xref: /dflybsd-src/sys/dev/powermng/lm/lm78.c (revision d83c779ab2c938232fa7b53777cd18cc9c4fc8e4)
1 /*
2  * Copyright (c) 2005, 2006 Mark Kettenis
3  * Copyright (c) 2006, 2007 Constantine A. Murenin
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $OpenBSD: lm78.c,v 1.18 2007/05/26 22:47:39 cnst Exp $
18  */
19 
20 #include <sys/param.h>
21 #include <sys/systm.h>
22 #include <sys/bus.h>
23 #include <sys/sensors.h>
24 
25 #include "lm78var.h"
26 
27 #if defined(LMDEBUG)
28 #define DPRINTF(x)		do { printf x; } while (0)
29 #else
30 #define DPRINTF(x)
31 #endif
32 
33 /*
34  * LM78-compatible chips can typically measure voltages up to 4.096 V.
35  * To measure higher voltages the input is attenuated with (external)
36  * resistors.  Negative voltages are measured using inverting op amps
37  * and resistors.  So we have to convert the sensor values back to
38  * real voltages by applying the appropriate resistor factor.
39  */
40 #define RFACT_NONE	10000
41 #define RFACT(x, y)	(RFACT_NONE * ((x) + (y)) / (y))
42 #define NRFACT(x, y)	(-RFACT_NONE * (x) / (y))
43 
44 int  lm_match(struct lm_softc *);
45 int  wb_match(struct lm_softc *);
46 int  def_match(struct lm_softc *);
47 
48 void lm_setup_sensors(struct lm_softc *, struct lm_sensor *);
49 void lm_refresh(void *);
50 
51 void lm_refresh_sensor_data(struct lm_softc *);
52 void lm_refresh_volt(struct lm_softc *, int);
53 void lm_refresh_temp(struct lm_softc *, int);
54 void lm_refresh_fanrpm(struct lm_softc *, int);
55 
56 void wb_refresh_sensor_data(struct lm_softc *);
57 void wb_w83637hf_refresh_vcore(struct lm_softc *, int);
58 void wb_refresh_nvolt(struct lm_softc *, int);
59 void wb_w83627ehf_refresh_nvolt(struct lm_softc *, int);
60 void wb_refresh_temp(struct lm_softc *, int);
61 void wb_refresh_fanrpm(struct lm_softc *, int);
62 void wb_w83792d_refresh_fanrpm(struct lm_softc *, int);
63 
64 void as_refresh_temp(struct lm_softc *, int);
65 
66 struct lm_chip {
67 	int (*chip_match)(struct lm_softc *);
68 };
69 
70 struct lm_chip lm_chips[] = {
71 	{ wb_match },
72 	{ lm_match },
73 	{ def_match } /* Must be last */
74 };
75 
76 struct lm_sensor lm78_sensors[] = {
77 	/* Voltage */
78 	{ "VCore A", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
79 	{ "VCore B", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
80 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
81 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(68, 100) },
82 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(30, 10) },
83 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, lm_refresh_volt, NRFACT(240, 60) },
84 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, NRFACT(100, 60) },
85 
86 	/* Temperature */
87 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
88 
89 	/* Fans */
90 	{ "", SENSOR_FANRPM, 0, 0x28, lm_refresh_fanrpm },
91 	{ "", SENSOR_FANRPM, 0, 0x29, lm_refresh_fanrpm },
92 	{ "", SENSOR_FANRPM, 0, 0x2a, lm_refresh_fanrpm },
93 
94 	{ NULL }
95 };
96 
97 struct lm_sensor w83627hf_sensors[] = {
98 	/* Voltage */
99 	{ "VCore A", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
100 	{ "VCore B", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
101 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
102 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
103 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
104 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
105 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
106 	{ "5VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(17, 33) },
107 	{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
108 
109 	/* Temperature */
110 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
111 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
112 	{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
113 
114 	/* Fans */
115 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
116 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
117 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
118 
119 	{ NULL }
120 };
121 
122 /*
123  * The W83627EHF can measure voltages up to 2.048 V instead of the
124  * traditional 4.096 V.  For measuring positive voltages, this can be
125  * accounted for by halving the resistor factor.  Negative voltages
126  * need special treatment, also because the reference voltage is 2.048 V
127  * instead of the traditional 3.6 V.
