xref: /dflybsd-src/sys/kern/kern_clock.c (revision 0c1d7dca433e727c476aff53acb839b357a28ef6)
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  * (c) UNIX System Laboratories, Inc.
38  * All or some portions of this file are derived from material licensed
39  * to the University of California by American Telephone and Telegraph
40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41  * the permission of UNIX System Laboratories, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of the University nor the names of its contributors
52  *    may be used to endorse or promote products derived from this software
53  *    without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
68  * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
69  */
70 
71 #include "opt_ntp.h"
72 #include "opt_ifpoll.h"
73 #include "opt_pctrack.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/callout.h>
78 #include <sys/kernel.h>
79 #include <sys/kinfo.h>
80 #include <sys/proc.h>
81 #include <sys/malloc.h>
82 #include <sys/resource.h>
83 #include <sys/resourcevar.h>
84 #include <sys/signalvar.h>
85 #include <sys/timex.h>
86 #include <sys/timepps.h>
87 #include <sys/upmap.h>
88 #include <vm/vm.h>
89 #include <sys/lock.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_extern.h>
93 #include <sys/sysctl.h>
94 
95 #include <sys/thread2.h>
96 #include <sys/mplock2.h>
97 
98 #include <machine/cpu.h>
99 #include <machine/limits.h>
100 #include <machine/smp.h>
101 #include <machine/cpufunc.h>
102 #include <machine/specialreg.h>
103 #include <machine/clock.h>
104 
105 #ifdef GPROF
106 #include <sys/gmon.h>
107 #endif
108 
109 #ifdef IFPOLL_ENABLE
110 extern void ifpoll_init_pcpu(int);
111 #endif
112 
113 #ifdef DEBUG_PCTRACK
114 static void do_pctrack(struct intrframe *frame, int which);
115 #endif
116 
117 static void initclocks (void *dummy);
118 SYSINIT(clocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
119 
120 /*
121  * Some of these don't belong here, but it's easiest to concentrate them.
122  * Note that cpu_time counts in microseconds, but most userland programs
123  * just compare relative times against the total by delta.
124  */
125 struct kinfo_cputime cputime_percpu[MAXCPU];
126 #ifdef DEBUG_PCTRACK
127 struct kinfo_pcheader cputime_pcheader = { PCTRACK_SIZE, PCTRACK_ARYSIZE };
128 struct kinfo_pctrack cputime_pctrack[MAXCPU][PCTRACK_SIZE];
129 #endif
130 
131 static int
132 sysctl_cputime(SYSCTL_HANDLER_ARGS)
133 {
134 	int cpu, error = 0;
135 	size_t size = sizeof(struct kinfo_cputime);
136 
137 	for (cpu = 0; cpu < ncpus; ++cpu) {
138 		if ((error = SYSCTL_OUT(req, &cputime_percpu[cpu], size)))
139 			break;
140 	}
141 
142 	return (error);
143 }
144 SYSCTL_PROC(_kern, OID_AUTO, cputime, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
145 	sysctl_cputime, "S,kinfo_cputime", "CPU time statistics");
146 
147 static int
148 sysctl_cp_time(SYSCTL_HANDLER_ARGS)
149 {
150 	long cpu_states[5] = {0};
151 	int cpu, error = 0;
152 	size_t size = sizeof(cpu_states);
153 
154 	for (cpu = 0; cpu < ncpus; ++cpu) {
155 		cpu_states[CP_USER] += cputime_percpu[cpu].cp_user;
156 		cpu_states[CP_NICE] += cputime_percpu[cpu].cp_nice;
157 		cpu_states[CP_SYS] += cputime_percpu[cpu].cp_sys;
158 		cpu_states[CP_INTR] += cputime_percpu[cpu].cp_intr;
159 		cpu_states[CP_IDLE] += cputime_percpu[cpu].cp_idle;
160 	}
161 
162 	error = SYSCTL_OUT(req, cpu_states, size);
163 
164 	return (error);
165 }
166 
167 SYSCTL_PROC(_kern, OID_AUTO, cp_time, (CTLTYPE_LONG|CTLFLAG_RD), 0, 0,
168 	sysctl_cp_time, "LU", "CPU time statistics");
169 
170 /*
171  * boottime is used to calculate the 'real' uptime.  Do not confuse this with
172  * microuptime().  microtime() is not drift compensated.  The real uptime
173  * with compensation is nanotime() - bootime.  boottime is recalculated
174  * whenever the real time is set based on the compensated elapsed time
175  * in seconds (gd->gd_time_seconds).
176  *
177  * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
178  * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
179  * the real time.
180  *
181  * WARNING! time_second can backstep on time corrections. Also, unlike
182  *          time_second, time_uptime is not a "real" time_t (seconds
183  *          since the Epoch) but seconds since booting.
184  */
185 struct timespec boottime;	/* boot time (realtime) for reference only */
186 time_t time_second;		/* read-only 'passive' realtime in seconds */
187 time_t time_uptime;		/* read-only 'passive' uptime in seconds */
188 
189 /*
190  * basetime is used to calculate the compensated real time of day.  The
191  * basetime can be modified on a per-tick basis by the adjtime(),
192  * ntp_adjtime(), and sysctl-based time correction APIs.
193  *
194  * Note that frequency corrections can also be made by adjusting
195  * gd_cpuclock_base.
196  *
197  * basetime is a tail-chasing FIFO, updated only by cpu #0.  The FIFO is
198  * used on both SMP and UP systems to avoid MP races between cpu's and
199  * interrupt races on UP systems.
200  */
201 struct hardtime {
202 	__uint32_t time_second;
203 	sysclock_t cpuclock_base;
204 };
205 
206 #define BASETIME_ARYSIZE	16
207 #define BASETIME_ARYMASK	(BASETIME_ARYSIZE - 1)
208 static struct timespec basetime[BASETIME_ARYSIZE];
209 static struct hardtime hardtime[BASETIME_ARYSIZE];
210 static volatile int basetime_index;
211 
212 static int
213 sysctl_get_basetime(SYSCTL_HANDLER_ARGS)
214 {
215 	struct timespec *bt;
216 	int error;
217 	int index;
218 
219 	/*
220 	 * Because basetime data and index may be updated by another cpu,
221 	 * a load fence is required to ensure that the data we read has
222 	 * not been speculatively read relative to a possibly updated index.
