1 /*- 2 * Copyright (c) 2000 Michael Smith 3 * Copyright (c) 2001 Scott Long 4 * Copyright (c) 2000 BSDi 5 * Copyright (c) 2001 Adaptec, Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $ 30 * $DragonFly: src/sys/dev/raid/aac/aac.c,v 1.27 2006/10/25 20:56:00 dillon Exp $ 31 */ 32 33 /* 34 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters. 35 */ 36 37 #include "opt_aac.h" 38 39 /* #include <stddef.h> */ 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/malloc.h> 43 #include <sys/kernel.h> 44 #include <sys/kthread.h> 45 #include <sys/sysctl.h> 46 #include <sys/poll.h> 47 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005 48 #include <sys/selinfo.h> 49 #else 50 #include <sys/select.h> 51 #endif 52 53 #include "aac_compat.h" 54 55 #include <sys/bus.h> 56 #include <sys/conf.h> 57 #include <sys/devicestat.h> 58 #include <sys/disk.h> 59 #include <sys/signalvar.h> 60 #include <sys/time.h> 61 #include <sys/eventhandler.h> 62 63 #include "aacreg.h" 64 #include "aac_ioctl.h" 65 #include "aacvar.h" 66 #include "aac_tables.h" 67 #include "aac_cam.h" 68 69 static void aac_startup(void *arg); 70 static void aac_add_container(struct aac_softc *sc, 71 struct aac_mntinforesp *mir, int f); 72 static void aac_get_bus_info(struct aac_softc *sc); 73 74 /* Command Processing */ 75 static void aac_timeout(void *ssc); 76 static int aac_start(struct aac_command *cm); 77 static void aac_complete(void *context, int pending); 78 static int aac_bio_command(struct aac_softc *sc, struct aac_command **cmp); 79 static void aac_bio_complete(struct aac_command *cm); 80 static int aac_wait_command(struct aac_command *cm, int timeout); 81 static void aac_host_command(struct aac_softc *sc); 82 static void aac_host_response(struct aac_softc *sc); 83 84 /* Command Buffer Management */ 85 static void aac_map_command_helper(void *arg, bus_dma_segment_t *segs, 86 int nseg, int error); 87 static int aac_alloc_commands(struct aac_softc *sc); 88 static void aac_free_commands(struct aac_softc *sc); 89 static void aac_map_command(struct aac_command *cm); 90 static void aac_unmap_command(struct aac_command *cm); 91 92 /* Hardware Interface */ 93 static void aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, 94 int error); 95 static int aac_check_firmware(struct aac_softc *sc); 96 static int aac_init(struct aac_softc *sc); 97 static int aac_sync_command(struct aac_softc *sc, u_int32_t command, 98 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, 99 u_int32_t arg3, u_int32_t *sp); 100 static int aac_enqueue_fib(struct aac_softc *sc, int queue, 101 struct aac_command *cm); 102 static int aac_dequeue_fib(struct aac_softc *sc, int queue, 103 u_int32_t *fib_size, struct aac_fib **fib_addr); 104 static int aac_enqueue_response(struct aac_softc *sc, int queue, 105 struct aac_fib *fib); 106 107 /* Falcon/PPC interface */ 108 static int aac_fa_get_fwstatus(struct aac_softc *sc); 109 static void aac_fa_qnotify(struct aac_softc *sc, int qbit); 110 static int aac_fa_get_istatus(struct aac_softc *sc); 111 static void aac_fa_clear_istatus(struct aac_softc *sc, int mask); 112 static void aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 113 u_int32_t arg0, u_int32_t arg1, 114 u_int32_t arg2, u_int32_t arg3); 115 static int aac_fa_get_mailbox(struct aac_softc *sc, int mb); 116 static void aac_fa_set_interrupts(struct aac_softc *sc, int enable); 117 118 struct aac_interface aac_fa_interface = { 119 aac_fa_get_fwstatus, 120 aac_fa_qnotify, 121 aac_fa_get_istatus, 122 aac_fa_clear_istatus, 123 aac_fa_set_mailbox, 124 aac_fa_get_mailbox, 125 aac_fa_set_interrupts 126 }; 127 128 /* StrongARM interface */ 129 static int aac_sa_get_fwstatus(struct aac_softc *sc); 130 static void aac_sa_qnotify(struct aac_softc *sc, int qbit); 131 static int aac_sa_get_istatus(struct aac_softc *sc); 132 static void aac_sa_clear_istatus(struct aac_softc *sc, int mask); 133 static void aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 134 u_int32_t arg0, u_int32_t arg1, 135 u_int32_t arg2, u_int32_t arg3); 136 static int aac_sa_get_mailbox(struct aac_softc *sc, int mb); 137 static void aac_sa_set_interrupts(struct aac_softc *sc, int enable); 138 139 struct aac_interface aac_sa_interface = { 140 aac_sa_get_fwstatus, 141 aac_sa_qnotify, 142 aac_sa_get_istatus, 143 aac_sa_clear_istatus, 144 aac_sa_set_mailbox, 145 aac_sa_get_mailbox, 146 aac_sa_set_interrupts 147 }; 148 149 /* i960Rx interface */ 150 static int aac_rx_get_fwstatus(struct aac_softc *sc); 151 static void aac_rx_qnotify(struct aac_softc *sc, int qbit); 152 static int aac_rx_get_istatus(struct aac_softc *sc); 153 static void aac_rx_clear_istatus(struct aac_softc *sc, int mask); 154 static void aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 155 u_int32_t arg0, u_int32_t arg1, 156 u_int32_t arg2, u_int32_t arg3); 157 static int aac_rx_get_mailbox(struct aac_softc *sc, int mb); 158 static void aac_rx_set_interrupts(struct aac_softc *sc, int enable); 159 160 struct aac_interface aac_rx_interface = { 161 aac_rx_get_fwstatus, 162 aac_rx_qnotify, 163 aac_rx_get_istatus, 164 aac_rx_clear_istatus, 165 aac_rx_set_mailbox, 166 aac_rx_get_mailbox, 167 aac_rx_set_interrupts 168 }; 169 170 /* Debugging and Diagnostics */ 171 static void aac_describe_controller(struct aac_softc *sc); 172 static char *aac_describe_code(struct aac_code_lookup *table, 173 u_int32_t code); 174 175 /* Management Interface */ 176 static d_open_t aac_open; 177 static d_close_t aac_close; 178 static d_ioctl_t aac_ioctl; 179 static d_poll_t aac_poll; 180 static int aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib); 181 static void aac_handle_aif(struct aac_softc *sc, 182 struct aac_fib *fib); 183 static int aac_rev_check(struct aac_softc *sc, caddr_t udata); 184 static int aac_getnext_aif(struct aac_softc *sc, caddr_t arg); 185 static int aac_return_aif(struct aac_softc *sc, caddr_t uptr); 186 static int aac_query_disk(struct aac_softc *sc, caddr_t uptr); 187 188 #define AAC_CDEV_MAJOR 150 189 190 static struct dev_ops aac_ops = { 191 { "aac", AAC_CDEV_MAJOR, 0 }, 192 .d_open = aac_open, 193 .d_close = aac_close, 194 .d_ioctl = aac_ioctl, 195 .d_poll = aac_poll, 196 }; 197 198 DECLARE_DUMMY_MODULE(aac); 199 200 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver"); 201 202 /* sysctl node */ 203 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters"); 204 205 /* 206 * Device Interface 207 */ 208 209 /* 210 * Initialise the controller and softc 211 */ 212 int 213 aac_attach(struct aac_softc *sc) 214 { 215 int error, unit; 216 217 debug_called(1); 218 callout_init(&sc->aac_watchdog); 219 220 /* 221 * Initialise per-controller queues. 222 */ 223 aac_initq_free(sc); 224 aac_initq_ready(sc); 225 aac_initq_busy(sc); 226 aac_initq_complete(sc); 227 aac_initq_bio(sc); 228 229 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005 230 /* 231 * Initialise command-completion task. 232 */ 233 TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc); 234 #endif 235 236 /* disable interrupts before we enable anything */ 237 AAC_MASK_INTERRUPTS(sc); 238 239 /* mark controller as suspended until we get ourselves organised */ 240 sc->aac_state |= AAC_STATE_SUSPEND; 241 242 /* 243 * Check that the firmware on the card is supported. 244 */ 245 if ((error = aac_check_firmware(sc)) != 0) 246 return(error); 247 248 /* Init the sync fib lock */ 249 AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock"); 250 251 /* 252 * Initialise the adapter. 253 */ 254 if ((error = aac_init(sc)) != 0) 255 return(error); 256 257 /* 258 * Print a little information about the controller. 259 */ 260 aac_describe_controller(sc); 261 262 /* 263 * Register to probe our containers later. 264 */ 265 TAILQ_INIT(&sc->aac_container_tqh); 266 AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock"); 267 268 /* 269 * Lock for the AIF queue 270 */ 271 AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock"); 272 273 sc->aac_ich.ich_func = aac_startup; 274 sc->aac_ich.ich_arg = sc; 275 sc->aac_ich.ich_desc = "aac"; 276 if (config_intrhook_establish(&sc->aac_ich) != 0) { 277 device_printf(sc->aac_dev, 278 "can't establish configuration hook\n"); 279 return(ENXIO); 280 } 281 282 /* 283 * Make the control device. 284 */ 285 unit = device_get_unit(sc->aac_dev); 286 dev_ops_add(&aac_ops, -1, unit); 287 sc->aac_dev_t = make_dev(&aac_ops, unit, UID_ROOT, GID_WHEEL, 0644, 288 "aac%d", unit); 289 #if defined(__FreeBSD__) && __FreeBSD_version > 500005 290 (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit); 291 (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit); 292 #endif 293 sc->aac_dev_t->si_drv1 = sc; 294 reference_dev(sc->aac_dev_t); 295 296 /* Create the AIF thread */ 297 #if defined(__FreeBSD__) && __FreeBSD_version > 500005 298 if (kthread_create((void(*)(void *))aac_host_command, sc, 299 &sc->aifthread, 0, "aac%daif", unit)) 300 #else 301 if (kthread_create((void(*)(void *))aac_host_command, sc, 302 &sc->aifthread, "aac%daif", unit)) 303 #endif 304 panic("Could not create AIF thread\n"); 305 306 /* Register the shutdown method to only be called post-dump */ 307 if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev, 308 SHUTDOWN_PRI_DEFAULT)) == NULL) 309 device_printf(sc->aac_dev, "shutdown event registration failed\n"); 310 311 /* Register with CAM for the non-DASD devices */ 312 if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) 313 aac_get_bus_info(sc); 314 315 return(0); 316 } 317 318 /* 319 * Probe for containers, create disks. 