128  */
129 struct lm_sensor w83627ehf_sensors[] = {
130 	/* Voltage */
131 	{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE / 2},
132 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT(56, 10) / 2 },
133 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT(34, 34) / 2 },
134 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 34) / 2 },
135 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x24, wb_w83627ehf_refresh_nvolt },
136 	{ "", SENSOR_VOLTS_DC, 0, 0x25, lm_refresh_volt, RFACT_NONE / 2 },
137 	{ "", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, RFACT_NONE / 2 },
138 	{ "3.3VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(34, 34) / 2 },
139 	{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE / 2 },
140 	{ "", SENSOR_VOLTS_DC, 5, 0x52, lm_refresh_volt, RFACT_NONE / 2 },
141 
142 	/* Temperature */
143 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
144 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
145 	{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
146 
147 	/* Fans */
148 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
149 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
150 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
151 
152 	{ NULL }
153 };
154 
155 /*
156  * w83627dhg is almost identical to w83627ehf, except that
157  * it has 9 instead of 10 voltage sensors
158  */
159 struct lm_sensor w83627dhg_sensors[] = {
160 	/* Voltage */
161 	{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE / 2},
162 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT(56, 10) / 2 },
163 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT(34, 34) / 2 },
164 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 34) / 2 },
165 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x24, wb_w83627ehf_refresh_nvolt },
166 	{ "", SENSOR_VOLTS_DC, 0, 0x25, lm_refresh_volt, RFACT_NONE / 2 },
167 	{ "", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, RFACT_NONE / 2 },
168 	{ "3.3VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(34, 34) / 2 },
169 	{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE / 2 },
170 
171 	/* Temperature */
172 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
173 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
174 	{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
175 
176 	/* Fans */
177 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
178 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
179 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
180 
181 	{ NULL }
182 };
183 
184 struct lm_sensor w83637hf_sensors[] = {
185 	/* Voltage */
186 	{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, wb_w83637hf_refresh_vcore },
187 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT(28, 10) },
188 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
189 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 51) },
190 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x24, wb_refresh_nvolt, RFACT(232, 56) },
191 	{ "5VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(34, 51) },
192 	{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
193 
194 	/* Temperature */
195 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
196 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
197 	{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
198 
199 	/* Fans */
200 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
201 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
202 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
203 
204 	{ NULL }
205 };
206 
207 struct lm_sensor w83697hf_sensors[] = {
208 	/* Voltage */
209 	{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
210 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
211 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
212 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
213 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
214 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
215 	{ "5VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(17, 33) },
216 	{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
217 
218 	/* Temperature */
219 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
220 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
221 
222 	/* Fans */
223 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
224 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
225 
226 	{ NULL }
227 };
228 
229 /*
230  * The datasheet doesn't mention the (internal) resistors used for the
231  * +5V, but using the values from the W83782D datasheets seems to
232  * provide sensible results.