223 	 */
224 	index = basetime_index;
225 	cpu_lfence();
226 	bt = &basetime[index];
227 	error = SYSCTL_OUT(req, bt, sizeof(*bt));
228 	return (error);
229 }
230 
231 SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
232     &boottime, timespec, "System boottime");
233 SYSCTL_PROC(_kern, OID_AUTO, basetime, CTLTYPE_STRUCT|CTLFLAG_RD, 0, 0,
234     sysctl_get_basetime, "S,timespec", "System basetime");
235 
236 static void hardclock(systimer_t info, int, struct intrframe *frame);
237 static void statclock(systimer_t info, int, struct intrframe *frame);
238 static void schedclock(systimer_t info, int, struct intrframe *frame);
239 static void getnanotime_nbt(struct timespec *nbt, struct timespec *tsp);
240 
241 int	ticks;			/* system master ticks at hz */
242 int	clocks_running;		/* tsleep/timeout clocks operational */
243 int64_t	nsec_adj;		/* ntpd per-tick adjustment in nsec << 32 */
244 int64_t	nsec_acc;		/* accumulator */
245 int	sched_ticks;		/* global schedule clock ticks */
246 
247 /* NTPD time correction fields */
248 int64_t	ntp_tick_permanent;	/* per-tick adjustment in nsec << 32 */
249 int64_t	ntp_tick_acc;		/* accumulator for per-tick adjustment */
250 int64_t	ntp_delta;		/* one-time correction in nsec */
251 int64_t ntp_big_delta = 1000000000;
252 int32_t	ntp_tick_delta;		/* current adjustment rate */
253 int32_t	ntp_default_tick_delta;	/* adjustment rate for ntp_delta */
254 time_t	ntp_leap_second;	/* time of next leap second */
255 int	ntp_leap_insert;	/* whether to insert or remove a second */
256 
257 /*
258  * Finish initializing clock frequencies and start all clocks running.
259  */
260 /* ARGSUSED*/
261 static void
262 initclocks(void *dummy)
263 {
264 	/*psratio = profhz / stathz;*/
265 	initclocks_pcpu();
266 	clocks_running = 1;
267 	if (kpmap) {
268 	    kpmap->tsc_freq = (uint64_t)tsc_frequency;
269 	    kpmap->tick_freq = hz;
270 	}
271 }
272 
273 /*
274  * Called on a per-cpu basis from the idle thread bootstrap on each cpu
275  * during SMP initialization.
276  *
277  * This routine is called concurrently during low-level SMP initialization
278  * and may not block in any way.  Meaning, among other things, we can't
279  * acquire any tokens.
280  */
281 void
282 initclocks_pcpu(void)
283 {
284 	struct globaldata *gd = mycpu;
285 
286 	crit_enter();
287 	if (gd->gd_cpuid == 0) {
288 	    gd->gd_time_seconds = 1;
289 	    gd->gd_cpuclock_base = sys_cputimer->count();
290 	    hardtime[0].time_second = gd->gd_time_seconds;
291 	    hardtime[0].cpuclock_base = gd->gd_cpuclock_base;
292 	} else {
293 	    gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
294 	    gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
295 	}
296 
297 	systimer_intr_enable();
298 
299 	crit_exit();
300 }
301 
302 /*
303  * This routine is called on just the BSP, just after SMP initialization
304  * completes to * finish initializing any clocks that might contend/block
305  * (e.g. like on a token).  We can't do this in initclocks_pcpu() because
306  * that function is called from the idle thread bootstrap for each cpu and
307  * not allowed to block at all.
308  */
309 static
310 void
311 initclocks_other(void *dummy)
312 {
313 	struct globaldata *ogd = mycpu;
314 	struct globaldata *gd;
315 	int n;
316 
317 	for (n = 0; n < ncpus; ++n) {
318 		lwkt_setcpu_self(globaldata_find(n));
319 		gd = mycpu;
320 
321 		/*
322 		 * Use a non-queued periodic systimer to prevent multiple
323 		 * ticks from building up if the sysclock jumps forward
324 		 * (8254 gets reset).  The sysclock will never jump backwards.
325 		 * Our time sync is based on the actual sysclock, not the
326 		 * ticks count.
327 		 */
328 		systimer_init_periodic_nq(&gd->gd_hardclock, hardclock,
329 					  NULL, hz);
330 		systimer_init_periodic_nq(&gd->gd_statclock, statclock,
331 					  NULL, stathz);
332 		/* XXX correct the frequency for scheduler / estcpu tests */
333 		systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
334 					  NULL, ESTCPUFREQ);
335 #ifdef IFPOLL_ENABLE
336 		ifpoll_init_pcpu(gd->gd_cpuid);
337 #endif
338 	}
339 	lwkt_setcpu_self(ogd);
340 }
341 SYSINIT(clocks2, SI_BOOT2_POST_SMP, SI_ORDER_ANY, initclocks_other, NULL);
342 
343 /*
344  * This sets the current real time of day.  Timespecs are in seconds and
345  * nanoseconds.  We do not mess with gd_time_seconds and gd_cpuclock_base,
346  * instead we adjust basetime so basetime + gd_* results in the current
347  * time of day.  This way the gd_* fields are guaranteed to represent
348  * a monotonically increasing 'uptime' value.
349  *
350  * When set_timeofday() is called from userland, the system call forces it
351  * onto cpu #0 since only cpu #0 can update basetime_index.
352  */
353 void
354 set_timeofday(struct timespec *ts)
355 {
356 	struct timespec *nbt;
357 	int ni;
358 
359 	/*
360 	 * XXX SMP / non-atomic basetime updates
361 	 */
362 	crit_enter();
363 	ni = (basetime_index + 1) & BASETIME_ARYMASK;
364 	cpu_lfence();
365 	nbt = &basetime[ni];
366 	nanouptime(nbt);
367 	nbt->tv_sec = ts->tv_sec - nbt->tv_sec;
368 	nbt->tv_nsec = ts->tv_nsec - nbt->tv_nsec;
369 	if (nbt->tv_nsec < 0) {
370 	    nbt->tv_nsec += 1000000000;
371 	    --nbt->tv_sec;
372 	}
373 
374 	/*
375 	 * Note that basetime diverges from boottime as the clock drift is
376 	 * compensated for, so we cannot do away with boottime.  When setting
377 	 * the absolute time of day the drift is 0 (for an instant) and we
378 	 * can simply assign boottime to basetime.
379 	 *
380 	 * Note that nanouptime() is based on gd_time_seconds which is drift
381 	 * compensated up to a point (it is guaranteed to remain monotonically
382 	 * increasing).  gd_time_seconds is thus our best uptime guess and
383 	 * suitable for use in the boottime calculation.  It is already taken
384 	 * into account in the basetime calculation above.
385 	 */
386 	boottime.tv_sec = nbt->tv_sec;
387 	ntp_delta = 0;
388 
389 	/*
390 	 * We now have a new basetime, make sure all other cpus have it,
391 	 * then update the index.
392 	 */
393 	cpu_sfence();
394 	basetime_index = ni;
395 
396 	crit_exit();
397 }
398 
399 /*
400  * Each cpu has its own hardclock, but we only increments ticks and softticks
401  * on cpu #0.
402  *
403  * NOTE! systimer! the MP lock might not be held here.  We can only safely
404  * manipulate objects owned by the current cpu.
405  */
406 static void
407 hardclock(systimer_t info, int in_ipi, struct intrframe *frame)
408 {
409 	sysclock_t cputicks;
410 	struct proc *p;
411 	struct globaldata *gd = mycpu;
412 
413 	if ((gd->gd_reqflags & RQF_IPIQ) == 0 && lwkt_need_ipiq_process(gd)) {
414 		/* Defer to doreti on passive IPIQ processing */
415 		need_ipiq();
416 	}
417 
418 	/*
419 	 * We update the compensation base to calculate fine-grained time
420 	 * from the sys_cputimer on a per-cpu basis in order to avoid
421 	 * having to mess around with locks.  sys_cputimer is assumed to
422 	 * be consistent across all cpus.  CPU N copies the base state from
423 	 * CPU 0 using the same FIFO trick that we use for basetime (so we
424 	 * don't catch a CPU 0 update in the middle).
