsec += nsec_acc >> 32; 336 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 337 } else if (nsec_acc <= -0x100000000LL) { 338 basetime.tv_nsec -= -nsec_acc >> 32; 339 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 340 } 341 if (basetime.tv_nsec >= 1000000000) { 342 basetime.tv_nsec -= 1000000000; 343 ++basetime.tv_sec; 344 } else if (basetime.tv_nsec < 0) { 345 basetime.tv_nsec += 1000000000; 346 --basetime.tv_sec; 347 } 348 rel_mplock(); 349 } 350 351 /* 352 * If the realtime-adjusted seconds hand rolls over then tell 353 * ntp_update_second() what we did in the last second so it can 354 * calculate what to do in the next second. It may also add 355 * or subtract a leap second. 356 */ 357 getnanotime(&nts); 358 if (time_second != nts.tv_sec) { 359 leap = ntp_update_second(time_second, &nsec_adj); 360 basetime.tv_sec += leap; 361 time_second = nts.tv_sec + leap; 362 nsec_adj /= hz; 363 } 364 } 365 366 /* 367 * softticks are handled for all cpus 368 */ 369 hardclock_softtick(gd); 370 371 /* 372 * ITimer handling is per-tick, per-cpu. I don't think psignal() 373 * is mpsafe on curproc, so XXX get the mplock. 374 */ 375 if ((p = curproc) != NULL && try_mplock()) { 376 pstats = p->p_stats; 377 if (frame && CLKF_USERMODE(frame) && 378 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 379 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 380 psignal(p, SIGVTALRM); 381 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) && 382 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 383 psignal(p, SIGPROF); 384 rel_mplock(); 385 } 386 setdelayed(); 387 } 388 389 /* 390 * The statistics clock typically runs at a 125Hz rate, and is intended 391 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 392 * 393 * NOTE! systimer! the MP lock might not be held here. We can only safely 394 * manipulate objects owned by the current cpu. 395 * 396 * The stats clock is responsible for grabbing a profiling sample. 397 * Most of the statistics are only used by user-level statistics programs. 398 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 399 * p->p_estcpu. 400 * 401 * Like the other clocks, the stat clock is called from what is effectively 402 * a fast interrupt, so the context should be the thread/process that got 403 * interrupted. 404 */ 405 static void 406 statclock(systimer_t info, struct intrframe *frame) 407 { 408 #ifdef GPROF 409 struct gmonparam *g; 410 int i; 411 #endif 412 thread_t td; 413 struct proc *p; 414 int bump; 415 struct timeval tv; 416 struct timeval *stv; 417 418 /* 419 * How big was our timeslice relative to the last time? 420 */ 421 microuptime(&tv); /* mpsafe */ 422 stv = &mycpu->gd_stattv; 423 if (stv->tv_sec == 0) { 424 bump = 1; 425 } else { 426 bump = tv.tv_usec - stv->tv_usec + 427 (tv.tv_sec - stv->tv_sec) * 1000000; 428 if (bump < 0) 429 bump = 0; 430 if (bump > 1000000) 431 bump = 1000000; 432 } 433 *stv = tv; 434 435 td = curthread; 436 p = td->td_proc; 437 438 if (frame && CLKF_USERMODE(frame)) { 439 /* 440 * Came from userland, handle user time and deal with 441 * possible process. 442 */ 443 if (p && (p->p_flag & P_PROFIL)) 444 addupc_intr(p, CLKF_PC(frame), 1); 445 td->td_uticks += bump; 446 447 /* 448 * Charge the time as appropriate 449 */ 450 if (p && p->p_nice > NZERO) 451 cp_time[CP_NICE] += bump; 452 else 453 cp_time[CP_USER] += bump; 454 } else { 455 #ifdef GPROF 456 /* 457 * Kernel statistics are just like addupc_intr, only easier. 