xref: /dflybsd-src/sys/dev/powermng/coretemp/coretemp.c (revision a8718c1450be85caa410b3a4cb3d98706d04f20c)
1 /*
2  * Copyright (c) 2007, 2008 Rui Paulo <rpaulo@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
16  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
17  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
18  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
19  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
20  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
22  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
23  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
24  * POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/coretemp/coretemp.c,v 1.14 2011/05/05 19:15:15 delphij Exp $
27  */
28 
29 /*
30  * Device driver for Intel's On Die thermal sensor via MSR.
31  * First introduced in Intel's Core line of processors.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/systm.h>
37 #include <sys/module.h>
38 #include <sys/conf.h>
39 #include <sys/cpu_topology.h>
40 #include <sys/kernel.h>
41 #include <sys/sensors.h>
42 #include <sys/proc.h>	/* for curthread */
43 #include <sys/sched.h>
44 #include <sys/thread2.h>
45 #include <sys/bitops.h>
46 
47 #include <machine/specialreg.h>
48 #include <machine/cpufunc.h>
49 #include <machine/cputypes.h>
50 #include <machine/md_var.h>
51 
52 #define MSR_THERM_STATUS_TM_STATUS	__BIT64(0)
53 #define MSR_THERM_STATUS_TM_STATUS_LOG	__BIT64(1)
54 #define MSR_THERM_STATUS_PROCHOT	__BIT64(2)
55 #define MSR_THERM_STATUS_PROCHOT_LOG	__BIT64(3)
56 #define MSR_THERM_STATUS_CRIT		__BIT64(4)
57 #define MSR_THERM_STATUS_CRIT_LOG	__BIT64(5)
58 #define MSR_THERM_STATUS_THRESH1	__BIT64(6)
59 #define MSR_THERM_STATUS_THRESH1_LOG	__BIT64(7)
60 #define MSR_THERM_STATUS_THRESH2	__BIT64(8)
61 #define MSR_THERM_STATUS_THRESH2_LOG	__BIT64(9)
62 #define MSR_THERM_STATUS_PWRLIM		__BIT64(10)
63 #define MSR_THERM_STATUS_PWRLIM_LOG	__BIT64(11)
64 #define MSR_THERM_STATUS_READ		__BITS64(16, 22)
65 #define MSR_THERM_STATUS_RES		__BITS64(27, 30)
66 #define MSR_THERM_STATUS_READ_VALID	__BIT64(31)
67 
68 #define MSR_THERM_STATUS_HAS_STATUS(msr) \
69     (((msr) & (MSR_THERM_STATUS_TM_STATUS | MSR_THERM_STATUS_TM_STATUS_LOG)) ==\
70      (MSR_THERM_STATUS_TM_STATUS | MSR_THERM_STATUS_TM_STATUS_LOG))
71 
72 #define MSR_THERM_STATUS_IS_CRITICAL(msr) \
73     (((msr) & (MSR_THERM_STATUS_CRIT | MSR_THERM_STATUS_CRIT_LOG)) == \
74      (MSR_THERM_STATUS_CRIT | MSR_THERM_STATUS_CRIT_LOG))
75 
76 #define MSR_PKGTM_STATUS_TM_STATUS	__BIT64(0)
77 #define MSR_PKGTM_STATUS_TM_STATUS_LOG	__BIT64(1)
78 #define MSR_PKGTM_STATUS_PROCHOT	__BIT64(2)
79 #define MSR_PKGTM_STATUS_PROCHOT_LOG	__BIT64(3)
80 #define MSR_PKGTM_STATUS_CRIT		__BIT64(4)
81 #define MSR_PKGTM_STATUS_CRIT_LOG	__BIT64(5)
82 #define MSR_PKGTM_STATUS_THRESH1	__BIT64(6)
83 #define MSR_PKGTM_STATUS_THRESH1_LOG	__BIT64(7)
84 #define MSR_PKGTM_STATUS_THRESH2	__BIT64(8)
85 #define MSR_PKGTM_STATUS_THRESH2_LOG	__BIT64(9)
86 #define MSR_PKGTM_STATUS_PWRLIM		__BIT64(10)
87 #define MSR_PKGTM_STATUS_PWRLIM_LOG	__BIT64(11)
88 #define MSR_PKGTM_STATUS_READ		__BITS64(16, 22)
89 
90 #define MSR_PKGTM_STATUS_HAS_STATUS(msr) \
91     (((msr) & (MSR_PKGTM_STATUS_TM_STATUS | MSR_PKGTM_STATUS_TM_STATUS_LOG)) ==\
92      (MSR_PKGTM_STATUS_TM_STATUS | MSR_PKGTM_STATUS_TM_STATUS_LOG))
93 
94 #define MSR_PKGTM_STATUS_IS_CRITICAL(msr) \