425 	 *
426 	 * Note that we never allow info->time (aka gd->gd_hardclock.time)
427 	 * to reverse index gd_cpuclock_base, but that it is possible for
428 	 * it to temporarily get behind in the seconds if something in the
429 	 * system locks interrupts for a long period of time.  Since periodic
430 	 * timers count events, though everything should resynch again
431 	 * immediately.
432 	 */
433 	if (gd->gd_cpuid == 0) {
434 		int ni;
435 
436 		cputicks = info->time - gd->gd_cpuclock_base;
437 		if (cputicks >= sys_cputimer->freq) {
438 			cputicks /= sys_cputimer->freq;
439 			if (cputicks != 0 && cputicks != 1)
440 				kprintf("Warning: hardclock missed > 1 sec\n");
441 			gd->gd_time_seconds += cputicks;
442 			gd->gd_cpuclock_base += sys_cputimer->freq * cputicks;
443 			/* uncorrected monotonic 1-sec gran */
444 			time_uptime += cputicks;
445 		}
446 		ni = (basetime_index + 1) & BASETIME_ARYMASK;
447 		hardtime[ni].time_second = gd->gd_time_seconds;
448 		hardtime[ni].cpuclock_base = gd->gd_cpuclock_base;
449 	} else {
450 		int ni;
451 
452 		ni = basetime_index;
453 		cpu_lfence();
454 		gd->gd_time_seconds = hardtime[ni].time_second;
455 		gd->gd_cpuclock_base = hardtime[ni].cpuclock_base;
456 	}
457 
458 	/*
459 	 * The system-wide ticks counter and NTP related timedelta/tickdelta
460 	 * adjustments only occur on cpu #0.  NTP adjustments are accomplished
461 	 * by updating basetime.
462 	 */
463 	if (gd->gd_cpuid == 0) {
464 	    struct timespec *nbt;
465 	    struct timespec nts;
466 	    int leap;
467 	    int ni;
468 
469 	    ++ticks;
470 
471 #if 0
472 	    if (tco->tc_poll_pps)
473 		tco->tc_poll_pps(tco);
474 #endif
475 
476 	    /*
477 	     * Calculate the new basetime index.  We are in a critical section
478 	     * on cpu #0 and can safely play with basetime_index.  Start
479 	     * with the current basetime and then make adjustments.
480 	     */
481 	    ni = (basetime_index + 1) & BASETIME_ARYMASK;
482 	    nbt = &basetime[ni];
483 	    *nbt = basetime[basetime_index];
484 
485 	    /*
486 	     * Apply adjtime corrections.  (adjtime() API)
487 	     *
488 	     * adjtime() only runs on cpu #0 so our critical section is
489 	     * sufficient to access these variables.
490 	     */
491 	    if (ntp_delta != 0) {
492 		nbt->tv_nsec += ntp_tick_delta;
493 		ntp_delta -= ntp_tick_delta;
494 		if ((ntp_delta > 0 && ntp_delta < ntp_tick_delta) ||
495 		    (ntp_delta < 0 && ntp_delta > ntp_tick_delta)) {
496 			ntp_tick_delta = ntp_delta;
497  		}
498  	    }
499 
500 	    /*
501 	     * Apply permanent frequency corrections.  (sysctl API)
502 	     */
503 	    if (ntp_tick_permanent != 0) {
504 		ntp_tick_acc += ntp_tick_permanent;
505 		if (ntp_tick_acc >= (1LL << 32)) {
506 		    nbt->tv_nsec += ntp_tick_acc >> 32;
507 		    ntp_tick_acc -= (ntp_tick_acc >> 32) << 32;
508 		} else if (ntp_tick_acc <= -(1LL << 32)) {
509 		    /* Negate ntp_tick_acc to avoid shifting the sign bit. */
510 		    nbt->tv_nsec -= (-ntp_tick_acc) >> 32;
511 		    ntp_tick_acc += ((-ntp_tick_acc) >> 32) << 32;
512 		}
513  	    }
514 
515 	    if (nbt->tv_nsec >= 1000000000) {
516 		    nbt->tv_sec++;
517 		    nbt->tv_nsec -= 1000000000;
518 	    } else if (nbt->tv_nsec < 0) {
519 		    nbt->tv_sec--;
520 		    nbt->tv_nsec += 1000000000;
521 	    }
522 
523 	    /*
524 	     * Another per-tick compensation.  (for ntp_adjtime() API)
525 	     */
526 	    if (nsec_adj != 0) {
527 		nsec_acc += nsec_adj;
528 		if (nsec_acc >= 0x100000000LL) {
529 		    nbt->tv_nsec += nsec_acc >> 32;
530 		    nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
531 		} else if (nsec_acc <= -0x100000000LL) {
532 		    nbt->tv_nsec -= -nsec_acc >> 32;
533 		    nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
534 		}
535 		if (nbt->tv_nsec >= 1000000000) {
536 		    nbt->tv_nsec -= 1000000000;
537 		    ++nbt->tv_sec;
538 		} else if (nbt->tv_nsec < 0) {
539 		    nbt->tv_nsec += 1000000000;
540 		    --nbt->tv_sec;
541 		}
542 	    }
543 
544 	    /************************************************************
545 	     *			LEAP SECOND CORRECTION			*
546 	     ************************************************************
547 	     *
548 	     * Taking into account all the corrections made above, figure
549 	     * out the new real time.  If the seconds field has changed
550 	     * then apply any pending leap-second corrections.
551 	     */
552 	    getnanotime_nbt(nbt, &nts);
553 
554 	    if (time_second != nts.tv_sec) {
555 		/*
556 		 * Apply leap second (sysctl API).  Adjust nts for changes
557 		 * so we do not have to call getnanotime_nbt again.
558 		 */
559 		if (ntp_leap_second) {
560 		    if (ntp_leap_second == nts.tv_sec) {
561 			if (ntp_leap_insert) {
562 			    nbt->tv_sec++;
563 			    nts.tv_sec++;
564 			} else {
565 			    nbt->tv_sec--;
566 			    nts.tv_sec--;
567 			}
568 			ntp_leap_second--;
569 		    }
570 		}
571 
572 		/*
573 		 * Apply leap second (ntp_adjtime() API), calculate a new
574 		 * nsec_adj field.  ntp_update_second() returns nsec_adj
575 		 * as a per-second value but we need it as a per-tick value.
576 		 */
577 		leap = ntp_update_second(time_second, &nsec_adj);
578 		nsec_adj /= hz;
579 		nbt->tv_sec += leap;
580 		nts.tv_sec += leap;
581 
582 		/*
583 		 * Update the time_second 'approximate time' global.
584 		 */
585 		time_second = nts.tv_sec;
586 	    }
587 
588 	    /*
589 	     * Finally, our new basetime is ready to go live!
