xref: /dflybsd-src/sys/dev/raid/aac/aac.c (revision 1f7ab7c9fc18f47a2f16dc45b13dee254c603ce7)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30  *	$DragonFly: src/sys/dev/raid/aac/aac.c,v 1.27 2006/10/25 20:56:00 dillon Exp $
31  */
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 
37 #include "opt_aac.h"
38 
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
48 #include <sys/selinfo.h>
49 #else
50 #include <sys/select.h>
51 #endif
52 
53 #include "aac_compat.h"
54 
55 #include <sys/bus.h>
56 #include <sys/conf.h>
57 #include <sys/devicestat.h>
58 #include <sys/disk.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62 
63 #include "aacreg.h"
64 #include "aac_ioctl.h"
65 #include "aacvar.h"
66 #include "aac_tables.h"
67 #include "aac_cam.h"
68 
69 static void	aac_startup(void *arg);
70 static void	aac_add_container(struct aac_softc *sc,
71 				  struct aac_mntinforesp *mir, int f);
72 static void	aac_get_bus_info(struct aac_softc *sc);
73 
74 /* Command Processing */
75 static void	aac_timeout(void *ssc);
76 static int	aac_start(struct aac_command *cm);
77 static void	aac_complete(void *context, int pending);
78 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
79 static void	aac_bio_complete(struct aac_command *cm);
80 static int	aac_wait_command(struct aac_command *cm, int timeout);
81 static void	aac_host_command(struct aac_softc *sc);
82 static void	aac_host_response(struct aac_softc *sc);
83 
84 /* Command Buffer Management */
85 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
86 				       int nseg, int error);
87 static int	aac_alloc_commands(struct aac_softc *sc);
88 static void	aac_free_commands(struct aac_softc *sc);
89 static void	aac_map_command(struct aac_command *cm);
90 static void	aac_unmap_command(struct aac_command *cm);
91 
92 /* Hardware Interface */
93 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
94 			       int error);
95 static int	aac_check_firmware(struct aac_softc *sc);
96 static int	aac_init(struct aac_softc *sc);
97 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
98 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
99 				 u_int32_t arg3, u_int32_t *sp);
100 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
101 				struct aac_command *cm);
102 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
103 				u_int32_t *fib_size, struct aac_fib **fib_addr);
104 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
105 				     struct aac_fib *fib);
106 
107 /* Falcon/PPC interface */
108 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
109 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
110 static int	aac_fa_get_istatus(struct aac_softc *sc);
111 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
112 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
113 				   u_int32_t arg0, u_int32_t arg1,
114 				   u_int32_t arg2, u_int32_t arg3);
115 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
116 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
117 
118 struct aac_interface aac_fa_interface = {
119 	aac_fa_get_fwstatus,
120 	aac_fa_qnotify,
121 	aac_fa_get_istatus,
122 	aac_fa_clear_istatus,
123 	aac_fa_set_mailbox,
124 	aac_fa_get_mailbox,
125 	aac_fa_set_interrupts
126 };
127 
128 /* StrongARM interface */
129 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
130 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
131 static int	aac_sa_get_istatus(struct aac_softc *sc);
132 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
133 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
134 				   u_int32_t arg0, u_int32_t arg1,
135 				   u_int32_t arg2, u_int32_t arg3);
136 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
137 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
138 
139 struct aac_interface aac_sa_interface = {
140 	aac_sa_get_fwstatus,
141 	aac_sa_qnotify,
142 	aac_sa_get_istatus,
143 	aac_sa_clear_istatus,
144 	aac_sa_set_mailbox,
145 	aac_sa_get_mailbox,
146 	aac_sa_set_interrupts
147 };
148 
149 /* i960Rx interface */
150 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
151 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
152 static int	aac_rx_get_istatus(struct aac_softc *sc);
153 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
154 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
155 				   u_int32_t arg0, u_int32_t arg1,
156 				   u_int32_t arg2, u_int32_t arg3);
157 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
158 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
159 
160 struct aac_interface aac_rx_interface = {
161 	aac_rx_get_fwstatus,
162 	aac_rx_qnotify,
163 	aac_rx_get_istatus,
164 	aac_rx_clear_istatus,
165 	aac_rx_set_mailbox,
166 	aac_rx_get_mailbox,
167 	aac_rx_set_interrupts
168 };
169 
170 /* Debugging and Diagnostics */
171 static void	aac_describe_controller(struct aac_softc *sc);
172 static char	*aac_describe_code(struct aac_code_lookup *table,
173 				   u_int32_t code);
174 
175 /* Management Interface */
176 static d_open_t		aac_open;
177 static d_close_t	aac_close;
178 static d_ioctl_t	aac_ioctl;
179 static d_poll_t		aac_poll;
180 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
181 static void		aac_handle_aif(struct aac_softc *sc,
182 					   struct aac_fib *fib);
183 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
184 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
185 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
186 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
187 
188 #define AAC_CDEV_MAJOR	150
189 
190 static struct dev_ops aac_ops = {
191 	{ "aac", AAC_CDEV_MAJOR, 0 },
192 	.d_open =	aac_open,
193 	.d_close =	aac_close,
194 	.d_ioctl =	aac_ioctl,
195 	.d_poll =	aac_poll,
196 };
197 
198 DECLARE_DUMMY_MODULE(aac);
199 
200 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
201 
202 /* sysctl node */
203 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
204 
205 /*
206  * Device Interface
207  */
208 
209 /*
210  * Initialise the controller and softc
211  */
212 int
213 aac_attach(struct aac_softc *sc)
214 {
215 	int error, unit;
216 
217 	debug_called(1);
218 	callout_init(&sc->aac_watchdog);
219 
220 	/*
221 	 * Initialise per-controller queues.
222 	 */
223 	aac_initq_free(sc);
224 	aac_initq_ready(sc);
225 	aac_initq_busy(sc);
226 	aac_initq_complete(sc);
227 	aac_initq_bio(sc);
228 
229 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
230 	/*
231 	 * Initialise command-completion task.
232 	 */
233 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
234 #endif
235 
236 	/* disable interrupts before we enable anything */
237 	AAC_MASK_INTERRUPTS(sc);
238 
239 	/* mark controller as suspended until we get ourselves organised */
240 	sc->aac_state |= AAC_STATE_SUSPEND;
241 
242 	/*
243 	 * Check that the firmware on the card is supported.
244 	 */
245 	if ((error = aac_check_firmware(sc)) != 0)
246 		return(error);
247 
248 	/* Init the sync fib lock */
249 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
250 
251 	/*
252 	 * Initialise the adapter.
253 	 */
254 	if ((error = aac_init(sc)) != 0)
255 		return(error);
256 
257 	/*
258 	 * Print a little information about the controller.
259 	 */
260 	aac_describe_controller(sc);
261 
262 	/*
263 	 * Register to probe our containers later.
264 	 */
265 	TAILQ_INIT(&sc->aac_container_tqh);
266 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
267 
268 	/*
269 	 * Lock for the AIF queue
270 	 */
271 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
272 
273 	sc->aac_ich.ich_func = aac_startup;
274 	sc->aac_ich.ich_arg = sc;
275 	sc->aac_ich.ich_desc = "aac";
276 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
277 		device_printf(sc->aac_dev,
278 			      "can't establish configuration hook\n");
279 		return(ENXIO);
280 	}
281 
282 	/*
283 	 * Make the control device.
284 	 */
285 	unit = device_get_unit(sc->aac_dev);
286 	dev_ops_add(&aac_ops, -1, unit);
287 	sc->aac_dev_t = make_dev(&aac_ops, unit, UID_ROOT, GID_WHEEL, 0644,
288 				 "aac%d", unit);
289 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
290 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
291 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
292 #endif
293 	sc->aac_dev_t->si_drv1 = sc;
294 	reference_dev(sc->aac_dev_t);
295 
296 	/* Create the AIF thread */
297 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
298 	if (kthread_create((void(*)(void *))aac_host_command, sc,
299 			   &sc->aifthread, 0, "aac%daif", unit))
300 #else
301 	if (kthread_create((void(*)(void *))aac_host_command, sc,
302 			   &sc->aifthread, "aac%daif", unit))
303 #endif
304 		panic("Could not create AIF thread\n");
305 
306 	/* Register the shutdown method to only be called post-dump */
307 	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
308 				   SHUTDOWN_PRI_DEFAULT)) == NULL)
309 	device_printf(sc->aac_dev, "shutdown event registration failed\n");
310 
311 	/* Register with CAM for the non-DASD devices */
312 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
313 		aac_get_bus_info(sc);
314 
315 	return(0);
316 }
317 
318 /*
319  * Probe for containers, create disks.
320  */
321 static void
322 aac_startup(void *arg)
323 {
324 	struct aac_softc *sc;
325 	struct aac_fib *fib;
326 	struct aac_mntinfo *mi;
327 	struct aac_mntinforesp *mir = NULL;
328 	int count = 0, i = 0;
329 
330 	debug_called(1);
331 
332 	sc = (struct aac_softc *)arg;
333 
334 	/* disconnect ourselves from the intrhook chain */
335 	config_intrhook_disestablish(&sc->aac_ich);
336 
337 	aac_alloc_sync_fib(sc, &fib, 0);
338 	mi = (struct aac_mntinfo *)&fib->data[0];
339 
340 	/* loop over possible containers */
341 	do {
342 		/* request information on this container */
343 		bzero(mi, sizeof(struct aac_mntinfo));
344 		mi->Command = VM_NameServe;
345 		mi->MntType = FT_FILESYS;
346 		mi->MntCount = i;
347 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
348 				 sizeof(struct aac_mntinfo))) {
349 			device_printf(sc->aac_dev,
350 			    "error probing container %d", i);
351 
352 			continue;
353 		}
354 
355 		mir = (struct aac_mntinforesp *)&fib->data[0];
356 		/* XXX Need to check if count changed */
357 		count = mir->MntRespCount;
358 		aac_add_container(sc, mir, 0);
359 		i++;
360 	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
361 
362 	aac_release_sync_fib(sc);
363 
364 	/* poke the bus to actually attach the child devices */
365 	if (bus_generic_attach(sc->aac_dev))
366 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
367 
368 	/* mark the controller up */
369 	sc->aac_state &= ~AAC_STATE_SUSPEND;
370 
371 	/* enable interrupts now */
372 	AAC_UNMASK_INTERRUPTS(sc);
373 
374 	/* enable the timeout watchdog */
375 	callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
376 		      aac_timeout, sc);
377 }
378 
379 /*
380  * Create a device to respresent a new container
381  */
382 static void
383 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
384 {
385 	struct aac_container *co;
386 	device_t child;
387 
388 	/*
389 	 * Check container volume type for validity.  Note that many of
390 	 * the possible types may never show up.
