1 /* 2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org> 35 * Copyright (c) 1982, 1986, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 68 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $ 69 */ 70 71 #include "opt_ntp.h" 72 #include "opt_ifpoll.h" 73 #include "opt_pctrack.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/callout.h> 78 #include <sys/kernel.h> 79 #include <sys/kinfo.h> 80 #include <sys/proc.h> 81 #include <sys/malloc.h> 82 #include <sys/resource.h> 83 #include <sys/resourcevar.h> 84 #include <sys/signalvar.h> 85 #include <sys/timex.h> 86 #include <sys/timepps.h> 87 #include <sys/upmap.h> 88 #include <vm/vm.h> 89 #include <sys/lock.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_extern.h> 93 #include <sys/sysctl.h> 94 95 #include <sys/thread2.h> 96 #include <sys/mplock2.h> 97 98 #include <machine/cpu.h> 99 #include <machine/limits.h> 100 #include <machine/smp.h> 101 #include <machine/cpufunc.h> 102 #include <machine/specialreg.h> 103 #include <machine/clock.h> 104 105 #ifdef GPROF 106 #include <sys/gmon.h> 107 #endif 108 109 #ifdef IFPOLL_ENABLE 110 extern void ifpoll_init_pcpu(int); 111 #endif 112 113 #ifdef DEBUG_PCTRACK 114 static void do_pctrack(struct intrframe *frame, int which); 115 #endif 116 117 static void initclocks (void *dummy); 118 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL); 119 120 /* 121 * Some of these don't belong here, but it's easiest to concentrate them. 122 * Note that cpu_time counts in microseconds, but most userland programs 123 * just compare relative times against the total by delta. 124 */ 125 struct kinfo_cputime cputime_percpu[MAXCPU]; 126 #ifdef DEBUG_PCTRACK 127 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE }; 128 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE]; 129 #endif 130 131 static int 132 sysctl_cputime(SYSCTL_HANDLER_ARGS) 133 { 134 int cpu, error = 0; 135 size_t size = sizeof(struct kinfo_cputime); 136 137 for (cpu = 0; cpu < ncpus; ++cpu) { 138 if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size))) 139 break; 140 } 141 142 return (error); 143 } 144 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 145 sysctl_cputime, "S,kinfo_cputime", "CPU time statistics"); 146 147 static int 148 sysctl_cp_time(SYSCTL_HANDLER_ARGS) 149 { 150 long cpu_states[5] = {0}; 151 int cpu, error = 0; 152 size_t size = sizeof(cpu_states); 153 154 for (cpu = 0; cpu < ncpus; ++cpu) { 155 cpu_states[CP_USER] += cputime_percpu[cpu].cp_user; 156 cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice; 157 cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys; 158 cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr; 159 cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle; 160 } 161 162 error = SYSCTL_OUT(req, cpu_states, size); 163 164 return (error); 165 } 166 167 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0, 168 sysctl_cp_time, "LU", "CPU time statistics"); 169 170 /* 171 * boottime is used to calculate the 'real' uptime. Do not confuse this with 172 * microuptime(). microtime() is not drift compensated. The real uptime 173 * with compensation is nanotime() - bootime. boottime is recalculated 174 * whenever the real time is set based on the compensated elapsed time 175 * in seconds (gd->gd_time_seconds). 176 * 177 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic. 178 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to 179 * the real time. 180 * 181 * WARNING! time_second can backstep on time corrections. Also, unlike 182 * time_second, time_uptime is not a "real" time_t (seconds 183 * since the Epoch) but seconds since booting. 184 */ 185 struct timespec boottime; /* boot time (realtime) for reference only */ 186 time_t time_second; /* read-only 'passive' realtime in seconds */ 187 time_t time_uptime; /* read-only 'passive' uptime in seconds */ 188 189 /* 190 * basetime is used to calculate the compensated real time of day. The 191 * basetime can be modified on a per-tick basis by the adjtime(), 192 * ntp_adjtime(), and sysctl-based time correction APIs. 193 * 194 * Note that frequency corrections can also be made by adjusting 195 * gd_cpuclock_base. 196 * 197 * basetime is a tail-chasing FIFO, updated only by cpu #0. The FIFO is 198 * used on both SMP and UP systems to avoid MP races between cpu's and 199 * interrupt races on UP systems. 200 */ 201 struct hardtime { 202 __uint32_t time_second; 203 sysclock_t cpuclock_base; 204 }; 205 206 #define BASETIME_ARYSIZE 16 207 #define BASETIME_ARYMASK (BASETIME_ARYSIZE - 1) 208 static struct timespec basetime[BASETIME_ARYSIZE]; 209 static struct hardtime hardtime[BASETIME_ARYSIZE]; 210 static volatile int basetime_index; 211 212 static int 213 sysctl_get_basetime(SYSCTL_HANDLER_ARGS) 214 { 215 struct timespec *bt; 216 int error; 217 int index; 218 219 /* 220 * Because basetime data and index may be updated by another cpu, 221 * a load fence is required to ensure that the data we read has 222 * not been speculatively read relative to a possibly updated index. 