590 	     */
591 	    cpu_sfence();
592 	    basetime_index = ni;
593 
594 	    /*
595 	     * Update kpmap on each tick.  TS updates are integrated with
596 	     * fences and upticks allowing userland to read the data
597 	     * deterministically.
598 	     */
599 	    if (kpmap) {
600 		int w;
601 
602 		w = (kpmap->upticks + 1) & 1;
603 		getnanouptime(&kpmap->ts_uptime[w]);
604 		getnanotime(&kpmap->ts_realtime[w]);
605 		cpu_sfence();
606 		++kpmap->upticks;
607 		cpu_sfence();
608 	    }
609 	}
610 
611 	/*
612 	 * lwkt thread scheduler fair queueing
613 	 */
614 	lwkt_schedulerclock(curthread);
615 
616 	/*
617 	 * softticks are handled for all cpus
618 	 */
619 	hardclock_softtick(gd);
620 
621 	/*
622 	 * ITimer handling is per-tick, per-cpu.
623 	 *
624 	 * We must acquire the per-process token in order for ksignal()
625 	 * to be non-blocking.  For the moment this requires an AST fault,
626 	 * the ksignal() cannot be safely issued from this hard interrupt.
627 	 *
628 	 * XXX Even the trytoken here isn't right, and itimer operation in
629 	 *     a multi threaded environment is going to be weird at the
630 	 *     very least.
631 	 */
632 	if ((p = curproc) != NULL && lwkt_trytoken(&p->p_token)) {
633 		crit_enter_hard();
634 		if (p->p_upmap)
635 			++p->p_upmap->runticks;
636 
637 		if (frame && CLKF_USERMODE(frame) &&
638 		    timevalisset(&p->p_timer[ITIMER_VIRTUAL].it_value) &&
639 		    itimerdecr(&p->p_timer[ITIMER_VIRTUAL], ustick) == 0) {
640 			p->p_flags |= P_SIGVTALRM;
641 			need_user_resched();
642 		}
643 		if (timevalisset(&p->p_timer[ITIMER_PROF].it_value) &&
644 		    itimerdecr(&p->p_timer[ITIMER_PROF], ustick) == 0) {
645 			p->p_flags |= P_SIGPROF;
646 			need_user_resched();
647 		}
648 		crit_exit_hard();
649 		lwkt_reltoken(&p->p_token);
650 	}
651 	setdelayed();
652 }
653 
654 /*
655  * The statistics clock typically runs at a 125Hz rate, and is intended
656  * to be frequency offset from the hardclock (typ 100Hz).  It is per-cpu.
657  *
658  * NOTE! systimer! the MP lock might not be held here.  We can only safely
659  * manipulate objects owned by the current cpu.
660  *
661  * The stats clock is responsible for grabbing a profiling sample.
662  * Most of the statistics are only used by user-level statistics programs.
663  * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
664  * p->p_estcpu.
665  *
666  * Like the other clocks, the stat clock is called from what is effectively
667  * a fast interrupt, so the context should be the thread/process that got
668  * interrupted.
669  */
670 static void
671 statclock(systimer_t info, int in_ipi, struct intrframe *frame)
672 {
673 #ifdef GPROF
674 	struct gmonparam *g;
675 	int i;
676 #endif
677 	thread_t td;
678 	struct proc *p;
679 	int bump;
680 	sysclock_t cv;
681 	sysclock_t scv;
682 
683 	/*
684 	 * How big was our timeslice relative to the last time?  Calculate
685 	 * in microseconds.
686 	 *
687 	 * NOTE: Use of microuptime() is typically MPSAFE, but usually not
688 	 *	 during early boot.  Just use the systimer count to be nice
689 	 *	 to e.g. qemu.  The systimer has a better chance of being
690 	 *	 MPSAFE at early boot.
691 	 */
692 	cv = sys_cputimer->count();
693 	scv = mycpu->statint.gd_statcv;
694 	if (scv == 0) {
695 		bump = 1;
696 	} else {
697 		bump = (sys_cputimer->freq64_usec * (cv - scv)) >> 32;
698 		if (bump < 0)
699 			bump = 0;
700 		if (bump > 1000000)
701 			bump = 1000000;
702 	}
703 	mycpu->statint.gd_statcv = cv;
704 
705 #if 0
706 	stv = &mycpu->gd_stattv;
707 	if (stv->tv_sec == 0) {
708 	    bump = 1;
709 	} else {
710 	    bump = tv.tv_usec - stv->tv_usec +
711 		(tv.tv_sec - stv->tv_sec) * 1000000;
712 	    if (bump < 0)
713 		bump = 0;
714 	    if (bump > 1000000)
715 		bump = 1000000;
716 	}
717 	*stv = tv;
718 #endif
719 
720 	td = curthread;
721 	p = td->td_proc;
722 
723 	if (frame && CLKF_USERMODE(frame)) {
724 		/*
725 		 * Came from userland, handle user time and deal with
726 		 * possible process.
727 		 */
728 		if (p && (p->p_flags & P_PROFIL))
729 			addupc_intr(p, CLKF_PC(frame), 1);
730 		td->td_uticks += bump;
731 
732 		/*
733 		 * Charge the time as appropriate
734 		 */
735 		if (p && p->p_nice > NZERO)
736 			cpu_time.cp_nice += bump;
737 		else
738 			cpu_time.cp_user += bump;
739 	} else {
740 		int intr_nest = mycpu->gd_intr_nesting_level;
741 
742 		if (in_ipi) {
743 			/*
744 			 * IPI processing code will bump gd_intr_nesting_level
745 			 * up by one, which breaks following CLKF_INTR testing,
746 			 * so we subtract it by one here.
747 			 */
748 			--intr_nest;
749 		}
750 #ifdef GPROF
751 		/*
752 		 * Kernel statistics are just like addupc_intr, only easier.
753 		 */
754 		g = &_gmonparam;
755 		if (g->state == GMON_PROF_ON && frame) {
756 			i = CLKF_PC(frame) - g->lowpc;
757 			if (i < g->textsize) {
758 				i /= HISTFRACTION * sizeof(*g->kcount);
759 				g->kcount[i]++;
760 			}
761 		}
762 #endif
763 
764 #define IS_INTR_RUNNING	((frame && CLKF_INTR(intr_nest)) || CLKF_INTR_TD(td))
765 
766 		/*
767 		 * Came from kernel mode, so we were:
768 		 * - handling an interrupt,
769 		 * - doing syscall or trap work on behalf of the current
770 		 *   user process, or
771 		 * - spinning in the idle loop.
772 		 * Whichever it is, charge the time as appropriate.
773 		 * Note that we charge interrupts to the current process,
774 		 * regardless of whether they are ``for'' that process,
775 		 * so that we know how much of its real time was spent
776 		 * in ``non-process'' (i.e., interrupt) work.
777 		 *
778 		 * XXX assume system if frame is NULL.  A NULL frame
779 		 * can occur if ipi processing is done from a crit_exit().