458 */ 459 g = &_gmonparam; 460 if (g->state == GMON_PROF_ON && frame) { 461 i = CLKF_PC(frame) - g->lowpc; 462 if (i < g->textsize) { 463 i /= HISTFRACTION * sizeof(*g->kcount); 464 g->kcount[i]++; 465 } 466 } 467 #endif 468 /* 469 * Came from kernel mode, so we were: 470 * - handling an interrupt, 471 * - doing syscall or trap work on behalf of the current 472 * user process, or 473 * - spinning in the idle loop. 474 * Whichever it is, charge the time as appropriate. 475 * Note that we charge interrupts to the current process, 476 * regardless of whether they are ``for'' that process, 477 * so that we know how much of its real time was spent 478 * in ``non-process'' (i.e., interrupt) work. 479 * 480 * XXX assume system if frame is NULL. A NULL frame 481 * can occur if ipi processing is done from an splx(). 482 */ 483 if (frame && CLKF_INTR(frame)) 484 td->td_iticks += bump; 485 else 486 td->td_sticks += bump; 487 488 if (frame && CLKF_INTR(frame)) { 489 cp_time[CP_INTR] += bump; 490 } else { 491 if (td == &mycpu->gd_idlethread) 492 cp_time[CP_IDLE] += bump; 493 else 494 cp_time[CP_SYS] += bump; 495 } 496 } 497 } 498 499 /* 500 * The scheduler clock typically runs at a 20Hz rate. NOTE! systimer, 501 * the MP lock might not be held. We can safely manipulate parts of curproc 502 * but that's about it. 503 */ 504 static void 505 schedclock(systimer_t info, struct intrframe *frame) 506 { 507 struct proc *p; 508 struct pstats *pstats; 509 struct rusage *ru; 510 struct vmspace *vm; 511 long rss; 512 513 schedulerclock(NULL); /* mpsafe */ 514 if ((p = curproc) != NULL) { 515 /* Update resource usage integrals and maximums. */ 516 if ((pstats = p->p_stats) != NULL && 517 (ru = &pstats->p_ru) != NULL && 518 (vm = p->p_vmspace) != NULL) { 519 ru->ru_ixrss += pgtok(vm->vm_tsize); 520 ru->ru_idrss += pgtok(vm->vm_dsize); 521 ru->ru_isrss += pgtok(vm->vm_ssize); 522 rss = pgtok(vmspace_resident_count(vm)); 523 if (ru->ru_maxrss < rss) 524 ru->ru_maxrss = rss; 525 } 526 } 527 } 528 529 /* 530 * Compute number of ticks for the specified amount of time. The 531 * return value is intended to be used in a clock interrupt timed 532 * operation and guarenteed to meet or exceed the requested time. 533 * If the representation overflows, return INT_MAX. The minimum return 534 * value is 1 ticks and the function will average the calculation up. 535 * If any value greater then 0 microseconds is supplied, a value 536 * of at least 2 will be returned to ensure that a near-term clock 537 * interrupt does not cause the timeout to occur (degenerately) early. 538 * 539 * Note that limit checks must take into account microseconds, which is 540 * done simply by using the smaller signed long maximum instead of 541 * the unsigned long maximum. 542 * 543 * If ints have 32 bits, then the maximum value for any timeout in 544 * 10ms ticks is 248 days. 545 */ 546 int 547 tvtohz_high(struct timeval *tv) 548 { 549 int ticks; 550 long sec, usec; 551 552 sec = tv->tv_sec; 553 usec = tv->tv_usec; 554 if (usec < 0) { 555 sec--; 556 usec += 1000000; 557 } 558 if (sec < 0) { 559 #ifdef DIAGNOSTIC 560 if (usec > 0) { 561 sec++; 562 usec -= 1000000; 563 } 564 printf("tvotohz: negative time difference %ld sec %ld usec\n", 565 sec, usec); 566 #endif 567 ticks = 1; 568 } else if (sec <= INT_MAX / hz) { 569 ticks = (int)(sec * hz + 570 ((u_long)usec + (tick - 1)) / tick) + 1; 571 } else { 572 ticks = INT_MAX; 573 } 574 return (ticks); 575 } 576 577 /* 578 * Compute number of ticks for the specified amount of time, erroring on 579 * the side of it being too low to ensure that sleeping the returned number 580 * of ticks will not result in a late return. 