391 	 */
392 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
393 		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
394 		       M_INTWAIT);
395 		debug(1, "id %x  name '%.16s'  size %u  type %d",
396 		      mir->MntTable[0].ObjectId,
397 		      mir->MntTable[0].FileSystemName,
398 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
399 
400 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
401 			device_printf(sc->aac_dev, "device_add_child failed\n");
402 		else
403 			device_set_ivars(child, co);
404 		device_set_desc(child, aac_describe_code(aac_container_types,
405 				mir->MntTable[0].VolType));
406 		co->co_disk = child;
407 		co->co_found = f;
408 		bcopy(&mir->MntTable[0], &co->co_mntobj,
409 		      sizeof(struct aac_mntobj));
410 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
411 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
412 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
413 	}
414 }
415 
416 /*
417  * Free all of the resources associated with (sc)
418  *
419  * Should not be called if the controller is active.
420  */
421 void
422 aac_free(struct aac_softc *sc)
423 {
424 	debug_called(1);
425 
426 	/* remove the control device */
427 	if (sc->aac_dev_t != NULL)
428 		destroy_dev(sc->aac_dev_t);
429 
430 	/* throw away any FIB buffers, discard the FIB DMA tag */
431 	if (sc->aac_fibs != NULL)
432 		aac_free_commands(sc);
433 	if (sc->aac_fib_dmat)
434 		bus_dma_tag_destroy(sc->aac_fib_dmat);
435 
436 	/* destroy the common area */
437 	if (sc->aac_common) {
438 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
439 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
440 				sc->aac_common_dmamap);
441 	}
442 	if (sc->aac_common_dmat)
443 		bus_dma_tag_destroy(sc->aac_common_dmat);
444 
445 	/* disconnect the interrupt handler */
446 	if (sc->aac_intr)
447 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
448 	if (sc->aac_irq != NULL)
449 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
450 				     sc->aac_irq);
451 
452 	/* destroy data-transfer DMA tag */
453 	if (sc->aac_buffer_dmat)
454 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
455 
456 	/* destroy the parent DMA tag */
457 	if (sc->aac_parent_dmat)
458 		bus_dma_tag_destroy(sc->aac_parent_dmat);
459 
460 	/* release the register window mapping */
461 	if (sc->aac_regs_resource != NULL) {
462 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
463 				     sc->aac_regs_rid, sc->aac_regs_resource);
464 	}
465 	dev_ops_remove(&aac_ops, -1, device_get_unit(sc->aac_dev));
466 }
467 
468 /*
469  * Disconnect from the controller completely, in preparation for unload.
470  */
471 int
472 aac_detach(device_t dev)
473 {
474 	struct aac_softc *sc;
475 #if AAC_BROKEN
476 	int error;
477 #endif
478 
479 	debug_called(1);
480 
481 	sc = device_get_softc(dev);
482 
483 	callout_stop(&sc->aac_watchdog);
484 
485 	if (sc->aac_state & AAC_STATE_OPEN)
486 	return(EBUSY);
487 
488 #if AAC_BROKEN
489 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
490 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
491 		wakeup(sc->aifthread);
492 		tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz);
493 	}
494 
495 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
496 		panic("Cannot shutdown AIF thread\n");
497 
498 	if ((error = aac_shutdown(dev)))
499 		return(error);
500 
501 	aac_free(sc);
502 
503 	return(0);
504 #else
505 	return (EBUSY);
506 #endif
507 }
508 
509 /*
510  * Bring the controller down to a dormant state and detach all child devices.
511  *
512  * This function is called before detach or system shutdown.
513  *
514  * Note that we can assume that the bioq on the controller is empty, as we won't
515  * allow shutdown if any device is open.
516  */
517 int
518 aac_shutdown(device_t dev)
519 {
520 	struct aac_softc *sc;
521 	struct aac_fib *fib;
522 	struct aac_close_command *cc;
523 
524 	debug_called(1);
525 
526 	sc = device_get_softc(dev);
527 
528 	crit_enter();
529 
530 	sc->aac_state |= AAC_STATE_SUSPEND;
531 
532 	/*
533 	 * Send a Container shutdown followed by a HostShutdown FIB to the
534 	 * controller to convince it that we don't want to talk to it anymore.
535 	 * We've been closed and all I/O completed already
536 	 */
537 	device_printf(sc->aac_dev, "shutting down controller...");
538 
539 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
540 	cc = (struct aac_close_command *)&fib->data[0];
541 
542 	bzero(cc, sizeof(struct aac_close_command));
543 	cc->Command = VM_CloseAll;
544 	cc->ContainerId = 0xffffffff;
545 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
546 	    sizeof(struct aac_close_command)))
547 		printf("FAILED.\n");
548 	else {
549 		fib->data[0] = 0;
550 		/*
551 		 * XXX Issuing this command to the controller makes it shut down
552 		 * but also keeps it from coming back up without a reset of the
553 		 * PCI bus.  This is not desirable if you are just unloading the
554 		 * driver module with the intent to reload it later.
555 		 */
556 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
557 		    fib, 1)) {
558 			printf("FAILED.\n");
559 		} else {
560 			printf("done.\n");
561 		}
562 	}
563 
564 	AAC_MASK_INTERRUPTS(sc);
565 
566 	crit_exit();
567 	return(0);
568 }
569 
570 /*
571  * Bring the controller to a quiescent state, ready for system suspend.
572  */
573 int
574 aac_suspend(device_t dev)
575 {
576 	struct aac_softc *sc;
577 
578 	debug_called(1);
579 
580 	sc = device_get_softc(dev);
581 
582 	crit_enter();
583 
584 	sc->aac_state |= AAC_STATE_SUSPEND;
585 
586 	AAC_MASK_INTERRUPTS(sc);
587 	crit_exit();
588 	return(0);
589 }
590 
591 /*
592  * Bring the controller back to a state ready for operation.
593  */
594 int
595 aac_resume(device_t dev)
596 {
597 	struct aac_softc *sc;
598 
599 	debug_called(1);
600 
601 	sc = device_get_softc(dev);
602 
603 	sc->aac_state &= ~AAC_STATE_SUSPEND;
604 	AAC_UNMASK_INTERRUPTS(sc);
605 	return(0);
606 }
607 
608 /*
609  * Take an interrupt.
610  */
611 void
612 aac_intr(void *arg)
613 {
614 	struct aac_softc *sc;
615 	u_int16_t reason;
616 	u_int32_t *resp_queue;
617 
618 	debug_called(2);
619 
620 	sc = (struct aac_softc *)arg;
621 
622 	/*
623 	 * Optimize the common case of adapter response interrupts.
624 	 * We must read from the card prior to processing the responses
625 	 * to ensure the clear is flushed prior to accessing the queues.
626 	 * Reading the queues from local memory might save us a PCI read.
627 	 */
628 	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
629 	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
630 		reason = AAC_DB_RESPONSE_READY;
631 	else
632 		reason = AAC_GET_ISTATUS(sc);
633 	AAC_CLEAR_ISTATUS(sc, reason);
634 	(void)AAC_GET_ISTATUS(sc);
635 
636 	/* It's not ok to return here because of races with the previous step */
637 	if (reason & AAC_DB_RESPONSE_READY)
638 		aac_host_response(sc);
639 
640 	/* controller wants to talk to the log */
641 	if (reason & AAC_DB_PRINTF)
642 		aac_print_printf(sc);
643 
644 	/* controller has a message for us? */
645 	if (reason & AAC_DB_COMMAND_READY) {
646 		/* XXX What happens if the thread is already awake? */
647 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
648 			sc->aifflags |= AAC_AIFFLAGS_PENDING;
649 			wakeup(sc->aifthread);
650 		}
651 	}
652 }
653 
654 /*
655  * Command Processing
656  */
657 
658 /*
659  * Start as much queued I/O as possible on the controller
660  */
661 void
662 aac_startio(struct aac_softc *sc)
663 {
664 	struct aac_command *cm;
665 
666 	debug_called(2);
667 
668 	for (;;) {
669 		/*
670 		 * Try to get a command that's been put off for lack of
671 		 * resources
672 		 */
673 		cm = aac_dequeue_ready(sc);
674 
675 		/*
676 		 * Try to build a command off the bio queue (ignore error
677 		 * return)
678 		 */
679 		if (cm == NULL)
680 			aac_bio_command(sc, &cm);
681 
682 		/* nothing to do? */
683 		if (cm == NULL)
684 			break;
685 
686 		/* try to give the command to the controller */
687 		if (aac_start(cm) == EBUSY) {
688 			/* put it on the ready queue for later */
689 			aac_requeue_ready(cm);
690 			break;
691 		}
692 	}
693 }
694 
695 /*
696  * Deliver a command to the controller; allocate controller resources at the
697  * last moment when possible.
698  */
699 static int
700 aac_start(struct aac_command *cm)
701 {
702 	struct aac_softc *sc;
703 	int error;
704 
705 	debug_called(2);
706 
707 	sc = cm->cm_sc;
708 
709 	/* get the command mapped */
710 	aac_map_command(cm);
711 
712 	/* fix up the address values in the FIB */
713 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
714 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
715 
716 	/* save a pointer to the command for speedy reverse-lookup */
717 	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
718 							 * address issue */
719 	/* put the FIB on the outbound queue */
720 	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
721 	return(error);
722 }
723 
724 /*
725  * Handle notification of one or more FIBs coming from the controller.
726  */
727 static void
728 aac_host_command(struct aac_softc *sc)
729 {
730 	struct aac_fib *fib;
731 	u_int32_t fib_size;
732 	int size;
733 
734 	debug_called(2);
735 
736 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
737 
738 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
739 		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
740 			tsleep(sc->aifthread, 0, "aifthd", 15 * hz);
741 
742 		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
743 		for (;;) {
744 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
745 					    &fib_size, &fib))
746 				break;	/* nothing to do */
747 
748 			AAC_PRINT_FIB(sc, fib);
749 
750 			switch (fib->Header.Command) {
751 			case AifRequest:
752 				aac_handle_aif(sc, fib);
753 				break;
754 			default:
755 				device_printf(sc->aac_dev, "unknown command "
756 					      "from controller\n");
757 				break;
758 			}
759 
760 			/* Return the AIF to the controller. */
761 			if ((fib->Header.XferState == 0) ||
762 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
763 				break;
764 
765 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
766 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
767 				*(AAC_FSAStatus*)fib->data = ST_OK;
768 
769 				/* XXX Compute the Size field? */
770 				size = fib->Header.Size;
771 				if (size > sizeof(struct aac_fib)) {
772 					size = sizeof(struct aac_fib);
773 					fib->Header.Size = size;
774 				}
775 				/*
776 				 * Since we did not generate this command, it
777 				 * cannot go through the normal
778 				 * enqueue->startio chain.