233  */
234 struct lm_sensor w83781d_sensors[] = {
235 	/* Voltage */
236 	{ "VCore A", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
237 	{ "VCore B", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
238 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
239 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
240 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
241 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, lm_refresh_volt, NRFACT(2100, 604) },
242 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, NRFACT(909, 604) },
243 
244 	/* Temperature */
245 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
246 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
247 	{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
248 
249 	/* Fans */
250 	{ "", SENSOR_FANRPM, 0, 0x28, lm_refresh_fanrpm },
251 	{ "", SENSOR_FANRPM, 0, 0x29, lm_refresh_fanrpm },
252 	{ "", SENSOR_FANRPM, 0, 0x2a, lm_refresh_fanrpm },
253 
254 	{ NULL }
255 };
256 
257 struct lm_sensor w83782d_sensors[] = {
258 	/* Voltage */
259 	{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
260 	{ "VINR0", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
261 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
262 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
263 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
264 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
265 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
266 	{ "5VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(17, 33) },
267 	{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
268 
269 	/* Temperature */
270 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
271 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
272 	{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
273 
274 	/* Fans */
275 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
276 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
277 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
278 
279 	{ NULL }
280 };
281 
282 struct lm_sensor w83783s_sensors[] = {
283 	/* Voltage */
284 	{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
285 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
286 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
287 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
288 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
289 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
290 
291 	/* Temperature */
292 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
293 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
294 
295 	/* Fans */
296 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
297 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
298 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
299 
300 	{ NULL }
301 };
302 
303 struct lm_sensor w83791d_sensors[] = {
304 	/* Voltage */
305 	{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
306 	{ "VINR0", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
307 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
308 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
309 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
310 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
311 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
312 	{ "5VSB", SENSOR_VOLTS_DC, 0, 0xb0, lm_refresh_volt, RFACT(17, 33) },
313 	{ "VBAT", SENSOR_VOLTS_DC, 0, 0xb1, lm_refresh_volt, RFACT_NONE },
314 	{ "VINR1", SENSOR_VOLTS_DC, 0, 0xb2, lm_refresh_volt, RFACT_NONE },
315 
316 	/* Temperature */
317 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
318 	{ "", SENSOR_TEMP, 0, 0xc0, wb_refresh_temp },
319 	{ "", SENSOR_TEMP, 0, 0xc8, wb_refresh_temp },
320 
321 	/* Fans */
322 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