223 */ 224 index = basetime_index; 225 cpu_lfence(); 226 bt = &basetime[index]; 227 error = SYSCTL_OUT(req, bt, sizeof(*bt)); 228 return (error); 229 } 230 231 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD, 232 &boottime, timespec, "System boottime"); 233 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0, 234 sysctl_get_basetime, "S,timespec", "System basetime"); 235 236 static void hardclock(systimer_t info, int, struct intrframe *frame); 237 static void statclock(systimer_t info, int, struct intrframe *frame); 238 static void schedclock(systimer_t info, int, struct intrframe *frame); 239 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp); 240 241 int ticks; /* system master ticks at hz */ 242 int clocks_running; /* tsleep/timeout clocks operational */ 243 int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */ 244 int64_t nsec_acc; /* accumulator */ 245 int sched_ticks; /* global schedule clock ticks */ 246 247 /* NTPD time correction fields */ 248 int64_t ntp_tick_permanent; /* per-tick adjustment in nsec << 32 */ 249 int64_t ntp_tick_acc; /* accumulator for per-tick adjustment */ 250 int64_t ntp_delta; /* one-time correction in nsec */ 251 int64_t ntp_big_delta = 1000000000; 252 int32_t ntp_tick_delta; /* current adjustment rate */ 253 int32_t ntp_default_tick_delta; /* adjustment rate for ntp_delta */ 254 time_t ntp_leap_second; /* time of next leap second */ 255 int ntp_leap_insert; /* whether to insert or remove a second */ 256 257 /* 258 * Finish initializing clock frequencies and start all clocks running. 259 */ 260 /* ARGSUSED*/ 261 static void 262 initclocks(void *dummy) 263 { 264 /*psratio = profhz / stathz;*/ 265 initclocks_pcpu(); 266 clocks_running = 1; 267 if (kpmap) { 268 kpmap->tsc_freq = (uint64_t)tsc_frequency; 269 kpmap->tick_freq = hz; 270 } 271 } 272 273 /* 274 * Called on a per-cpu basis from the idle thread bootstrap on each cpu 275 * during SMP initialization. 276 * 277 * This routine is called concurrently during low-level SMP initialization 278 * and may not block in any way. Meaning, among other things, we can't 279 * acquire any tokens. 280 */ 281 void 282 initclocks_pcpu(void) 283 { 284 struct globaldata *gd = mycpu; 285 286 crit_enter(); 287 if (gd->gd_cpuid == 0) { 288 gd->gd_time_seconds = 1; 289 gd->gd_cpuclock_base = sys_cputimer->count(); 290 hardtime[0].time_second = gd->gd_time_seconds; 291 hardtime[0].cpuclock_base = gd->gd_cpuclock_base; 292 } else { 293 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds; 294 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base; 295 } 296 297 systimer_intr_enable(); 298 299 crit_exit(); 300 } 301 302 /* 303 * This routine is called on just the BSP, just after SMP initialization 304 * completes to * finish initializing any clocks that might contend/block 305 * (e.g. like on a token). We can't do this in initclocks_pcpu() because 306 * that function is called from the idle thread bootstrap for each cpu and 307 * not allowed to block at all. 308 */ 309 static 310 void 311 initclocks_other(void *dummy) 312 { 313 struct globaldata *ogd = mycpu; 314 struct globaldata *gd; 315 int n; 316 317 for (n = 0; n < ncpus; ++n) { 318 lwkt_setcpu_self(globaldata_find(n)); 319 gd = mycpu; 320 321 /* 322 * Use a non-queued periodic systimer to prevent multiple 323 * ticks from building up if the sysclock jumps forward 324 * (8254 gets reset). The sysclock will never jump backwards. 325 * Our time sync is based on the actual sysclock, not the 326 * ticks count. 327 */ 328 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, 329 NULL, hz); 330 systimer_init_periodic_nq(&gd->gd_statclock, statclock, 331 NULL, stathz); 332 /* XXX correct the frequency for scheduler / estcpu tests */ 333 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock, 334 NULL, ESTCPUFREQ); 335 #ifdef IFPOLL_ENABLE 336 ifpoll_init_pcpu(gd->gd_cpuid); 337 #endif 338 } 339 lwkt_setcpu_self(ogd); 340 } 341 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL); 342 343 /* 344 * This sets the current real time of day. Timespecs are in seconds and 345 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base, 346 * instead we adjust basetime so basetime + gd_* results in the current 347 * time of day. This way the gd_* fields are guaranteed to represent 348 * a monotonically increasing 'uptime' value. 349 * 350 * When set_timeofday() is called from userland, the system call forces it 351 * onto cpu #0 since only cpu #0 can update basetime_index. 352 */ 353 void 354 set_timeofday(struct timespec *ts) 355 { 356 struct timespec *nbt; 357 int ni; 358 359 /* 360 * XXX SMP / non-atomic basetime updates 361 */ 362 crit_enter(); 363 ni = (basetime_index + 1) & BASETIME_ARYMASK; 364 cpu_lfence(); 365 nbt = &basetime[ni]; 366 nanouptime(nbt); 367 nbt->tv_sec = ts->tv_sec - nbt->tv_sec; 368 nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec; 369 if (nbt->tv_nsec < 0) { 370 nbt->tv_nsec += 1000000000; 371 --nbt->tv_sec; 372 } 373 374 /* 375 * Note that basetime diverges from boottime as the clock drift is 376 * compensated for, so we cannot do away with boottime. When setting 377 * the absolute time of day the drift is 0 (for an instant) and we 378 * can simply assign boottime to basetime. 379 * 380 * Note that nanouptime() is based on gd_time_seconds which is drift 381 * compensated up to a point (it is guaranteed to remain monotonically 382 * increasing). gd_time_seconds is thus our best uptime guess and 383 * suitable for use in the boottime calculation. It is already taken 384 * into account in the basetime calculation above. 385 */ 386 boottime.tv_sec = nbt->tv_sec; 387 ntp_delta = 0; 388 389 /* 390 * We now have a new basetime, make sure all other cpus have it, 391 * then update the index. 