95     (((msr) & (MSR_PKGTM_STATUS_CRIT | MSR_PKGTM_STATUS_CRIT_LOG)) == \
96      (MSR_PKGTM_STATUS_CRIT | MSR_PKGTM_STATUS_CRIT_LOG))
97 
98 #define CORETEMP_TEMP_INVALID	-1
99 #define CORETEMP_TEMP_NOUPDATE	-2
100 
101 struct coretemp_sensor {
102 	struct ksensordev	c_sensdev;
103 	struct ksensor		c_sens;
104 };
105 
106 struct coretemp_softc {
107 	device_t		sc_dev;
108 	int			sc_tjmax;
109 
110 	int			sc_nsens;
111 	struct coretemp_sensor	*sc_sens;
112 	struct coretemp_sensor	*sc_pkg_sens;
113 
114 	struct globaldata	*sc_gd;
115 	int			sc_cpu;
116 	volatile uint32_t	sc_flags;	/* CORETEMP_FLAG_ */
117 	volatile uint64_t	sc_msr;
118 	volatile uint64_t	sc_pkg_msr;
119 };
120 
121 #define CORETEMP_FLAG_INITED	0x1
122 #define CORETEMP_FLAG_PENDING	0x2
123 #define CORETEMP_FLAG_CRIT	0x4
124 #define CORETEMP_FLAG_PKGCRIT	0x8
125 
126 #define CORETEMP_HAS_PKGSENSOR(sc)	((sc)->sc_pkg_sens != NULL)
127 
128 /*
129  * Device methods.
130  */
131 static void	coretemp_identify(driver_t *driver, device_t parent);
132 static int	coretemp_probe(device_t dev);
133 static int	coretemp_attach(device_t dev);
134 static int	coretemp_detach(device_t dev);
135 
136 static void	coretemp_ipi_func(void *sc);
137 static void	coretemp_ipi_send(struct coretemp_softc *sc, uint32_t flags);
138 static boolean_t coretemp_msr_fetch(struct coretemp_softc *sc, uint64_t *msr,
139 		    uint64_t *pkg_msr);
140 static int	coretemp_msr_temp(struct coretemp_softc *sc, uint64_t msr);
141 static void	coretemp_sensor_update(struct coretemp_softc *sc, int temp);
142 static void	coretemp_sensor_task(void *arg);
143 
144 static void	coretemp_pkg_sensor_task(void *arg);
145 static void	coretemp_pkg_sensor_update(struct coretemp_softc *sc, int temp);
146 static int	coretemp_pkg_msr_temp(struct coretemp_softc *sc, uint64_t msr);
147 
148 static device_method_t coretemp_methods[] = {
149 	/* Device interface */
150 	DEVMETHOD(device_identify,	coretemp_identify),
151 	DEVMETHOD(device_probe,		coretemp_probe),
152 	DEVMETHOD(device_attach,	coretemp_attach),
153 	DEVMETHOD(device_detach,	coretemp_detach),
154 
155 	DEVMETHOD_END
156 };
157 
158 static driver_t coretemp_driver = {
159 	"coretemp",
160 	coretemp_methods,
161 	sizeof(struct coretemp_softc),
162 };
163 
164 static devclass_t coretemp_devclass;
165 DRIVER_MODULE(coretemp, cpu, coretemp_driver, coretemp_devclass, NULL, NULL);
166 MODULE_VERSION(coretemp, 1);
167 
168 static __inline void
169 coretemp_sensor_set(struct ksensor *sens, const struct coretemp_softc *sc,
170     uint32_t crit_flag, int temp)
171 {
172 	enum sensor_status status;
173 
174 	if (sc->sc_flags & crit_flag)
175 		status = SENSOR_S_CRIT;
176 	else
177 		status = SENSOR_S_OK;
178 	sensor_set_temp_degc(sens, temp, status);
179 }
180 
181 static void
182 coretemp_identify(driver_t *driver, device_t parent)
183 {
184 	device_t child;
185 
186 	/* Make sure we're not being doubly invoked. */
187 	if (device_find_child(parent, "coretemp", -1) != NULL)
188 		return;
189 
190 	/* Check that the vendor is Intel. */
191 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
192 		return;
193 
194 	/*
195 	 * Some Intel CPUs, namely the PIII, don't have thermal sensors,
196 	 * but report them in cpu_thermal_feature.  This leads to a later
197 	 * GPF when the sensor is queried via a MSR, so we stop here.