323 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
324 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
325 	{ "", SENSOR_FANRPM, 0, 0xba, wb_refresh_fanrpm },
326 	{ "", SENSOR_FANRPM, 0, 0xbb, wb_refresh_fanrpm },
327 
328 	{ NULL }
329 };
330 
331 struct lm_sensor w83792d_sensors[] = {
332 	/* Voltage */
333 	{ "VCore A", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
334 	{ "VCore B", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
335 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
336 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x23, wb_refresh_nvolt, RFACT(120, 56) },
337 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
338 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
339 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, RFACT(34, 50) },
340 	{ "5VSB", SENSOR_VOLTS_DC, 0, 0xb0, lm_refresh_volt, RFACT(17, 33) },
341 	{ "VBAT", SENSOR_VOLTS_DC, 0, 0xb1, lm_refresh_volt, RFACT_NONE },
342 
343 	/* Temperature */
344 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
345 	{ "", SENSOR_TEMP, 0, 0xc0, wb_refresh_temp },
346 	{ "", SENSOR_TEMP, 0, 0xc8, wb_refresh_temp },
347 
348 	/* Fans */
349 	{ "", SENSOR_FANRPM, 0, 0x28, wb_w83792d_refresh_fanrpm },
350 	{ "", SENSOR_FANRPM, 0, 0x29, wb_w83792d_refresh_fanrpm },
351 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_w83792d_refresh_fanrpm },
352 	{ "", SENSOR_FANRPM, 0, 0xb8, wb_w83792d_refresh_fanrpm },
353 	{ "", SENSOR_FANRPM, 0, 0xb9, wb_w83792d_refresh_fanrpm },
354 	{ "", SENSOR_FANRPM, 0, 0xba, wb_w83792d_refresh_fanrpm },
355 	{ "", SENSOR_FANRPM, 0, 0xbe, wb_w83792d_refresh_fanrpm },
356 
357 	{ NULL }
358 };
359 
360 struct lm_sensor as99127f_sensors[] = {
361 	/* Voltage */
362 	{ "VCore A", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
363 	{ "VCore B", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
364 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
365 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
366 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
367 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
368 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
369 
370 	/* Temperature */
371 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
372 	{ "", SENSOR_TEMP, 1, 0x50, as_refresh_temp },
373 	{ "", SENSOR_TEMP, 2, 0x50, as_refresh_temp },
374 
375 	/* Fans */
376 	{ "", SENSOR_FANRPM, 0, 0x28, lm_refresh_fanrpm },
377 	{ "", SENSOR_FANRPM, 0, 0x29, lm_refresh_fanrpm },
378 	{ "", SENSOR_FANRPM, 0, 0x2a, lm_refresh_fanrpm },
379 
380 	{ NULL }
381 };
382 
383 void
384 lm_probe(struct lm_softc *sc)
385 {
386 	int i;
387 
388 	for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
389 		if (lm_chips[i].chip_match(sc))
390 			break;
391 }
392 
393 void
394 lm_attach(struct lm_softc *sc)
395 {
396 	u_int i, config;
397 
398 	/* No point in doing anything if we don't have any sensors. */
399 	if (sc->numsensors == 0)
400 		return;
401 
402 	if (sensor_task_register(sc, lm_refresh, 5)) {
403 		device_printf(sc->sc_dev, "unable to register update task\n");
404 		return;
405 	}
406 
407 	/* Start the monitoring loop */
408 	config = sc->lm_readreg(sc, LM_CONFIG);
409 	sc->lm_writereg(sc, LM_CONFIG, config | 0x01);
410 
411 	/* Add sensors */
412 	strlcpy(sc->sensordev.xname, device_get_nameunit(sc->sc_dev),
413 	    sizeof(sc->sensordev.xname));
414 	for (i = 0; i < sc->numsensors; ++i)
415 		sensor_attach(&sc->sensordev, &sc->sensors[i]);
416 	sensordev_install(&sc->sensordev);
417 }
418 
419 int
420 lm_detach(struct lm_softc *sc)
421 {
422 	int i;
423 
424 	/* Remove sensors */
425 	sensordev_deinstall(&sc->sensordev);
426 	for (i = 0; i < sc->numsensors; i++)
427 		sensor_detach(&sc->sensordev, &sc->sensors[i]);
428 
429 	sensor_task_unregister(sc);
430 
431 	return 0;