392 */ 393 cpu_sfence(); 394 basetime_index = ni; 395 396 crit_exit(); 397 } 398 399 /* 400 * Each cpu has its own hardclock, but we only increments ticks and softticks 401 * on cpu #0. 402 * 403 * NOTE! systimer! the MP lock might not be held here. We can only safely 404 * manipulate objects owned by the current cpu. 405 */ 406 static void 407 hardclock(systimer_t info, int in_ipi, struct intrframe *frame) 408 { 409 sysclock_t cputicks; 410 struct proc *p; 411 struct globaldata *gd = mycpu; 412 413 if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) { 414 /* Defer to doreti on passive IPIQ processing */ 415 need_ipiq(); 416 } 417 418 /* 419 * We update the compensation base to calculate fine-grained time 420 * from the sys_cputimer on a per-cpu basis in order to avoid 421 * having to mess around with locks. sys_cputimer is assumed to 422 * be consistent across all cpus. CPU N copies the base state from 423 * CPU 0 using the same FIFO trick that we use for basetime (so we 424 * don't catch a CPU 0 update in the middle). 425 * 426 * Note that we never allow info->time (aka gd->gd_hardclock.time) 427 * to reverse index gd_cpuclock_base, but that it is possible for 428 * it to temporarily get behind in the seconds if something in the 429 * system locks interrupts for a long period of time. Since periodic 430 * timers count events, though everything should resynch again 431 * immediately. 432 */ 433 if (gd->gd_cpuid == 0) { 434 int ni; 435 436 cputicks = info->time - gd->gd_cpuclock_base; 437 if (cputicks >= sys_cputimer->freq) { 438 cputicks /= sys_cputimer->freq; 439 if (cputicks != 0 && cputicks != 1) 440 kprintf("Warning: hardclock missed > 1 sec\n"); 441 gd->gd_time_seconds += cputicks; 442 gd->gd_cpuclock_base += sys_cputimer->freq * cputicks; 443 /* uncorrected monotonic 1-sec gran */ 444 time_uptime += cputicks; 445 } 446 ni = (basetime_index + 1) & BASETIME_ARYMASK; 447 hardtime[ni].time_second = gd->gd_time_seconds; 448 hardtime[ni].cpuclock_base = gd->gd_cpuclock_base; 449 } else { 450 int ni; 451 452 ni = basetime_index; 453 cpu_lfence(); 454 gd->gd_time_seconds = hardtime[ni].time_second; 455 gd->gd_cpuclock_base = hardtime[ni].cpuclock_base; 456 } 457 458 /* 459 * The system-wide ticks counter and NTP related timedelta/tickdelta 460 * adjustments only occur on cpu #0. NTP adjustments are accomplished 461 * by updating basetime. 462 */ 463 if (gd->gd_cpuid == 0) { 464 struct timespec *nbt; 465 struct timespec nts; 466 int leap; 467 int ni; 468 469 ++ticks; 470 471 #if 0 472 if (tco->tc_poll_pps) 473 tco->tc_poll_pps(tco); 474 #endif 475 476 /* 477 * Calculate the new basetime index. We are in a critical section 478 * on cpu #0 and can safely play with basetime_index. Start 479 * with the current basetime and then make adjustments. 480 */ 481 ni = (basetime_index + 1) & BASETIME_ARYMASK; 482 nbt = &basetime[ni]; 483 *nbt = basetime[basetime_index]; 484 485 /* 486 * Apply adjtime corrections. (adjtime() API) 487 * 488 * adjtime() only runs on cpu #0 so our critical section is 489 * sufficient to access these variables. 490 */ 491 if (ntp_delta != 0) { 492 nbt->tv_nsec += ntp_tick_delta; 493 ntp_delta -= ntp_tick_delta; 494 if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) || 495 (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) { 496 ntp_tick_delta = ntp_delta; 497 } 498 } 499 500 /* 501 * Apply permanent frequency corrections. (sysctl API) 502 */ 503 if (ntp_tick_permanent != 0) { 504 ntp_tick_acc += ntp_tick_permanent; 505 if (ntp_tick_acc >= (1LL << 32)) { 506 nbt->tv_nsec += ntp_tick_acc >> 32; 507 ntp_tick_acc -= (ntp_tick_acc >> 32) << 32; 508 } else if (ntp_tick_acc <= -(1LL << 32)) { 509 /* Negate ntp_tick_acc to avoid shifting the sign bit. */ 510 nbt->tv_nsec -= (-ntp_tick_acc) >> 32; 511 ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32; 512 } 513 } 514 515 if (nbt->tv_nsec >= 1000000000) { 516 nbt->tv_sec++; 517 nbt->tv_nsec -= 1000000000; 518 } else if (nbt->tv_nsec < 0) { 519 nbt->tv_sec--; 520 nbt->tv_nsec += 1000000000; 521 } 522 523 /* 524 * Another per-tick compensation. (for ntp_adjtime() API) 525 */ 526 if (nsec_adj != 0) { 527 nsec_acc += nsec_adj; 528 if (nsec_acc >= 0x100000000LL) { 529 nbt->tv_nsec += nsec_acc >> 32; 530 nsec_acc = (nsec_acc & 0xFFFFFFFFLL); 531 } else if (nsec_acc <= -0x100000000LL) { 532 nbt->tv_nsec -= -nsec_acc >> 32; 533 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL); 534 } 535 if (nbt->tv_nsec >= 1000000000) { 536 nbt->tv_nsec -= 1000000000; 537 ++nbt->tv_sec; 538 } else if (nbt->tv_nsec < 0) { 539 nbt->tv_nsec += 1000000000; 540 --nbt->tv_sec; 541 } 542 } 543 544 /************************************************************ 545 * LEAP SECOND CORRECTION * 546 ************************************************************ 547 * 548 * Taking into account all the corrections made above, figure 549 * out the new real time. If the seconds field has changed 550 * then apply any pending leap-second corrections. 551 */ 552 getnanotime_nbt(nbt, &nts); 553 554 if (time_second != nts.tv_sec) { 555 /* 556 * Apply leap second (sysctl API). Adjust nts for changes 557 * so we do not have to call getnanotime_nbt again. 558 */ 559 if (ntp_leap_second) { 560 if (ntp_leap_second == nts.tv_sec) { 561 if (ntp_leap_insert) { 562 nbt->tv_sec++; 563 nts.tv_sec++; 564 } else { 565 nbt->tv_sec--; 566 nts.tv_sec--; 567 } 568 ntp_leap_second--; 569 } 570 } 571 572 /* 573 * Apply leap second (ntp_adjtime() API), calculate a new 574 * nsec_adj field. ntp_update_second() returns nsec_adj 575 * as a per-second value but we need it as a per-tick value. 