320 */ 321 static void 322 aac_startup(void *arg) 323 { 324 struct aac_softc *sc; 325 struct aac_fib *fib; 326 struct aac_mntinfo *mi; 327 struct aac_mntinforesp *mir = NULL; 328 int count = 0, i = 0; 329 330 debug_called(1); 331 332 sc = (struct aac_softc *)arg; 333 334 /* disconnect ourselves from the intrhook chain */ 335 config_intrhook_disestablish(&sc->aac_ich); 336 337 aac_alloc_sync_fib(sc, &fib, 0); 338 mi = (struct aac_mntinfo *)&fib->data[0]; 339 340 /* loop over possible containers */ 341 do { 342 /* request information on this container */ 343 bzero(mi, sizeof(struct aac_mntinfo)); 344 mi->Command = VM_NameServe; 345 mi->MntType = FT_FILESYS; 346 mi->MntCount = i; 347 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 348 sizeof(struct aac_mntinfo))) { 349 device_printf(sc->aac_dev, 350 "error probing container %d", i); 351 352 continue; 353 } 354 355 mir = (struct aac_mntinforesp *)&fib->data[0]; 356 /* XXX Need to check if count changed */ 357 count = mir->MntRespCount; 358 aac_add_container(sc, mir, 0); 359 i++; 360 } while ((i < count) && (i < AAC_MAX_CONTAINERS)); 361 362 aac_release_sync_fib(sc); 363 364 /* poke the bus to actually attach the child devices */ 365 if (bus_generic_attach(sc->aac_dev)) 366 device_printf(sc->aac_dev, "bus_generic_attach failed\n"); 367 368 /* mark the controller up */ 369 sc->aac_state &= ~AAC_STATE_SUSPEND; 370 371 /* enable interrupts now */ 372 AAC_UNMASK_INTERRUPTS(sc); 373 374 /* enable the timeout watchdog */ 375 callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz, 376 aac_timeout, sc); 377 } 378 379 /* 380 * Create a device to respresent a new container 381 */ 382 static void 383 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f) 384 { 385 struct aac_container *co; 386 device_t child; 387 388 /* 389 * Check container volume type for validity. Note that many of 390 * the possible types may never show up. 391 */ 392 if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) { 393 MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF, 394 M_INTWAIT); 395 debug(1, "id %x name '%.16s' size %u type %d", 396 mir->MntTable[0].ObjectId, 397 mir->MntTable[0].FileSystemName, 398 mir->MntTable[0].Capacity, mir->MntTable[0].VolType); 399 400 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL) 401 device_printf(sc->aac_dev, "device_add_child failed\n"); 402 else 403 device_set_ivars(child, co); 404 device_set_desc(child, aac_describe_code(aac_container_types, 405 mir->MntTable[0].VolType)); 406 co->co_disk = child; 407 co->co_found = f; 408 bcopy(&mir->MntTable[0], &co->co_mntobj, 409 sizeof(struct aac_mntobj)); 410 AAC_LOCK_ACQUIRE(&sc->aac_container_lock); 411 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link); 412 AAC_LOCK_RELEASE(&sc->aac_container_lock); 413 } 414 } 415 416 /* 417 * Free all of the resources associated with (sc) 418 * 419 * Should not be called if the controller is active. 420 */ 421 void 422 aac_free(struct aac_softc *sc) 423 { 424 debug_called(1); 425 426 /* remove the control device */ 427 if (sc->aac_dev_t != NULL) 428 destroy_dev(sc->aac_dev_t); 429 430 /* throw away any FIB buffers, discard the FIB DMA tag */ 431 if (sc->aac_fibs != NULL) 432 aac_free_commands(sc); 433 if (sc->aac_fib_dmat) 434 bus_dma_tag_destroy(sc->aac_fib_dmat); 435 436 /* destroy the common area */ 437 if (sc->aac_common) { 438 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap); 439 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common, 440 sc->aac_common_dmamap); 441 } 442 if (sc->aac_common_dmat) 443 bus_dma_tag_destroy(sc->aac_common_dmat); 444 445 /* disconnect the interrupt handler */ 446 if (sc->aac_intr) 447 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr); 448 if (sc->aac_irq != NULL) 449 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid, 450 sc->aac_irq); 451 452 /* destroy data-transfer DMA tag */ 453 if (sc->aac_buffer_dmat) 454 bus_dma_tag_destroy(sc->aac_buffer_dmat); 455 456 /* destroy the parent DMA tag */ 457 if (sc->aac_parent_dmat) 458 bus_dma_tag_destroy(sc->aac_parent_dmat); 459 460 /* release the register window mapping */ 461 if (sc->aac_regs_resource != NULL) { 462 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, 463 sc->aac_regs_rid, sc->aac_regs_resource); 464 } 465 dev_ops_remove(&aac_ops, -1, device_get_unit(sc->aac_dev)); 466 } 467 468 /* 469 * Disconnect from the controller completely, in preparation for unload. 470 */ 471 int 472 aac_detach(device_t dev) 473 { 474 struct aac_softc *sc; 475 #if AAC_BROKEN 476 int error; 477 #endif 478 479 debug_called(1); 480 481 sc = device_get_softc(dev); 482 483 callout_stop(&sc->aac_watchdog); 484 485 if (sc->aac_state & AAC_STATE_OPEN) 486 return(EBUSY); 487 488 #if AAC_BROKEN 489 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 490 sc->aifflags |= AAC_AIFFLAGS_EXIT; 491 wakeup(sc->aifthread); 492 tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz); 493 } 494 495 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) 496 panic("Cannot shutdown AIF thread\n"); 497 498 if ((error = aac_shutdown(dev))) 499 return(error); 500 501 aac_free(sc); 502 503 return(0); 504 #else 505 return (EBUSY); 506 #endif 507 } 508 509 /* 510 * Bring the controller down to a dormant state and detach all child devices. 511 * 512 * This function is called before detach or system shutdown. 513 * 514 * Note that we can assume that the bioq on the controller is empty, as we won't 515 * allow shutdown if any device is open. 516 */ 517 int 518 aac_shutdown(device_t dev) 519 { 520 struct aac_softc *sc; 521 struct aac_fib *fib; 522 struct aac_close_command *cc; 523 524 debug_called(1); 525 526 sc = device_get_softc(dev); 527 528 crit_enter(); 529 530 sc->aac_state |= AAC_STATE_SUSPEND; 531 532 /* 533 * Send a Container shutdown followed by a HostShutdown FIB to the 534 * controller to convince it that we don't want to talk to it anymore. 535 * We've been closed and all I/O completed already 536 */ 537 device_printf(sc->aac_dev, "shutting down controller..."); 538 539 aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE); 540 cc = (struct aac_close_command *)&fib->data[0]; 541 542 bzero(cc, sizeof(struct aac_close_command)); 543 cc->Command = VM_CloseAll; 544 cc->ContainerId = 0xffffffff; 545 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 546 sizeof(struct aac_close_command))) 547 printf("FAILED.\n"); 548 else { 549 fib->data[0] = 0; 550 /* 551 * XXX Issuing this command to the controller makes it shut down 552 * but also keeps it from coming back up without a reset of the 553 * PCI bus. This is not desirable if you are just unloading the 554 * driver module with the intent to reload it later. 555 */ 556 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, 557 fib, 1)) { 558 printf("FAILED.\n"); 559 } else { 560 printf("done.\n"); 561 } 562 } 563 564 AAC_MASK_INTERRUPTS(sc); 565 566 crit_exit(); 567 return(0); 568 } 569 570 /* 571 * Bring the controller to a quiescent state, ready for system suspend. 572 */ 573 int 574 aac_suspend(device_t dev) 575 { 576 struct aac_softc *sc; 577 578 debug_called(1); 579 580 sc = device_get_softc(dev); 581 582 crit_enter(); 583 584 sc->aac_state |= AAC_STATE_SUSPEND; 585 586 AAC_MASK_INTERRUPTS(sc); 587 crit_exit(); 588 return(0); 589 } 590 591 /* 592 * Bring the controller back to a state ready for operation. 593 */ 594 int 595 aac_resume(device_t dev) 596 { 597 struct aac_softc *sc; 598 599 debug_called(1); 600 601 sc = device_get_softc(dev); 602 603 sc->aac_state &= ~AAC_STATE_SUSPEND; 604 AAC_UNMASK_INTERRUPTS(sc); 605 return(0); 606 } 607 608 /* 609 * Take an interrupt. 610 */ 611 void 612 aac_intr(void *arg) 613 { 614 struct aac_softc *sc; 615 u_int16_t reason; 616 u_int32_t *resp_queue; 617 618 debug_called(2); 619 620 sc = (struct aac_softc *)arg; 621 622 /* 623 * Optimize the common case of adapter response interrupts. 624 * We must read from the card prior to processing the responses 625 * to ensure the clear is flushed prior to accessing the queues. 626 * Reading the queues from local memory might save us a PCI read. 627 */ 628 resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE]; 629 if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX]) 630 reason = AAC_DB_RESPONSE_READY; 631 else 632 reason = AAC_GET_ISTATUS(sc); 633 AAC_CLEAR_ISTATUS(sc, reason); 634 (void)AAC_GET_ISTATUS(sc); 635 636 /* It's not ok to return here because of races with the previous step */ 637 if (reason & AAC_DB_RESPONSE_READY) 638 aac_host_response(sc); 639 640 /* controller wants to talk to the log */ 641 if (reason & AAC_DB_PRINTF) 642 aac_print_printf(sc); 643 644 /* controller has a message for us? */ 645 if (reason & AAC_DB_COMMAND_READY) { 646 /* XXX What happens if the thread is already awake? */ 647 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 648 sc->aifflags |= AAC_AIFFLAGS_PENDING; 649 wakeup(sc->aifthread); 650 } 651 } 652 } 653 654 /* 655 * Command Processing 656 */ 657 658 /* 659 * Start as much queued I/O as possible on the controller 660 */ 661 void 662 aac_startio(struct aac_softc *sc) 663 { 664 struct aac_command *cm; 665 666 debug_called(2); 667 668 for (;;) { 669 /* 670 * Try to get a command that's been put off for lack of 671 * resources 672 */ 673 cm = aac_dequeue_ready(sc); 674 675 /* 676 * Try to build a command off the bio queue (ignore error 677 * return) 678 */ 679 if (cm == NULL) 680 aac_bio_command(sc, &cm); 681 682 /* nothing to do? */ 683 if (cm == NULL) 684 break; 685 686 /* try to give the command to the controller */ 687 if (aac_start(cm) == EBUSY) { 688 /* put it on the ready queue for later */ 689 aac_requeue_ready(cm); 690 break; 691 } 692 } 693 } 694 695 /* 696 * Deliver a command to the controller; allocate controller resources at the 697 * last moment when possible. 698 */ 699 static int 700 aac_start(struct aac_command *cm) 701 { 702 struct aac_softc *sc; 703 int error; 704 705 debug_called(2); 706 707 sc = cm->cm_sc; 708 709 /* get the command mapped */ 710 aac_map_command(cm); 711 712 /* fix up the address values in the FIB */ 713 cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib; 714 cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys; 715 716 /* save a pointer to the command for speedy reverse-lookup */ 717 cm->cm_fib->Header.SenderData = (u_int32_t)cm; /* XXX 64-bit physical 718 * address issue */ 719 /* put the FIB on the outbound queue */ 720 error = aac_enqueue_fib(sc, cm->cm_queue, cm); 721 return(error); 722 } 723 724 /* 725 * Handle notification of one or more FIBs coming from the controller. 726 */ 727 static void 728 aac_host_command(struct aac_softc *sc) 729 { 730 struct aac_fib *fib; 731 u_int32_t fib_size; 732 int size; 733 734 debug_called(2); 735 736 sc->aifflags |= AAC_AIFFLAGS_RUNNING; 737 738 while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) { 739 if (!