432 }
433 
434 int
435 lm_match(struct lm_softc *sc)
436 {
437 	int chipid;
438 	const char *cdesc;
439 	char fulldesc[64];
440 
441 	/* See if we have an LM78 or LM79. */
442 	chipid = sc->lm_readreg(sc, LM_CHIPID) & LM_CHIPID_MASK;
443 	switch(chipid) {
444 	case LM_CHIPID_LM78:
445 		cdesc = "LM78";
446 		break;
447 	case LM_CHIPID_LM78J:
448 		cdesc = "LM78J";
449 		break;
450 	case LM_CHIPID_LM79:
451 		cdesc = "LM79";
452 		break;
453 	case LM_CHIPID_LM81:
454 		cdesc = "LM81";
455 		break;
456 	default:
457 		return 0;
458 	}
459 	ksnprintf(fulldesc, sizeof(fulldesc),
460 	    "National Semiconductor %s Hardware Monitor", cdesc);
461 	device_set_desc_copy(sc->sc_dev, fulldesc);
462 
463 	lm_setup_sensors(sc, lm78_sensors);
464 	sc->refresh_sensor_data = lm_refresh_sensor_data;
465 	return 1;
466 }
467 
468 int
469 def_match(struct lm_softc *sc)
470 {
471 	int chipid;
472 	char fulldesc[64];
473 
474 	chipid = sc->lm_readreg(sc, LM_CHIPID) & LM_CHIPID_MASK;
475 	ksnprintf(fulldesc, sizeof(fulldesc),
476 	    "unknown Hardware Monitor (ID 0x%x)", chipid);
477 	device_set_desc_copy(sc->sc_dev, fulldesc);
478 
479 	lm_setup_sensors(sc, lm78_sensors);
480 	sc->refresh_sensor_data = lm_refresh_sensor_data;
481 	return 1;
482 }
483 
484 int
485 wb_match(struct lm_softc *sc)
486 {
487 	int banksel, vendid, devid;
488 	const char *cdesc;
489 	char desc[64];
490 	char fulldesc[64];
491 
492 	/* Read vendor ID */
493 	banksel = sc->lm_readreg(sc, WB_BANKSEL);
494 	sc->lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
495 	vendid = sc->lm_readreg(sc, WB_VENDID) << 8;
496 	sc->lm_writereg(sc, WB_BANKSEL, 0);
497 	vendid |= sc->lm_readreg(sc, WB_VENDID);
498 	sc->lm_writereg(sc, WB_BANKSEL, banksel);
499 	DPRINTF((" winbond vend id 0x%x\n", vendid));
500 	if (vendid != WB_VENDID_WINBOND && vendid != WB_VENDID_ASUS)
501 		return 0;
502 
503 	/* Read device/chip ID */
504 	sc->lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
505 	devid = sc->lm_readreg(sc, LM_CHIPID);
506 	sc->chipid = sc->lm_readreg(sc, WB_BANK0_CHIPID);
507 	sc->lm_writereg(sc, WB_BANKSEL, banksel);
508 	DPRINTF((" winbond chip id 0x%x\n", sc->chipid));
509 	switch(sc->chipid) {
510 	case WB_CHIPID_W83627HF:
511 		cdesc = "W83627HF";
512 		lm_setup_sensors(sc, w83627hf_sensors);
513 		break;
514 	case WB_CHIPID_W83627THF:
515 		cdesc = "W83627THF";
516 		lm_setup_sensors(sc, w83637hf_sensors);
517 		break;
518 	case WB_CHIPID_W83627EHF:
519 		cdesc = "W83627EHF";
520 		lm_setup_sensors(sc, w83627ehf_sensors);
521 		break;
522 	case WB_CHIPID_W83627DHG:
523 		cdesc = "W83627DHG";
524 		lm_setup_sensors(sc, w83627dhg_sensors);
525 		break;
526 	case WB_CHIPID_W83637HF:
527 		cdesc = "W83637HF";
528 		sc->lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
529 		if (sc->lm_readreg(sc, WB_BANK0_CONFIG) & WB_CONFIG_VMR9)
530 			sc->vrm9 = 1;
531 		sc->lm_writereg(sc, WB_BANKSEL, banksel);
532 		lm_setup_sensors(sc, w83637hf_sensors);
533 		break;
534 	case WB_CHIPID_W83697HF:
535 		cdesc = "W83697HF";
536 		lm_setup_sensors(sc, w83697hf_sensors);
537 		break;
538 	case WB_CHIPID_W83781D:
539 	case WB_CHIPID_W83781D_2:
540 		cdesc = "W83781D";
541 		lm_setup_sensors(sc, w83781d_sensors);
542 		break;
543 	case WB_CHIPID_W83782D:
544 		cdesc = "W83782D";
545 		lm_setup_sensors(sc, w83782d_sensors);
546 		break;
547 	case WB_CHIPID_W83783S:
548 		cdesc = "W83783S";
549 		lm_setup_sensors(sc, w83783s_sensors);
550 		break;
551 	case WB_CHIPID_W83791D:
552 		cdesc = "W83791D";
553 		lm_setup_sensors(sc, w83791d_sensors);
554 		break;
555 	case WB_CHIPID_W83791SD:
556 		cdesc = "W83791SD";
557 		break;
558 	case WB_CHIPID_W83792D:
559 		if (devid >= 0x10 && devid <= 0x29)
560 			ksnprintf(desc, sizeof(desc),
561 			    "W83792D rev %c", 'A' + devid - 0x10);
562 		else