576 */ 577 leap = ntp_update_second(time_second, &nsec_adj); 578 nsec_adj /= hz; 579 nbt->tv_sec += leap; 580 nts.tv_sec += leap; 581 582 /* 583 * Update the time_second 'approximate time' global. 584 */ 585 time_second = nts.tv_sec; 586 } 587 588 /* 589 * Finally, our new basetime is ready to go live! 590 */ 591 cpu_sfence(); 592 basetime_index = ni; 593 594 /* 595 * Update kpmap on each tick. TS updates are integrated with 596 * fences and upticks allowing userland to read the data 597 * deterministically. 598 */ 599 if (kpmap) { 600 int w; 601 602 w = (kpmap->upticks + 1) & 1; 603 getnanouptime(&kpmap->ts_uptime[w]); 604 getnanotime(&kpmap->ts_realtime[w]); 605 cpu_sfence(); 606 ++kpmap->upticks; 607 cpu_sfence(); 608 } 609 } 610 611 /* 612 * lwkt thread scheduler fair queueing 613 */ 614 lwkt_schedulerclock(curthread); 615 616 /* 617 * softticks are handled for all cpus 618 */ 619 hardclock_softtick(gd); 620 621 /* 622 * ITimer handling is per-tick, per-cpu. 623 * 624 * We must acquire the per-process token in order for ksignal() 625 * to be non-blocking. For the moment this requires an AST fault, 626 * the ksignal() cannot be safely issued from this hard interrupt. 627 * 628 * XXX Even the trytoken here isn't right, and itimer operation in 629 * a multi threaded environment is going to be weird at the 630 * very least. 631 */ 632 if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) { 633 crit_enter_hard(); 634 if (p->p_upmap) 635 ++p->p_upmap->runticks; 636 637 if (frame && CLKF_USERMODE(frame) && 638 timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) && 639 itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) { 640 p->p_flags |= P_SIGVTALRM; 641 need_user_resched(); 642 } 643 if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) && 644 itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) { 645 p->p_flags |= P_SIGPROF; 646 need_user_resched(); 647 } 648 crit_exit_hard(); 649 lwkt_reltoken(&p->p_token); 650 } 651 setdelayed(); 652 } 653 654 /* 655 * The statistics clock typically runs at a 125Hz rate, and is intended 656 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu. 657 * 658 * NOTE! systimer! the MP lock might not be held here. We can only safely 659 * manipulate objects owned by the current cpu. 660 * 661 * The stats clock is responsible for grabbing a profiling sample. 662 * Most of the statistics are only used by user-level statistics programs. 663 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and 664 * p->p_estcpu. 665 * 666 * Like the other clocks, the stat clock is called from what is effectively 667 * a fast interrupt, so the context should be the thread/process that got 668 * interrupted. 669 */ 670 static void 671 statclock(systimer_t info, int in_ipi, struct intrframe *frame) 672 { 673 #ifdef GPROF 674 struct gmonparam *g; 675 int i; 676 #endif 677 thread_t td; 678 struct proc *p; 679 int bump; 680 sysclock_t cv; 681 sysclock_t scv; 682 683 /* 684 * How big was our timeslice relative to the last time? Calculate 685 * in microseconds. 686 * 687 * NOTE: Use of microuptime() is typically MPSAFE, but usually not 688 * during early boot. Just use the systimer count to be nice 689 * to e.g. qemu. The systimer has a better chance of being 690 * MPSAFE at early boot. 691 */ 692 cv = sys_cputimer->count(); 693 scv = mycpu->statint.gd_statcv; 694 if (scv == 0) { 695 bump = 1; 696 } else { 697 bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32; 698 if (bump < 0) 699 bump = 0; 700 if (bump > 1000000) 701 bump = 1000000; 702 } 703 mycpu->statint.gd_statcv = cv; 704 705 #if 0 706 stv = &mycpu->gd_stattv; 707 if (stv->tv_sec == 0) { 708 bump = 1; 709 } else { 710 bump = tv.tv_usec - stv->tv_usec + 711 (tv.tv_sec - stv->tv_sec) * 1000000; 712 if (bump < 0) 713 bump = 0; 714 if (bump > 1000000) 715 bump = 1000000; 716 } 717 *stv = tv; 718 #endif 719 720 td = curthread; 721 p = td->td_proc; 722 723 if (frame && CLKF_USERMODE(frame)) { 724 /* 725 * Came from userland, handle user time and deal with 726 * possible process. 727 */ 728 if (p && (p->p_flags & P_PROFIL)) 729 addupc_intr(p, CLKF_PC(frame), 1); 730 td->td_uticks += bump; 731 732 /* 733 * Charge the time as appropriate 734 */ 735 if (p && p->p_nice > NZERO) 736 cpu_time.cp_nice += bump; 737 else 738 cpu_time.cp_user += bump; 739 } else { 740 int intr_nest = mycpu->gd_intr_nesting_level; 741 742 if (in_ipi) { 743 /* 744 * IPI processing code will bump gd_intr_nesting_level 745 * up by one, which breaks following CLKF_INTR testing, 746 * so we subtract it by one here. 747 */ 748 --intr_nest; 749 } 750 #ifdef GPROF 751 /* 752 * Kernel statistics are just like addupc_intr, only easier. 753 */ 754 g = &_gmonparam; 755 if (g->state == GMON_PROF_ON && frame) { 756 i = CLKF_PC(frame) - g->lowpc; 757 if (i < g->textsize) { 758 i /= HISTFRACTION * sizeof(*g->kcount); 759 g->kcount[i]++; 760 } 761 } 762 #endif 763 764 #define IS_INTR_RUNNING ((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td)) 765 766 /* 767 * Came from kernel mode, so we were: 768 * - handling an interrupt, 769 * - doing syscall or trap work on behalf of the current 770 * user process, or 771 * - spinning in the idle loop. 772 * Whichever it is, charge the time as appropriate. 