(sc->aifflags & AAC_AIFFLAGS_PENDING)) 740 tsleep(sc->aifthread, 0, "aifthd", 15 * hz); 741 742 sc->aifflags &= ~AAC_AIFFLAGS_PENDING; 743 for (;;) { 744 if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE, 745 &fib_size, &fib)) 746 break; /* nothing to do */ 747 748 AAC_PRINT_FIB(sc, fib); 749 750 switch (fib->Header.Command) { 751 case AifRequest: 752 aac_handle_aif(sc, fib); 753 break; 754 default: 755 device_printf(sc->aac_dev, "unknown command " 756 "from controller\n"); 757 break; 758 } 759 760 /* Return the AIF to the controller. */ 761 if ((fib->Header.XferState == 0) || 762 (fib->Header.StructType != AAC_FIBTYPE_TFIB)) 763 break; 764 765 if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) { 766 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST; 767 *(AAC_FSAStatus*)fib->data = ST_OK; 768 769 /* XXX Compute the Size field? */ 770 size = fib->Header.Size; 771 if (size > sizeof(struct aac_fib)) { 772 size = sizeof(struct aac_fib); 773 fib->Header.Size = size; 774 } 775 /* 776 * Since we did not generate this command, it 777 * cannot go through the normal 778 * enqueue->startio chain. 779 */ 780 aac_enqueue_response(sc, 781 AAC_ADAP_NORM_RESP_QUEUE, 782 fib); 783 } 784 } 785 } 786 sc->aifflags &= ~AAC_AIFFLAGS_RUNNING; 787 wakeup(sc->aac_dev); 788 789 #if defined(__FreeBSD__) && __FreeBSD_version > 500005 790 mtx_lock(&Giant); 791 #endif 792 kthread_exit(); 793 } 794 795 /* 796 * Handle notification of one or more FIBs completed by the controller 797 */ 798 static void 799 aac_host_response(struct aac_softc *sc) 800 { 801 struct aac_command *cm; 802 struct aac_fib *fib; 803 u_int32_t fib_size; 804 805 debug_called(2); 806 807 for (;;) { 808 /* look for completed FIBs on our queue */ 809 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size, 810 &fib)) 811 break; /* nothing to do */ 812 813 /* get the command, unmap and queue for later processing */ 814 cm = (struct aac_command *)fib->Header.SenderData; 815 if (cm == NULL) { 816 AAC_PRINT_FIB(sc, fib); 817 } else { 818 aac_remove_busy(cm); 819 aac_unmap_command(cm); /* XXX defer? */ 820 aac_enqueue_complete(cm); 821 } 822 } 823 824 /* handle completion processing */ 825 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005 826 taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete); 827 #else 828 aac_complete(sc, 0); 829 #endif 830 } 831 832 /* 833 * Process completed commands. 834 */ 835 static void 836 aac_complete(void *context, int pending) 837 { 838 struct aac_softc *sc; 839 struct aac_command *cm; 840 841 debug_called(2); 842 843 sc = (struct aac_softc *)context; 844 845 /* pull completed commands off the queue */ 846 for (;;) { 847 cm = aac_dequeue_complete(sc); 848 if (cm == NULL) 849 break; 850 cm->cm_flags |= AAC_CMD_COMPLETED; 851 852 /* is there a completion handler? */ 853 if (cm->cm_complete != NULL) { 854 cm->cm_complete(cm); 855 } else { 856 /* assume that someone is sleeping on this command */ 857 wakeup(cm); 858 } 859 } 860 861 /* see if we can start some more I/O */ 862 aac_startio(sc); 863 } 864 865 /* 866 * Handle a bio submitted from a disk device. 867 */ 868 void 869 aac_submit_bio(struct aac_disk *ad, struct bio *bio) 870 { 871 struct aac_softc *sc; 872 873 debug_called(2); 874 875 bio->bio_driver_info = ad; 876 sc = ad->ad_controller; 877 878 /* queue the BIO and try to get some work done */ 879 aac_enqueue_bio(sc, bio); 880 aac_startio(sc); 881 } 882 883 /* 884 * Get a bio and build a command to go with it. 885 */ 886 static int 887 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp) 888 { 889 struct aac_command *cm; 890 struct aac_fib *fib; 891 struct aac_blockread *br; 892 struct aac_blockwrite *bw; 893 struct aac_disk *ad; 894 struct bio *bio; 895 struct buf *bp; 896 897 debug_called(2); 898 899 /* get the resources we will need */ 900 cm = NULL; 901 if ((bio = aac_dequeue_bio(sc)) == NULL) 902 goto fail; 903 if (aac_alloc_command(sc, &cm)) /* get a command */ 904 goto fail; 905 906 /* fill out the command */ 907 bp = bio->bio_buf; 908 cm->cm_data = (void *)bp->b_data; 909 cm->cm_datalen = bp->b_bcount; 910 cm->cm_complete = aac_bio_complete; 911 cm->cm_private = bio; 912 cm->cm_timestamp = time_second; 913 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 914 915 /* build the FIB */ 916 fib = cm->cm_fib; 917 fib->Header.XferState = 918 AAC_FIBSTATE_HOSTOWNED | 919 AAC_FIBSTATE_INITIALISED | 920 AAC_FIBSTATE_EMPTY | 921 AAC_FIBSTATE_FROMHOST | 922 AAC_FIBSTATE_REXPECTED | 923 AAC_FIBSTATE_NORM | 924 AAC_FIBSTATE_ASYNC | 925 AAC_FIBSTATE_FAST_RESPONSE; 926 fib->Header.Command = ContainerCommand; 927 fib->Header.Size = sizeof(struct aac_fib_header); 928 929 /* build the read/write request */ 930 ad = (struct aac_disk *)bio->bio_driver_info; 931 if (bp->b_cmd == BUF_CMD_READ) { 932 br = (struct aac_blockread *)&fib->data[0]; 933 br->Command = VM_CtBlockRead; 934 br->ContainerId = ad->ad_container->co_mntobj.ObjectId; 935 br->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE; 936 br->ByteCount = bp->b_bcount; 937 fib->Header.Size += sizeof(struct aac_blockread); 938 cm->cm_sgtable = &br->SgMap; 939 cm->cm_flags |= AAC_CMD_DATAIN; 940 } else { 941 bw = (struct aac_blockwrite *)&fib->data[0]; 942 bw->Command = VM_CtBlockWrite; 943 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 944 bw->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE; 945 bw->ByteCount = bp->b_bcount; 946 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */ 947 fib->Header.Size += sizeof(struct aac_blockwrite); 948 cm->cm_flags |= AAC_CMD_DATAOUT; 949 cm->cm_sgtable = &bw->SgMap; 950 } 951 952 *cmp = cm; 953 return(0); 954 955 fail: 956 if (bio != NULL) 957 aac_enqueue_bio(sc, bio); 958 if (cm != NULL) 959 aac_release_command(cm); 960 return(ENOMEM); 961 } 962 963 /* 964 * Handle a bio-instigated command that has been completed. 965 */ 966 static void 967 aac_bio_complete(struct aac_command *cm) 968 { 969 struct aac_blockread_response *brr; 970 struct aac_blockwrite_response *bwr; 971 struct bio *bio; 972 struct buf *bp; 973 const char *code; 974 AAC_FSAStatus status; 975 976 /* fetch relevant status and then release the command */ 977 bio = (struct bio *)cm->cm_private; 978 bp = bio->bio_buf; 979 if (bp->b_cmd == BUF_CMD_READ) { 980 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0]; 981 status = brr->Status; 982 } else { 983 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0]; 984 status = bwr->Status; 985 } 986 aac_release_command(cm); 987 988 /* fix up the bio based on status */ 989 if (status == ST_OK) { 990 bp->b_resid = 0; 991 code = 0; 992 } else { 993 bp->b_error = EIO; 994 bp->b_flags |= B_ERROR; 995 /* pass an error string out to the disk layer */ 996 code = aac_describe_code(aac_command_status_table, status); 997 } 998 aac_biodone(bio, code); 999 } 1000 1001 /* 1002 * Dump a block of data to the controller. If the queue is full, tell the 1003 * caller to hold off and wait for the queue to drain. 1004 */ 1005 int 1006 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages) 1007 { 1008 struct aac_softc *sc; 1009 struct aac_command *cm; 1010 struct aac_fib *fib; 1011 struct aac_blockwrite *bw; 1012 1013 sc = ad->ad_controller; 1014 cm = NULL; 1015 1016 if (aac_alloc_command(sc, &cm)) 1017 return (EBUSY); 1018 1019 /* fill out the command */ 1020 cm->cm_data = data; 1021 cm->cm_datalen = dumppages * PAGE_SIZE; 1022 cm->cm_complete = NULL; 1023 cm->cm_private = NULL; 1024 cm->cm_timestamp = time_second; 1025 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 1026 1027 /* build the FIB */ 1028 fib = cm->cm_fib; 1029 fib->Header.XferState = 1030 AAC_FIBSTATE_HOSTOWNED | 1031 AAC_FIBSTATE_INITIALISED | 1032 AAC_FIBSTATE_FROMHOST | 1033 AAC_FIBSTATE_REXPECTED | 1034 AAC_FIBSTATE_NORM; 1035 fib->Header.Command = ContainerCommand; 1036 fib->Header.Size = sizeof(struct aac_fib_header); 1037 1038 bw = (struct aac_blockwrite *)&fib->data[0]; 1039 bw->Command = VM_CtBlockWrite; 1040 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 1041 bw->BlockNumber = lba; 1042 bw->ByteCount = dumppages * PAGE_SIZE; 1043 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */ 1044 fib->Header.Size += sizeof(struct aac_blockwrite); 1045 cm->cm_flags |= AAC_CMD_DATAOUT; 1046 cm->cm_sgtable = &bw->SgMap; 1047 1048 return (aac_start(cm)); 1049 } 1050 1051 /* 1052 * Wait for the card's queue to drain when dumping. Also check for monitor 1053 * printf's 1054 */ 1055 void 1056 aac_dump_complete(struct aac_softc *sc) 1057 { 1058 struct aac_fib *fib; 1059 struct aac_command *cm; 1060 u_int16_t reason; 1061 u_int32_t pi, ci, fib_size; 1062 1063 do { 1064 reason = AAC_GET_ISTATUS(sc); 1065 if (reason & AAC_DB_RESPONSE_READY) { 1066 AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY); 1067 for (;;) { 1068 if (aac_dequeue_fib(sc, 1069 AAC_HOST_NORM_RESP_QUEUE, 1070 &fib_size, &fib)) 1071 break; 1072 cm = (struct aac_command *) 1073 fib->Header.SenderData; 1074 if (cm == NULL) 1075 AAC_PRINT_FIB(sc, fib); 1076 else { 1077 aac_remove_busy(cm); 1078 aac_unmap_command(cm); 1079 aac_enqueue_complete(cm); 1080 aac_release_command(cm); 1081 } 1082 } 1083 } 1084 if (reason & AAC_DB_PRINTF) { 1085 AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF); 1086 aac_print_printf(sc); 1087 } 1088 pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][ 1089 AAC_PRODUCER_INDEX]; 1090 ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][ 1091 AAC_CONSUMER_INDEX]; 1092 } while (ci != pi); 1093 1094 return; 1095 } 1096 1097 /* 1098 * Submit a command to the controller, return when it completes. 1099 * XXX This is very dangerous! If the card has gone out to lunch, we could 1100 * be stuck here forever. At the same time, signals are not caught 1101 * because there is a risk that a signal could wakeup the tsleep before 1102 * the card has a chance to complete the command. The passed in timeout 1103 * is ignored for the same reason. Since there is no way to cancel a 1104 * command in progress, we should probably create a 'dead' queue where 1105 * commands go that have been interrupted/timed-out/etc, that keeps them 1106 * out of the free pool. That way, if the card is just slow, it won't 1107 * spam the memory of a command that has been recycled. 