563 			ksnprintf(desc, sizeof(desc),
564 			    "W83792D rev 0x%x", devid);
565 		cdesc = desc;
566 		lm_setup_sensors(sc, w83792d_sensors);
567 		break;
568 	case WB_CHIPID_AS99127F:
569 		if (vendid == WB_VENDID_ASUS) {
570 			cdesc = "AS99127F";
571 			lm_setup_sensors(sc, w83781d_sensors);
572 		} else {
573 			cdesc = "AS99127F rev 2";
574 			lm_setup_sensors(sc, as99127f_sensors);
575 		}
576 		break;
577 	default:
578 		ksnprintf(fulldesc, sizeof(fulldesc),
579 		    "unknown Winbond Hardware Monitor (Chip ID 0x%x)",
580 		    sc->chipid);
581 		device_set_desc_copy(sc->sc_dev, fulldesc);
582 		/* Handle as a standard LM78. */
583 		lm_setup_sensors(sc, lm78_sensors);
584 		sc->refresh_sensor_data = lm_refresh_sensor_data;
585 		return 1;
586 	}
587 
588 	if (cdesc[0] == 'W')
589 		ksnprintf(fulldesc, sizeof(fulldesc),
590 		    "Winbond %s Hardware Monitor", cdesc);
591 	else
592 		ksnprintf(fulldesc, sizeof(fulldesc),
593 		    "ASUS %s Hardware Monitor", cdesc);
594 	device_set_desc_copy(sc->sc_dev, fulldesc);
595 
596 	sc->refresh_sensor_data = wb_refresh_sensor_data;
597 	return 1;
598 }
599 
600 void
601 lm_setup_sensors(struct lm_softc *sc, struct lm_sensor *sensors)
602 {
603 	int i;
604 
605 	for (i = 0; sensors[i].desc; i++) {
606 		sc->sensors[i].type = sensors[i].type;
607 		strlcpy(sc->sensors[i].desc, sensors[i].desc,
608 		    sizeof(sc->sensors[i].desc));
609 		sc->numsensors++;
610 	}
611 	sc->lm_sensors = sensors;
612 }
613 
614 void
615 lm_refresh(void *arg)
616 {
617 	struct lm_softc *sc = arg;
618 
619 	sc->refresh_sensor_data(sc);
620 }
621 
622 void
623 lm_refresh_sensor_data(struct lm_softc *sc)
624 {
625 	int i;
626 
627 	for (i = 0; i < sc->numsensors; i++)
628 		sc->lm_sensors[i].refresh(sc, i);
629 }
630 
631 void
632 lm_refresh_volt(struct lm_softc *sc, int n)
633 {
634 	struct ksensor *sensor = &sc->sensors[n];
635 	int data;
636 
637 	data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
638 	sensor->value = (data << 4);
639 	sensor->value *= sc->lm_sensors[n].rfact;
640 	sensor->value /= 10;
641 }
642 
643 void
644 lm_refresh_temp(struct lm_softc *sc, int n)
645 {
646 	struct ksensor *sensor = &sc->sensors[n];
647 	int sdata;
648 
649 	/*
650 	 * The data sheet suggests that the range of the temperature
651 	 * sensor is between -55 degC and +125 degC.
652 	 */
653 	sdata = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
654 	if (sdata > 0x7d && sdata < 0xc9) {
655 		sensor->flags |= SENSOR_FINVALID;
656 		sensor->value = 0;
657 	} else {
658 		if (sdata & 0x80)
659 			sdata -= 0x100;
660 		sensor->flags &= ~SENSOR_FINVALID;
661 		sensor->value = sdata * 1000000 + 273150000;
662 	}
663 }
664 
665 void
666 lm_refresh_fanrpm(struct lm_softc *sc, int n)
667 {
668 	struct ksensor *sensor = &sc->sensors[n];
669 	int data, divisor = 1;
670 
671 	/*
672 	 * We might get more accurate fan readings by adjusting the
673 	 * divisor, but that might interfere with APM or other SMM
674 	 * BIOS code reading the fan speeds.
675 	 */
676 
677 	/* FAN3 has a fixed fan divisor. */
678 	if (sc->lm_sensors[n].reg == LM_FAN1 ||
679 	    sc->lm_sensors[n].reg == LM_FAN2) {
680 		data = sc->lm_readreg(sc, LM_VIDFAN);
681 		if (sc->lm_sensors[n].reg == LM_FAN1)
682 			divisor = (data >> 4) & 0x03;
683 		else
684 			divisor = (data >> 6) & 0x03;
685 	}
686 
687 	data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
688 	if (data == 0xff || data == 0x00) {
689 		sensor->flags |= SENSOR_FINVALID;
690 		sensor->value = 0;
691 	} else {
692 		sensor->flags &= ~SENSOR_FINVALID;
693 		sensor->value = 1350000 / (data << divisor);
694 	}
695 }
696 
697 void
698 wb_refresh_sensor_data(struct lm_softc *sc)
699 {
700 	int banksel, bank, i;
701 
702 	/*
703 	 * Properly save and restore bank selection register.