773 * Note that we charge interrupts to the current process, 774 * regardless of whether they are ``for'' that process, 775 * so that we know how much of its real time was spent 776 * in ``non-process'' (i.e., interrupt) work. 777 * 778 * XXX assume system if frame is NULL. A NULL frame 779 * can occur if ipi processing is done from a crit_exit(). 780 */ 781 if (IS_INTR_RUNNING) 782 td->td_iticks += bump; 783 else 784 td->td_sticks += bump; 785 786 if (IS_INTR_RUNNING) { 787 /* 788 * If we interrupted an interrupt thread, well, 789 * count it as interrupt time. 790 */ 791 #ifdef DEBUG_PCTRACK 792 if (frame) 793 do_pctrack(frame, PCTRACK_INT); 794 #endif 795 cpu_time.cp_intr += bump; 796 } else { 797 if (td == &mycpu->gd_idlethread) { 798 /* 799 * Even if the current thread is the idle 800 * thread it could be due to token contention 801 * in the LWKT scheduler. Count such as 802 * system time. 803 */ 804 if (mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK) 805 cpu_time.cp_sys += bump; 806 else 807 cpu_time.cp_idle += bump; 808 } else { 809 /* 810 * System thread was running. 811 */ 812 #ifdef DEBUG_PCTRACK 813 if (frame) 814 do_pctrack(frame, PCTRACK_SYS); 815 #endif 816 cpu_time.cp_sys += bump; 817 } 818 } 819 820 #undef IS_INTR_RUNNING 821 } 822 } 823 824 #ifdef DEBUG_PCTRACK 825 /* 826 * Sample the PC when in the kernel or in an interrupt. User code can 827 * retrieve the information and generate a histogram or other output. 828 */ 829 830 static void 831 do_pctrack(struct intrframe *frame, int which) 832 { 833 struct kinfo_pctrack *pctrack; 834 835 pctrack = &cputime_pctrack[mycpu->gd_cpuid][which]; 836 pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] = 837 (void *)CLKF_PC(frame); 838 ++pctrack->pc_index; 839 } 840 841 static int 842 sysctl_pctrack(SYSCTL_HANDLER_ARGS) 843 { 844 struct kinfo_pcheader head; 845 int error; 846 int cpu; 847 int ntrack; 848 849 head.pc_ntrack = PCTRACK_SIZE; 850 head.pc_arysize = PCTRACK_ARYSIZE; 851 852 if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0) 853 return (error); 854 855 for (cpu = 0; cpu < ncpus; ++cpu) { 856 for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) { 857 error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack], 858 sizeof(struct kinfo_pctrack)); 859 if (error) 860 break; 861 } 862 if (error) 863 break; 864 } 865 return (error); 866 } 867 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0, 868 sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking"); 869 870 #endif 871 872 /* 873 * The scheduler clock typically runs at a 50Hz rate. NOTE! systimer, 874 * the MP lock might not be held. We can safely manipulate parts of curproc 875 * but that's about it. 876 * 877 * Each cpu has its own scheduler clock. 878 */ 879 static void 880 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame) 881 { 882 struct lwp *lp; 883 struct rusage *ru; 884 struct vmspace *vm; 885 long rss; 886 887 if ((lp = lwkt_preempted_proc()) != NULL) { 888 /* 889 * Account for cpu time used and hit the scheduler. Note 890 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD 891 * HERE. 892 */ 893 ++lp->lwp_cpticks; 894 usched_schedulerclock(lp, info->periodic, info->time); 895 } else { 896 usched_schedulerclock(NULL, info->periodic, info->time); 897 } 898 if ((lp = curthread->td_lwp) != NULL) { 899 /* 900 * Update resource usage integrals and maximums. 901 */ 902 if ((ru = &lp->lwp_proc->p_ru) && 903 (vm = lp->lwp_proc->p_vmspace) != NULL) { 904 ru->ru_ixrss += pgtok(vm->vm_tsize); 905 ru->ru_idrss += pgtok(vm->vm_dsize); 906 ru->ru_isrss += pgtok(vm->vm_ssize); 907 if (lwkt_trytoken(&vm->vm_map.token)) { 908 rss = pgtok(vmspace_resident_count(vm)); 909 if (ru->ru_maxrss < rss) 910 ru->ru_maxrss = rss; 911 lwkt_reltoken(&vm->vm_map.token); 912 } 913 } 914 } 915 /* Increment the global sched_ticks */ 916 if (mycpu->gd_cpuid == 0) 917 ++sched_ticks; 918 } 919 920 /* 921 * Compute number of ticks for the specified amount of time. The 922 * return value is intended to be used in a clock interrupt timed 923 * operation and guaranteed to meet or exceed the requested time. 924 * If the representation overflows, return INT_MAX. The minimum return 925 * value is 1 ticks and the function will average the calculation up. 926 * If any value greater then 0 microseconds is supplied, a value 927 * of at least 2 will be returned to ensure that a near-term clock 928 * interrupt does not cause the timeout to occur (degenerately) early. 929 * 930 * Note that limit checks must take into account microseconds, which is 931 * done simply by using the smaller signed long maximum instead of 932 * the unsigned long maximum. 