198 	 */
199 	if (CPUID_TO_MODEL(cpu_id) < 0xe)
200 		return;
201 
202 	if ((cpu_thermal_feature & CPUID_THERMAL_SENSOR) == 0)
203 		return;
204 
205 	/*
206 	 * We add a child for each CPU since settings must be performed
207 	 * on each CPU in the SMP case.
208 	 */
209 	child = device_add_child(parent, "coretemp", -1);
210 	if (child == NULL)
211 		device_printf(parent, "add coretemp child failed\n");
212 }
213 
214 static int
215 coretemp_probe(device_t dev)
216 {
217 	if (resource_disabled("coretemp", 0))
218 		return (ENXIO);
219 
220 	device_set_desc(dev, "CPU On-Die Thermal Sensors");
221 
222 	return (BUS_PROBE_GENERIC);
223 }
224 
225 static int
226 coretemp_attach(device_t dev)
227 {
228 	struct coretemp_softc *sc = device_get_softc(dev);
229 	const struct cpu_node *node, *start_node;
230 	cpumask_t cpu_mask;
231 	device_t pdev;
232 	uint64_t msr;
233 	int cpu_model, cpu_stepping;
234 	int ret, tjtarget, cpu, sens_idx;
235 	int master_cpu;
236 	struct coretemp_sensor *csens;
237 
238 	sc->sc_dev = dev;
239 	pdev = device_get_parent(dev);
240 	cpu_model = CPUID_TO_MODEL(cpu_id);
241 	cpu_stepping = cpu_id & CPUID_STEPPING;
242 
243 #if 0
244 	/*
245 	 * XXXrpaulo: I have this CPU model and when it returns from C3
246 	 * coretemp continues to function properly.
247 	 */
248 
249 	/*
250 	 * Check for errata AE18.
251 	 * "Processor Digital Thermal Sensor (DTS) Readout stops
252 	 *  updating upon returning from C3/C4 state."
253 	 *
254 	 * Adapted from the Linux coretemp driver.
255 	 */
256 	if (cpu_model == 0xe && cpu_stepping < 0xc) {
257 		msr = rdmsr(MSR_BIOS_SIGN);
258 		msr = msr >> 32;
259 		if (msr < 0x39) {
260 			device_printf(dev, "not supported (Intel errata "
261 			    "AE18), try updating your BIOS\n");
262 			return (ENXIO);
263 		}
264 	}
265 #endif
266 
267 	/*
268 	 * Use 100C as the initial value.
269 	 */
270 	sc->sc_tjmax = 100;
271 
272 	if ((cpu_model == 0xf && cpu_stepping >= 2) || cpu_model == 0xe) {
273 		/*
274 		 * On some Core 2 CPUs, there's an undocumented MSR that
275 		 * can tell us if Tj(max) is 100 or 85.
276 		 *
277 		 * The if-clause for CPUs having the MSR_IA32_EXT_CONFIG
278 		 * was adapted from the Linux coretemp driver.