704 	 */
705 
706 	banksel = bank = sc->lm_readreg(sc, WB_BANKSEL);
707 	for (i = 0; i < sc->numsensors; i++) {
708 		if (bank != sc->lm_sensors[i].bank) {
709 			bank = sc->lm_sensors[i].bank;
710 			sc->lm_writereg(sc, WB_BANKSEL, bank);
711 		}
712 		sc->lm_sensors[i].refresh(sc, i);
713 	}
714 	sc->lm_writereg(sc, WB_BANKSEL, banksel);
715 }
716 
717 void
718 wb_w83637hf_refresh_vcore(struct lm_softc *sc, int n)
719 {
720 	struct ksensor *sensor = &sc->sensors[n];
721 	int data;
722 
723 	data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
724 
725 	/*
726 	 * Depending on the voltage detection method,
727 	 * one of the following formulas is used:
728 	 *	VRM8 method: value = raw * 0.016V
729 	 *	VRM9 method: value = raw * 0.00488V + 0.70V
730 	 */
731 	if (sc->vrm9)
732 		sensor->value = (data * 4880) + 700000;
733 	else
734 		sensor->value = (data * 16000);
735 }
736 
737 void
738 wb_refresh_nvolt(struct lm_softc *sc, int n)
739 {
740 	struct ksensor *sensor = &sc->sensors[n];
741 	int data;
742 
743 	data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
744 	sensor->value = ((data << 4) - WB_VREF);
745 	sensor->value *= sc->lm_sensors[n].rfact;
746 	sensor->value /= 10;
747 	sensor->value += WB_VREF * 1000;
748 }
749 
750 void
751 wb_w83627ehf_refresh_nvolt(struct lm_softc *sc, int n)
752 {
753 	struct ksensor *sensor = &sc->sensors[n];
754 	int data;
755 
756 	data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
757 	sensor->value = ((data << 3) - WB_W83627EHF_VREF);
758 	sensor->value *= RFACT(232, 10);
759 	sensor->value /= 10;
760 	sensor->value += WB_W83627EHF_VREF * 1000;
761 }
762 
763 void
764 wb_refresh_temp(struct lm_softc *sc, int n)
765 {
766 	struct ksensor *sensor = &sc->sensors[n];
767 	int sdata;
768 
769 	/*
770 	 * The data sheet suggests that the range of the temperature
771 	 * sensor is between -55 degC and +125 degC.  However, values
772 	 * around -48 degC seem to be a very common bogus values.
773 	 * Since such values are unreasonably low, we use -45 degC for
774 	 * the lower limit instead.
775 	 */
776 	sdata = sc->lm_readreg(sc, sc->lm_sensors[n].reg) << 1;
777 	sdata += sc->lm_readreg(sc, sc->lm_sensors[n].reg + 1) >> 7;
778 	if (sdata > 0x0fa && sdata < 0x1a6) {
779 		sensor->flags |= SENSOR_FINVALID;
780 		sensor->value = 0;
781 	} else {
782 		if (sdata & 0x100)
783 			sdata -= 0x200;
784 		sensor->flags &= ~SENSOR_FINVALID;
785 		sensor->value = sdata * 500000 + 273150000;
786 	}
787 }
788 
789 void
790 wb_refresh_fanrpm(struct lm_softc *sc, int n)
791 {
792 	struct ksensor *sensor = &sc->sensors[n];
793 	int fan, data, divisor = 0;
794 
795 	/*
796 	 * This is madness; the fan divisor bits are scattered all
797 	 * over the place.