779 				 */
780 				aac_enqueue_response(sc,
781 						     AAC_ADAP_NORM_RESP_QUEUE,
782 						     fib);
783 			}
784 		}
785 	}
786 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
787 	wakeup(sc->aac_dev);
788 
789 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
790 	mtx_lock(&Giant);
791 #endif
792 	kthread_exit();
793 }
794 
795 /*
796  * Handle notification of one or more FIBs completed by the controller
797  */
798 static void
799 aac_host_response(struct aac_softc *sc)
800 {
801 	struct aac_command *cm;
802 	struct aac_fib *fib;
803 	u_int32_t fib_size;
804 
805 	debug_called(2);
806 
807 	for (;;) {
808 		/* look for completed FIBs on our queue */
809 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
810 				    &fib))
811 			break;	/* nothing to do */
812 
813 		/* get the command, unmap and queue for later processing */
814 		cm = (struct aac_command *)fib->Header.SenderData;
815 		if (cm == NULL) {
816 			AAC_PRINT_FIB(sc, fib);
817 		} else {
818 			aac_remove_busy(cm);
819 			aac_unmap_command(cm);		/* XXX defer? */
820 			aac_enqueue_complete(cm);
821 		}
822 	}
823 
824 	/* handle completion processing */
825 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
826 	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
827 #else
828 	aac_complete(sc, 0);
829 #endif
830 }
831 
832 /*
833  * Process completed commands.
834  */
835 static void
836 aac_complete(void *context, int pending)
837 {
838 	struct aac_softc *sc;
839 	struct aac_command *cm;
840 
841 	debug_called(2);
842 
843 	sc = (struct aac_softc *)context;
844 
845 	/* pull completed commands off the queue */
846 	for (;;) {
847 		cm = aac_dequeue_complete(sc);
848 		if (cm == NULL)
849 			break;
850 		cm->cm_flags |= AAC_CMD_COMPLETED;
851 
852 		/* is there a completion handler? */
853 		if (cm->cm_complete != NULL) {
854 			cm->cm_complete(cm);
855 		} else {
856 			/* assume that someone is sleeping on this command */
857 			wakeup(cm);
858 		}
859 	}
860 
861 	/* see if we can start some more I/O */
862 	aac_startio(sc);
863 }
864 
865 /*
866  * Handle a bio submitted from a disk device.
867  */
868 void
869 aac_submit_bio(struct aac_disk *ad, struct bio *bio)
870 {
871 	struct aac_softc *sc;
872 
873 	debug_called(2);
874 
875 	bio->bio_driver_info = ad;
876 	sc = ad->ad_controller;
877 
878 	/* queue the BIO and try to get some work done */
879 	aac_enqueue_bio(sc, bio);
880 	aac_startio(sc);
881 }
882 
883 /*
884  * Get a bio and build a command to go with it.
885  */
886 static int
887 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
888 {
889 	struct aac_command *cm;
890 	struct aac_fib *fib;
891 	struct aac_blockread *br;
892 	struct aac_blockwrite *bw;
893 	struct aac_disk *ad;
894 	struct bio *bio;
895 	struct buf *bp;
896 
897 	debug_called(2);
898 
899 	/* get the resources we will need */
900 	cm = NULL;
901 	if ((bio = aac_dequeue_bio(sc)) == NULL)
902 		goto fail;
903 	if (aac_alloc_command(sc, &cm))	/* get a command */
904 		goto fail;
905 
906 	/* fill out the command */
907 	bp = bio->bio_buf;
908 	cm->cm_data = (void *)bp->b_data;
909 	cm->cm_datalen = bp->b_bcount;
910 	cm->cm_complete = aac_bio_complete;
911 	cm->cm_private = bio;
912 	cm->cm_timestamp = time_second;
913 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
914 
915 	/* build the FIB */
916 	fib = cm->cm_fib;
917 	fib->Header.XferState =
918 		AAC_FIBSTATE_HOSTOWNED   |
919 		AAC_FIBSTATE_INITIALISED |
920 		AAC_FIBSTATE_EMPTY	 |
921 		AAC_FIBSTATE_FROMHOST	 |
922 		AAC_FIBSTATE_REXPECTED   |
923 		AAC_FIBSTATE_NORM	 |
924 		AAC_FIBSTATE_ASYNC	 |
925 		AAC_FIBSTATE_FAST_RESPONSE;
926 	fib->Header.Command = ContainerCommand;
927 	fib->Header.Size = sizeof(struct aac_fib_header);
928 
929 	/* build the read/write request */
930 	ad = (struct aac_disk *)bio->bio_driver_info;
931 	if (bp->b_cmd == BUF_CMD_READ) {
932 		br = (struct aac_blockread *)&fib->data[0];
933 		br->Command = VM_CtBlockRead;
934 		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
935 		br->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE;
936 		br->ByteCount = bp->b_bcount;
937 		fib->Header.Size += sizeof(struct aac_blockread);
938 		cm->cm_sgtable = &br->SgMap;
939 		cm->cm_flags |= AAC_CMD_DATAIN;
940 	} else {
941 		bw = (struct aac_blockwrite *)&fib->data[0];
942 		bw->Command = VM_CtBlockWrite;
943 		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
944 		bw->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE;
945 		bw->ByteCount = bp->b_bcount;
946 		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
947 		fib->Header.Size += sizeof(struct aac_blockwrite);
948 		cm->cm_flags |= AAC_CMD_DATAOUT;
949 		cm->cm_sgtable = &bw->SgMap;
950 	}
951 
952 	*cmp = cm;
953 	return(0);
954 
955 fail:
956 	if (bio != NULL)
957 		aac_enqueue_bio(sc, bio);
958 	if (cm != NULL)
959 		aac_release_command(cm);
960 	return(ENOMEM);
961 }
962 
963 /*
964  * Handle a bio-instigated command that has been completed.
965  */
966 static void
967 aac_bio_complete(struct aac_command *cm)
968 {
969 	struct aac_blockread_response *brr;
970 	struct aac_blockwrite_response *bwr;
971 	struct bio *bio;
972 	struct buf *bp;
973 	const char *code;
974 	AAC_FSAStatus status;
975 
976 	/* fetch relevant status and then release the command */
977 	bio = (struct bio *)cm->cm_private;
978 	bp = bio->bio_buf;
979 	if (bp->b_cmd == BUF_CMD_READ) {
980 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
981 		status = brr->Status;
982 	} else {
983 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
984 		status = bwr->Status;
985 	}
986 	aac_release_command(cm);
987 
988 	/* fix up the bio based on status */
989 	if (status == ST_OK) {
990 		bp->b_resid = 0;
991 		code = 0;
992 	} else {
993 		bp->b_error = EIO;
994 		bp->b_flags |= B_ERROR;
995 		/* pass an error string out to the disk layer */
996 		code = aac_describe_code(aac_command_status_table, status);
997 	}
998 	aac_biodone(bio, code);
999 }
1000 
1001 /*
1002  * Dump a block of data to the controller.  If the queue is full, tell the
1003  * caller to hold off and wait for the queue to drain.
1004  */
1005 int
1006 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1007 {
1008 	struct aac_softc *sc;
1009 	struct aac_command *cm;
1010 	struct aac_fib *fib;
1011 	struct aac_blockwrite *bw;
1012 
1013 	sc = ad->ad_controller;
1014 	cm = NULL;
1015 
1016 	if (aac_alloc_command(sc, &cm))
1017 		return (EBUSY);
1018 
1019 	/* fill out the command */
1020 	cm->cm_data = data;
1021 	cm->cm_datalen = dumppages * PAGE_SIZE;
1022 	cm->cm_complete = NULL;
1023 	cm->cm_private = NULL;
1024 	cm->cm_timestamp = time_second;
1025 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1026 
1027 	/* build the FIB */
1028 	fib = cm->cm_fib;
1029 	fib->Header.XferState =
1030 	AAC_FIBSTATE_HOSTOWNED   |
1031 	AAC_FIBSTATE_INITIALISED |
1032 	AAC_FIBSTATE_FROMHOST	 |
1033 	AAC_FIBSTATE_REXPECTED   |
1034 	AAC_FIBSTATE_NORM;
1035 	fib->Header.Command = ContainerCommand;
1036 	fib->Header.Size = sizeof(struct aac_fib_header);
1037 
1038 	bw = (struct aac_blockwrite *)&fib->data[0];
1039 	bw->Command = VM_CtBlockWrite;
1040 	bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1041 	bw->BlockNumber = lba;
1042 	bw->ByteCount = dumppages * PAGE_SIZE;
1043 	bw->Stable = CUNSTABLE;		/* XXX what's appropriate here? */
1044 	fib->Header.Size += sizeof(struct aac_blockwrite);
1045 	cm->cm_flags |= AAC_CMD_DATAOUT;
1046 	cm->cm_sgtable = &bw->SgMap;
1047 
1048 	return (aac_start(cm));
1049 }
1050 
1051 /*
1052  * Wait for the card's queue to drain when dumping.  Also check for monitor
1053  * printf's
1054  */
1055 void
1056 aac_dump_complete(struct aac_softc *sc)
1057 {
1058 	struct aac_fib *fib;
1059 	struct aac_command *cm;
1060 	u_int16_t reason;
1061 	u_int32_t pi, ci, fib_size;
1062 
1063 	do {
1064 		reason = AAC_GET_ISTATUS(sc);
1065 		if (reason & AAC_DB_RESPONSE_READY) {
1066 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1067 			for (;;) {
1068 				if (aac_dequeue_fib(sc,
1069 						    AAC_HOST_NORM_RESP_QUEUE,
1070 						    &fib_size, &fib))
1071 					break;
1072 				cm = (struct aac_command *)
1073 					fib->Header.SenderData;
1074 				if (cm == NULL)
1075 					AAC_PRINT_FIB(sc, fib);
1076 				else {
1077 					aac_remove_busy(cm);
1078 					aac_unmap_command(cm);
1079 					aac_enqueue_complete(cm);
1080 					aac_release_command(cm);
1081 				}
1082 			}
1083 		}
1084 		if (reason & AAC_DB_PRINTF) {
1085 			AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1086 			aac_print_printf(sc);
1087 		}
1088 		pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1089 			AAC_PRODUCER_INDEX];
1090 		ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1091 			AAC_CONSUMER_INDEX];
1092 	} while (ci != pi);
1093 
1094 	return;
1095 }
1096 
1097 /*
1098  * Submit a command to the controller, return when it completes.