1108 */ 1109 static int 1110 aac_wait_command(struct aac_command *cm, int timeout) 1111 { 1112 int error = 0; 1113 1114 debug_called(2); 1115 1116 /* Put the command on the ready queue and get things going */ 1117 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 1118 aac_enqueue_ready(cm); 1119 aac_startio(cm->cm_sc); 1120 crit_enter(); 1121 while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) { 1122 error = tsleep(cm, 0, "aacwait", 0); 1123 } 1124 crit_exit(); 1125 return(error); 1126 } 1127 1128 /* 1129 *Command Buffer Management 1130 */ 1131 1132 /* 1133 * Allocate a command. 1134 */ 1135 int 1136 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp) 1137 { 1138 struct aac_command *cm; 1139 1140 debug_called(3); 1141 1142 if ((cm = aac_dequeue_free(sc)) == NULL) 1143 return(ENOMEM); 1144 1145 *cmp = cm; 1146 return(0); 1147 } 1148 1149 /* 1150 * Release a command back to the freelist. 1151 */ 1152 void 1153 aac_release_command(struct aac_command *cm) 1154 { 1155 debug_called(3); 1156 1157 /* (re)initialise the command/FIB */ 1158 cm->cm_sgtable = NULL; 1159 cm->cm_flags = 0; 1160 cm->cm_complete = NULL; 1161 cm->cm_private = NULL; 1162 cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY; 1163 cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB; 1164 cm->cm_fib->Header.Flags = 0; 1165 cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib); 1166 1167 /* 1168 * These are duplicated in aac_start to cover the case where an 1169 * intermediate stage may have destroyed them. They're left 1170 * initialised here for debugging purposes only. 1171 */ 1172 cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib; 1173 cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys; 1174 cm->cm_fib->Header.SenderData = 0; 1175 1176 aac_enqueue_free(cm); 1177 } 1178 1179 /* 1180 * Map helper for command/FIB allocation. 1181 */ 1182 static void 1183 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1184 { 1185 struct aac_softc *sc; 1186 1187 sc = (struct aac_softc *)arg; 1188 1189 debug_called(3); 1190 1191 sc->aac_fibphys = segs[0].ds_addr; 1192 } 1193 1194 /* 1195 * Allocate and initialise commands/FIBs for this adapter. 1196 */ 1197 static int 1198 aac_alloc_commands(struct aac_softc *sc) 1199 { 1200 struct aac_command *cm; 1201 int i; 1202 1203 debug_called(1); 1204 1205 /* allocate the FIBs in DMAable memory and load them */ 1206 if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs, 1207 BUS_DMA_NOWAIT, &sc->aac_fibmap)) { 1208 return(ENOMEM); 1209 } 1210 1211 bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs, 1212 AAC_FIB_COUNT * sizeof(struct aac_fib), 1213 aac_map_command_helper, sc, 0); 1214 1215 /* initialise constant fields in the command structure */ 1216 bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib)); 1217 for (i = 0; i < AAC_FIB_COUNT; i++) { 1218 cm = &sc->aac_command[i]; 1219 cm->cm_sc = sc; 1220 cm->cm_fib = sc->aac_fibs + i; 1221 cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib)); 1222 1223 if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap)) 1224 aac_release_command(cm); 1225 } 1226 return(0); 1227 } 1228 1229 /* 1230 * Free FIBs owned by this adapter. 1231 */ 1232 static void 1233 aac_free_commands(struct aac_softc *sc) 1234 { 1235 int i; 1236 1237 debug_called(1); 1238 1239 for (i = 0; i < AAC_FIB_COUNT; i++) 1240 bus_dmamap_destroy(sc->aac_buffer_dmat, 1241 sc->aac_command[i].cm_datamap); 1242 1243 bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap); 1244 bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap); 1245 } 1246 1247 /* 1248 * Command-mapping helper function - populate this command's s/g table. 1249 */ 1250 static void 1251 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1252 { 1253 struct aac_command *cm; 1254 struct aac_fib *fib; 1255 struct aac_sg_table *sg; 1256 int i; 1257 1258 debug_called(3); 1259 1260 cm = (struct aac_command *)arg; 1261 fib = cm->cm_fib; 1262 1263 /* find the s/g table */ 1264 sg = cm->cm_sgtable; 1265 1266 /* copy into the FIB */ 1267 if (sg != NULL) { 1268 sg->SgCount = nseg; 1269 for (i = 0; i < nseg; i++) { 1270 sg->SgEntry[i].SgAddress = segs[i].ds_addr; 1271 sg->SgEntry[i].SgByteCount = segs[i].ds_len; 1272 } 1273 /* update the FIB size for the s/g count */ 1274 fib->Header.Size += nseg * sizeof(struct aac_sg_entry); 1275 } 1276 1277 } 1278 1279 /* 1280 * Map a command into controller-visible space. 1281 */ 1282 static void 1283 aac_map_command(struct aac_command *cm) 1284 { 1285 struct aac_softc *sc; 1286 1287 debug_called(2); 1288 1289 sc = cm->cm_sc; 1290 1291 /* don't map more than once */ 1292 if (cm->cm_flags & AAC_CMD_MAPPED) 1293 return; 1294 1295 if (cm->cm_datalen != 0) { 1296 bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap, 1297 cm->cm_data, cm->cm_datalen, 1298 aac_map_command_sg, cm, 0); 1299 1300 if (cm->cm_flags & AAC_CMD_DATAIN) 1301 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1302 BUS_DMASYNC_PREREAD); 1303 if (cm->cm_flags & AAC_CMD_DATAOUT) 1304 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1305 BUS_DMASYNC_PREWRITE); 1306 } 1307 cm->cm_flags |= AAC_CMD_MAPPED; 1308 } 1309 1310 /* 1311 * Unmap a command from controller-visible space. 1312 */ 1313 static void 1314 aac_unmap_command(struct aac_command *cm) 1315 { 1316 struct aac_softc *sc; 1317 1318 debug_called(2); 1319 1320 sc = cm->cm_sc; 1321 1322 if (!(cm->cm_flags & AAC_CMD_MAPPED)) 1323 return; 1324 1325 if (cm->cm_datalen != 0) { 1326 if (cm->cm_flags & AAC_CMD_DATAIN) 1327 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1328 BUS_DMASYNC_POSTREAD); 1329 if (cm->cm_flags & AAC_CMD_DATAOUT) 1330 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1331 BUS_DMASYNC_POSTWRITE); 1332 1333 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap); 1334 } 1335 cm->cm_flags &= ~AAC_CMD_MAPPED; 1336 } 1337 1338 /* 1339 * Hardware Interface 1340 */ 1341 1342 /* 1343 * Initialise the adapter. 1344 */ 1345 static void 1346 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1347 { 1348 struct aac_softc *sc; 1349 1350 debug_called(1); 1351 1352 sc = (struct aac_softc *)arg; 1353 1354 sc->aac_common_busaddr = segs[0].ds_addr; 1355 } 1356 1357 static int 1358 aac_check_firmware(struct aac_softc *sc) 1359 { 1360 u_int32_t major, minor, options; 1361 1362 debug_called(1); 1363 1364 /* 1365 * Retrieve the firmware version numbers. Dell PERC2/QC cards with 1366 * firmware version 1.x are not compatible with this driver. 1367 */ 1368 if (sc->flags & AAC_FLAGS_PERC2QC) { 1369 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0, 1370 NULL)) { 1371 device_printf(sc->aac_dev, 1372 "Error reading firmware version\n"); 1373 return (EIO); 1374 } 1375 1376 /* These numbers are stored as ASCII! */ 1377 major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30; 1378 minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30; 1379 if (major == 1) { 1380 device_printf(sc->aac_dev, 1381 "Firmware version %d.%d is not supported.\n", 1382 major, minor); 1383 return (EINVAL); 1384 } 1385 } 1386 1387 /* 1388 * Retrieve the capabilities/supported options word so we know what 1389 * work-arounds to enable. 1390 */ 1391 if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) { 1392 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n"); 1393 return (EIO); 1394 } 1395 options = AAC_GET_MAILBOX(sc, 1); 1396 sc->supported_options = options; 1397 1398 if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 && 1399 (sc->flags & AAC_FLAGS_NO4GB) == 0) 1400 sc->flags |= AAC_FLAGS_4GB_WINDOW; 1401 if (options & AAC_SUPPORTED_NONDASD) 1402 sc->flags |= AAC_FLAGS_ENABLE_CAM; 1403 1404 return (0); 1405 } 1406 1407 static int 1408 aac_init(struct aac_softc *sc) 1409 { 1410 struct aac_adapter_init *ip; 1411 time_t then; 1412 u_int32_t code; 1413 u_int8_t *qaddr; 1414 int error; 1415 1416 debug_called(1); 1417 1418 /* 1419 * First wait for the adapter to come ready. 1420 */ 1421 then = time_second; 1422 do { 1423 code = AAC_GET_FWSTATUS(sc); 1424 if (code & AAC_SELF_TEST_FAILED) { 1425 device_printf(sc->aac_dev, "FATAL: selftest failed\n"); 1426 return(ENXIO); 1427 } 1428 if (code & AAC_KERNEL_PANIC) { 1429 device_printf(sc->aac_dev, 1430 "FATAL: controller kernel panic\n"); 1431 return(ENXIO); 1432 } 1433 if (time_second > (then + AAC_BOOT_TIMEOUT)) { 1434 device_printf(sc->aac_dev, 1435 "FATAL: controller not coming ready, " 1436 "status %x\n", code); 1437 return(ENXIO); 1438 } 1439 } while (!(code & AAC_UP_AND_RUNNING)); 1440 1441 error = ENOMEM; 1442 /* 1443 * Create DMA tag for mapping buffers into controller-addressable space. 1444 */ 1445 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1446 1, 0, /* algnmnt, boundary */ 1447 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1448 BUS_SPACE_MAXADDR, /* highaddr */ 1449 NULL, NULL, /* filter, filterarg */ 1450 MAXBSIZE, /* maxsize */ 1451 AAC_MAXSGENTRIES, /* nsegments */ 1452 MAXBSIZE, /* maxsegsize */ 1453 BUS_DMA_ALLOCNOW, /* flags */ 1454 &sc->aac_buffer_dmat)) { 1455 device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n"); 1456 goto out; 1457 } 1458 1459 /* 1460 * Create DMA tag for mapping FIBs into controller-addressable space.. 1461 */ 1462 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1463 1, 0, /* algnmnt, boundary */ 1464 (sc->flags & AAC_FLAGS_4GB_WINDOW) ? 1465 BUS_SPACE_MAXADDR_32BIT : 1466 0x7fffffff, /* lowaddr */ 1467 BUS_SPACE_MAXADDR, /* highaddr */ 1468 NULL, NULL, /* filter, filterarg */ 1469 AAC_FIB_COUNT * 1470 sizeof(struct aac_fib), /* maxsize */ 1471 1, /* nsegments */ 1472 AAC_FIB_COUNT * 1473 sizeof(struct aac_fib), /* maxsegsize */ 1474 BUS_DMA_ALLOCNOW, /* flags */ 1475 &sc->aac_fib_dmat)) { 1476 device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n"); 1477 goto out; 1478 } 1479 1480 /* 1481 * Create DMA tag for the common structure and allocate it. 1482 */ 1483 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1484 1, 0, /* algnmnt, boundary */ 1485 (sc->flags & AAC_FLAGS_4GB_WINDOW) ? 1486 BUS_SPACE_MAXADDR_32BIT : 1487 0x7fffffff, /* lowaddr */ 1488 BUS_SPACE_MAXADDR, /* highaddr */ 1489 NULL, NULL, /* filter, filterarg */ 1490 8192 + sizeof(struct aac_common), /* maxsize */ 1491 1, /* nsegments */ 1492 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1493 BUS_DMA_ALLOCNOW, /* flags */ 1494 &sc->aac_common_dmat)) { 1495 device_printf(sc->aac_dev, 1496 "can't allocate common structure DMA tag\n"); 1497 goto out; 1498 } 1499 if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common, 1500 BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) { 1501 device_printf(sc->aac_dev, "can't allocate common structure\n"); 1502 goto out; 1503 } 1504 /* 1505 * Work around a bug in the 2120 and 2200 that cannot DMA commands 1506 * below address 8192 in physical memory. 