780 		 */
781 		if (IS_INTR_RUNNING)
782 			td->td_iticks += bump;
783 		else
784 			td->td_sticks += bump;
785 
786 		if (IS_INTR_RUNNING) {
787 			/*
788 			 * If we interrupted an interrupt thread, well,
789 			 * count it as interrupt time.
790 			 */
791 #ifdef DEBUG_PCTRACK
792 			if (frame)
793 				do_pctrack(frame, PCTRACK_INT);
794 #endif
795 			cpu_time.cp_intr += bump;
796 		} else {
797 			if (td == &mycpu->gd_idlethread) {
798 				/*
799 				 * Even if the current thread is the idle
800 				 * thread it could be due to token contention
801 				 * in the LWKT scheduler.  Count such as
802 				 * system time.
803 				 */
804 				if (mycpu->gd_reqflags & RQF_IDLECHECK_WK_MASK)
805 					cpu_time.cp_sys += bump;
806 				else
807 					cpu_time.cp_idle += bump;
808 			} else {
809 				/*
810 				 * System thread was running.
811 				 */
812 #ifdef DEBUG_PCTRACK
813 				if (frame)
814 					do_pctrack(frame, PCTRACK_SYS);
815 #endif
816 				cpu_time.cp_sys += bump;
817 			}
818 		}
819 
820 #undef IS_INTR_RUNNING
821 	}
822 }
823 
824 #ifdef DEBUG_PCTRACK
825 /*
826  * Sample the PC when in the kernel or in an interrupt.  User code can
827  * retrieve the information and generate a histogram or other output.
828  */
829 
830 static void
831 do_pctrack(struct intrframe *frame, int which)
832 {
833 	struct kinfo_pctrack *pctrack;
834 
835 	pctrack = &cputime_pctrack[mycpu->gd_cpuid][which];
836 	pctrack->pc_array[pctrack->pc_index & PCTRACK_ARYMASK] =
837 		(void *)CLKF_PC(frame);
838 	++pctrack->pc_index;
839 }
840 
841 static int
842 sysctl_pctrack(SYSCTL_HANDLER_ARGS)
843 {
844 	struct kinfo_pcheader head;
845 	int error;
846 	int cpu;
847 	int ntrack;
848 
849 	head.pc_ntrack = PCTRACK_SIZE;
850 	head.pc_arysize = PCTRACK_ARYSIZE;
851 
852 	if ((error = SYSCTL_OUT(req, &head, sizeof(head))) != 0)
853 		return (error);
854 
855 	for (cpu = 0; cpu < ncpus; ++cpu) {
856 		for (ntrack = 0; ntrack < PCTRACK_SIZE; ++ntrack) {
857 			error = SYSCTL_OUT(req, &cputime_pctrack[cpu][ntrack],
858 					   sizeof(struct kinfo_pctrack));
859 			if (error)
860 				break;
861 		}
862 		if (error)
863 			break;
864 	}
865 	return (error);
866 }
867 SYSCTL_PROC(_kern, OID_AUTO, pctrack, (CTLTYPE_OPAQUE|CTLFLAG_RD), 0, 0,
868 	sysctl_pctrack, "S,kinfo_pcheader", "CPU PC tracking");
869 
870 #endif
871 
872 /*
873  * The scheduler clock typically runs at a 50Hz rate.  NOTE! systimer,
874  * the MP lock might not be held.  We can safely manipulate parts of curproc
875  * but that's about it.
876  *
877  * Each cpu has its own scheduler clock.
878  */
879 static void
880 schedclock(systimer_t info, int in_ipi __unused, struct intrframe *frame)
881 {
882 	struct lwp *lp;
883 	struct rusage *ru;
884 	struct vmspace *vm;
885 	long rss;
886 
887 	if ((lp = lwkt_preempted_proc()) != NULL) {
888 		/*
889 		 * Account for cpu time used and hit the scheduler.  Note
890 		 * that this call MUST BE MP SAFE, and the BGL IS NOT HELD
891 		 * HERE.
892 		 */
893 		++lp->lwp_cpticks;
894 		usched_schedulerclock(lp, info->periodic, info->time);
895 	} else {
896 		usched_schedulerclock(NULL, info->periodic, info->time);
897 	}
898 	if ((lp = curthread->td_lwp) != NULL) {
899 		/*
900 		 * Update resource usage integrals and maximums.
901 		 */
902 		if ((ru = &lp->lwp_proc->p_ru) &&
903 		    (vm = lp->lwp_proc->p_vmspace) != NULL) {
904 			ru->ru_ixrss += pgtok(vm->vm_tsize);
905 			ru->ru_idrss += pgtok(vm->vm_dsize);
906 			ru->ru_isrss += pgtok(vm->vm_ssize);
907 			if (lwkt_trytoken(&vm->vm_map.token)) {
908 				rss = pgtok(vmspace_resident_count(vm));
909 				if (ru->ru_maxrss < rss)
910 					ru->ru_maxrss = rss;
911 				lwkt_reltoken(&vm->vm_map.token);
912 			}
913 		}
914 	}
915 	/* Increment the global sched_ticks */
916 	if (mycpu->gd_cpuid == 0)
917 		++sched_ticks;
918 }
919 
920 /*
921  * Compute number of ticks for the specified amount of time.  The
922  * return value is intended to be used in a clock interrupt timed
923  * operation and guaranteed to meet or exceed the requested time.
924  * If the representation overflows, return INT_MAX.  The minimum return
925  * value is 1 ticks and the function will average the calculation up.
926  * If any value greater then 0 microseconds is supplied, a value
927  * of at least 2 will be returned to ensure that a near-term clock
928  * interrupt does not cause the timeout to occur (degenerately) early.
929  *
930  * Note that limit checks must take into account microseconds, which is
931  * done simply by using the smaller signed long maximum instead of
932  * the unsigned long maximum.
933  *
934  * If ints have 32 bits, then the maximum value for any timeout in
935  * 10ms ticks is 248 days.
936  */
937 int
938 tvtohz_high(struct timeval *tv)
939 {
940 	int ticks;
941 	long sec, usec;
942 
943 	sec = tv->tv_sec;
944 	usec = tv->tv_usec;
945 	if (usec < 0) {
946 		sec--;
947 		usec += 1000000;
948 	}
949 	if (sec < 0) {
950 #ifdef DIAGNOSTIC
951 		if (usec > 0) {
952 			sec++;
953 			usec -= 1000000;
954 		}
955 		kprintf("tvtohz_high: negative time difference "
956 			"%ld sec %ld usec\n",
957 			sec, usec);
958 #endif
959 		ticks = 1;
960 	} else if (sec <= INT_MAX / hz) {
961 		ticks = (int)(sec * hz +
962 			    ((u_long)usec + (ustick - 1)) / ustick) + 1;
963 	} else {
964 		ticks = INT_MAX;
965 	}
966 	return (ticks);
967 }
968 
969 int
970 tstohz_high(struct timespec *ts)
971 {
972 	int ticks;
973 	long sec, nsec;
974 
975 	sec = ts->tv_sec;
976 	nsec = ts->tv_nsec;
977 	if (nsec < 0) {
978 		sec--;
979 		nsec += 1000000000;
980 	}
981 	if (sec < 0) {
982 #ifdef DIAGNOSTIC
983 		if (nsec > 0) {
984 			sec++;
985 			nsec -= 1000000000;
986 		}
987 		kprintf("tstohz_high: negative time difference "
988 			"%ld sec %ld nsec\n",
989 			sec, nsec);
990 #endif
991 		ticks = 1;
992 	} else if (sec <= INT_MAX / hz) {
993 		ticks = (int)(sec * hz +
994 			    ((u_long)nsec + (nstick - 1)) / nstick) + 1;
995 	} else {
996 		ticks = INT_MAX;
997 	}
998 	return (ticks);
999 }
1000 
1001 
1002 /*
1003  * Compute number of ticks for the specified amount of time, erroring on
1004  * the side of it being too low to ensure that sleeping the returned number
1005  * of ticks will not result in a late return.