933 * 934 * If ints have 32 bits, then the maximum value for any timeout in 935 * 10ms ticks is 248 days. 936 */ 937 int 938 tvtohz_high(struct timeval *tv) 939 { 940 int ticks; 941 long sec, usec; 942 943 sec = tv->tv_sec; 944 usec = tv->tv_usec; 945 if (usec < 0) { 946 sec--; 947 usec += 1000000; 948 } 949 if (sec < 0) { 950 #ifdef DIAGNOSTIC 951 if (usec > 0) { 952 sec++; 953 usec -= 1000000; 954 } 955 kprintf("tvtohz_high: negative time difference " 956 "%ld sec %ld usec\n", 957 sec, usec); 958 #endif 959 ticks = 1; 960 } else if (sec <= INT_MAX / hz) { 961 ticks = (int)(sec * hz + 962 ((u_long)usec + (ustick - 1)) / ustick) + 1; 963 } else { 964 ticks = INT_MAX; 965 } 966 return (ticks); 967 } 968 969 int 970 tstohz_high(struct timespec *ts) 971 { 972 int ticks; 973 long sec, nsec; 974 975 sec = ts->tv_sec; 976 nsec = ts->tv_nsec; 977 if (nsec < 0) { 978 sec--; 979 nsec += 1000000000; 980 } 981 if (sec < 0) { 982 #ifdef DIAGNOSTIC 983 if (nsec > 0) { 984 sec++; 985 nsec -= 1000000000; 986 } 987 kprintf("tstohz_high: negative time difference " 988 "%ld sec %ld nsec\n", 989 sec, nsec); 990 #endif 991 ticks = 1; 992 } else if (sec <= INT_MAX / hz) { 993 ticks = (int)(sec * hz + 994 ((u_long)nsec + (nstick - 1)) / nstick) + 1; 995 } else { 996 ticks = INT_MAX; 997 } 998 return (ticks); 999 } 1000 1001 1002 /* 1003 * Compute number of ticks for the specified amount of time, erroring on 1004 * the side of it being too low to ensure that sleeping the returned number 1005 * of ticks will not result in a late return. 1006 * 1007 * The supplied timeval may not be negative and should be normalized. A 1008 * return value of 0 is possible if the timeval converts to less then 1009 * 1 tick. 1010 * 1011 * If ints have 32 bits, then the maximum value for any timeout in 1012 * 10ms ticks is 248 days. 1013 */ 1014 int 1015 tvtohz_low(struct timeval *tv) 1016 { 1017 int ticks; 1018 long sec; 1019 1020 sec = tv->tv_sec; 1021 if (sec <= INT_MAX / hz) 1022 ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick); 1023 else 1024 ticks = INT_MAX; 1025 return (ticks); 1026 } 1027 1028 int 1029 tstohz_low(struct timespec *ts) 1030 { 1031 int ticks; 1032 long sec; 1033 1034 sec = ts->tv_sec; 1035 if (sec <= INT_MAX / hz) 1036 ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick); 1037 else 1038 ticks = INT_MAX; 1039 return (ticks); 1040 } 1041 1042 /* 1043 * Start profiling on a process. 1044 * 1045 * Kernel profiling passes proc0 which never exits and hence 1046 * keeps the profile clock running constantly. 1047 */ 1048 void 1049 startprofclock(struct proc *p) 1050 { 1051 if ((p->p_flags & P_PROFIL) == 0) { 1052 p->p_flags |= P_PROFIL; 1053 #if 0 /* XXX */ 1054 if (++profprocs == 1 && stathz != 0) { 1055 crit_enter(); 1056 psdiv = psratio; 1057 setstatclockrate(profhz); 1058 crit_exit(); 1059 } 1060 #endif 1061 } 1062 } 1063 1064 /* 1065 * Stop profiling on a process. 1066 * 1067 * caller must hold p->p_token 1068 */ 1069 void 1070 stopprofclock(struct proc *p) 1071 { 1072 if (p->p_flags & P_PROFIL) { 1073 p->p_flags &= ~P_PROFIL; 1074 #if 0 /* XXX */ 1075 if (--profprocs == 0 && stathz != 0) { 1076 crit_enter(); 1077 psdiv = 1; 1078 setstatclockrate(stathz); 1079 crit_exit(); 1080 } 1081 #endif 1082 } 1083 } 1084 1085 /* 1086 * Return information about system clocks. 1087 */ 1088 static int 1089 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS) 1090 { 1091 struct kinfo_clockinfo clkinfo; 1092 /* 1093 * Construct clockinfo structure. 1094 */ 1095 clkinfo.ci_hz = hz; 1096 clkinfo.ci_tick = ustick; 1097 clkinfo.ci_tickadj = ntp_default_tick_delta / 1000; 1098 clkinfo.ci_profhz = profhz; 1099 clkinfo.ci_stathz = stathz ? stathz : hz; 1100 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req)); 1101 } 1102 1103 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD, 1104 0, 0, sysctl_kern_clockrate, "S,clockinfo",""); 1105 1106 /* 1107 * We have eight functions for looking at the clock, four for 1108 * microseconds and four for nanoseconds. For each there is fast 1109 * but less precise version "get{nano|micro}[up]time" which will 1110 * return a time which is up to 1/HZ previous to the call, whereas 1111 * the raw version "{nano|micro}[up]time" will return a timestamp 1112 * which is as precise as possible. The "up" variants return the 1113 * time relative to system boot, these are well suited for time 1114 * interval measurements. 1115 * 1116 * Each cpu independently maintains the current time of day, so all 1117 * we need to do to protect ourselves from changes is to do a loop 1118 * check on the seconds field changing out from under us. 1119 * 1120 * The system timer maintains a 32 bit count and due to various issues 1121 * it is possible for the calculated delta to occasionally exceed 1122 * sys_cputimer->freq. If this occurs the sys_cputimer->freq64_nsec 1123 * multiplication can easily overflow, so we deal with the case. For 1124 * uniformity we deal with the case in the usec case too. 1125 * 1126 * All the [get][micro,nano][time,uptime]() routines are MPSAFE. 1127 */ 1128 void 1129 getmicrouptime(struct timeval *tvp) 1130 { 1131 struct globaldata *gd = mycpu; 1132 sysclock_t delta; 1133 1134 do { 1135 tvp->tv_sec = gd->gd_time_seconds; 1136 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1137 } while (tvp->tv_sec != gd->gd_time_seconds); 1138 1139 if (delta >= sys_cputimer->freq) { 1140 tvp->tv_sec += delta / sys_cputimer->freq; 1141 delta %= sys_cputimer->freq; 1142 } 1143 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1144 if (tvp->tv_usec >= 1000000) { 1145 tvp->tv_usec -= 1000000; 1146 ++tvp->tv_sec; 1147 } 1148 } 1149 1150 void 1151 getnanouptime(struct timespec *tsp) 1152 { 1153 struct globaldata *gd = mycpu; 1154 sysclock_t delta; 1155 1156 do { 1157 tsp->tv_sec = gd->gd_time_seconds; 1158 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1159 } while (tsp->tv_sec != gd->gd_time_seconds); 1160 1161 if (delta >= sys_cputimer->freq) { 1162 tsp->tv_sec += delta / sys_cputimer->freq; 1163 delta %= sys_cputimer->freq; 1164 } 1165 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1166 } 1167 1168 void 1169 microuptime(struct