1507 * XXX If the padding is not needed, can it be put to use instead 1508 * of ignored? 1509 */ 1510 bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap, 1511 sc->aac_common, 8192 + sizeof(*sc->aac_common), 1512 aac_common_map, sc, 0); 1513 1514 if (sc->aac_common_busaddr < 8192) { 1515 sc->aac_common = 1516 (struct aac_common *)((uint8_t *)sc->aac_common + 8192); 1517 sc->aac_common_busaddr += 8192; 1518 } 1519 bzero(sc->aac_common, sizeof(*sc->aac_common)); 1520 1521 /* Allocate some FIBs and associated command structs */ 1522 if (aac_alloc_commands(sc) != 0) 1523 goto out; 1524 1525 /* 1526 * Fill in the init structure. This tells the adapter about the 1527 * physical location of various important shared data structures. 1528 */ 1529 ip = &sc->aac_common->ac_init; 1530 ip->InitStructRevision = AAC_INIT_STRUCT_REVISION; 1531 ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION; 1532 1533 ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr + 1534 offsetof(struct aac_common, ac_fibs); 1535 ip->AdapterFibsVirtualAddress = (aac_phys_addr_t)&sc->aac_common->ac_fibs[0]; 1536 ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib); 1537 ip->AdapterFibAlign = sizeof(struct aac_fib); 1538 1539 ip->PrintfBufferAddress = sc->aac_common_busaddr + 1540 offsetof(struct aac_common, ac_printf); 1541 ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE; 1542 1543 /* The adapter assumes that pages are 4K in size */ 1544 ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE; 1545 ip->HostElapsedSeconds = time_second; /* reset later if invalid */ 1546 1547 /* 1548 * Initialise FIB queues. Note that it appears that the layout of the 1549 * indexes and the segmentation of the entries may be mandated by the 1550 * adapter, which is only told about the base of the queue index fields. 1551 * 1552 * The initial values of the indices are assumed to inform the adapter 1553 * of the sizes of the respective queues, and theoretically it could 1554 * work out the entire layout of the queue structures from this. We 1555 * take the easy route and just lay this area out like everyone else 1556 * does. 1557 * 1558 * The Linux driver uses a much more complex scheme whereby several 1559 * header records are kept for each queue. We use a couple of generic 1560 * list manipulation functions which 'know' the size of each list by 1561 * virtue of a table. 1562 */ 1563 qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN; 1564 qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN; 1565 sc->aac_queues = (struct aac_queue_table *)qaddr; 1566 ip->CommHeaderAddress = sc->aac_common_busaddr + 1567 ((u_int32_t)sc->aac_queues - 1568 (u_int32_t)sc->aac_common); 1569 bzero(sc->aac_queues, sizeof(struct aac_queue_table)); 1570 1571 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1572 AAC_HOST_NORM_CMD_ENTRIES; 1573 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1574 AAC_HOST_NORM_CMD_ENTRIES; 1575 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1576 AAC_HOST_HIGH_CMD_ENTRIES; 1577 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1578 AAC_HOST_HIGH_CMD_ENTRIES; 1579 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1580 AAC_ADAP_NORM_CMD_ENTRIES; 1581 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1582 AAC_ADAP_NORM_CMD_ENTRIES; 1583 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1584 AAC_ADAP_HIGH_CMD_ENTRIES; 1585 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1586 AAC_ADAP_HIGH_CMD_ENTRIES; 1587 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1588 AAC_HOST_NORM_RESP_ENTRIES; 1589 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1590 AAC_HOST_NORM_RESP_ENTRIES; 1591 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1592 AAC_HOST_HIGH_RESP_ENTRIES; 1593 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1594 AAC_HOST_HIGH_RESP_ENTRIES; 1595 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1596 AAC_ADAP_NORM_RESP_ENTRIES; 1597 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1598 AAC_ADAP_NORM_RESP_ENTRIES; 1599 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1600 AAC_ADAP_HIGH_RESP_ENTRIES; 1601 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1602 AAC_ADAP_HIGH_RESP_ENTRIES; 1603 sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] = 1604 &sc->aac_queues->qt_HostNormCmdQueue[0]; 1605 sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] = 1606 &sc->aac_queues->qt_HostHighCmdQueue[0]; 1607 sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] = 1608 &sc->aac_queues->qt_AdapNormCmdQueue[0]; 1609 sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] = 1610 &sc->aac_queues->qt_AdapHighCmdQueue[0]; 1611 sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] = 1612 &sc->aac_queues->qt_HostNormRespQueue[0]; 1613 sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] = 1614 &sc->aac_queues->qt_HostHighRespQueue[0]; 1615 sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] = 1616 &sc->aac_queues->qt_AdapNormRespQueue[0]; 1617 sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] = 1618 &sc->aac_queues->qt_AdapHighRespQueue[0]; 1619 1620 /* 1621 * Do controller-type-specific initialisation 1622 */ 1623 switch (sc->aac_hwif) { 1624 case AAC_HWIF_I960RX: 1625 AAC_SETREG4(sc, AAC_RX_ODBR, ~0); 1626 break; 1627 } 1628 1629 /* 1630 * Give the init structure to the controller. 1631 */ 1632 if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 1633 sc->aac_common_busaddr + 1634 offsetof(struct aac_common, ac_init), 0, 0, 0, 1635 NULL)) { 1636 device_printf(sc->aac_dev, 1637 "error establishing init structure\n"); 1638 error = EIO; 1639 goto out; 1640 } 1641 1642 error = 0; 1643 out: 1644 return(error); 1645 } 1646 1647 /* 1648 * Send a synchronous command to the controller and wait for a result. 1649 */ 1650 static int 1651 aac_sync_command(struct aac_softc *sc, u_int32_t command, 1652 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3, 1653 u_int32_t *sp) 1654 { 1655 time_t then; 1656 u_int32_t status; 1657 1658 debug_called(3); 1659 1660 /* populate the mailbox */ 1661 AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3); 1662 1663 /* ensure the sync command doorbell flag is cleared */ 1664 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1665 1666 /* then set it to signal the adapter */ 1667 AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND); 1668 1669 /* spin waiting for the command to complete */ 1670 then = time_second; 1671 do { 1672 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) { 1673 debug(1, "timed out"); 1674 return(EIO); 1675 } 1676 } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND)); 1677 1678 /* clear the completion flag */ 1679 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1680 1681 /* get the command status */ 1682 status = AAC_GET_MAILBOX(sc, 0); 1683 if (sp != NULL) 1684 *sp = status; 1685 return(0); 1686 } 1687 1688 /* 1689 * Grab the sync fib area. 1690 */ 1691 int 1692 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags) 1693 { 1694 1695 /* 1696 * If the force flag is set, the system is shutting down, or in 1697 * trouble. Ignore the mutex. 1698 */ 1699 if (!(flags & AAC_SYNC_LOCK_FORCE)) 1700 AAC_LOCK_ACQUIRE(&sc->aac_sync_lock); 1701 1702 *fib = &sc->aac_common->ac_sync_fib; 1703 1704 return (1); 1705 } 1706 1707 /* 1708 * Release the sync fib area. 1709 */ 1710 void 1711 aac_release_sync_fib(struct aac_softc *sc) 1712 { 1713 1714 AAC_LOCK_RELEASE(&sc->aac_sync_lock); 1715 } 1716 1717 /* 1718 * Send a synchronous FIB to the controller and wait for a result. 1719 */ 1720 int 1721 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 1722 struct aac_fib *fib, u_int16_t datasize) 1723 { 1724 debug_called(3); 1725 1726 if (datasize > AAC_FIB_DATASIZE) 1727 return(EINVAL); 1728 1729 /* 1730 * Set up the sync FIB 1731 */ 1732 fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED | 1733 AAC_FIBSTATE_INITIALISED | 1734 AAC_FIBSTATE_EMPTY; 1735 fib->Header.XferState |= xferstate; 1736 fib->Header.Command = command; 1737 fib->Header.StructType = AAC_FIBTYPE_TFIB; 1738 fib->Header.Size = sizeof(struct aac_fib) + datasize; 1739 fib->Header.SenderSize = sizeof(struct aac_fib); 1740 fib->Header.SenderFibAddress = (u_int32_t)fib; 1741 fib->Header.ReceiverFibAddress = sc->aac_common_busaddr + 1742 offsetof(struct aac_common, 1743 ac_sync_fib); 1744 1745 /* 1746 * Give the FIB to the controller, wait for a response. 1747 */ 1748 if (aac_sync_command(sc, AAC_MONKER_SYNCFIB, 1749 fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) { 1750 debug(2, "IO error"); 1751 return(EIO); 1752 } 1753 1754 return (0); 1755 } 1756 1757 /* 1758 * Adapter-space FIB queue manipulation 1759 * 1760 * Note that the queue implementation here is a little funky; neither the PI or 1761 * CI will ever be zero. This behaviour is a controller feature. 1762 */ 1763 static struct { 1764 int size; 1765 int notify; 1766 } aac_qinfo[] = { 1767 {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL}, 1768 {AAC_HOST_HIGH_CMD_ENTRIES, 0}, 1769 {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY}, 1770 {AAC_ADAP_HIGH_CMD_ENTRIES, 0}, 1771 {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL}, 1772 {AAC_HOST_HIGH_RESP_ENTRIES, 0}, 1773 {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY}, 1774 {AAC_ADAP_HIGH_RESP_ENTRIES, 0} 1775 }; 1776 1777 /* 1778 * Atomically insert an entry into the nominated queue, returns 0 on success or 1779 * EBUSY if the queue is full. 1780 * 1781 * Note: it would be more efficient to defer notifying the controller in 1782 * the case where we may be inserting several entries in rapid succession, 1783 * but implementing this usefully may be difficult (it would involve a 1784 * separate queue/notify interface). 