1099  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1100  *     be stuck here forever.  At the same time, signals are not caught
1101  *     because there is a risk that a signal could wakeup the tsleep before
1102  *     the card has a chance to complete the command.  The passed in timeout
1103  *     is ignored for the same reason.  Since there is no way to cancel a
1104  *     command in progress, we should probably create a 'dead' queue where
1105  *     commands go that have been interrupted/timed-out/etc, that keeps them
1106  *     out of the free pool.  That way, if the card is just slow, it won't
1107  *     spam the memory of a command that has been recycled.
1108  */
1109 static int
1110 aac_wait_command(struct aac_command *cm, int timeout)
1111 {
1112 	int error = 0;
1113 
1114 	debug_called(2);
1115 
1116 	/* Put the command on the ready queue and get things going */
1117 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1118 	aac_enqueue_ready(cm);
1119 	aac_startio(cm->cm_sc);
1120 	crit_enter();
1121 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1122 		error = tsleep(cm, 0, "aacwait", 0);
1123 	}
1124 	crit_exit();
1125 	return(error);
1126 }
1127 
1128 /*
1129  *Command Buffer Management
1130  */
1131 
1132 /*
1133  * Allocate a command.
1134  */
1135 int
1136 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1137 {
1138 	struct aac_command *cm;
1139 
1140 	debug_called(3);
1141 
1142 	if ((cm = aac_dequeue_free(sc)) == NULL)
1143 		return(ENOMEM);
1144 
1145 	*cmp = cm;
1146 	return(0);
1147 }
1148 
1149 /*
1150  * Release a command back to the freelist.
1151  */
1152 void
1153 aac_release_command(struct aac_command *cm)
1154 {
1155 	debug_called(3);
1156 
1157 	/* (re)initialise the command/FIB */
1158 	cm->cm_sgtable = NULL;
1159 	cm->cm_flags = 0;
1160 	cm->cm_complete = NULL;
1161 	cm->cm_private = NULL;
1162 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1163 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1164 	cm->cm_fib->Header.Flags = 0;
1165 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1166 
1167 	/*
1168 	 * These are duplicated in aac_start to cover the case where an
1169 	 * intermediate stage may have destroyed them.  They're left
1170 	 * initialised here for debugging purposes only.
1171 	 */
1172 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1173 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1174 	cm->cm_fib->Header.SenderData = 0;
1175 
1176 	aac_enqueue_free(cm);
1177 }
1178 
1179 /*
1180  * Map helper for command/FIB allocation.
1181  */
1182 static void
1183 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1184 {
1185 	struct aac_softc *sc;
1186 
1187 	sc = (struct aac_softc *)arg;
1188 
1189 	debug_called(3);
1190 
1191 	sc->aac_fibphys = segs[0].ds_addr;
1192 }
1193 
1194 /*
1195  * Allocate and initialise commands/FIBs for this adapter.
1196  */
1197 static int
1198 aac_alloc_commands(struct aac_softc *sc)
1199 {
1200 	struct aac_command *cm;
1201 	int i;
1202 
1203 	debug_called(1);
1204 
1205 	/* allocate the FIBs in DMAable memory and load them */
1206 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1207 			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1208 		return(ENOMEM);
1209 	}
1210 
1211 	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1212 			AAC_FIB_COUNT * sizeof(struct aac_fib),
1213 			aac_map_command_helper, sc, 0);
1214 
1215 	/* initialise constant fields in the command structure */
1216 	bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1217 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1218 		cm = &sc->aac_command[i];
1219 		cm->cm_sc = sc;
1220 		cm->cm_fib = sc->aac_fibs + i;
1221 		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1222 
1223 		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1224 			aac_release_command(cm);
1225 	}
1226 	return(0);
1227 }
1228 
1229 /*
1230  * Free FIBs owned by this adapter.
1231  */
1232 static void
1233 aac_free_commands(struct aac_softc *sc)
1234 {
1235 	int i;
1236 
1237 	debug_called(1);
1238 
1239 	for (i = 0; i < AAC_FIB_COUNT; i++)
1240 		bus_dmamap_destroy(sc->aac_buffer_dmat,
1241 				   sc->aac_command[i].cm_datamap);
1242 
1243 	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1244 	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1245 }
1246 
1247 /*
1248  * Command-mapping helper function - populate this command's s/g table.
1249  */
1250 static void
1251 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1252 {
1253 	struct aac_command *cm;
1254 	struct aac_fib *fib;
1255 	struct aac_sg_table *sg;
1256 	int i;
1257 
1258 	debug_called(3);
1259 
1260 	cm = (struct aac_command *)arg;
1261 	fib = cm->cm_fib;
1262 
1263 	/* find the s/g table */
1264 	sg = cm->cm_sgtable;
1265 
1266 	/* copy into the FIB */
1267 	if (sg != NULL) {
1268 		sg->SgCount = nseg;
1269 		for (i = 0; i < nseg; i++) {
1270 			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1271 			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1272 		}
1273 		/* update the FIB size for the s/g count */
1274 		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1275 	}
1276 
1277 }
1278 
1279 /*
1280  * Map a command into controller-visible space.
1281  */
1282 static void
1283 aac_map_command(struct aac_command *cm)
1284 {
1285 	struct aac_softc *sc;
1286 
1287 	debug_called(2);
1288 
1289 	sc = cm->cm_sc;
1290 
1291 	/* don't map more than once */
1292 	if (cm->cm_flags & AAC_CMD_MAPPED)
1293 		return;
1294 
1295 	if (cm->cm_datalen != 0) {
1296 		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1297 				cm->cm_data, cm->cm_datalen,
1298 				aac_map_command_sg, cm, 0);
1299 
1300 		if (cm->cm_flags & AAC_CMD_DATAIN)
1301 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1302 					BUS_DMASYNC_PREREAD);
1303 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1304 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1305 					BUS_DMASYNC_PREWRITE);
1306 	}
1307 	cm->cm_flags |= AAC_CMD_MAPPED;
1308 }
1309 
1310 /*
1311  * Unmap a command from controller-visible space.
1312  */
1313 static void
1314 aac_unmap_command(struct aac_command *cm)
1315 {
1316 	struct aac_softc *sc;
1317 
1318 	debug_called(2);
1319 
1320 	sc = cm->cm_sc;
1321 
1322 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1323 		return;
1324 
1325 	if (cm->cm_datalen != 0) {
1326 		if (cm->cm_flags & AAC_CMD_DATAIN)
1327 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1328 					BUS_DMASYNC_POSTREAD);
1329 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1330 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1331 					BUS_DMASYNC_POSTWRITE);
1332 
1333 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1334 	}
1335 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1336 }
1337 
1338 /*
1339  * Hardware Interface
1340  */
1341 
1342 /*
1343  * Initialise the adapter.
1344  */
1345 static void
1346 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1347 {
1348 	struct aac_softc *sc;
1349 
1350 	debug_called(1);
1351 
1352 	sc = (struct aac_softc *)arg;
1353 
1354 	sc->aac_common_busaddr = segs[0].ds_addr;
1355 }
1356 
1357 static int
1358 aac_check_firmware(struct aac_softc *sc)
1359 {
1360 	u_int32_t major, minor, options;
1361 
1362 	debug_called(1);
1363 
1364 	/*
1365 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1366 	 * firmware version 1.x are not compatible with this driver.
1367 	 */
1368 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1369 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1370 				     NULL)) {
1371 			device_printf(sc->aac_dev,
1372 				      "Error reading firmware version\n");
1373 			return (EIO);
1374 		}
1375 
1376 		/* These numbers are stored as ASCII! */
1377 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1378 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1379 		if (major == 1) {
1380 			device_printf(sc->aac_dev,
1381 			    "Firmware version %d.%d is not supported.\n",
1382 			    major, minor);
1383 			return (EINVAL);
1384 		}
1385 	}
1386 
1387 	/*
1388 	 * Retrieve the capabilities/supported options word so we know what
1389 	 * work-arounds to enable.
1390 	 */
1391 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1392 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1393 		return (EIO);
1394 	}
1395 	options = AAC_GET_MAILBOX(sc, 1);
1396 	sc->supported_options = options;
1397 
1398 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1399 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1400 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1401 	if (options & AAC_SUPPORTED_NONDASD)
1402 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1403 
1404 	return (0);
1405 }
1406 
1407 static int
1408 aac_init(struct aac_softc *sc)
1409 {
1410 	struct aac_adapter_init	*ip;
1411 	time_t then;
1412 	u_int32_t code;
1413 	u_int8_t *qaddr;
1414 	int error;
1415 
1416 	debug_called(1);
1417 
1418 	/*
1419 	 * First wait for the adapter to come ready.
1420 	 */
1421 	then = time_second;
1422 	do {
1423 		code = AAC_GET_FWSTATUS(sc);
1424 		if (code & AAC_SELF_TEST_FAILED) {
1425 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1426 			return(ENXIO);
1427 		}
1428 		if (code & AAC_KERNEL_PANIC) {
1429 			device_printf(sc->aac_dev,
1430 				      "FATAL: controller kernel panic\n");
1431 			return(ENXIO);
1432 		}
1433 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1434 			device_printf(sc->aac_dev,
1435 				      "FATAL: controller not coming ready, "
1436 					   "status %x\n", code);
1437 			return(ENXIO);
1438 		}
1439 	} while (!(code & AAC_UP_AND_RUNNING));
1440 
1441  	error = ENOMEM;
1442  	/*
1443  	 * Create DMA tag for mapping buffers into controller-addressable space.
1444  	 */
1445  	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1446  			       1, 0, 			/* algnmnt, boundary */
1447  			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1448  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1449  			       NULL, NULL, 		/* filter, filterarg */
1450  			       MAXBSIZE,		/* maxsize */
1451  			       AAC_MAXSGENTRIES,	/* nsegments */
1452  			       MAXBSIZE,		/* maxsegsize */
1453  			       BUS_DMA_ALLOCNOW,	/* flags */
1454  			       &sc->aac_buffer_dmat)) {
1455  		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1456  		goto out;
1457  	}
1458 
1459  	/*
1460  	 * Create DMA tag for mapping FIBs into controller-addressable space..