279 		 */
280 		msr = rdmsr(MSR_IA32_EXT_CONFIG);
281 		if (msr & (1 << 30))
282 			sc->sc_tjmax = 85;
283 	} else if (cpu_model == 0x17) {
284 		switch (cpu_stepping) {
285 		case 0x6:	/* Mobile Core 2 Duo */
286 			sc->sc_tjmax = 105;
287 			break;
288 		default:	/* Unknown stepping */
289 			break;
290 		}
291 	} else if (cpu_model == 0x1c) {
292 		switch (cpu_stepping) {
293 		case 0xa:	/* 45nm Atom D400, N400 and D500 series */
294 			sc->sc_tjmax = 100;
295 			break;
296 		default:
297 			sc->sc_tjmax = 90;
298 			break;
299 		}
300 	} else {
301 		/*
302 		 * Attempt to get Tj(max) from MSR IA32_TEMPERATURE_TARGET.
303 		 *
304 		 * This method is described in Intel white paper "CPU
305 		 * Monitoring With DTS/PECI". (#322683)
306 		 */
307 		ret = rdmsr_safe(MSR_IA32_TEMPERATURE_TARGET, &msr);
308 		if (ret == 0) {
309 			tjtarget = (msr >> 16) & 0xff;
310 
311 			/*
312 			 * On earlier generation of processors, the value
313 			 * obtained from IA32_TEMPERATURE_TARGET register is
314 			 * an offset that needs to be summed with a model
315 			 * specific base.  It is however not clear what
316 			 * these numbers are, with the publicly available
317 			 * documents from Intel.
318 			 *
319 			 * For now, we consider [70, 110]C range, as
320 			 * described in #322683, as "reasonable" and accept
321 			 * these values whenever the MSR is available for
322 			 * read, regardless the CPU model.
323 			 */
324 			if (tjtarget >= 70 && tjtarget <= 110)
325 				sc->sc_tjmax = tjtarget;
326 			else
327 				device_printf(dev, "Tj(target) value %d "
328 				    "does not seem right.\n", tjtarget);
329 		} else
330 			device_printf(dev, "Can not get Tj(target) "
331 			    "from your CPU, using 100C.\n");
332 	}
333 
334 	if (bootverbose)
335 		device_printf(dev, "Setting TjMax=%d\n", sc->sc_tjmax);
336 
337 	sc->sc_cpu = device_get_unit(device_get_parent(dev));
338 	sc->sc_gd = globaldata_find(sc->sc_cpu);
339 
340 	start_node = get_cpu_node_by_cpuid(sc->sc_cpu);
341 
342 	node = start_node;
343 	while (node != NULL) {
344 		if (node->type == CORE_LEVEL) {
345 			if (node->child_no == 0)
346 				node = NULL;
347 			break;
348 		}
349 		node = node->parent_node;
350 	}
351 	if (node != NULL) {
352 		master_cpu = BSRCPUMASK(node->members);
353 		if (bootverbose) {
354 			device_printf(dev, "master cpu%d, count %u\n",
355 			    master_cpu, node->child_no);
356 		}
357 		if (sc->sc_cpu != master_cpu)
358 			return (0);
359 
360 		KKASSERT(node->child_no > 0);
361 		sc->sc_nsens = node->child_no;
362 		cpu_mask = node->members;
363 	} else {
364 		sc->sc_nsens = 1;
365 		CPUMASK_ASSBIT(cpu_mask, sc->sc_cpu);
366 	}
367 	sc->sc_sens = kmalloc(sizeof(struct coretemp_sensor) * sc->sc_nsens,
368 	    M_DEVBUF, M_WAITOK | M_ZERO);
369 
370 	sens_idx = 0;
371 	CPUSET_FOREACH(cpu, cpu_mask) {
372 		KKASSERT(sens_idx < sc->sc_nsens);
373 		csens = &sc->sc_sens[sens_idx];
374 
375 		/*
376 		 * Add hw.sensors.cpuN.temp0 MIB.