1006  *
1007  * The supplied timeval may not be negative and should be normalized.  A
1008  * return value of 0 is possible if the timeval converts to less then
1009  * 1 tick.
1010  *
1011  * If ints have 32 bits, then the maximum value for any timeout in
1012  * 10ms ticks is 248 days.
1013  */
1014 int
1015 tvtohz_low(struct timeval *tv)
1016 {
1017 	int ticks;
1018 	long sec;
1019 
1020 	sec = tv->tv_sec;
1021 	if (sec <= INT_MAX / hz)
1022 		ticks = (int)(sec * hz + (u_long)tv->tv_usec / ustick);
1023 	else
1024 		ticks = INT_MAX;
1025 	return (ticks);
1026 }
1027 
1028 int
1029 tstohz_low(struct timespec *ts)
1030 {
1031 	int ticks;
1032 	long sec;
1033 
1034 	sec = ts->tv_sec;
1035 	if (sec <= INT_MAX / hz)
1036 		ticks = (int)(sec * hz + (u_long)ts->tv_nsec / nstick);
1037 	else
1038 		ticks = INT_MAX;
1039 	return (ticks);
1040 }
1041 
1042 /*
1043  * Start profiling on a process.
1044  *
1045  * Kernel profiling passes proc0 which never exits and hence
1046  * keeps the profile clock running constantly.
1047  */
1048 void
1049 startprofclock(struct proc *p)
1050 {
1051 	if ((p->p_flags & P_PROFIL) == 0) {
1052 		p->p_flags |= P_PROFIL;
1053 #if 0	/* XXX */
1054 		if (++profprocs == 1 && stathz != 0) {
1055 			crit_enter();
1056 			psdiv = psratio;
1057 			setstatclockrate(profhz);
1058 			crit_exit();
1059 		}
1060 #endif
1061 	}
1062 }
1063 
1064 /*
1065  * Stop profiling on a process.
1066  *
1067  * caller must hold p->p_token
1068  */
1069 void
1070 stopprofclock(struct proc *p)
1071 {
1072 	if (p->p_flags & P_PROFIL) {
1073 		p->p_flags &= ~P_PROFIL;
1074 #if 0	/* XXX */
1075 		if (--profprocs == 0 && stathz != 0) {
1076 			crit_enter();
1077 			psdiv = 1;
1078 			setstatclockrate(stathz);
1079 			crit_exit();
1080 		}
1081 #endif
1082 	}
1083 }
1084 
1085 /*
1086  * Return information about system clocks.
1087  */
1088 static int
1089 sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
1090 {
1091 	struct kinfo_clockinfo clkinfo;
1092 	/*
1093 	 * Construct clockinfo structure.
1094 	 */
1095 	clkinfo.ci_hz = hz;
1096 	clkinfo.ci_tick = ustick;
1097 	clkinfo.ci_tickadj = ntp_default_tick_delta / 1000;
1098 	clkinfo.ci_profhz = profhz;
1099 	clkinfo.ci_stathz = stathz ? stathz : hz;
1100 	return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
1101 }
1102 
1103 SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
1104 	0, 0, sysctl_kern_clockrate, "S,clockinfo","");
1105 
1106 /*
1107  * We have eight functions for looking at the clock, four for
1108  * microseconds and four for nanoseconds.  For each there is fast
1109  * but less precise version "get{nano|micro}[up]time" which will
1110  * return a time which is up to 1/HZ previous to the call, whereas
1111  * the raw version "{nano|micro}[up]time" will return a timestamp
1112  * which is as precise as possible.  The "up" variants return the
1113  * time relative to system boot, these are well suited for time
1114  * interval measurements.
1115  *
1116  * Each cpu independently maintains the current time of day, so all
1117  * we need to do to protect ourselves from changes is to do a loop
1118  * check on the seconds field changing out from under us.
1119  *
1120  * The system timer maintains a 32 bit count and due to various issues
1121  * it is possible for the calculated delta to occasionally exceed
1122  * sys_cputimer->freq.  If this occurs the sys_cputimer->freq64_nsec
1123  * multiplication can easily overflow, so we deal with the case.  For
1124  * uniformity we deal with the case in the usec case too.
1125  *
1126  * All the [get][micro,nano][time,uptime]() routines are MPSAFE.