1461  	 */
1462  	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1463  			       1, 0, 			/* algnmnt, boundary */
1464  			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1465  			       BUS_SPACE_MAXADDR_32BIT :
1466  			       0x7fffffff,		/* lowaddr */
1467  			       BUS_SPACE_MAXADDR, 	/* highaddr */
1468  			       NULL, NULL, 		/* filter, filterarg */
1469  			       AAC_FIB_COUNT *
1470  			       sizeof(struct aac_fib),  /* maxsize */
1471  			       1,			/* nsegments */
1472  			       AAC_FIB_COUNT *
1473  			       sizeof(struct aac_fib),	/* maxsegsize */
1474  			       BUS_DMA_ALLOCNOW,	/* flags */
1475  			       &sc->aac_fib_dmat)) {
1476  		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");
1477  		goto out;
1478  	}
1479 
1480 	/*
1481 	 * Create DMA tag for the common structure and allocate it.
1482 	 */
1483 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1484 			       1, 0,			/* algnmnt, boundary */
1485 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1486 			       BUS_SPACE_MAXADDR_32BIT :
1487 			       0x7fffffff,		/* lowaddr */
1488 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1489 			       NULL, NULL, 		/* filter, filterarg */
1490 			       8192 + sizeof(struct aac_common), /* maxsize */
1491 			       1,			/* nsegments */
1492 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1493 			       BUS_DMA_ALLOCNOW,	/* flags */
1494 			       &sc->aac_common_dmat)) {
1495 		device_printf(sc->aac_dev,
1496 			      "can't allocate common structure DMA tag\n");
1497 		goto out;
1498 	}
1499 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1500 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1501 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1502 		goto out;
1503 	}
1504 	/*
1505 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1506 	 * below address 8192 in physical memory.
1507 	 * XXX If the padding is not needed, can it be put to use instead
1508 	 * of ignored?
1509 	 */
1510 	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1511 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1512 			aac_common_map, sc, 0);
1513 
1514 	if (sc->aac_common_busaddr < 8192) {
1515 		sc->aac_common =
1516 		    (struct aac_common *)((uint8_t *)sc->aac_common + 8192);
1517 		sc->aac_common_busaddr += 8192;
1518 	}
1519 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1520 
1521 	/* Allocate some FIBs and associated command structs */
1522 	if (aac_alloc_commands(sc) != 0)
1523 		goto out;
1524 
1525 	/*
1526 	 * Fill in the init structure.  This tells the adapter about the
1527 	 * physical location of various important shared data structures.
1528 	 */
1529 	ip = &sc->aac_common->ac_init;
1530 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1531 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1532 
1533 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1534 					 offsetof(struct aac_common, ac_fibs);
1535 	ip->AdapterFibsVirtualAddress = (aac_phys_addr_t)&sc->aac_common->ac_fibs[0];
1536 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1537 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1538 
1539 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1540 				  offsetof(struct aac_common, ac_printf);
1541 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1542 
1543 	/* The adapter assumes that pages are 4K in size */
1544 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1545 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1546 
1547 	/*
1548 	 * Initialise FIB queues.  Note that it appears that the layout of the
1549 	 * indexes and the segmentation of the entries may be mandated by the
1550 	 * adapter, which is only told about the base of the queue index fields.
1551 	 *
1552 	 * The initial values of the indices are assumed to inform the adapter
1553 	 * of the sizes of the respective queues, and theoretically it could
1554 	 * work out the entire layout of the queue structures from this.  We
1555 	 * take the easy route and just lay this area out like everyone else
1556 	 * does.
1557 	 *
1558 	 * The Linux driver uses a much more complex scheme whereby several
1559 	 * header records are kept for each queue.  We use a couple of generic
1560 	 * list manipulation functions which 'know' the size of each list by
1561 	 * virtue of a table.
1562 	 */
1563 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1564 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1565 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1566 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1567 				((u_int32_t)sc->aac_queues -
1568 				(u_int32_t)sc->aac_common);
1569 	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1570 
1571 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1572 		AAC_HOST_NORM_CMD_ENTRIES;
1573 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1574 		AAC_HOST_NORM_CMD_ENTRIES;
1575 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1576 		AAC_HOST_HIGH_CMD_ENTRIES;
1577 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1578 		AAC_HOST_HIGH_CMD_ENTRIES;
1579 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1580 		AAC_ADAP_NORM_CMD_ENTRIES;
1581 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1582 		AAC_ADAP_NORM_CMD_ENTRIES;
1583 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1584 		AAC_ADAP_HIGH_CMD_ENTRIES;
1585 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1586 		AAC_ADAP_HIGH_CMD_ENTRIES;
1587 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1588 		AAC_HOST_NORM_RESP_ENTRIES;
1589 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1590 		AAC_HOST_NORM_RESP_ENTRIES;
1591 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1592 		AAC_HOST_HIGH_RESP_ENTRIES;
1593 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1594 		AAC_HOST_HIGH_RESP_ENTRIES;
1595 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1596 		AAC_ADAP_NORM_RESP_ENTRIES;
1597 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1598 		AAC_ADAP_NORM_RESP_ENTRIES;
1599 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1600 		AAC_ADAP_HIGH_RESP_ENTRIES;
1601 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1602 		AAC_ADAP_HIGH_RESP_ENTRIES;
1603 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1604 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1605 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1606 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1607 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1608 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1609 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1610 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1611 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1612 		&sc->aac_queues->qt_HostNormRespQueue[0];
1613 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1614 		&sc->aac_queues->qt_HostHighRespQueue[0];
1615 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1616 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1617 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1618 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1619 
1620 	/*
1621 	 * Do controller-type-specific initialisation
1622 	 */
1623 	switch (sc->aac_hwif) {
1624 	case AAC_HWIF_I960RX:
1625 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1626 		break;
1627 	}
1628 
1629 	/*
1630 	 * Give the init structure to the controller.
1631 	 */
1632 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1633 			     sc->aac_common_busaddr +
1634 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1635 			     NULL)) {
1636 		device_printf(sc->aac_dev,
1637 			      "error establishing init structure\n");
1638 		error = EIO;
1639 		goto out;
1640 	}
1641 
1642 	error = 0;
1643 out:
1644 	return(error);
1645 }
1646 
1647 /*
1648  * Send a synchronous command to the controller and wait for a result.
1649  */
1650 static int
1651 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1652 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1653 		 u_int32_t *sp)
1654 {
1655 	time_t then;
1656 	u_int32_t status;
1657 
1658 	debug_called(3);
1659 
1660 	/* populate the mailbox */
1661 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1662 
1663 	/* ensure the sync command doorbell flag is cleared */
1664 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1665 
1666 	/* then set it to signal the adapter */
1667 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1668 
1669 	/* spin waiting for the command to complete */
1670 	then = time_second;
1671 	do {
1672 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1673 			debug(1, "timed out");
1674 			return(EIO);
1675 		}
1676 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1677 
1678 	/* clear the completion flag */
1679 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1680 
1681 	/* get the command status */
1682 	status = AAC_GET_MAILBOX(sc, 0);
1683 	if (sp != NULL)
1684 		*sp = status;
1685 	return(0);
1686 }
1687 
1688 /*
1689  * Grab the sync fib area.
1690  */
1691 int
1692 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1693 {
1694 
1695 	/*
1696 	 * If the force flag is set, the system is shutting down, or in
1697 	 * trouble.  Ignore the mutex.
1698 	 */
1699 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1700 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1701 
1702 	*fib = &sc->aac_common->ac_sync_fib;
1703 
1704 	return (1);
1705 }
1706 
1707 /*
1708  * Release the sync fib area.
1709  */
1710 void
1711 aac_release_sync_fib(struct aac_softc *sc)
1712 {
1713 
1714 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1715 }
1716 
1717 /*
1718  * Send a synchronous FIB to the controller and wait for a result.
1719  */
1720 int
1721 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1722 		 struct aac_fib *fib, u_int16_t datasize)
1723 {
1724 	debug_called(3);
1725 
1726 	if (datasize > AAC_FIB_DATASIZE)
1727 		return(EINVAL);
1728 
1729 	/*
1730 	 * Set up the sync FIB
1731 	 */
1732 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1733 				AAC_FIBSTATE_INITIALISED |
1734 				AAC_FIBSTATE_EMPTY;
1735 	fib->Header.XferState |= xferstate;
1736 	fib->Header.Command = command;
1737 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1738 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1739 	fib->Header.SenderSize = sizeof(struct aac_fib);
1740 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1741 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1742 					 offsetof(struct aac_common,
1743 						  ac_sync_fib);
1744 
1745 	/*
1746 	 * Give the FIB to the controller, wait for a response.
1747 	 */
1748 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1749 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1750 		debug(2, "IO error");
1751 		return(EIO);
1752 	}
1753 
1754 	return (0);
1755 }
1756 
1757 /*
1758  * Adapter-space FIB queue manipulation
1759  *
1760  * Note that the queue implementation here is a little funky; neither the PI or
1761  * CI will ever be zero.  This behaviour is a controller feature.
1762  */
1763 static struct {
1764 	int		size;
1765 	int		notify;
1766 } aac_qinfo[] = {
1767 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1768 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1769 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1770 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1771 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1772 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1773 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1774 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1775 };
1776 
1777 /*
1778  * Atomically insert an entry into the nominated queue, returns 0 on success or
1779  * EBUSY if the queue is full.
1780  *
1781  * Note: it would be more efficient to defer notifying the controller in
1782  *	 the case where we may be inserting several entries in rapid succession,
1783  *	 but implementing this usefully may be difficult (it would involve a
1784  *	 separate queue/notify interface).
1785  */
1786 static int
1787 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1788 {
1789 	u_int32_t pi, ci;
1790 	int error;
1791 	u_int32_t fib_size;
1792 	u_int32_t fib_addr;
1793 
1794 	debug_called(3);
1795 
1796 	fib_size = cm->cm_fib->Header.Size;
1797 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1798 
1799 	crit_enter();
1800 
1801 	/* get the producer/consumer indices */
1802 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1803 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1804 
1805 	/* wrap the queue? */
1806 	if (pi >= aac_qinfo[queue].size)
1807 		pi = 0;
1808 
1809 	/* check for queue full */
1810 	if ((pi + 1) == ci) {
1811 		error = EBUSY;
1812 		goto out;
1813 	}
1814 	/*
1815 	 * To avoid a race with its completion interrupt, place this command on
1816 	 * the busy queue prior to advertising it to the controller.