377 		 */
378 		ksnprintf(csens->c_sensdev.xname,
379 		    sizeof(csens->c_sensdev.xname), "cpu%d", cpu);
380 		ksnprintf(csens->c_sens.desc, sizeof(csens->c_sens.desc),
381 		    "node%d core%d temp", get_chip_ID(cpu),
382 		    get_core_number_within_chip(cpu));
383 		csens->c_sens.type = SENSOR_TEMP;
384 		sensor_set_unknown(&csens->c_sens);
385 		sensor_attach(&csens->c_sensdev, &csens->c_sens);
386 		sensordev_install(&csens->c_sensdev);
387 
388 		++sens_idx;
389 	}
390 
391 	if (cpu_thermal_feature & CPUID_THERMAL_PTM) {
392 		boolean_t pkg_sens = TRUE;
393 
394 		/*
395 		 * Package thermal sensor
396 		 */
397 
398 		node = start_node;
399 		while (node != NULL) {
400 			if (node->type == CHIP_LEVEL) {
401 				if (node->child_no == 0)
402 					node = NULL;
403 				break;
404 			}
405 			node = node->parent_node;
406 		}
407 		if (node != NULL) {
408 			master_cpu = BSRCPUMASK(node->members);
409 			if (bootverbose) {
410 				device_printf(dev, "pkg master cpu%d\n",
411 				    master_cpu);
412 			}
413 			if (sc->sc_cpu != master_cpu)
414 				pkg_sens = FALSE;
415 		}
416 
417 		if (pkg_sens) {
418 			csens = sc->sc_pkg_sens =
419 			    kmalloc(sizeof(struct coretemp_sensor), M_DEVBUF,
420 			    M_WAITOK | M_ZERO);
421 
422 			/*
423 			 * Add hw.sensors.cpu_nodeN.temp0 MIB.
424 			 */
425 			ksnprintf(csens->c_sensdev.xname,
426 			    sizeof(csens->c_sensdev.xname), "cpu_node%d",
427 			    get_chip_ID(sc->sc_cpu));
428 			ksnprintf(csens->c_sens.desc,
429 			    sizeof(csens->c_sens.desc), "node%d temp",
430 			    get_chip_ID(sc->sc_cpu));
431 			csens->c_sens.type = SENSOR_TEMP;
432 			sensor_set_unknown(&csens->c_sens);
433 			sensor_attach(&csens->c_sensdev, &csens->c_sens);
434 			sensordev_install(&csens->c_sensdev);
435 		}
436 	}
437 
438 	if (CORETEMP_HAS_PKGSENSOR(sc))
439 		sensor_task_register(sc, coretemp_pkg_sensor_task, 2);
440 	else
441 		sensor_task_register(sc, coretemp_sensor_task, 2);
442 
443 	return (0);
444 }
445 
446 static int
447 coretemp_detach(device_t dev)
448 {
449 	struct coretemp_softc *sc = device_get_softc(dev);
450 
451 	if (sc->sc_nsens > 0) {
452 		int i;
453 
454 		sensor_task_unregister(sc);
455 		lwkt_synchronize_ipiqs("coretemp");
456 
457 		for (i = 0; i < sc->sc_nsens; ++i)
458 			sensordev_deinstall(&sc->sc_sens[i].c_sensdev);
459 		kfree(sc->sc_sens, M_DEVBUF);
460 
461 		if (sc->sc_pkg_sens != NULL) {
462 			sensordev_deinstall(&sc->sc_pkg_sens->c_sensdev);
463 			kfree(sc->sc_pkg_sens, M_DEVBUF);
464 		}
465 	}
466 	return (0);
467 }
468 
469 static void
470 coretemp_ipi_func(void *xsc)
471 {
472 	struct coretemp_softc *sc = xsc;
473 
474 	sc->sc_msr = rdmsr(MSR_THERM_STATUS);
475 	if (CORETEMP_HAS_PKGSENSOR(sc))
476 		sc->sc_pkg_msr = rdmsr(MSR_PKG_THERM_STATUS);
477 	cpu_sfence();
478 	atomic_clear_int(&sc->sc_flags, CORETEMP_FLAG_PENDING);
479 }
480 
481 static void
482 coretemp_ipi_send(struct coretemp_softc *sc, uint32_t flags)
483 {
484 	KASSERT((sc->sc_flags & CORETEMP_FLAG_PENDING) == 0,
485 	    ("coretemp: cpu%d ipi is still pending", sc->sc_cpu));
486 	atomic_set_int(&sc->sc_flags, flags | CORETEMP_FLAG_PENDING);
487 	cpu_mfence();
488 	lwkt_send_ipiq_passive(sc->sc_gd, coretemp_ipi_func, sc);
489 }
490 
491 static int
492 coretemp_msr_temp(struct coretemp_softc *sc, uint64_t msr)
493 {
494 	int temp;
495 
496 	/*
497 	 * Check for Thermal Status and Thermal Status Log.