timeval *tvp) 1170 { 1171 struct globaldata *gd = mycpu; 1172 sysclock_t delta; 1173 1174 do { 1175 tvp->tv_sec = gd->gd_time_seconds; 1176 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1177 } while (tvp->tv_sec != gd->gd_time_seconds); 1178 1179 if (delta >= sys_cputimer->freq) { 1180 tvp->tv_sec += delta / sys_cputimer->freq; 1181 delta %= sys_cputimer->freq; 1182 } 1183 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1184 } 1185 1186 void 1187 nanouptime(struct timespec *tsp) 1188 { 1189 struct globaldata *gd = mycpu; 1190 sysclock_t delta; 1191 1192 do { 1193 tsp->tv_sec = gd->gd_time_seconds; 1194 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1195 } while (tsp->tv_sec != gd->gd_time_seconds); 1196 1197 if (delta >= sys_cputimer->freq) { 1198 tsp->tv_sec += delta / sys_cputimer->freq; 1199 delta %= sys_cputimer->freq; 1200 } 1201 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1202 } 1203 1204 /* 1205 * realtime routines 1206 */ 1207 void 1208 getmicrotime(struct timeval *tvp) 1209 { 1210 struct globaldata *gd = mycpu; 1211 struct timespec *bt; 1212 sysclock_t delta; 1213 1214 do { 1215 tvp->tv_sec = gd->gd_time_seconds; 1216 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1217 } while (tvp->tv_sec != gd->gd_time_seconds); 1218 1219 if (delta >= sys_cputimer->freq) { 1220 tvp->tv_sec += delta / sys_cputimer->freq; 1221 delta %= sys_cputimer->freq; 1222 } 1223 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1224 1225 bt = &basetime[basetime_index]; 1226 cpu_lfence(); 1227 tvp->tv_sec += bt->tv_sec; 1228 tvp->tv_usec += bt->tv_nsec / 1000; 1229 while (tvp->tv_usec >= 1000000) { 1230 tvp->tv_usec -= 1000000; 1231 ++tvp->tv_sec; 1232 } 1233 } 1234 1235 void 1236 getnanotime(struct timespec *tsp) 1237 { 1238 struct globaldata *gd = mycpu; 1239 struct timespec *bt; 1240 sysclock_t delta; 1241 1242 do { 1243 tsp->tv_sec = gd->gd_time_seconds; 1244 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1245 } while (tsp->tv_sec != gd->gd_time_seconds); 1246 1247 if (delta >= sys_cputimer->freq) { 1248 tsp->tv_sec += delta / sys_cputimer->freq; 1249 delta %= sys_cputimer->freq; 1250 } 1251 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1252 1253 bt = &basetime[basetime_index]; 1254 cpu_lfence(); 1255 tsp->tv_sec += bt->tv_sec; 1256 tsp->tv_nsec += bt->tv_nsec; 1257 while (tsp->tv_nsec >= 1000000000) { 1258 tsp->tv_nsec -= 1000000000; 1259 ++tsp->tv_sec; 1260 } 1261 } 1262 1263 static void 1264 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp) 1265 { 1266 struct globaldata *gd = mycpu; 1267 sysclock_t delta; 1268 1269 do { 1270 tsp->tv_sec = gd->gd_time_seconds; 1271 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base; 1272 } while (tsp->tv_sec != gd->gd_time_seconds); 1273 1274 if (delta >= sys_cputimer->freq) { 1275 tsp->tv_sec += delta / sys_cputimer->freq; 1276 delta %= sys_cputimer->freq; 1277 } 1278 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1279 1280 tsp->tv_sec += nbt->tv_sec; 1281 tsp->tv_nsec += nbt->tv_nsec; 1282 while (tsp->tv_nsec >= 1000000000) { 1283 tsp->tv_nsec -= 1000000000; 1284 ++tsp->tv_sec; 1285 } 1286 } 1287 1288 1289 void 1290 microtime(struct timeval *tvp) 1291 { 1292 struct globaldata *gd = mycpu; 1293 struct timespec *bt; 1294 sysclock_t delta; 1295 1296 do { 1297 tvp->tv_sec = gd->gd_time_seconds; 1298 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1299 } while (tvp->tv_sec != gd->gd_time_seconds); 1300 1301 if (delta >= sys_cputimer->freq) { 1302 tvp->tv_sec += delta / sys_cputimer->freq; 1303 delta %= sys_cputimer->freq; 1304 } 1305 tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32; 1306 1307 bt = &basetime[basetime_index]; 1308 cpu_lfence(); 1309 tvp->tv_sec += bt->tv_sec; 1310 tvp->tv_usec += bt->tv_nsec / 1000; 1311 while (tvp->tv_usec >= 1000000) { 1312 tvp->tv_usec -= 1000000; 1313 ++tvp->tv_sec; 1314 } 1315 } 1316 1317 void 1318 nanotime(struct timespec *tsp) 1319 { 1320 struct globaldata *gd = mycpu; 1321 struct timespec *bt; 1322 sysclock_t delta; 1323 1324 do { 1325 tsp->tv_sec = gd->gd_time_seconds; 1326 delta = sys_cputimer->count() - gd->gd_cpuclock_base; 1327 } while (tsp->tv_sec != gd->gd_time_seconds); 1328 1329 if (delta >= sys_cputimer->freq) { 1330 tsp->tv_sec += delta / sys_cputimer->freq; 1331 delta %= sys_cputimer->freq; 1332 } 1333 tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1334 1335 bt = &basetime[basetime_index]; 1336 cpu_lfence(); 1337 tsp->tv_sec += bt->tv_sec; 1338 tsp->tv_nsec += bt->tv_nsec; 1339 while (tsp->tv_nsec >= 1000000000) { 1340 tsp->tv_nsec -= 1000000000; 1341 ++tsp->tv_sec; 1342 } 1343 } 1344 1345 /* 1346 * Get an approximate time_t. It does not have to be accurate. This 1347 * function is called only from KTR and can be called with the system in 1348 * any state so do not use a critical section or other complex operation 1349 * here. 1350 * 1351 * NOTE: This is not exactly synchronized with real time. To do that we 1352 * would have to do what microtime does and check for a nanoseconds 1353 * overflow. 