581 * 582 * The supplied timeval may not be negative and should be normalized. A 583 * return value of 0 is possible if the timeval converts to less then 584 * 1 tick. 585 * 586 * If ints have 32 bits, then the maximum value for any timeout in 587 * 10ms ticks is 248 days. 588 */ 589 int 590 tvtohz_low(struct timeval *tv) 591 { 592 int ticks; 593 long sec; 594 595 sec = tv->tv_sec; 596 if (sec <= INT_MAX / hz) 597 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick); 598 else 599 ticks = INT_MAX; 600 return (ticks); 601 } 602 603 604 /* 605 * Start profiling on a process. 606 * 607 * Kernel profiling passes proc0 which never exits and hence 608 * keeps the profile clock running constantly. 609 */ 610 void 611 startprofclock(struct proc *p) 612 { 613 if ((p->p_flag & P_PROFIL) == 0) { 614 p->p_flag |= P_PROFIL; 615 #if 0 /* XXX */ 616 if (++profprocs == 1 && stathz != 0) { 617 s = splstatclock(); 618 psdiv = psratio; 619 setstatclockrate(profhz); 620 splx(s); 621 } 622 #endif 623 } 624 } 625 626 /* 627 * Stop profiling on a process. 628 */ 629 void 630 stopprofclock(struct proc *p) 631 { 632 if (p->p_flag & P_PROFIL) { 633 p->p_flag &= ~P_PROFIL; 634 #if 0 /* XXX */ 635 if (--profprocs == 0 && stathz != 0) { 636 s = splstatclock(); 637 psdiv = 1; 638 setstatclockrate(stathz); 639 splx(s); 640 } 641 #endif 642 } 643 } 644 645 /* 646 * Return information about system clocks. 647 */ 648 static int 649 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 650 { 651 struct clockinfo clkinfo; 652 /* 653 * Construct clockinfo structure. 654 */ 655 clkinfo.hz = hz; 656 clkinfo.tick = tick; 657 clkinfo.tickadj = tickadj; 658 clkinfo.profhz = profhz; 659 clkinfo.stathz = stathz ? stathz : hz; 660 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 661 } 662 663 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 664 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 665 666 /* 667 * We have eight functions for looking at the clock, four for 668 * microseconds and four for nanoseconds. For each there is fast 669 * but less precise version "get{nano|micro}[up]time" which will 670 * return a time which is up to 1/HZ previous to the call, whereas 671 * the raw version "{nano|micro}[up]time" will return a timestamp 672 * which is as precise as possible. The "up" variants return the 673 * time relative to system boot, these are well suited for time 674 * interval measurements. 675 * 676 * Each cpu independantly maintains the current time of day, so all 677 * we need to do to protect ourselves from changes is to do a loop 678 * check on the seconds field changing out from under us. 679 */ 680 void 681 getmicrouptime(struct timeval *tvp) 682 { 683 struct globaldata *gd = mycpu; 684 sysclock_t delta; 685 686 do { 687 tvp->tv_sec = gd->gd_time_seconds; 688 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 689 } while (tvp->tv_sec != gd->gd_time_seconds); 690 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 691 if (tvp->tv_usec >= 1000000) { 692 tvp->tv_usec -= 1000000; 693 ++tvp->tv_sec; 694 } 695 } 696 697 void 698 getnanouptime(struct timespec *tsp) 699 { 700 struct globaldata *gd = mycpu; 701 sysclock_t delta; 702 703 do { 704 tsp->tv_sec = gd->gd_time_seconds; 705 