498 	 */
499 	if (MSR_THERM_STATUS_HAS_STATUS(msr))
500 		device_printf(sc->sc_dev, "PROCHOT asserted\n");
501 
502 	if (msr & MSR_THERM_STATUS_READ_VALID)
503 		temp = sc->sc_tjmax - __SHIFTOUT(msr, MSR_THERM_STATUS_READ);
504 	else
505 		temp = CORETEMP_TEMP_INVALID;
506 
507 	/*
508 	 * Check for Critical Temperature Status and Critical
509 	 * Temperature Log.
510 	 * It doesn't really matter if the current temperature is
511 	 * invalid because the "Critical Temperature Log" bit will
512 	 * tell us if the Critical Temperature has been reached in
513 	 * past. It's not directly related to the current temperature.
514 	 *
515 	 * If we reach a critical level, allow devctl(4) to catch this
516 	 * and shutdown the system.
517 	 */
518 	if (MSR_THERM_STATUS_IS_CRITICAL(msr)) {
519 		if ((sc->sc_flags & CORETEMP_FLAG_CRIT) == 0) {
520 			char stemp[16], data[64];
521 
522 			device_printf(sc->sc_dev,
523 			    "critical temperature detected, "
524 			    "suggest system shutdown\n");
525 			ksnprintf(stemp, sizeof(stemp), "%d", temp);
526 			ksnprintf(data, sizeof(data),
527 			    "notify=0xcc node=%d core=%d",
528 			    get_chip_ID(sc->sc_cpu),
529 			    get_core_number_within_chip(sc->sc_cpu));
530 			devctl_notify("coretemp", "Thermal", stemp, data);
531 			atomic_set_int(&sc->sc_flags, CORETEMP_FLAG_CRIT);
532 		}
533 	} else if (sc->sc_flags & CORETEMP_FLAG_CRIT) {
534 		atomic_clear_int(&sc->sc_flags, CORETEMP_FLAG_CRIT);
535 	}
536 
537 	return temp;
538 }
539 
540 static int
541 coretemp_pkg_msr_temp(struct coretemp_softc *sc, uint64_t msr)
542 {
543 	int temp;
544 
545 	/*
546 	 * Check for Thermal Status and Thermal Status Log.
547 	 */
548 	if (MSR_PKGTM_STATUS_HAS_STATUS(msr))
549 		device_printf(sc->sc_dev, "package PROCHOT asserted\n");
550 
551 	temp = sc->sc_tjmax - __SHIFTOUT(msr, MSR_PKGTM_STATUS_READ);
552 
553 	/*
554 	 * Check for Critical Temperature Status and Critical
555 	 * Temperature Log.
556 	 * It doesn't really matter if the current temperature is
557 	 * invalid because the "Critical Temperature Log" bit will
558 	 * tell us if the Critical Temperature has been reached in
559 	 * past. It's not directly related to the current temperature.
560 	 *
561 	 * If we reach a critical level, allow devctl(4) to catch this
562 	 * and shutdown the system.
563 	 */
564 	if (MSR_PKGTM_STATUS_IS_CRITICAL(msr)) {
565 		if ((sc->sc_flags & CORETEMP_FLAG_PKGCRIT) == 0) {
566 			char stemp[16], data[64];
567 
568 			device_printf(sc->sc_dev,
569 			    "critical temperature detected, "
570 			    "suggest system shutdown\n");
571 			ksnprintf(stemp, sizeof(stemp), "%d", temp);
572 			ksnprintf(data, sizeof(data), "notify=0xcc node=%d",
573 			    get_chip_ID(sc->sc_cpu));
574 			devctl_notify("coretemp", "Thermal", stemp, data);
575 			atomic_set_int(&sc->sc_flags, CORETEMP_FLAG_PKGCRIT);
576 		}
577 	} else if (sc->sc_flags & CORETEMP_FLAG_PKGCRIT) {
578 		atomic_clear_int(&sc->sc_flags, CORETEMP_FLAG_PKGCRIT);
579 	}
580 
581 	return temp;
582 }
583 
584 static boolean_t
585 coretemp_msr_fetch(struct coretemp_softc *sc, uint64_t *msr, uint64_t *pkg_msr)
586 {
587 	/*
588 	 * Send IPI to the specific CPU to read the correct temperature.