798 	 */
799 
800 	if (sc->lm_sensors[n].reg == LM_FAN1 ||
801 	    sc->lm_sensors[n].reg == LM_FAN2 ||
802 	    sc->lm_sensors[n].reg == LM_FAN3) {
803 		data = sc->lm_readreg(sc, WB_BANK0_VBAT);
804 		fan = (sc->lm_sensors[n].reg - LM_FAN1);
805 		if ((data >> 5) & (1 << fan))
806 			divisor |= 0x04;
807 	}
808 
809 	if (sc->lm_sensors[n].reg == LM_FAN1 ||
810 	    sc->lm_sensors[n].reg == LM_FAN2) {
811 		data = sc->lm_readreg(sc, LM_VIDFAN);
812 		if (sc->lm_sensors[n].reg == LM_FAN1)
813 			divisor |= (data >> 4) & 0x03;
814 		else
815 			divisor |= (data >> 6) & 0x03;
816 	} else if (sc->lm_sensors[n].reg == LM_FAN3) {
817 		data = sc->lm_readreg(sc, WB_PIN);
818 		divisor |= (data >> 6) & 0x03;
819 	} else if (sc->lm_sensors[n].reg == WB_BANK0_FAN4 ||
820 		   sc->lm_sensors[n].reg == WB_BANK0_FAN5) {
821 		data = sc->lm_readreg(sc, WB_BANK0_FAN45);
822 		if (sc->lm_sensors[n].reg == WB_BANK0_FAN4)
823 			divisor |= (data >> 0) & 0x07;
824 		else
825 			divisor |= (data >> 4) & 0x07;
826 	}
827 
828 	data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
829 	if (data == 0xff || data == 0x00) {
830 		sensor->flags |= SENSOR_FINVALID;
831 		sensor->value = 0;
832 	} else {
833 		sensor->flags &= ~SENSOR_FINVALID;
834 		sensor->value = 1350000 / (data << divisor);
835 	}
836 }
837 
838 void
839 wb_w83792d_refresh_fanrpm(struct lm_softc *sc, int n)
840 {
841 	struct ksensor *sensor = &sc->sensors[n];
842 	int reg, shift, data, divisor = 1;
843 
844 	switch (sc->lm_sensors[n].reg) {
845 	case 0x28:
846 		reg = 0x47; shift = 0;
847 		break;
848 	case 0x29:
849 		reg = 0x47; shift = 4;
850 		break;
851 	case 0x2a:
852 		reg = 0x5b; shift = 0;
853 		break;
854 	case 0xb8:
855 		reg = 0x5b; shift = 4;
856 		break;
857 	case 0xb9:
858 		reg = 0x5c; shift = 0;
859 		break;
860 	case 0xba:
861 		reg = 0x5c; shift = 4;
862 		break;
863 	case 0xbe:
864 		reg = 0x9e; shift = 0;
865 		break;
866 	default:
867 		reg = 0; shift = 0;
868 		break;
869 	}
870 
871 	data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
872 	if (data == 0xff || data == 0x00) {
873 		sensor->flags |= SENSOR_FINVALID;
874 		sensor->value = 0;
875 	} else {
876 		if (reg != 0)
877 			divisor = (sc->lm_readreg(sc, reg) >> shift) & 0x7;
878 		sensor->flags &= ~SENSOR_FINVALID;
879 		sensor->value = 1350000 / (data << divisor);
880 	}
881 }
882 
883 void
884 as_refresh_temp(struct lm_softc *sc, int n)
885 {
886 	struct ksensor *sensor = &sc->sensors[n];
887 	int sdata;
888 
889 	/*
890 	 * It seems a shorted temperature diode produces an all-ones
891 	 * bit pattern.
892 	 */
893 	sdata = sc->lm_readreg(sc, sc->lm_sensors[n].reg) << 1;
894 	sdata += sc->lm_readreg(sc, sc->lm_sensors[n].reg + 1) >> 7;
895 	if (sdata == 0x1ff) {
896 		sensor->flags |= SENSOR_FINVALID;
897 		sensor->value = 0;
898 	} else {
899 		if (sdata & 0x100)
900 			sdata -= 0x200;
901 		sensor->flags &= ~SENSOR_FINVALID;
902 		sensor->value = sdata * 500000 + 273150000;
903 	}
904 }
905