1785 */ 1786 static int 1787 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm) 1788 { 1789 u_int32_t pi, ci; 1790 int error; 1791 u_int32_t fib_size; 1792 u_int32_t fib_addr; 1793 1794 debug_called(3); 1795 1796 fib_size = cm->cm_fib->Header.Size; 1797 fib_addr = cm->cm_fib->Header.ReceiverFibAddress; 1798 1799 crit_enter(); 1800 1801 /* get the producer/consumer indices */ 1802 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1803 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1804 1805 /* wrap the queue? */ 1806 if (pi >= aac_qinfo[queue].size) 1807 pi = 0; 1808 1809 /* check for queue full */ 1810 if ((pi + 1) == ci) { 1811 error = EBUSY; 1812 goto out; 1813 } 1814 /* 1815 * To avoid a race with its completion interrupt, place this command on 1816 * the busy queue prior to advertising it to the controller. 1817 */ 1818 aac_enqueue_busy(cm); 1819 1820 1821 1822 /* populate queue entry */ 1823 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1824 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1825 1826 /* update producer index */ 1827 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1828 1829 /* notify the adapter if we know how */ 1830 if (aac_qinfo[queue].notify != 0) 1831 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1832 1833 error = 0; 1834 1835 out: 1836 crit_exit(); 1837 return(error); 1838 } 1839 1840 /* 1841 * Atomically remove one entry from the nominated queue, returns 0 on 1842 * success or ENOENT if the queue is empty. 1843 */ 1844 static int 1845 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size, 1846 struct aac_fib **fib_addr) 1847 { 1848 u_int32_t pi, ci; 1849 int error; 1850 int notify; 1851 1852 debug_called(3); 1853 1854 crit_enter(); 1855 1856 /* get the producer/consumer indices */ 1857 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1858 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1859 1860 /* check for queue empty */ 1861 if (ci == pi) { 1862 error = ENOENT; 1863 goto out; 1864 } 1865 1866 /* wrap the pi so the following test works */ 1867 if (pi >= aac_qinfo[queue].size) 1868 pi = 0; 1869 1870 notify = 0; 1871 if (ci == pi + 1) 1872 notify++; 1873 1874 /* wrap the queue? */ 1875 if (ci >= aac_qinfo[queue].size) 1876 ci = 0; 1877 1878 /* fetch the entry */ 1879 *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size; 1880 *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] + 1881 ci)->aq_fib_addr; 1882 1883 /* 1884 * Is this a fast response? If it is, update the fib fields in 1885 * local memory so the whole fib doesn't have to be DMA'd back up. 1886 */ 1887 if (*(uintptr_t *)fib_addr & 0x01) { 1888 *(uintptr_t *)fib_addr &= ~0x01; 1889 (*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP; 1890 *((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL; 1891 } 1892 /* update consumer index */ 1893 sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1; 1894 1895 /* if we have made the queue un-full, notify the adapter */ 1896 if (notify && (aac_qinfo[queue].notify != 0)) 1897 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1898 error = 0; 1899 1900 out: 1901 crit_exit(); 1902 return(error); 1903 } 1904 1905 /* 1906 * Put our response to an Adapter Initialed Fib on the response queue 1907 */ 1908 static int 1909 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib) 1910 { 1911 u_int32_t pi, ci; 1912 int error; 1913 u_int32_t fib_size; 1914 u_int32_t fib_addr; 1915 1916 debug_called(1); 1917 1918 /* Tell the adapter where the FIB is */ 1919 fib_size = fib->Header.Size; 1920 fib_addr = fib->Header.SenderFibAddress; 1921 fib->Header.ReceiverFibAddress = fib_addr; 1922 1923 crit_enter(); 1924 1925 /* get the producer/consumer indices */ 1926 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1927 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1928 1929 /* wrap the queue? */ 1930 if (pi >= aac_qinfo[queue].size) 1931 pi = 0; 1932 1933 /* check for queue full */ 1934 if ((pi + 1) == ci) { 1935 error = EBUSY; 1936 goto out; 1937 } 1938 1939 /* populate queue entry */ 1940 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1941 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1942 1943 /* update producer index */ 1944 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1945 1946 /* notify the adapter if we know how */ 1947 if (aac_qinfo[queue].notify != 0) 1948 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1949 1950 error = 0; 1951 1952 out: 1953 crit_exit(); 1954 return(error); 1955 } 1956 1957 /* 1958 * Check for commands that have been outstanding for a suspiciously long time, 1959 * and complain about them. 1960 */ 1961 static void 1962 aac_timeout(void *xsc) 1963 { 1964 struct aac_softc *sc = xsc; 1965 struct aac_command *cm; 1966 time_t deadline; 1967 int timedout, code; 1968 #if 0 1969 /* simulate an interrupt to handle possibly-missed interrupts */ 1970 /* 1971 * XXX This was done to work around another bug which has since been 1972 * fixed. It is dangerous anyways because you don't want multiple 1973 * threads in the interrupt handler at the same time! If calling 1974 * is deamed neccesary in the future, proper mutexes must be used. 1975 */ 1976 crit_enter(); 1977 aac_intr(sc); 1978 crit_exit(); 1979 1980 /* kick the I/O queue to restart it in the case of deadlock */ 1981 aac_startio(sc); 1982 #endif 1983 1984 /* 1985 * traverse the busy command list, bitch about late commands once 1986 * only. 1987 */ 1988 timedout = 0; 1989 deadline = time_second - AAC_CMD_TIMEOUT; 1990 crit_enter(); 1991 TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) { 1992 if ((cm->cm_timestamp < deadline) 1993 /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) { 1994 cm->cm_flags |= AAC_CMD_TIMEDOUT; 1995 device_printf(sc->aac_dev, 1996 "COMMAND %p TIMEOUT AFTER %d SECONDS\n", 1997 cm, (int)(time_second-cm->cm_timestamp)); 1998 AAC_PRINT_FIB(sc, cm->cm_fib); 1999 timedout++; 2000 } 2001 } 2002 if (timedout) { 2003 code = AAC_GET_FWSTATUS(sc); 2004 if (code != AAC_UP_AND_RUNNING) { 2005 device_printf(sc->aac_dev, "WARNING! Controller is no " 2006 "longer running! code= 0x%x\n", code); 2007 2008 } 2009 } 2010 crit_exit(); 2011 2012 /* reset the timer for next time */ 2013 callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz, 2014 aac_timeout, sc); 2015 } 2016 2017 /* 2018 * Interface Function Vectors 2019 */ 2020 2021 /* 2022 * Read the current firmware status word. 2023 */ 2024 static int 2025 aac_sa_get_fwstatus(struct aac_softc *sc) 2026 { 2027 debug_called(3); 2028 2029 return(AAC_GETREG4(sc, AAC_SA_FWSTATUS)); 2030 } 2031 2032 static int 2033 aac_rx_get_fwstatus(struct aac_softc *sc) 2034 { 2035 debug_called(3); 2036 2037 return(AAC_GETREG4(sc, AAC_RX_FWSTATUS)); 2038 } 2039 2040 static int 2041 aac_fa_get_fwstatus(struct aac_softc *sc) 2042 { 2043 int val; 2044 2045 debug_called(3); 2046 2047 val = AAC_GETREG4(sc, AAC_FA_FWSTATUS); 2048 return (val); 2049 } 2050 2051 /* 2052 * Notify the controller of a change in a given queue 2053 */ 2054 2055 static void 2056 aac_sa_qnotify(struct aac_softc *sc, int qbit) 2057 { 2058 debug_called(3); 2059 2060 AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit); 2061 } 2062 2063 static void 2064 aac_rx_qnotify(struct aac_softc *sc, int qbit) 2065 { 2066 debug_called(3); 2067 2068 AAC_SETREG4(sc, AAC_RX_IDBR, qbit); 2069 } 2070 2071 static void 2072 aac_fa_qnotify(struct aac_softc *sc, int qbit) 2073 { 2074 debug_called(3); 2075 2076 AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit); 2077 AAC_FA_HACK(sc); 2078 } 2079 2080 /* 2081 * Get the interrupt reason bits 2082 */ 2083 static int 2084 aac_sa_get_istatus(struct aac_softc *sc) 2085 { 2086 debug_called(3); 2087 2088 return(AAC_GETREG2(sc, AAC_SA_DOORBELL0)); 2089 } 2090 2091 static int 2092 aac_rx_get_istatus(struct aac_softc *sc) 2093 { 2094 debug_called(3); 2095 2096 return(AAC_GETREG4(sc, AAC_RX_ODBR)); 2097 } 2098 2099 static int 2100 aac_fa_get_istatus(struct aac_softc *sc) 2101 { 2102 int val; 2103 2104 debug_called(3); 2105 2106 val = AAC_GETREG2(sc, AAC_FA_DOORBELL0); 2107 return (val); 2108 } 2109 2110 /* 2111 * Clear some interrupt reason bits 2112 */ 2113 static void 2114 aac_sa_clear_istatus(struct aac_softc *sc, int mask) 2115 { 2116 debug_called(3); 2117 2118 AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask); 2119 } 2120 2121 static void 2122 aac_rx_clear_istatus(struct aac_softc *sc, int mask) 2123 { 2124 debug_called(3); 2125 2126 AAC_SETREG4(sc, AAC_RX_ODBR, mask); 2127 } 2128 2129 static void 2130 aac_fa_clear_istatus(struct aac_softc *sc, int mask) 2131 { 2132 debug_called(3); 2133 2134 AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask); 2135 AAC_FA_HACK(sc); 2136 } 2137 2138 /* 2139 * Populate the mailbox and set the command word 2140 */ 2141 static void 2142 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 2143 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2144 { 2145 debug_called(4); 2146 2147 AAC_SETREG4(sc, AAC_SA_MAILBOX, command); 2148 AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0); 2149 AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1); 2150 AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2); 2151 AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3); 2152 } 2153 2154 static void 2155 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 2156 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2157 { 2158 debug_called(4); 2159 2160 AAC_SETREG4(sc, AAC_RX_MAILBOX, command); 2161 AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0); 2162 AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1); 2163 AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2); 2164 AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3); 2165 } 2166 2167 static void 2168 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 2169 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2170 { 2171 debug_called(4); 2172 2173 AAC_SETREG4(sc, AAC_FA_MAILBOX, command); 2174 AAC_FA_HACK(sc); 2175 AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0); 2176 AAC_FA_HACK(sc); 2177 AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1); 2178 AAC_FA_HACK(sc); 2179 AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2); 2180 AAC_FA_HACK(sc); 2181 AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3); 2182 AAC_FA_HACK(sc); 2183 } 2184 2185 /* 2186 * Fetch the immediate command status word 2187 */ 2188 static int 2189 aac_sa_get_mailbox(struct aac_softc *sc, int mb) 2190 { 2191 debug_called(4); 2192 2193 return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4))); 2194 } 2195 2196 static int 2197 aac_rx_get_mailbox(struct aac_softc *sc, int mb) 2198 { 2199 debug_called(4); 2200 2201 return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4))); 2202 } 2203 2204 static int 2205 aac_fa_get_mailbox(struct aac_softc *sc, int mb) 2206 { 2207 int val; 2208 2209 debug_called(4); 2210 2211 val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4)); 2212 return (val); 2213 } 2214 2215 /* 2216 * Set/clear interrupt masks 2217 */ 2218 static void 2219 aac_sa_set_interrupts(struct aac_softc *sc, int enable) 2220 { 2221 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2222 2223 if (enable) { 2224 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2225 } else { 2226 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0); 2227 } 2228 } 2229 2230 static void 2231 aac_rx_set_interrupts(struct aac_softc *sc, int enable) 2232 { 2233 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2234 2235 if (enable) { 2236 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS); 2237 } else { 2238 AAC_SETREG4(sc, AAC_RX_OIMR, ~0); 2239 } 2240 } 2241 2242 static void 2243 aac_fa_set_interrupts(struct aac_softc *sc, int enable) 2244 { 2245 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2246 2247 if (enable) { 2248 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2249 AAC_FA_HACK(sc); 2250 } else { 2251 AAC_SETREG2((sc), AAC_FA_MASK0, ~0); 2252 AAC_FA_HACK(sc); 2253 } 2254 } 2255 2256 /* 2257 * Debugging and Diagnostics 2258 */ 2259 2260 /* 2261 * Print some information about the controller. 