589 	 * If the IPI does not complete yet, i.e. CORETEMP_FLAG_PENDING,
590 	 * return false.
591 	 */
592 	if (sc->sc_cpu != mycpuid) {
593 		if ((sc->sc_flags & CORETEMP_FLAG_INITED) == 0) {
594 			coretemp_ipi_send(sc, CORETEMP_FLAG_INITED);
595 			return FALSE;
596 		} else {
597 			if (sc->sc_flags & CORETEMP_FLAG_PENDING) {
598 				/* IPI does not complete yet */
599 				return FALSE;
600 			}
601 			*msr = sc->sc_msr;
602 			if (pkg_msr != NULL)
603 				*pkg_msr = sc->sc_pkg_msr;
604 			coretemp_ipi_send(sc, 0);
605 		}
606 	} else {
607 		*msr = rdmsr(MSR_THERM_STATUS);
608 		if (pkg_msr != NULL)
609 			*pkg_msr = rdmsr(MSR_PKG_THERM_STATUS);
610 	}
611 	return TRUE;
612 }
613 
614 static void
615 coretemp_sensor_update(struct coretemp_softc *sc, int temp)
616 {
617 	int i;
618 
619 	if (temp == CORETEMP_TEMP_NOUPDATE) {
620 		/* No updates; keep the previous value */
621 	} else if (temp == CORETEMP_TEMP_INVALID) {
622 		for (i = 0; i < sc->sc_nsens; ++i)
623 			sensor_set_invalid(&sc->sc_sens[i].c_sens);
624 	} else {
625 		for (i = 0; i < sc->sc_nsens; ++i) {
626 			coretemp_sensor_set(&sc->sc_sens[i].c_sens, sc,
627 			    CORETEMP_FLAG_CRIT, temp);
628 		}
629 	}
630 }
631 
632 static void
633 coretemp_pkg_sensor_update(struct coretemp_softc *sc, int temp)
634 {
635 	KKASSERT(sc->sc_pkg_sens != NULL);
636 	if (temp == CORETEMP_TEMP_NOUPDATE) {
637 		/* No updates; keep the previous value */
638 	} else if (temp == CORETEMP_TEMP_INVALID) {
639 		sensor_set_invalid(&sc->sc_pkg_sens->c_sens);
640 	} else {
641 		coretemp_sensor_set(&sc->sc_pkg_sens->c_sens, sc,
642 		    CORETEMP_FLAG_PKGCRIT, temp);
643 	}
644 }
645 
646 static void
647 coretemp_sensor_task(void *arg)
648 {
649 	struct coretemp_softc *sc = arg;
650 	uint64_t msr;
651 	int temp;
652 
653 	if (!coretemp_msr_fetch(sc, &msr, NULL))
654 		temp = CORETEMP_TEMP_NOUPDATE;
655 	else
656 		temp = coretemp_msr_temp(sc, msr);
657 
658 	coretemp_sensor_update(sc, temp);
659 }
660 
661 static void
662 coretemp_pkg_sensor_task(void *arg)
663 {
664 	struct coretemp_softc *sc = arg;
665 	uint64_t msr, pkg_msr;
666 	int temp, pkg_temp;
667 
668 	if (!coretemp_msr_fetch(sc, &msr, &pkg_msr)) {
669 		temp = CORETEMP_TEMP_NOUPDATE;
670 		pkg_temp = CORETEMP_TEMP_NOUPDATE;
671 	} else {
672 		temp = coretemp_msr_temp(sc, msr);
673 		pkg_temp = coretemp_pkg_msr_temp(sc, pkg_msr);
674 	}
675 
676 	coretemp_sensor_update(sc, temp);
677 	coretemp_pkg_sensor_update(sc, pkg_temp);
678 }
679