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 706 } while (tsp->tv_sec != gd->gd_time_seconds); 707 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 708 if (tsp->tv_nsec >= 1000000000) { 709 tsp->tv_nsec -= 1000000000; 710 ++tsp->tv_sec; 711 } 712 } 713 714 void 715 microuptime(struct timeval *tvp) 716 { 717 struct globaldata *gd = mycpu; 718 sysclock_t delta; 719 720 do { 721 tvp->tv_sec = gd->gd_time_seconds; 722 delta = cputimer_count() - gd->gd_cpuclock_base; 723 } while (tvp->tv_sec != gd->gd_time_seconds); 724 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 725 if (tvp->tv_usec >= 1000000) { 726 tvp->tv_usec -= 1000000; 727 ++tvp->tv_sec; 728 } 729 } 730 731 void 732 nanouptime(struct timespec *tsp) 733 { 734 struct globaldata *gd = mycpu; 735 sysclock_t delta; 736 737 do { 738 tsp->tv_sec = gd->gd_time_seconds; 739 delta = cputimer_count() - gd->gd_cpuclock_base; 740 } while (tsp->tv_sec != gd->gd_time_seconds); 741 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 742 if (tsp->tv_nsec >= 1000000000) { 743 tsp->tv_nsec -= 1000000000; 744 ++tsp->tv_sec; 745 } 746 } 747 748 /* 749 * realtime routines 750 */ 751 752 void 753 getmicrotime(struct timeval *tvp) 754 { 755 struct globaldata *gd = mycpu; 756 sysclock_t delta; 757 758 do { 759 tvp->tv_sec = gd->gd_time_seconds; 760 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 761 } while (tvp->tv_sec != gd->gd_time_seconds); 762 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 763 764 tvp->tv_sec += basetime.tv_sec; 765 tvp->tv_usec += basetime.tv_nsec / 1000; 766 while (tvp->tv_usec >= 1000000) { 767 tvp->tv_usec -= 1000000; 768 ++tvp->tv_sec; 769 } 770 } 771 772 void 773 getnanotime(struct timespec *tsp) 774 { 775 struct globaldata *gd = mycpu; 776 sysclock_t delta; 777 778 do { 779 tsp->tv_sec = gd->gd_time_seconds; 780 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 781 } while (tsp->tv_sec != gd->gd_time_seconds); 782 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 783 784 tsp->tv_sec += basetime.tv_sec; 785 tsp->tv_nsec += basetime.tv_nsec; 786 while (tsp->tv_nsec >= 1000000000) { 787 tsp->tv_nsec -= 1000000000; 788 ++tsp->tv_sec; 789 } 790 } 791 792 void 793 microtime(struct timeval *tvp) 794 { 795 struct globaldata *gd = mycpu; 796 sysclock_t delta; 797 798 do { 799 tvp->tv_sec = gd->gd_time_seconds; 800 delta = cputimer_count() - gd->gd_cpuclock_base; 801 } while (tvp->tv_sec != gd->gd_time_seconds); 802 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32; 803 804 tvp->tv_sec += basetime.tv_sec; 805 tvp->tv_usec += basetime.tv_nsec / 1000; 806 while (tvp->tv_usec >= 1000000) { 807 tvp->tv_usec -= 1000000; 808 ++tvp->tv_sec; 809 } 810 } 811 812 void 813 nanotime(struct timespec *tsp) 814 { 815 struct globaldata *gd = mycpu; 816 sysclock_t delta; 817 818 do { 819 tsp->tv_sec = gd->gd_time_seconds; 820 delta = cputimer_count() - gd->gd_cpuclock_base; 821 } while (tsp->tv_sec != gd->gd_time_seconds); 822 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 823 824 tsp->tv_sec += basetime.tv_sec; 825 tsp->tv_nsec += basetime.tv_nsec; 826 while (tsp->tv_nsec >= 1000000000) { 827 tsp->tv_nsec -= 1000000000; 828 ++tsp->tv_sec; 829 } 830 } 831 832 int 833 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 834 { 835 pps_params_t *app; 836 struct pps_fetch_args *fapi; 837 #ifdef PPS_SYNC 838 struct pps_kcbind_args *kapi; 839 #endif 840 841 switch (cmd) { 842 case PPS_IOC_CREATE: 843 return (0); 