1817 	 */
1818 	aac_enqueue_busy(cm);
1819 
1820 
1821 
1822 	/* populate queue entry */
1823 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1824 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1825 
1826 	/* update producer index */
1827 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1828 
1829 	/* notify the adapter if we know how */
1830 	if (aac_qinfo[queue].notify != 0)
1831 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1832 
1833 	error = 0;
1834 
1835 out:
1836 	crit_exit();
1837 	return(error);
1838 }
1839 
1840 /*
1841  * Atomically remove one entry from the nominated queue, returns 0 on
1842  * success or ENOENT if the queue is empty.
1843  */
1844 static int
1845 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1846 		struct aac_fib **fib_addr)
1847 {
1848 	u_int32_t pi, ci;
1849 	int error;
1850 	int notify;
1851 
1852 	debug_called(3);
1853 
1854 	crit_enter();
1855 
1856 	/* get the producer/consumer indices */
1857 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1858 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1859 
1860 	/* check for queue empty */
1861 	if (ci == pi) {
1862 		error = ENOENT;
1863 		goto out;
1864 	}
1865 
1866 	/* wrap the pi so the following test works */
1867 	if (pi >= aac_qinfo[queue].size)
1868 		pi = 0;
1869 
1870 	notify = 0;
1871 	if (ci == pi + 1)
1872 		notify++;
1873 
1874 	/* wrap the queue? */
1875 	if (ci >= aac_qinfo[queue].size)
1876 		ci = 0;
1877 
1878 	/* fetch the entry */
1879 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1880 	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1881 				       ci)->aq_fib_addr;
1882 
1883 	/*
1884 	 * Is this a fast response? If it is, update the fib fields in
1885 	 * local memory so the whole fib doesn't have to be DMA'd back up.
1886 	 */
1887 	if (*(uintptr_t *)fib_addr & 0x01) {
1888 		*(uintptr_t *)fib_addr &= ~0x01;
1889 		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1890 		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1891 	}
1892 	/* update consumer index */
1893 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1894 
1895 	/* if we have made the queue un-full, notify the adapter */
1896 	if (notify && (aac_qinfo[queue].notify != 0))
1897 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1898 	error = 0;
1899 
1900 out:
1901 	crit_exit();
1902 	return(error);
1903 }
1904 
1905 /*
1906  * Put our response to an Adapter Initialed Fib on the response queue
1907  */
1908 static int
1909 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1910 {
1911 	u_int32_t pi, ci;
1912 	int error;
1913 	u_int32_t fib_size;
1914 	u_int32_t fib_addr;
1915 
1916 	debug_called(1);
1917 
1918 	/* Tell the adapter where the FIB is */
1919 	fib_size = fib->Header.Size;
1920 	fib_addr = fib->Header.SenderFibAddress;
1921 	fib->Header.ReceiverFibAddress = fib_addr;
1922 
1923 	crit_enter();
1924 
1925 	/* get the producer/consumer indices */
1926 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1927 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1928 
1929 	/* wrap the queue? */
1930 	if (pi >= aac_qinfo[queue].size)
1931 		pi = 0;
1932 
1933 	/* check for queue full */
1934 	if ((pi + 1) == ci) {
1935 		error = EBUSY;
1936 		goto out;
1937 	}
1938 
1939 	/* populate queue entry */
1940 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1941 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1942 
1943 	/* update producer index */
1944 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1945 
1946 	/* notify the adapter if we know how */
1947 	if (aac_qinfo[queue].notify != 0)
1948 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1949 
1950 	error = 0;
1951 
1952 out:
1953 	crit_exit();
1954 	return(error);
1955 }
1956 
1957 /*
1958  * Check for commands that have been outstanding for a suspiciously long time,
1959  * and complain about them.
1960  */
1961 static void
1962 aac_timeout(void *xsc)
1963 {
1964 	struct aac_softc *sc = xsc;
1965 	struct aac_command *cm;
1966 	time_t deadline;
1967 	int timedout, code;
1968 #if 0
1969 	/* simulate an interrupt to handle possibly-missed interrupts */
1970 	/*
1971 	 * XXX This was done to work around another bug which has since been
1972 	 * fixed.  It is dangerous anyways because you don't want multiple
1973 	 * threads in the interrupt handler at the same time!  If calling
1974 	 * is deamed neccesary in the future, proper mutexes must be used.
1975 	 */
1976 	crit_enter();
1977 	aac_intr(sc);
1978 	crit_exit();
1979 
1980 	/* kick the I/O queue to restart it in the case of deadlock */
1981 	aac_startio(sc);
1982 #endif
1983 
1984 	/*
1985 	 * traverse the busy command list, bitch about late commands once
1986 	 * only.
1987 	 */
1988 	timedout = 0;
1989 	deadline = time_second - AAC_CMD_TIMEOUT;
1990 	crit_enter();
1991 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1992 		if ((cm->cm_timestamp  < deadline)
1993 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1994 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1995 			device_printf(sc->aac_dev,
1996 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1997 				      cm, (int)(time_second-cm->cm_timestamp));
1998 			AAC_PRINT_FIB(sc, cm->cm_fib);
1999 			timedout++;
2000 		}
2001 	}
2002 	if (timedout) {
2003 		code = AAC_GET_FWSTATUS(sc);
2004 		if (code != AAC_UP_AND_RUNNING) {
2005 			device_printf(sc->aac_dev, "WARNING! Controller is no "
2006 				      "longer running! code= 0x%x\n", code);
2007 
2008 		}
2009 	}
2010 	crit_exit();
2011 
2012 	/* reset the timer for next time */
2013 	callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
2014 		      aac_timeout, sc);
2015 }
2016 
2017 /*
2018  * Interface Function Vectors
2019  */
2020 
2021 /*
2022  * Read the current firmware status word.
2023  */
2024 static int
2025 aac_sa_get_fwstatus(struct aac_softc *sc)
2026 {
2027 	debug_called(3);
2028 
2029 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2030 }
2031 
2032 static int
2033 aac_rx_get_fwstatus(struct aac_softc *sc)
2034 {
2035 	debug_called(3);
2036 
2037 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2038 }
2039 
2040 static int
2041 aac_fa_get_fwstatus(struct aac_softc *sc)
2042 {
2043 	int val;
2044 
2045 	debug_called(3);
2046 
2047 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2048 	return (val);
2049 }
2050 
2051 /*
2052  * Notify the controller of a change in a given queue
2053  */
2054 
2055 static void
2056 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2057 {
2058 	debug_called(3);
2059 
2060 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2061 }
2062 
2063 static void
2064 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2065 {
2066 	debug_called(3);
2067 
2068 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2069 }
2070 
2071 static void
2072 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2073 {
2074 	debug_called(3);
2075 
2076 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2077 	AAC_FA_HACK(sc);
2078 }
2079 
2080 /*
2081  * Get the interrupt reason bits
2082  */
2083 static int
2084 aac_sa_get_istatus(struct aac_softc *sc)
2085 {
2086 	debug_called(3);
2087 
2088 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2089 }
2090 
2091 static int
2092 aac_rx_get_istatus(struct aac_softc *sc)
2093 {
2094 	debug_called(3);
2095 
2096 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2097 }
2098 
2099 static int
2100 aac_fa_get_istatus(struct aac_softc *sc)
2101 {
2102 	int val;
2103 
2104 	debug_called(3);
2105 
2106 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2107 	return (val);
2108 }
2109 
2110 /*
2111  * Clear some interrupt reason bits
2112  */
2113 static void
2114 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2115 {
2116 	debug_called(3);
2117 
2118 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2119 }
2120 
2121 static void
2122 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2123 {
2124 	debug_called(3);
2125 
2126 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2127 }
2128 
2129 static void
2130 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2131 {
2132 	debug_called(3);
2133 
2134 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2135 	AAC_FA_HACK(sc);
2136 }
2137 
2138 /*
2139  * Populate the mailbox and set the command word
2140  */
2141 static void
2142 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2143 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2144 {
2145 	debug_called(4);
2146 
2147 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2148 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2149 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2150 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2151 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2152 }
2153 
2154 static void
2155 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2156 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2157 {
2158 	debug_called(4);
2159 
2160 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2161 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2162 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2163 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2164 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2165 }
2166 
2167 static void
2168 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2169 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2170 {
2171 	debug_called(4);
2172 
2173 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2174 	AAC_FA_HACK(sc);
2175 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2176 	AAC_FA_HACK(sc);
2177 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2178 	AAC_FA_HACK(sc);
2179 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2180 	AAC_FA_HACK(sc);
2181 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2182 	AAC_FA_HACK(sc);
2183 }
2184 
2185 /*
2186  * Fetch the immediate command status word
2187  */
2188 static int
2189 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2190 {
2191 	debug_called(4);
2192 
2193 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2194 }
2195 
2196 static int
2197 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2198 {
2199 	debug_called(4);
2200 
2201 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2202 }
2203 
2204 static int
2205 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2206 {
2207 	int val;
2208 
2209 	debug_called(4);
2210 
2211 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2212 	return (val);
2213 }
2214 
2215 /*
2216  * Set/clear interrupt masks
2217  */
2218 static void
2219 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2220 {
2221 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2222 
2223 	if (enable) {
2224 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2225 	} else {
2226 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2227 	}
2228 }
2229 
2230 static void
2231 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2232 {
2233 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2234 
2235 	if (enable) {
2236 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2237 	} else {
2238 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2239 	}
2240 }
2241 
2242 static void
2243 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2244 {
2245 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2246 
2247 	if (enable) {
2248 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2249 		AAC_FA_HACK(sc);
2250 	} else {
2251 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2252 		AAC_FA_HACK(sc);
2253 	}
2254 }
2255 
2256 /*
2257  * Debugging and Diagnostics
2258  */
2259 
2260 /*
2261  * Print some information about the controller.