1127  */
1128 void
1129 getmicrouptime(struct timeval *tvp)
1130 {
1131 	struct globaldata *gd = mycpu;
1132 	sysclock_t delta;
1133 
1134 	do {
1135 		tvp->tv_sec = gd->gd_time_seconds;
1136 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1137 	} while (tvp->tv_sec != gd->gd_time_seconds);
1138 
1139 	if (delta >= sys_cputimer->freq) {
1140 		tvp->tv_sec += delta / sys_cputimer->freq;
1141 		delta %= sys_cputimer->freq;
1142 	}
1143 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1144 	if (tvp->tv_usec >= 1000000) {
1145 		tvp->tv_usec -= 1000000;
1146 		++tvp->tv_sec;
1147 	}
1148 }
1149 
1150 void
1151 getnanouptime(struct timespec *tsp)
1152 {
1153 	struct globaldata *gd = mycpu;
1154 	sysclock_t delta;
1155 
1156 	do {
1157 		tsp->tv_sec = gd->gd_time_seconds;
1158 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1159 	} while (tsp->tv_sec != gd->gd_time_seconds);
1160 
1161 	if (delta >= sys_cputimer->freq) {
1162 		tsp->tv_sec += delta / sys_cputimer->freq;
1163 		delta %= sys_cputimer->freq;
1164 	}
1165 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1166 }
1167 
1168 void
1169 microuptime(struct timeval *tvp)
1170 {
1171 	struct globaldata *gd = mycpu;
1172 	sysclock_t delta;
1173 
1174 	do {
1175 		tvp->tv_sec = gd->gd_time_seconds;
1176 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1177 	} while (tvp->tv_sec != gd->gd_time_seconds);
1178 
1179 	if (delta >= sys_cputimer->freq) {
1180 		tvp->tv_sec += delta / sys_cputimer->freq;
1181 		delta %= sys_cputimer->freq;
1182 	}
1183 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1184 }
1185 
1186 void
1187 nanouptime(struct timespec *tsp)
1188 {
1189 	struct globaldata *gd = mycpu;
1190 	sysclock_t delta;
1191 
1192 	do {
1193 		tsp->tv_sec = gd->gd_time_seconds;
1194 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1195 	} while (tsp->tv_sec != gd->gd_time_seconds);
1196 
1197 	if (delta >= sys_cputimer->freq) {
1198 		tsp->tv_sec += delta / sys_cputimer->freq;
1199 		delta %= sys_cputimer->freq;
1200 	}
1201 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1202 }
1203 
1204 /*
1205  * realtime routines
1206  */
1207 void
1208 getmicrotime(struct timeval *tvp)
1209 {
1210 	struct globaldata *gd = mycpu;
1211 	struct timespec *bt;
1212 	sysclock_t delta;
1213 
1214 	do {
1215 		tvp->tv_sec = gd->gd_time_seconds;
1216 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1217 	} while (tvp->tv_sec != gd->gd_time_seconds);
1218 
1219 	if (delta >= sys_cputimer->freq) {
1220 		tvp->tv_sec += delta / sys_cputimer->freq;
1221 		delta %= sys_cputimer->freq;
1222 	}
1223 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1224 
1225 	bt = &basetime[basetime_index];
1226 	cpu_lfence();
1227 	tvp->tv_sec += bt->tv_sec;
1228 	tvp->tv_usec += bt->tv_nsec / 1000;
1229 	while (tvp->tv_usec >= 1000000) {
1230 		tvp->tv_usec -= 1000000;
1231 		++tvp->tv_sec;
1232 	}
1233 }
1234 
1235 void
1236 getnanotime(struct timespec *tsp)
1237 {
1238 	struct globaldata *gd = mycpu;
1239 	struct timespec *bt;
1240 	sysclock_t delta;
1241 
1242 	do {
1243 		tsp->tv_sec = gd->gd_time_seconds;
1244 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1245 	} while (tsp->tv_sec != gd->gd_time_seconds);
1246 
1247 	if (delta >= sys_cputimer->freq) {
1248 		tsp->tv_sec += delta / sys_cputimer->freq;
1249 		delta %= sys_cputimer->freq;
1250 	}
1251 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1252 
1253 	bt = &basetime[basetime_index];
1254 	cpu_lfence();
1255 	tsp->tv_sec += bt->tv_sec;
1256 	tsp->tv_nsec += bt->tv_nsec;
1257 	while (tsp->tv_nsec >= 1000000000) {
1258 		tsp->tv_nsec -= 1000000000;
1259 		++tsp->tv_sec;
1260 	}
1261 }
1262 
1263 static void
1264 getnanotime_nbt(struct timespec *nbt, struct timespec *tsp)
1265 {
1266 	struct globaldata *gd = mycpu;
1267 	sysclock_t delta;
1268 
1269 	do {
1270 		tsp->tv_sec = gd->gd_time_seconds;
1271 		delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
1272 	} while (tsp->tv_sec != gd->gd_time_seconds);
1273 
1274 	if (delta >= sys_cputimer->freq) {
1275 		tsp->tv_sec += delta / sys_cputimer->freq;
1276 		delta %= sys_cputimer->freq;
1277 	}
1278 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1279 
1280 	tsp->tv_sec += nbt->tv_sec;
1281 	tsp->tv_nsec += nbt->tv_nsec;
1282 	while (tsp->tv_nsec >= 1000000000) {
1283 		tsp->tv_nsec -= 1000000000;
1284 		++tsp->tv_sec;
1285 	}
1286 }
1287 
1288 
1289 void
1290 microtime(struct timeval *tvp)
1291 {
1292 	struct globaldata *gd = mycpu;
1293 	struct timespec *bt;
1294 	sysclock_t delta;
1295 
1296 	do {
1297 		tvp->tv_sec = gd->gd_time_seconds;
1298 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1299 	} while (tvp->tv_sec != gd->gd_time_seconds);
1300 
1301 	if (delta >= sys_cputimer->freq) {
1302 		tvp->tv_sec += delta / sys_cputimer->freq;
1303 		delta %= sys_cputimer->freq;
1304 	}
1305 	tvp->tv_usec = (sys_cputimer->freq64_usec * delta) >> 32;
1306 
1307 	bt = &basetime[basetime_index];
1308 	cpu_lfence();
1309 	tvp->tv_sec += bt->tv_sec;
1310 	tvp->tv_usec += bt->tv_nsec / 1000;
1311 	while (tvp->tv_usec >= 1000000) {
1312 		tvp->tv_usec -= 1000000;
1313 		++tvp->tv_sec;
1314 	}
1315 }
1316 
1317 void
1318 nanotime(struct timespec *tsp)
1319 {
1320 	struct globaldata *gd = mycpu;
1321 	struct timespec *bt;
1322 	sysclock_t delta;
1323 
1324 	do {
1325 		tsp->tv_sec = gd->gd_time_seconds;
1326 		delta = sys_cputimer->count() - gd->gd_cpuclock_base;
1327 	} while (tsp->tv_sec != gd->gd_time_seconds);
1328 
1329 	if (delta >= sys_cputimer->freq) {
1330 		tsp->tv_sec += delta / sys_cputimer->freq;
1331 		delta %= sys_cputimer->freq;
1332 	}
1333 	tsp->tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1334 
1335 	bt = &basetime[basetime_index];
1336 	cpu_lfence();
1337 	tsp->tv_sec += bt->tv_sec;
1338 	tsp->tv_nsec += bt->tv_nsec;
1339 	while (tsp->tv_nsec >= 1000000000) {
1340 		tsp->tv_nsec -= 1000000000;
1341 		++tsp->tv_sec;
1342 	}
1343 }
1344 
1345 /*
1346  * Get an approximate time_t.  It does not have to be accurate.  This
1347  * function is called only from KTR and can be called with the system in
1348  * any state so do not use a critical section or other complex operation
1349  * here.
1350  *
1351  * NOTE: This is not exactly synchronized with real time.  To do that we
1352  *	 would have to do what microtime does and check for a nanoseconds
1353  *	 overflow.