844 case PPS_IOC_DESTROY: 845 return (0); 846 case PPS_IOC_SETPARAMS: 847 app = (pps_params_t *)data; 848 if (app->mode & ~pps->ppscap) 849 return (EINVAL); 850 pps->ppsparam = *app; 851 return (0); 852 case PPS_IOC_GETPARAMS: 853 app = (pps_params_t *)data; 854 *app = pps->ppsparam; 855 app->api_version = PPS_API_VERS_1; 856 return (0); 857 case PPS_IOC_GETCAP: 858 *(int*)data = pps->ppscap; 859 return (0); 860 case PPS_IOC_FETCH: 861 fapi = (struct pps_fetch_args *)data; 862 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 863 return (EINVAL); 864 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 865 return (EOPNOTSUPP); 866 pps->ppsinfo.current_mode = pps->ppsparam.mode; 867 fapi->pps_info_buf = pps->ppsinfo; 868 return (0); 869 case PPS_IOC_KCBIND: 870 #ifdef PPS_SYNC 871 kapi = (struct pps_kcbind_args *)data; 872 /* XXX Only root should be able to do this */ 873 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 874 return (EINVAL); 875 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 876 return (EINVAL); 877 if (kapi->edge & ~pps->ppscap) 878 return (EINVAL); 879 pps->kcmode = kapi->edge; 880 return (0); 881 #else 882 return (EOPNOTSUPP); 883 #endif 884 default: 885 return (ENOTTY); 886 } 887 } 888 889 void 890 pps_init(struct pps_state *pps) 891 { 892 pps->ppscap |= PPS_TSFMT_TSPEC; 893 if (pps->ppscap & PPS_CAPTUREASSERT) 894 pps->ppscap |= PPS_OFFSETASSERT; 895 if (pps->ppscap & PPS_CAPTURECLEAR) 896 pps->ppscap |= PPS_OFFSETCLEAR; 897 } 898 899 void 900 pps_event(struct pps_state *pps, sysclock_t count, int event) 901 { 902 struct globaldata *gd; 903 struct timespec *tsp; 904 struct timespec *osp; 905 struct timespec ts; 906 sysclock_t *pcount; 907 #ifdef PPS_SYNC 908 sysclock_t tcount; 909 #endif 910 sysclock_t delta; 911 pps_seq_t *pseq; 912 int foff; 913 int fhard; 914 915 gd = mycpu; 916 917 /* Things would be easier with arrays... */ 918 if (event == PPS_CAPTUREASSERT) { 919 tsp = &pps->ppsinfo.assert_timestamp; 920 osp = &pps->ppsparam.assert_offset; 921 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 922 fhard = pps->kcmode & PPS_CAPTUREASSERT; 923 pcount = &pps->ppscount[0]; 924 pseq = &pps->ppsinfo.assert_sequence; 925 } else { 926 tsp = &pps->ppsinfo.clear_timestamp; 927 osp = &pps->ppsparam.clear_offset; 928 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 929 fhard = pps->kcmode & PPS_CAPTURECLEAR; 930 pcount = &pps->ppscount[1]; 931 pseq = &pps->ppsinfo.clear_sequence; 932 } 933 934 /* Nothing really happened */ 935 if (*pcount == count) 936 return; 937 938 *pcount = count; 939 940 do { 941 ts.tv_sec = gd->gd_time_seconds; 942 delta = count - gd->gd_cpuclock_base; 943 } while (ts.tv_sec != gd->gd_time_seconds); 944 if (delta > cputimer_freq) { 945 ts.tv_sec += delta / cputimer_freq; 946 delta %= cputimer_freq; 947 } 948 ts.tv_nsec = (cputimer_freq64_nsec * delta) >> 32; 949 ts.tv_sec += basetime.tv_sec; 950 ts.tv_nsec += basetime.tv_nsec; 951 while (ts.tv_nsec >= 1000000000) { 952 ts.tv_nsec -= 1000000000; 953 ++ts.tv_sec; 954 } 955 956 (*pseq)++; 957 *tsp = ts; 958 959 if (foff) { 960 timespecadd(tsp, osp); 961 if (tsp->tv_nsec < 0) { 962 tsp->tv_nsec += 1000000000; 963 tsp->tv_sec -= 1; 964 } 965 } 966 #ifdef PPS_SYNC 967 if (fhard) { 968 /* magic, at its best... */ 969 tcount = count - pps->ppscount[2]; 970 pps->ppscount[2] = count; 971 delta = (cputimer_freq64_nsec * tcount) >> 32; 972 hardpps(tsp, delta); 973 } 974 #endif 975 } 976 977