2262 */ 2263 static void 2264 aac_describe_controller(struct aac_softc *sc) 2265 { 2266 struct aac_fib *fib; 2267 struct aac_adapter_info *info; 2268 2269 debug_called(2); 2270 2271 aac_alloc_sync_fib(sc, &fib, 0); 2272 2273 fib->data[0] = 0; 2274 if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) { 2275 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n"); 2276 aac_release_sync_fib(sc); 2277 return; 2278 } 2279 info = (struct aac_adapter_info *)&fib->data[0]; 2280 2281 device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 2282 aac_describe_code(aac_cpu_variant, info->CpuVariant), 2283 info->ClockSpeed, info->BufferMem / (1024 * 1024), 2284 aac_describe_code(aac_battery_platform, 2285 info->batteryPlatform)); 2286 2287 /* save the kernel revision structure for later use */ 2288 sc->aac_revision = info->KernelRevision; 2289 device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n", 2290 info->KernelRevision.external.comp.major, 2291 info->KernelRevision.external.comp.minor, 2292 info->KernelRevision.external.comp.dash, 2293 info->KernelRevision.buildNumber, 2294 (u_int32_t)(info->SerialNumber & 0xffffff)); 2295 2296 aac_release_sync_fib(sc); 2297 2298 if (1 || bootverbose) { 2299 device_printf(sc->aac_dev, "Supported Options=%b\n", 2300 sc->supported_options, 2301 "\20" 2302 "\1SNAPSHOT" 2303 "\2CLUSTERS" 2304 "\3WCACHE" 2305 "\4DATA64" 2306 "\5HOSTTIME" 2307 "\6RAID50" 2308 "\7WINDOW4GB" 2309 "\10SCSIUPGD" 2310 "\11SOFTERR" 2311 "\12NORECOND" 2312 "\13SGMAP64" 2313 "\14ALARM" 2314 "\15NONDASD"); 2315 } 2316 } 2317 2318 /* 2319 * Look up a text description of a numeric error code and return a pointer to 2320 * same. 2321 */ 2322 static char * 2323 aac_describe_code(struct aac_code_lookup *table, u_int32_t code) 2324 { 2325 int i; 2326 2327 for (i = 0; table[i].string != NULL; i++) 2328 if (table[i].code == code) 2329 return(table[i].string); 2330 return(table[i + 1].string); 2331 } 2332 2333 /* 2334 * Management Interface 2335 */ 2336 2337 static int 2338 aac_open(struct dev_open_args *ap) 2339 { 2340 cdev_t dev = ap->a_head.a_dev; 2341 struct aac_softc *sc; 2342 2343 debug_called(2); 2344 2345 sc = dev->si_drv1; 2346 2347 /* Check to make sure the device isn't already open */ 2348 if (sc->aac_state & AAC_STATE_OPEN) { 2349 return EBUSY; 2350 } 2351 sc->aac_state |= AAC_STATE_OPEN; 2352 2353 return 0; 2354 } 2355 2356 static int 2357 aac_close(struct dev_close_args *ap) 2358 { 2359 cdev_t dev = ap->a_head.a_dev; 2360 struct aac_softc *sc; 2361 2362 debug_called(2); 2363 2364 sc = dev->si_drv1; 2365 2366 /* Mark this unit as no longer open */ 2367 sc->aac_state &= ~AAC_STATE_OPEN; 2368 2369 return 0; 2370 } 2371 2372 static int 2373 aac_ioctl(struct dev_ioctl_args *ap) 2374 { 2375 cdev_t dev = ap->a_head.a_dev; 2376 caddr_t arg = ap->a_data; 2377 struct aac_softc *sc = dev->si_drv1; 2378 int error = 0; 2379 int i; 2380 2381 debug_called(2); 2382 2383 if (ap->a_cmd == AACIO_STATS) { 2384 union aac_statrequest *as = (union aac_statrequest *)arg; 2385 2386 switch (as->as_item) { 2387 case AACQ_FREE: 2388 case AACQ_BIO: 2389 case AACQ_READY: 2390 case AACQ_BUSY: 2391 case AACQ_COMPLETE: 2392 bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat, 2393 sizeof(struct aac_qstat)); 2394 break; 2395 default: 2396 error = ENOENT; 2397 break; 2398 } 2399 return(error); 2400 } 2401 2402 arg = *(caddr_t *)arg; 2403 2404 switch (ap->a_cmd) { 2405 /* AACIO_STATS already handled above */ 2406 case FSACTL_SENDFIB: 2407 debug(1, "FSACTL_SENDFIB"); 2408 error = aac_ioctl_sendfib(sc, arg); 2409 break; 2410 case FSACTL_AIF_THREAD: 2411 debug(1, "FSACTL_AIF_THREAD"); 2412 error = EINVAL; 2413 break; 2414 case FSACTL_OPEN_GET_ADAPTER_FIB: 2415 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB"); 2416 /* 2417 * Pass the caller out an AdapterFibContext. 2418 * 2419 * Note that because we only support one opener, we 2420 * basically ignore this. Set the caller's context to a magic 2421 * number just in case. 2422 * 2423 * The Linux code hands the driver a pointer into kernel space, 2424 * and then trusts it when the caller hands it back. Aiee! 2425 * Here, we give it the proc pointer of the per-adapter aif 2426 * thread. It's only used as a sanity check in other calls. 2427 */ 2428 i = (int)sc->aifthread; 2429 error = copyout(&i, arg, sizeof(i)); 2430 break; 2431 case FSACTL_GET_NEXT_ADAPTER_FIB: 2432 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB"); 2433 error = aac_getnext_aif(sc, arg); 2434 break; 2435 case FSACTL_CLOSE_GET_ADAPTER_FIB: 2436 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB"); 2437 /* don't do anything here */ 2438 break; 2439 case FSACTL_MINIPORT_REV_CHECK: 2440 debug(1, "FSACTL_MINIPORT_REV_CHECK"); 2441 error = aac_rev_check(sc, arg); 2442 break; 2443 case FSACTL_QUERY_DISK: 2444 debug(1, "FSACTL_QUERY_DISK"); 2445 error = aac_query_disk(sc, arg); 2446 break; 2447 case FSACTL_DELETE_DISK: 2448 /* 2449 * We don't trust the underland to tell us when to delete a 2450 * container, rather we rely on an AIF coming from the 2451 * controller 2452 */ 2453 error = 0; 2454 break; 2455 default: 2456 debug(1, "unsupported cmd 0x%lx\n", ap->a_cmd); 2457 error = EINVAL; 2458 break; 2459 } 2460 return(error); 2461 } 2462 2463 static int 2464 aac_poll(struct dev_poll_args *ap) 2465 { 2466 cdev_t dev = ap->a_head.a_dev; 2467 struct aac_softc *sc; 2468 int revents; 2469 2470 sc = dev->si_drv1; 2471 revents = 0; 2472 2473 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2474 if ((ap->a_events & (POLLRDNORM | POLLIN)) != 0) { 2475 if (sc->aac_aifq_tail != sc->aac_aifq_head) 2476 revents |= ap->a_events & (POLLIN | POLLRDNORM); 2477 } 2478 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2479 2480 if (revents == 0) { 2481 if (ap->a_events & (POLLIN | POLLRDNORM)) 2482 selrecord(curthread, &sc->rcv_select); 2483 } 2484 ap->a_events = revents; 2485 return (0); 2486 } 2487 2488 /* 2489 * Send a FIB supplied from userspace 2490 */ 2491 static int 2492 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib) 2493 { 2494 struct aac_command *cm; 2495 int size, error; 2496 2497 debug_called(2); 2498 2499 cm = NULL; 2500 2501 /* 2502 * Get a command 2503 */ 2504 if (aac_alloc_command(sc, &cm)) { 2505 error = EBUSY; 2506 goto out; 2507 } 2508 2509 /* 2510 * Fetch the FIB header, then re-copy to get data as well. 2511 */ 2512 if ((error = copyin(ufib, cm->cm_fib, 2513 sizeof(struct aac_fib_header))) != 0) 2514 goto out; 2515 size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header); 2516 if (size > sizeof(struct aac_fib)) { 2517 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n", 2518 size, sizeof(struct aac_fib)); 2519 size = sizeof(struct aac_fib); 2520 } 2521 if ((error = copyin(ufib, cm->cm_fib, size)) != 0) 2522 goto out; 2523 cm->cm_fib->Header.Size = size; 2524 cm->cm_timestamp = time_second; 2525 2526 /* 2527 * Pass the FIB to the controller, wait for it to complete. 2528 */ 2529 if ((error = aac_wait_command(cm, 30)) != 0) { /* XXX user timeout? */ 2530 printf("aac_wait_command return %d\n", error); 2531 goto out; 2532 } 2533 2534 /* 2535 * Copy the FIB and data back out to the caller. 2536 */ 2537 size = cm->cm_fib->Header.Size; 2538 if (size > sizeof(struct aac_fib)) { 2539 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n", 2540 size, sizeof(struct aac_fib)); 2541 size = sizeof(struct aac_fib); 2542 } 2543 error = copyout(cm->cm_fib, ufib, size); 2544 2545 out: 2546 if (cm != NULL) { 2547 aac_release_command(cm); 2548 } 2549 return(error); 2550 } 2551 2552 /* 2553 * Handle an AIF sent to us by the controller; queue it for later reference. 2554 * If the queue fills up, then drop the older entries. 2555 */ 2556 static void 2557 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib) 2558 { 2559 struct aac_aif_command *aif; 2560 struct aac_container *co, *co_next; 2561 struct aac_mntinfo *mi; 2562 struct aac_mntinforesp *mir = NULL; 2563 u_int16_t rsize; 2564 int next, found; 2565 int count = 0, added = 0, i = 0; 2566 2567 debug_called(2); 2568 2569 aif = (struct aac_aif_command*)&fib->data[0]; 2570 aac_print_aif(sc, aif); 2571 2572 /* Is it an event that we should care about? */ 2573 switch (aif->command) { 2574 case AifCmdEventNotify: 2575 switch (aif->data.EN.type) { 2576 case AifEnAddContainer: 2577 case AifEnDeleteContainer: 2578 /* 2579 * A container was added or deleted, but the message 2580 * doesn't tell us anything else! Re-enumerate the 2581 * containers and sort things out. 2582 */ 2583 aac_alloc_sync_fib(sc, &fib, 0); 2584 mi = (struct aac_mntinfo *)&fib->data[0]; 2585 do { 2586 /* 2587 * Ask the controller for its containers one at 2588 * a time. 2589 * XXX What if the controller's list changes 2590 * midway through this enumaration? 