1354  */
1355 time_t
1356 get_approximate_time_t(void)
1357 {
1358 	struct globaldata *gd = mycpu;
1359 	struct timespec *bt;
1360 
1361 	bt = &basetime[basetime_index];
1362 	return(gd->gd_time_seconds + bt->tv_sec);
1363 }
1364 
1365 int
1366 pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
1367 {
1368 	pps_params_t *app;
1369 	struct pps_fetch_args *fapi;
1370 #ifdef PPS_SYNC
1371 	struct pps_kcbind_args *kapi;
1372 #endif
1373 
1374 	switch (cmd) {
1375 	case PPS_IOC_CREATE:
1376 		return (0);
1377 	case PPS_IOC_DESTROY:
1378 		return (0);
1379 	case PPS_IOC_SETPARAMS:
1380 		app = (pps_params_t *)data;
1381 		if (app->mode & ~pps->ppscap)
1382 			return (EINVAL);
1383 		pps->ppsparam = *app;
1384 		return (0);
1385 	case PPS_IOC_GETPARAMS:
1386 		app = (pps_params_t *)data;
1387 		*app = pps->ppsparam;
1388 		app->api_version = PPS_API_VERS_1;
1389 		return (0);
1390 	case PPS_IOC_GETCAP:
1391 		*(int*)data = pps->ppscap;
1392 		return (0);
1393 	case PPS_IOC_FETCH:
1394 		fapi = (struct pps_fetch_args *)data;
1395 		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
1396 			return (EINVAL);
1397 		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
1398 			return (EOPNOTSUPP);
1399 		pps->ppsinfo.current_mode = pps->ppsparam.mode;
1400 		fapi->pps_info_buf = pps->ppsinfo;
1401 		return (0);
1402 	case PPS_IOC_KCBIND:
1403 #ifdef PPS_SYNC
1404 		kapi = (struct pps_kcbind_args *)data;
1405 		/* XXX Only root should be able to do this */
1406 		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
1407 			return (EINVAL);
1408 		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
1409 			return (EINVAL);
1410 		if (kapi->edge & ~pps->ppscap)
1411 			return (EINVAL);
1412 		pps->kcmode = kapi->edge;
1413 		return (0);
1414 #else
1415 		return (EOPNOTSUPP);
1416 #endif
1417 	default:
1418 		return (ENOTTY);
1419 	}
1420 }
1421 
1422 void
1423 pps_init(struct pps_state *pps)
1424 {
1425 	pps->ppscap |= PPS_TSFMT_TSPEC;
1426 	if (pps->ppscap & PPS_CAPTUREASSERT)
1427 		pps->ppscap |= PPS_OFFSETASSERT;
1428 	if (pps->ppscap & PPS_CAPTURECLEAR)
1429 		pps->ppscap |= PPS_OFFSETCLEAR;
1430 }
1431 
1432 void
1433 pps_event(struct pps_state *pps, sysclock_t count, int event)
1434 {
1435 	struct globaldata *gd;
1436 	struct timespec *tsp;
1437 	struct timespec *osp;
1438 	struct timespec *bt;
1439 	struct timespec ts;
1440 	sysclock_t *pcount;
1441 #ifdef PPS_SYNC
1442 	sysclock_t tcount;
1443 #endif
1444 	sysclock_t delta;
1445 	pps_seq_t *pseq;
1446 	int foff;
1447 #ifdef PPS_SYNC
1448 	int fhard;
1449 #else
1450 	int fhard __unused;
1451 #endif
1452 	int ni;
1453 
1454 	gd = mycpu;
1455 
1456 	/* Things would be easier with arrays... */
1457 	if (event == PPS_CAPTUREASSERT) {
1458 		tsp = &pps->ppsinfo.assert_timestamp;
1459 		osp = &pps->ppsparam.assert_offset;
1460 		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1461 		fhard = pps->kcmode & PPS_CAPTUREASSERT;
1462 		pcount = &pps->ppscount[0];
1463 		pseq = &pps->ppsinfo.assert_sequence;
1464 	} else {
1465 		tsp = &pps->ppsinfo.clear_timestamp;
1466 		osp = &pps->ppsparam.clear_offset;
1467 		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1468 		fhard = pps->kcmode & PPS_CAPTURECLEAR;
1469 		pcount = &pps->ppscount[1];
1470 		pseq = &pps->ppsinfo.clear_sequence;
1471 	}
1472 
1473 	/* Nothing really happened */
1474 	if (*pcount == count)
1475 		return;
1476 
1477 	*pcount = count;
1478 
1479 	do {
1480 		ts.tv_sec = gd->gd_time_seconds;
1481 		delta = count - gd->gd_cpuclock_base;
1482 	} while (ts.tv_sec != gd->gd_time_seconds);
1483 
1484 	if (delta >= sys_cputimer->freq) {
1485 		ts.tv_sec += delta / sys_cputimer->freq;
1486 		delta %= sys_cputimer->freq;
1487 	}
1488 	ts.tv_nsec = (sys_cputimer->freq64_nsec * delta) >> 32;
1489 	ni = basetime_index;
1490 	cpu_lfence();
1491 	bt = &basetime[ni];
1492 	ts.tv_sec += bt->tv_sec;
1493 	ts.tv_nsec += bt->tv_nsec;
1494 	while (ts.tv_nsec >= 1000000000) {
1495 		ts.tv_nsec -= 1000000000;
1496 		++ts.tv_sec;
1497 	}
1498 
1499 	(*pseq)++;
1500 	*tsp = ts;
1501 
1502 	if (foff) {
1503 		timespecadd(tsp, osp);
1504 		if (tsp->tv_nsec < 0) {
1505 			tsp->tv_nsec += 1000000000;
1506 			tsp->tv_sec -= 1;
1507 		}
1508 	}
1509 #ifdef PPS_SYNC
1510 	if (fhard) {
1511 		/* magic, at its best... */
1512 		tcount = count - pps->ppscount[2];
1513 		pps->ppscount[2] = count;
1514 		if (tcount >= sys_cputimer->freq) {
1515 			delta = (1000000000 * (tcount / sys_cputimer->freq) +
1516 				 sys_cputimer->freq64_nsec *
1517 				 (tcount % sys_cputimer->freq)) >> 32;
1518 		} else {
1519 			delta = (sys_cputimer->freq64_nsec * tcount) >> 32;
1520 		}
1521 		hardpps(tsp, delta);
1522 	}
1523 #endif
1524 }
1525 
1526 /*
1527  * Return the tsc target value for a delay of (ns).
1528  *
1529  * Returns -1 if the TSC is not supported.
1530  */
1531 int64_t
1532 tsc_get_target(int ns)
1533 {
1534 #if defined(_RDTSC_SUPPORTED_)
1535 	if (cpu_feature & CPUID_TSC) {
1536 		return (rdtsc() + tsc_frequency * ns / (int64_t)1000000000);
1537 	}
1538 #endif
1539 	return(-1);
1540 }
1541 
1542 /*
1543  * Compare the tsc against the passed target
1544  *
1545  * Returns +1 if the target has been reached
1546  * Returns  0 if the target has not yet been reached
1547  * Returns -1 if the TSC is not supported.
1548  *
1549  * Typical use:		while (tsc_test_target(target) == 0) { ...poll... }
1550  */
1551 int
1552 tsc_test_target(int64_t target)
1553 {
1554 #if defined(_RDTSC_SUPPORTED_)
1555 	if (cpu_feature & CPUID_TSC) {
1556 		if ((int64_t)(target - rdtsc()) <= 0)
1557 			return(1);
1558 		return(0);
1559 	}
1560 #endif
1561 	return(-1);
1562 }
1563 
1564 /*
1565  * Delay the specified number of nanoseconds using the tsc.  This function
1566  * returns immediately if the TSC is not supported.  At least one cpu_pause()
1567  * will be issued.
1568  */
1569 void
1570 tsc_delay(int ns)
1571 {
1572 	int64_t clk;
1573 
1574 	clk = tsc_get_target(ns);
1575 	cpu_pause();
1576 	while (tsc_test_target(clk) == 0)
1577 		cpu_pause();
1578 }
1579