1354 */ 1355 time_t 1356 get_approximate_time_t(void) 1357 { 1358 struct globaldata *gd = mycpu; 1359 struct timespec *bt; 1360 1361 bt = &basetime[basetime_index]; 1362 return(gd->gd_time_seconds + bt->tv_sec); 1363 } 1364 1365 int 1366 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps) 1367 { 1368 pps_params_t *app; 1369 struct pps_fetch_args *fapi; 1370 #ifdef PPS_SYNC 1371 struct pps_kcbind_args *kapi; 1372 #endif 1373 1374 switch (cmd) { 1375 case PPS_IOC_CREATE: 1376 return (0); 1377 case PPS_IOC_DESTROY: 1378 return (0); 1379 case PPS_IOC_SETPARAMS: 1380 app = (pps_params_t *)data; 1381 if (app->mode & ~pps->ppscap) 1382 return (EINVAL); 1383 pps->ppsparam = *app; 1384 return (0); 1385 case PPS_IOC_GETPARAMS: 1386 app = (pps_params_t *)data; 1387 *app = pps->ppsparam; 1388 app->api_version = PPS_API_VERS_1; 1389 return (0); 1390 case PPS_IOC_GETCAP: 1391 *(int*)data = pps->ppscap; 1392 return (0); 1393 case PPS_IOC_FETCH: 1394 fapi = (struct pps_fetch_args *)data; 1395 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC) 1396 return (EINVAL); 1397 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec) 1398 return (EOPNOTSUPP); 1399 pps->ppsinfo.current_mode = pps->ppsparam.mode; 1400 fapi->pps_info_buf = pps->ppsinfo; 1401 return (0); 1402 case PPS_IOC_KCBIND: 1403 #ifdef PPS_SYNC 1404 kapi = (struct pps_kcbind_args *)data; 1405 /* XXX Only root should be able to do this */ 1406 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC) 1407 return (EINVAL); 1408 if (kapi->kernel_consumer != PPS_KC_HARDPPS) 1409 return (EINVAL); 1410 if (kapi->edge & ~pps->ppscap) 1411 return (EINVAL); 1412 pps->kcmode = kapi->edge; 1413 return (0); 1414 #else 1415 return (EOPNOTSUPP); 1416 #endif 1417 default: 1418 return (ENOTTY); 1419 } 1420 } 1421 1422 void 1423 pps_init(struct pps_state *pps) 1424 { 1425 pps->ppscap |= PPS_TSFMT_TSPEC; 1426 if (pps->ppscap & PPS_CAPTUREASSERT) 1427 pps->ppscap |= PPS_OFFSETASSERT; 1428 if (pps->ppscap & PPS_CAPTURECLEAR) 1429 pps->ppscap |= PPS_OFFSETCLEAR; 1430 } 1431 1432 void 1433 pps_event(struct pps_state *pps, sysclock_t count, int event) 1434 { 1435 struct globaldata *gd; 1436 struct timespec *tsp; 1437 struct timespec *osp; 1438 struct timespec *bt; 1439 struct timespec ts; 1440 sysclock_t *pcount; 1441 #ifdef PPS_SYNC 1442 sysclock_t tcount; 1443 #endif 1444 sysclock_t delta; 1445 pps_seq_t *pseq; 1446 int foff; 1447 #ifdef PPS_SYNC 1448 int fhard; 1449 #else 1450 int fhard __unused; 1451 #endif 1452 int ni; 1453 1454 gd = mycpu; 1455 1456 /* Things would be easier with arrays... */ 1457 if (event == PPS_CAPTUREASSERT) { 1458 tsp = &pps->ppsinfo.assert_timestamp; 1459 osp = &pps->ppsparam.assert_offset; 1460 foff = pps->ppsparam.mode & PPS_OFFSETASSERT; 1461 fhard = pps->kcmode & PPS_CAPTUREASSERT; 1462 pcount = &pps->ppscount[0]; 1463 pseq = &pps->ppsinfo.assert_sequence; 1464 } else { 1465 tsp = &pps->ppsinfo.clear_timestamp; 1466 osp = &pps->ppsparam.clear_offset; 1467 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR; 1468 fhard = pps->kcmode & PPS_CAPTURECLEAR; 1469 pcount = &pps->ppscount[1]; 1470 pseq = &pps->ppsinfo.clear_sequence; 1471 } 1472 1473 /* Nothing really happened */ 1474 if (*pcount == count) 1475 return; 1476 1477 *pcount = count; 1478 1479 do { 1480 ts.tv_sec = gd->gd_time_seconds; 1481 delta = count - gd->gd_cpuclock_base; 1482 } while (ts.tv_sec != gd->gd_time_seconds); 1483 1484 if (delta >= sys_cputimer->freq) { 1485 ts.tv_sec += delta / sys_cputimer->freq; 1486 delta %= sys_cputimer->freq; 1487 } 1488 ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32; 1489 ni = basetime_index; 1490 cpu_lfence(); 1491 bt = &basetime[ni]; 1492 ts.tv_sec += bt->tv_sec; 1493 ts.tv_nsec += bt->tv_nsec; 1494 while (ts.tv_nsec >= 1000000000) { 1495 ts.tv_nsec -= 1000000000; 1496 ++ts.tv_sec; 1497 } 1498 1499 (*pseq)++; 1500 *tsp = ts; 1501 1502 if (foff) { 1503 timespecadd(tsp, osp); 1504 if (tsp->tv_nsec < 0) { 1505 tsp->tv_nsec += 1000000000; 1506 tsp->tv_sec -= 1; 1507 } 1508 } 1509 #ifdef PPS_SYNC 1510 if (fhard) { 1511 /* magic, at its best... */ 1512 tcount = count - pps->ppscount[2]; 1513 pps->ppscount[2] = count; 1514 if (tcount >= sys_cputimer->freq) { 1515 delta = (1000000000 * (tcount / sys_cputimer->freq) + 1516 sys_cputimer->freq64_nsec * 1517 (tcount % sys_cputimer->freq)) >> 32; 1518 } else { 1519 delta = (sys_cputimer->freq64_nsec * tcount) >> 32; 1520 } 1521 hardpps(tsp, delta); 1522 } 1523 #endif 1524 } 1525 1526 /* 1527 * Return the tsc target value for a delay of (ns). 1528 * 1529 * Returns -1 if the TSC is not supported. 1530 */ 1531 int64_t 1532 tsc_get_target(int ns) 1533 { 1534 #if defined(_RDTSC_SUPPORTED_) 1535 if (cpu_feature & CPUID_TSC) { 1536 return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000); 1537 } 1538 #endif 1539 return(-1); 1540 } 1541 1542 /* 1543 * Compare the tsc against the passed target 1544 * 1545 * Returns +1 if the target has been reached 1546 * Returns 0 if the target has not yet been reached 1547 * Returns -1 if the TSC is not supported. 1548 * 1549 * Typical use: while (tsc_test_target(target) == 0) { ...poll... } 1550 */ 1551 int 1552 tsc_test_target(int64_t target) 1553 { 1554 #if defined(_RDTSC_SUPPORTED_) 1555 if (cpu_feature & CPUID_TSC) { 1556 if ((int64_t)(target - rdtsc()) <= 0) 1557 return(1); 1558 return(0); 1559 } 1560 #endif 1561 return(-1); 1562 } 1563 1564 /* 1565 * Delay the specified number of nanoseconds using the tsc. This function 1566 * returns immediately if the TSC is not supported. At least one cpu_pause() 1567 * will be issued. 1568 */ 1569 void 1570 tsc_delay(int ns) 1571 { 1572 int64_t clk; 1573 1574 clk = tsc_get_target(ns); 1575 cpu_pause(); 1576 while (tsc_test_target(clk) == 0) 1577 cpu_pause(); 1578 } 1579