2262  */
2263 static void
2264 aac_describe_controller(struct aac_softc *sc)
2265 {
2266 	struct aac_fib *fib;
2267 	struct aac_adapter_info	*info;
2268 
2269 	debug_called(2);
2270 
2271 	aac_alloc_sync_fib(sc, &fib, 0);
2272 
2273 	fib->data[0] = 0;
2274 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2275 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2276 		aac_release_sync_fib(sc);
2277 		return;
2278 	}
2279 	info = (struct aac_adapter_info *)&fib->data[0];
2280 
2281 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2282 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2283 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2284 		      aac_describe_code(aac_battery_platform,
2285 					info->batteryPlatform));
2286 
2287 	/* save the kernel revision structure for later use */
2288 	sc->aac_revision = info->KernelRevision;
2289 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2290 		      info->KernelRevision.external.comp.major,
2291 		      info->KernelRevision.external.comp.minor,
2292 		      info->KernelRevision.external.comp.dash,
2293 		      info->KernelRevision.buildNumber,
2294 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2295 
2296 	aac_release_sync_fib(sc);
2297 
2298 	if (1 || bootverbose) {
2299 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2300 			      sc->supported_options,
2301 			      "\20"
2302 			      "\1SNAPSHOT"
2303 			      "\2CLUSTERS"
2304 			      "\3WCACHE"
2305 			      "\4DATA64"
2306 			      "\5HOSTTIME"
2307 			      "\6RAID50"
2308 			      "\7WINDOW4GB"
2309 			      "\10SCSIUPGD"
2310 			      "\11SOFTERR"
2311 			      "\12NORECOND"
2312 			      "\13SGMAP64"
2313 			      "\14ALARM"
2314 			      "\15NONDASD");
2315 	}
2316 }
2317 
2318 /*
2319  * Look up a text description of a numeric error code and return a pointer to
2320  * same.
2321  */
2322 static char *
2323 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2324 {
2325 	int i;
2326 
2327 	for (i = 0; table[i].string != NULL; i++)
2328 		if (table[i].code == code)
2329 			return(table[i].string);
2330 	return(table[i + 1].string);
2331 }
2332 
2333 /*
2334  * Management Interface
2335  */
2336 
2337 static int
2338 aac_open(struct dev_open_args *ap)
2339 {
2340 	cdev_t dev = ap->a_head.a_dev;
2341 	struct aac_softc *sc;
2342 
2343 	debug_called(2);
2344 
2345 	sc = dev->si_drv1;
2346 
2347 	/* Check to make sure the device isn't already open */
2348 	if (sc->aac_state & AAC_STATE_OPEN) {
2349 		return EBUSY;
2350 	}
2351 	sc->aac_state |= AAC_STATE_OPEN;
2352 
2353 	return 0;
2354 }
2355 
2356 static int
2357 aac_close(struct dev_close_args *ap)
2358 {
2359 	cdev_t dev = ap->a_head.a_dev;
2360 	struct aac_softc *sc;
2361 
2362 	debug_called(2);
2363 
2364 	sc = dev->si_drv1;
2365 
2366 	/* Mark this unit as no longer open  */
2367 	sc->aac_state &= ~AAC_STATE_OPEN;
2368 
2369 	return 0;
2370 }
2371 
2372 static int
2373 aac_ioctl(struct dev_ioctl_args *ap)
2374 {
2375 	cdev_t dev = ap->a_head.a_dev;
2376 	caddr_t arg = ap->a_data;
2377 	struct aac_softc *sc = dev->si_drv1;
2378 	int error = 0;
2379 	int i;
2380 
2381 	debug_called(2);
2382 
2383 	if (ap->a_cmd == AACIO_STATS) {
2384 		union aac_statrequest *as = (union aac_statrequest *)arg;
2385 
2386 		switch (as->as_item) {
2387 		case AACQ_FREE:
2388 		case AACQ_BIO:
2389 		case AACQ_READY:
2390 		case AACQ_BUSY:
2391 		case AACQ_COMPLETE:
2392 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2393 			      sizeof(struct aac_qstat));
2394 			break;
2395 		default:
2396 			error = ENOENT;
2397 			break;
2398 		}
2399 		return(error);
2400 	}
2401 
2402 	arg = *(caddr_t *)arg;
2403 
2404 	switch (ap->a_cmd) {
2405 	/* AACIO_STATS already handled above */
2406 	case FSACTL_SENDFIB:
2407 		debug(1, "FSACTL_SENDFIB");
2408 		error = aac_ioctl_sendfib(sc, arg);
2409 		break;
2410 	case FSACTL_AIF_THREAD:
2411 		debug(1, "FSACTL_AIF_THREAD");
2412 		error = EINVAL;
2413 		break;
2414 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2415 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2416 		/*
2417 		 * Pass the caller out an AdapterFibContext.
2418 		 *
2419 		 * Note that because we only support one opener, we
2420 		 * basically ignore this.  Set the caller's context to a magic
2421 		 * number just in case.
2422 		 *
2423 		 * The Linux code hands the driver a pointer into kernel space,
2424 		 * and then trusts it when the caller hands it back.  Aiee!
2425 		 * Here, we give it the proc pointer of the per-adapter aif
2426 		 * thread. It's only used as a sanity check in other calls.
2427 		 */
2428 		i = (int)sc->aifthread;
2429 		error = copyout(&i, arg, sizeof(i));
2430 		break;
2431 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2432 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2433 		error = aac_getnext_aif(sc, arg);
2434 		break;
2435 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2436 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2437 		/* don't do anything here */
2438 		break;
2439 	case FSACTL_MINIPORT_REV_CHECK:
2440 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2441 		error = aac_rev_check(sc, arg);
2442 		break;
2443 	case FSACTL_QUERY_DISK:
2444 		debug(1, "FSACTL_QUERY_DISK");
2445 		error = aac_query_disk(sc, arg);
2446 			break;
2447 	case FSACTL_DELETE_DISK:
2448 		/*
2449 		 * We don't trust the underland to tell us when to delete a
2450 		 * container, rather we rely on an AIF coming from the
2451 		 * controller
2452 		 */
2453 		error = 0;
2454 		break;
2455 	default:
2456 		debug(1, "unsupported cmd 0x%lx\n", ap->a_cmd);
2457 		error = EINVAL;
2458 		break;
2459 	}
2460 	return(error);
2461 }
2462 
2463 static int
2464 aac_poll(struct dev_poll_args *ap)
2465 {
2466 	cdev_t dev = ap->a_head.a_dev;
2467 	struct aac_softc *sc;
2468 	int revents;
2469 
2470 	sc = dev->si_drv1;
2471 	revents = 0;
2472 
2473 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2474 	if ((ap->a_events & (POLLRDNORM | POLLIN)) != 0) {
2475 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2476 			revents |= ap->a_events & (POLLIN | POLLRDNORM);
2477 	}
2478 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2479 
2480 	if (revents == 0) {
2481 		if (ap->a_events & (POLLIN | POLLRDNORM))
2482 			selrecord(curthread, &sc->rcv_select);
2483 	}
2484 	ap->a_events = revents;
2485 	return (0);
2486 }
2487 
2488 /*
2489  * Send a FIB supplied from userspace
2490  */
2491 static int
2492 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2493 {
2494 	struct aac_command *cm;
2495 	int size, error;
2496 
2497 	debug_called(2);
2498 
2499 	cm = NULL;
2500 
2501 	/*
2502 	 * Get a command
2503 	 */
2504 	if (aac_alloc_command(sc, &cm)) {
2505 		error = EBUSY;
2506 		goto out;
2507 	}
2508 
2509 	/*
2510 	 * Fetch the FIB header, then re-copy to get data as well.
2511 	 */
2512 	if ((error = copyin(ufib, cm->cm_fib,
2513 			    sizeof(struct aac_fib_header))) != 0)
2514 		goto out;
2515 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2516 	if (size > sizeof(struct aac_fib)) {
2517 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2518 			      size, sizeof(struct aac_fib));
2519 		size = sizeof(struct aac_fib);
2520 	}
2521 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2522 		goto out;
2523 	cm->cm_fib->Header.Size = size;
2524 	cm->cm_timestamp = time_second;
2525 
2526 	/*
2527 	 * Pass the FIB to the controller, wait for it to complete.
2528 	 */
2529 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2530 		printf("aac_wait_command return %d\n", error);
2531 		goto out;
2532 	}
2533 
2534 	/*
2535 	 * Copy the FIB and data back out to the caller.
2536 	 */
2537 	size = cm->cm_fib->Header.Size;
2538 	if (size > sizeof(struct aac_fib)) {
2539 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2540 			      size, sizeof(struct aac_fib));
2541 		size = sizeof(struct aac_fib);
2542 	}
2543 	error = copyout(cm->cm_fib, ufib, size);
2544 
2545 out:
2546 	if (cm != NULL) {
2547 		aac_release_command(cm);
2548 	}
2549 	return(error);
2550 }
2551 
2552 /*
2553  * Handle an AIF sent to us by the controller; queue it for later reference.
2554  * If the queue fills up, then drop the older entries.
2555  */
2556 static void
2557 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2558 {
2559 	struct aac_aif_command *aif;
2560 	struct aac_container *co, *co_next;
2561 	struct aac_mntinfo *mi;
2562 	struct aac_mntinforesp *mir = NULL;
2563 	u_int16_t rsize;
2564 	int next, found;
2565 	int count = 0, added = 0, i = 0;
2566 
2567 	debug_called(2);
2568 
2569 	aif = (struct aac_aif_command*)&fib->data[0];
2570 	aac_print_aif(sc, aif);
2571 
2572 	/* Is it an event that we should care about? */
2573 	switch (aif->command) {
2574 	case AifCmdEventNotify:
2575 		switch (aif->data.EN.type) {
2576 		case AifEnAddContainer:
2577 		case AifEnDeleteContainer:
2578 			/*
2579 			 * A container was added or deleted, but the message
2580 			 * doesn't tell us anything else!  Re-enumerate the
2581 			 * containers and sort things out.
2582 			 */
2583 			aac_alloc_sync_fib(sc, &fib, 0);
2584 			mi = (struct aac_mntinfo *)&fib->data[0];
2585 			do {
2586 				/*
2587 				 * Ask the controller for its containers one at
2588 				 * a time.
2589 				 * XXX What if the controller's list changes
2590 				 * midway through this enumaration?
2591 				 * XXX This should be done async.
2592 				 */
2593 				bzero(mi, sizeof(struct aac_mntinfo));
2594 				mi->Command = VM_NameServe;
2595 				mi->MntType = FT_FILESYS;
2596 				mi->MntCount = i;
2597 				rsize = sizeof(mir);
2598 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2599 						 sizeof(struct aac_mntinfo))) {
2600 					device_printf(sc->aac_dev,
2601 					    "Error probing container %d\n", i);
2602 
2603 					continue;
2604 				}
2605 				mir = (struct aac_mntinforesp *)&fib->data[0];
2606 				/* XXX Need to check if count changed */
2607 				count = mir->MntRespCount;
2608 
2609 				/*
2610 				 * Check the container against our list.
2611 				 * co->co_found was already set to 0 in a
2612 				 * previous run.