2591 * XXX This should be done async. 2592 */ 2593 bzero(mi, sizeof(struct aac_mntinfo)); 2594 mi->Command = VM_NameServe; 2595 mi->MntType = FT_FILESYS; 2596 mi->MntCount = i; 2597 rsize = sizeof(mir); 2598 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 2599 sizeof(struct aac_mntinfo))) { 2600 device_printf(sc->aac_dev, 2601 "Error probing container %d\n", i); 2602 2603 continue; 2604 } 2605 mir = (struct aac_mntinforesp *)&fib->data[0]; 2606 /* XXX Need to check if count changed */ 2607 count = mir->MntRespCount; 2608 2609 /* 2610 * Check the container against our list. 2611 * co->co_found was already set to 0 in a 2612 * previous run. 2613 */ 2614 if ((mir->Status == ST_OK) && 2615 (mir->MntTable[0].VolType != CT_NONE)) { 2616 found = 0; 2617 TAILQ_FOREACH(co, 2618 &sc->aac_container_tqh, 2619 co_link) { 2620 if (co->co_mntobj.ObjectId == 2621 mir->MntTable[0].ObjectId) { 2622 co->co_found = 1; 2623 found = 1; 2624 break; 2625 } 2626 } 2627 /* 2628 * If the container matched, continue 2629 * in the list. 2630 */ 2631 if (found) { 2632 i++; 2633 continue; 2634 } 2635 2636 /* 2637 * This is a new container. Do all the 2638 * appropriate things to set it up. */ 2639 aac_add_container(sc, mir, 1); 2640 added = 1; 2641 } 2642 i++; 2643 } while ((i < count) && (i < AAC_MAX_CONTAINERS)); 2644 aac_release_sync_fib(sc); 2645 2646 /* 2647 * Go through our list of containers and see which ones 2648 * were not marked 'found'. Since the controller didn't 2649 * list them they must have been deleted. Do the 2650 * appropriate steps to destroy the device. Also reset 2651 * the co->co_found field. 2652 */ 2653 co = TAILQ_FIRST(&sc->aac_container_tqh); 2654 while (co != NULL) { 2655 if (co->co_found == 0) { 2656 device_delete_child(sc->aac_dev, 2657 co->co_disk); 2658 co_next = TAILQ_NEXT(co, co_link); 2659 AAC_LOCK_ACQUIRE(&sc-> 2660 aac_container_lock); 2661 TAILQ_REMOVE(&sc->aac_container_tqh, co, 2662 co_link); 2663 AAC_LOCK_RELEASE(&sc-> 2664 aac_container_lock); 2665 FREE(co, M_AACBUF); 2666 co = co_next; 2667 } else { 2668 co->co_found = 0; 2669 co = TAILQ_NEXT(co, co_link); 2670 } 2671 } 2672 2673 /* Attach the newly created containers */ 2674 if (added) 2675 bus_generic_attach(sc->aac_dev); 2676 2677 break; 2678 2679 default: 2680 break; 2681 } 2682 2683 default: 2684 break; 2685 } 2686 2687 /* Copy the AIF data to the AIF queue for ioctl retrieval */ 2688 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2689 next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH; 2690 if (next != sc->aac_aifq_tail) { 2691 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command)); 2692 sc->aac_aifq_head = next; 2693 2694 /* On the off chance that someone is sleeping for an aif... */ 2695 if (sc->aac_state & AAC_STATE_AIF_SLEEPER) 2696 wakeup(sc->aac_aifq); 2697 /* token may have been lost */ 2698 /* Wakeup any poll()ers */ 2699 selwakeup(&sc->rcv_select); 2700 /* token may have been lost */ 2701 } 2702 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2703 2704 return; 2705 } 2706 2707 /* 2708 * Return the Revision of the driver to userspace and check to see if the 2709 * userspace app is possibly compatible. This is extremely bogus since 2710 * our driver doesn't follow Adaptec's versioning system. Cheat by just 2711 * returning what the card reported. 2712 */ 2713 static int 2714 aac_rev_check(struct aac_softc *sc, caddr_t udata) 2715 { 2716 struct aac_rev_check rev_check; 2717 struct aac_rev_check_resp rev_check_resp; 2718 int error = 0; 2719 2720 debug_called(2); 2721 2722 /* 2723 * Copyin the revision struct from userspace 2724 */ 2725 if ((error = copyin(udata, (caddr_t)&rev_check, 2726 sizeof(struct aac_rev_check))) != 0) { 2727 return error; 2728 } 2729 2730 debug(2, "Userland revision= %d\n", 2731 rev_check.callingRevision.buildNumber); 2732 2733 /* 2734 * Doctor up the response struct. 2735 */ 2736 rev_check_resp.possiblyCompatible = 1; 2737 rev_check_resp.adapterSWRevision.external.ul = 2738 sc->aac_revision.external.ul; 2739 rev_check_resp.adapterSWRevision.buildNumber = 2740 sc->aac_revision.buildNumber; 2741 2742 return(copyout((caddr_t)&rev_check_resp, udata, 2743 sizeof(struct aac_rev_check_resp))); 2744 } 2745 2746 /* 2747 * Pass the caller the next AIF in their queue 2748 */ 2749 static int 2750 aac_getnext_aif(struct aac_softc *sc, caddr_t arg) 2751 { 2752 struct get_adapter_fib_ioctl agf; 2753 int error; 2754 2755 debug_called(2); 2756 2757 if ((error = copyin(arg, &agf, sizeof(agf))) == 0) { 2758 2759 /* 2760 * Check the magic number that we gave the caller. 2761 */ 2762 if (agf.AdapterFibContext != (int)sc->aifthread) { 2763 error = EFAULT; 2764 } else { 2765 2766 crit_enter(); 2767 error = aac_return_aif(sc, agf.AifFib); 2768 2769 if ((error == EAGAIN) && (agf.Wait)) { 2770 sc->aac_state |= AAC_STATE_AIF_SLEEPER; 2771 while (error == EAGAIN) { 2772 error = tsleep(sc->aac_aifq, 2773 PCATCH, "aacaif", 0); 2774 if (error == 0) 2775 error = aac_return_aif(sc, 2776 agf.AifFib); 2777 } 2778 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER; 2779 } 2780 crit_exit(); 2781 } 2782 } 2783 return(error); 2784 } 2785 2786 /* 2787 * Hand the next AIF off the top of the queue out to userspace. 2788 * 2789 * YYY token could be lost during copyout 2790 */ 2791 static int 2792 aac_return_aif(struct aac_softc *sc, caddr_t uptr) 2793 { 2794 int error; 2795 2796 debug_called(2); 2797 2798 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2799 if (sc->aac_aifq_tail == sc->aac_aifq_head) { 2800 error = EAGAIN; 2801 } else { 2802 error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr, 2803 sizeof(struct aac_aif_command)); 2804 if (error) 2805 printf("aac_return_aif: copyout returned %d\n", error); 2806 if (!error) 2807 sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) % 2808 AAC_AIFQ_LENGTH; 2809 } 2810 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2811 return(error); 2812 } 2813 2814 /* 2815 * Give the userland some information about the container. The AAC arch 2816 * expects the driver to be a SCSI passthrough type driver, so it expects 2817 * the containers to have b:t:l numbers. Fake it. 2818 */ 2819 static int 2820 aac_query_disk(struct aac_softc *sc, caddr_t uptr) 2821 { 2822 struct aac_query_disk query_disk; 2823 struct aac_container *co; 2824 struct aac_disk *disk; 2825 int error, id; 2826 2827 debug_called(2); 2828 2829 disk = NULL; 2830 2831 error = copyin(uptr, (caddr_t)&query_disk, 2832 sizeof(struct aac_query_disk)); 2833 if (error) 2834 return (error); 2835 2836 id = query_disk.ContainerNumber; 2837 if (id == -1) 2838 return (EINVAL); 2839 2840 AAC_LOCK_ACQUIRE(&sc->aac_container_lock); 2841 TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) { 2842 if (co->co_mntobj.ObjectId == id) 2843 break; 2844 } 2845 2846 if (co == NULL) { 2847 query_disk.Valid = 0; 2848 query_disk.Locked = 0; 2849 query_disk.Deleted = 1; /* XXX is this right? */ 2850 } else { 2851 disk = device_get_softc(co->co_disk); 2852 query_disk.Valid = 1; 2853 query_disk.Locked = 2854 (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0; 2855 query_disk.Deleted = 0; 2856 query_disk.Bus = device_get_unit(sc->aac_dev); 2857 query_disk.Target = disk->unit; 2858 query_disk.Lun = 0; 2859 query_disk.UnMapped = 0; 2860 bcopy(disk->ad_dev_t->si_name, 2861 &query_disk.diskDeviceName[0], 10); 2862 } 2863 AAC_LOCK_RELEASE(&sc->aac_container_lock); 2864 2865 error = copyout((caddr_t)&query_disk, uptr, 2866 sizeof(struct aac_query_disk)); 2867 2868 return (error); 2869 } 2870 2871 static void 2872 aac_get_bus_info(struct aac_softc *sc) 2873 { 2874 struct aac_fib *fib; 2875 struct aac_ctcfg *c_cmd; 2876 struct aac_ctcfg_resp *c_resp; 2877 struct aac_vmioctl *vmi; 2878 struct aac_vmi_businf_resp *vmi_resp; 2879 struct aac_getbusinf businfo; 2880 struct aac_cam_inf *caminf; 2881 device_t child; 2882 int i, found, error; 2883 2884 aac_alloc_sync_fib(sc, &fib, 0); 2885 c_cmd = (struct aac_ctcfg *)&fib->data[0]; 2886 bzero(c_cmd, sizeof(struct aac_ctcfg)); 2887 2888 c_cmd->Command = VM_ContainerConfig; 2889 c_cmd->cmd = CT_GET_SCSI_METHOD; 2890 c_cmd->param = 0; 2891 2892 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 2893 sizeof(struct aac_ctcfg)); 2894 if (error) { 2895 device_printf(sc->aac_dev, "Error %d sending " 2896 "VM_ContainerConfig command\n", error); 2897 aac_release_sync_fib(sc); 2898 return; 2899 } 2900 2901 c_resp = (struct aac_ctcfg_resp *)&fib->data[0]; 2902 if (c_resp->Status != ST_OK) { 2903 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n", 2904 c_resp->Status); 2905 aac_release_sync_fib(sc); 2906 return; 2907 } 2908 2909 sc->scsi_method_id = c_resp->param; 2910 2911 vmi = (struct aac_vmioctl *)&fib->data[0]; 2912 bzero(vmi, sizeof(struct aac_vmioctl)); 2913 2914 vmi->Command = VM_Ioctl; 2915 vmi->ObjType = FT_DRIVE; 2916 vmi->MethId = sc->scsi_method_id; 2917 vmi->ObjId = 0; 2918 vmi->IoctlCmd = GetBusInfo; 2919 2920 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 2921 sizeof(struct aac_vmioctl)); 2922 if (error) { 2923 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n", 2924 error); 2925 aac_release_sync_fib(sc); 2926 return; 2927 } 2928 2929 vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0]; 2930 if (vmi_resp->Status != ST_OK) { 2931 debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status); 2932 aac_release_sync_fib(sc); 2933 return; 2934 } 2935 2936 bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf)); 2937 aac_release_sync_fib(sc); 2938 2939 found = 0; 2940 for (i = 0; i < businfo.BusCount; i++) { 2941 if (businfo.BusValid[i] != AAC_BUS_VALID) 2942 continue; 2943 2944 MALLOC(caminf, struct aac_cam_inf *, 2945 sizeof(struct aac_cam_inf), M_AACBUF, M_INTWAIT | M_ZERO); 2946 2947 child = device_add_child(sc->aac_dev, "aacp", -1); 2948 if (child == NULL) { 2949 device_printf(sc->aac_dev, "device_add_child failed\n"); 2950 continue; 2951 } 2952 2953 caminf->TargetsPerBus = businfo.TargetsPerBus; 2954 caminf->BusNumber = i; 2955 caminf->InitiatorBusId = businfo.InitiatorBusId[i]; 2956 caminf->aac_sc = sc; 2957 2958 device_set_ivars(child, caminf); 2959 device_set_desc(child, "SCSI Passthrough Bus"); 2960 2961 found = 1; 2962 } 2963 2964 if (found) 2965 bus_generic_attach(sc->aac_dev); 2966 2967 return; 2968 } 2969