2613 				 */
2614 				if ((mir->Status == ST_OK) &&
2615 				    (mir->MntTable[0].VolType != CT_NONE)) {
2616 					found = 0;
2617 					TAILQ_FOREACH(co,
2618 						      &sc->aac_container_tqh,
2619 						      co_link) {
2620 						if (co->co_mntobj.ObjectId ==
2621 						    mir->MntTable[0].ObjectId) {
2622 							co->co_found = 1;
2623 							found = 1;
2624 							break;
2625 						}
2626 					}
2627 					/*
2628 					 * If the container matched, continue
2629 					 * in the list.
2630 					 */
2631 					if (found) {
2632 						i++;
2633 						continue;
2634 					}
2635 
2636 					/*
2637 					 * This is a new container.  Do all the
2638 					 * appropriate things to set it up.						 */
2639 					aac_add_container(sc, mir, 1);
2640 					added = 1;
2641 				}
2642 				i++;
2643 			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2644 			aac_release_sync_fib(sc);
2645 
2646 			/*
2647 			 * Go through our list of containers and see which ones
2648 			 * were not marked 'found'.  Since the controller didn't
2649 			 * list them they must have been deleted.  Do the
2650 			 * appropriate steps to destroy the device.  Also reset
2651 			 * the co->co_found field.
2652 			 */
2653 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2654 			while (co != NULL) {
2655 				if (co->co_found == 0) {
2656 					device_delete_child(sc->aac_dev,
2657 							    co->co_disk);
2658 					co_next = TAILQ_NEXT(co, co_link);
2659 					AAC_LOCK_ACQUIRE(&sc->
2660 							aac_container_lock);
2661 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2662 						     co_link);
2663 					AAC_LOCK_RELEASE(&sc->
2664 							 aac_container_lock);
2665 					FREE(co, M_AACBUF);
2666 					co = co_next;
2667 				} else {
2668 					co->co_found = 0;
2669 					co = TAILQ_NEXT(co, co_link);
2670 				}
2671 			}
2672 
2673 			/* Attach the newly created containers */
2674 			if (added)
2675 				bus_generic_attach(sc->aac_dev);
2676 
2677 				break;
2678 
2679 		default:
2680 			break;
2681 		}
2682 
2683 	default:
2684 		break;
2685 	}
2686 
2687 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2688 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2689 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2690 	if (next != sc->aac_aifq_tail) {
2691 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2692 		sc->aac_aifq_head = next;
2693 
2694 		/* On the off chance that someone is sleeping for an aif... */
2695 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2696 			wakeup(sc->aac_aifq);
2697 		/* token may have been lost */
2698 		/* Wakeup any poll()ers */
2699 		selwakeup(&sc->rcv_select);
2700 		/* token may have been lost */
2701 	}
2702 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2703 
2704 	return;
2705 }
2706 
2707 /*
2708  * Return the Revision of the driver to userspace and check to see if the
2709  * userspace app is possibly compatible.  This is extremely bogus since
2710  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2711  * returning what the card reported.
2712  */
2713 static int
2714 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2715 {
2716 	struct aac_rev_check rev_check;
2717 	struct aac_rev_check_resp rev_check_resp;
2718 	int error = 0;
2719 
2720 	debug_called(2);
2721 
2722 	/*
2723 	 * Copyin the revision struct from userspace
2724 	 */
2725 	if ((error = copyin(udata, (caddr_t)&rev_check,
2726 			sizeof(struct aac_rev_check))) != 0) {
2727 		return error;
2728 	}
2729 
2730 	debug(2, "Userland revision= %d\n",
2731 	      rev_check.callingRevision.buildNumber);
2732 
2733 	/*
2734 	 * Doctor up the response struct.
2735 	 */
2736 	rev_check_resp.possiblyCompatible = 1;
2737 	rev_check_resp.adapterSWRevision.external.ul =
2738 	    sc->aac_revision.external.ul;
2739 	rev_check_resp.adapterSWRevision.buildNumber =
2740 	    sc->aac_revision.buildNumber;
2741 
2742 	return(copyout((caddr_t)&rev_check_resp, udata,
2743 			sizeof(struct aac_rev_check_resp)));
2744 }
2745 
2746 /*
2747  * Pass the caller the next AIF in their queue
2748  */
2749 static int
2750 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2751 {
2752 	struct get_adapter_fib_ioctl agf;
2753 	int error;
2754 
2755 	debug_called(2);
2756 
2757 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2758 
2759 		/*
2760 		 * Check the magic number that we gave the caller.
2761 		 */
2762 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2763 			error = EFAULT;
2764 		} else {
2765 
2766 			crit_enter();
2767 			error = aac_return_aif(sc, agf.AifFib);
2768 
2769 			if ((error == EAGAIN) && (agf.Wait)) {
2770 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2771 				while (error == EAGAIN) {
2772 					error = tsleep(sc->aac_aifq,
2773 						       PCATCH, "aacaif", 0);
2774 					if (error == 0)
2775 						error = aac_return_aif(sc,
2776 						    agf.AifFib);
2777 				}
2778 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2779 			}
2780 			crit_exit();
2781 		}
2782 	}
2783 	return(error);
2784 }
2785 
2786 /*
2787  * Hand the next AIF off the top of the queue out to userspace.
2788  *
2789  * YYY token could be lost during copyout
2790  */
2791 static int
2792 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2793 {
2794 	int error;
2795 
2796 	debug_called(2);
2797 
2798 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2799 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2800 		error = EAGAIN;
2801 	} else {
2802 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2803 				sizeof(struct aac_aif_command));
2804 		if (error)
2805 			printf("aac_return_aif: copyout returned %d\n", error);
2806 		if (!error)
2807 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2808 					    AAC_AIFQ_LENGTH;
2809 	}
2810 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2811 	return(error);
2812 }
2813 
2814 /*
2815  * Give the userland some information about the container.  The AAC arch
2816  * expects the driver to be a SCSI passthrough type driver, so it expects
2817  * the containers to have b:t:l numbers.  Fake it.
2818  */
2819 static int
2820 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2821 {
2822 	struct aac_query_disk query_disk;
2823 	struct aac_container *co;
2824 	struct aac_disk	*disk;
2825 	int error, id;
2826 
2827 	debug_called(2);
2828 
2829 	disk = NULL;
2830 
2831 	error = copyin(uptr, (caddr_t)&query_disk,
2832 		       sizeof(struct aac_query_disk));
2833 	if (error)
2834 		return (error);
2835 
2836 	id = query_disk.ContainerNumber;
2837 	if (id == -1)
2838 		return (EINVAL);
2839 
2840 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2841 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2842 		if (co->co_mntobj.ObjectId == id)
2843 			break;
2844 		}
2845 
2846 		if (co == NULL) {
2847 			query_disk.Valid = 0;
2848 			query_disk.Locked = 0;
2849 			query_disk.Deleted = 1;		/* XXX is this right? */
2850 		} else {
2851 			disk = device_get_softc(co->co_disk);
2852 			query_disk.Valid = 1;
2853 			query_disk.Locked =
2854 			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2855 			query_disk.Deleted = 0;
2856 			query_disk.Bus = device_get_unit(sc->aac_dev);
2857 			query_disk.Target = disk->unit;
2858 			query_disk.Lun = 0;
2859 			query_disk.UnMapped = 0;
2860 			bcopy(disk->ad_dev_t->si_name,
2861 			      &query_disk.diskDeviceName[0], 10);
2862 		}
2863 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2864 
2865 	error = copyout((caddr_t)&query_disk, uptr,
2866 			sizeof(struct aac_query_disk));
2867 
2868 	return (error);
2869 }
2870 
2871 static void
2872 aac_get_bus_info(struct aac_softc *sc)
2873 {
2874 	struct aac_fib *fib;
2875 	struct aac_ctcfg *c_cmd;
2876 	struct aac_ctcfg_resp *c_resp;
2877 	struct aac_vmioctl *vmi;
2878 	struct aac_vmi_businf_resp *vmi_resp;
2879 	struct aac_getbusinf businfo;
2880 	struct aac_cam_inf *caminf;
2881 	device_t child;
2882 	int i, found, error;
2883 
2884 	aac_alloc_sync_fib(sc, &fib, 0);
2885 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2886 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2887 
2888 	c_cmd->Command = VM_ContainerConfig;
2889 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2890 	c_cmd->param = 0;
2891 
2892 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2893 	    sizeof(struct aac_ctcfg));
2894 	if (error) {
2895 		device_printf(sc->aac_dev, "Error %d sending "
2896 		    "VM_ContainerConfig command\n", error);
2897 		aac_release_sync_fib(sc);
2898 		return;
2899 	}
2900 
2901 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2902 	if (c_resp->Status != ST_OK) {
2903 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2904 		    c_resp->Status);
2905 		aac_release_sync_fib(sc);
2906 		return;
2907 	}
2908 
2909 	sc->scsi_method_id = c_resp->param;
2910 
2911 	vmi = (struct aac_vmioctl *)&fib->data[0];
2912 	bzero(vmi, sizeof(struct aac_vmioctl));
2913 
2914 	vmi->Command = VM_Ioctl;
2915 	vmi->ObjType = FT_DRIVE;
2916 	vmi->MethId = sc->scsi_method_id;
2917 	vmi->ObjId = 0;
2918 	vmi->IoctlCmd = GetBusInfo;
2919 
2920 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2921 	    sizeof(struct aac_vmioctl));
2922 	if (error) {
2923 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2924 		    error);
2925 		aac_release_sync_fib(sc);
2926 		return;
2927 	}
2928 
2929 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2930 	if (vmi_resp->Status != ST_OK) {
2931 		debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2932 		aac_release_sync_fib(sc);
2933 		return;
2934 	}
2935 
2936 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2937 	aac_release_sync_fib(sc);
2938 
2939 	found = 0;
2940 	for (i = 0; i < businfo.BusCount; i++) {
2941 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2942 			continue;
2943 
2944 		MALLOC(caminf, struct aac_cam_inf *,
2945 		    sizeof(struct aac_cam_inf), M_AACBUF, M_INTWAIT | M_ZERO);
2946 
2947 		child = device_add_child(sc->aac_dev, "aacp", -1);
2948 		if (child == NULL) {
2949 			device_printf(sc->aac_dev, "device_add_child failed\n");
2950 			continue;
2951 		}
2952 
2953 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2954 		caminf->BusNumber = i;
2955 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2956 		caminf->aac_sc = sc;
2957 
2958 		device_set_ivars(child, caminf);
2959 		device_set_desc(child, "SCSI Passthrough Bus");
2960 
2961 		found = 1;
2962 	}
2963 
2964 	if (found)
2965 		bus_generic_attach(sc->aac_dev);
2966 
2967 	return;
2968 }
2969