xref: /dflybsd-src/sys/dev/netif/xl/if_xl.c (revision c6cf4f8f1ebc9e3fe2a8c566f08adfc86122c7bf)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_xl.c,v 1.72.2.28 2003/10/08 06:01:57 murray Exp $
33  * $DragonFly: src/sys/dev/netif/xl/if_xl.c,v 1.17 2005/02/20 04:04:55 joerg Exp $
34  */
35 
36 /*
37  * 3Com 3c90x Etherlink XL PCI NIC driver
38  *
39  * Supports the 3Com "boomerang", "cyclone" and "hurricane" PCI
40  * bus-master chips (3c90x cards and embedded controllers) including
41  * the following:
42  *
43  * 3Com 3c900-TPO	10Mbps/RJ-45
44  * 3Com 3c900-COMBO	10Mbps/RJ-45,AUI,BNC
45  * 3Com 3c905-TX	10/100Mbps/RJ-45
46  * 3Com 3c905-T4	10/100Mbps/RJ-45
47  * 3Com 3c900B-TPO	10Mbps/RJ-45
48  * 3Com 3c900B-COMBO	10Mbps/RJ-45,AUI,BNC
49  * 3Com 3c900B-TPC	10Mbps/RJ-45,BNC
50  * 3Com 3c900B-FL	10Mbps/Fiber-optic
51  * 3Com 3c905B-COMBO	10/100Mbps/RJ-45,AUI,BNC
52  * 3Com 3c905B-TX	10/100Mbps/RJ-45
53  * 3Com 3c905B-FL/FX	10/100Mbps/Fiber-optic
54  * 3Com 3c905C-TX	10/100Mbps/RJ-45 (Tornado ASIC)
55  * 3Com 3c980-TX	10/100Mbps server adapter (Hurricane ASIC)
56  * 3Com 3c980C-TX	10/100Mbps server adapter (Tornado ASIC)
57  * 3Com 3cSOHO100-TX	10/100Mbps/RJ-45 (Hurricane ASIC)
58  * 3Com 3c450-TX	10/100Mbps/RJ-45 (Tornado ASIC)
59  * 3Com 3c555		10/100Mbps/RJ-45 (MiniPCI, Laptop Hurricane)
60  * 3Com 3c556		10/100Mbps/RJ-45 (MiniPCI, Hurricane ASIC)
61  * 3Com 3c556B		10/100Mbps/RJ-45 (MiniPCI, Hurricane ASIC)
62  * 3Com 3c575TX		10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
63  * 3Com 3c575B		10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
64  * 3Com 3c575C		10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
65  * 3Com 3cxfem656	10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
66  * 3Com 3cxfem656b	10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
67  * 3Com 3cxfem656c	10/100Mbps/RJ-45 (Cardbus, Tornado ASIC)
68  * Dell Optiplex GX1 on-board 3c918 10/100Mbps/RJ-45
69  * Dell on-board 3c920 10/100Mbps/RJ-45
70  * Dell Precision on-board 3c905B 10/100Mbps/RJ-45
71  * Dell Latitude laptop docking station embedded 3c905-TX
72  *
73  * Written by Bill Paul <wpaul@ctr.columbia.edu>
74  * Electrical Engineering Department
75  * Columbia University, New York City
76  */
77 
78 /*
79  * The 3c90x series chips use a bus-master DMA interface for transfering
80  * packets to and from the controller chip. Some of the "vortex" cards
81  * (3c59x) also supported a bus master mode, however for those chips
82  * you could only DMA packets to/from a contiguous memory buffer. For
83  * transmission this would mean copying the contents of the queued mbuf
84  * chain into an mbuf cluster and then DMAing the cluster. This extra
85  * copy would sort of defeat the purpose of the bus master support for
86  * any packet that doesn't fit into a single mbuf.
87  *
88  * By contrast, the 3c90x cards support a fragment-based bus master
89  * mode where mbuf chains can be encapsulated using TX descriptors.
90  * This is similar to other PCI chips such as the Texas Instruments
91  * ThunderLAN and the Intel 82557/82558.
92  *
93  * The "vortex" driver (if_vx.c) happens to work for the "boomerang"
94  * bus master chips because they maintain the old PIO interface for
95  * backwards compatibility, but starting with the 3c905B and the
96  * "cyclone" chips, the compatibility interface has been dropped.
97  * Since using bus master DMA is a big win, we use this driver to
98  * support the PCI "boomerang" chips even though they work with the
99  * "vortex" driver in order to obtain better performance.
100  *
101  * This driver is in the /sys/pci directory because it only supports
102  * PCI-based NICs.
103  */
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/sockio.h>
108 #include <sys/endian.h>
109 #include <sys/mbuf.h>
110 #include <sys/kernel.h>
111 #include <sys/socket.h>
112 
113 #include <net/if.h>
114 #include <net/ifq_var.h>
115 #include <net/if_arp.h>
116 #include <net/ethernet.h>
117 #include <net/if_dl.h>
118 #include <net/if_media.h>
119 #include <net/vlan/if_vlan_var.h>
120 
121 #include <net/bpf.h>
122 
123 #include <machine/bus_memio.h>
124 #include <machine/bus_pio.h>
125 #include <machine/bus.h>
126 #include <machine/clock.h>      /* for DELAY */
127 #include <machine/resource.h>
128 #include <sys/bus.h>
129 #include <sys/rman.h>
130 
131 #include "../mii_layer/mii.h"
132 #include "../mii_layer/miivar.h"
133 
134 #include <bus/pci/pcireg.h>
135 #include <bus/pci/pcivar.h>
136 
137 /* "controller miibus0" required.  See GENERIC if you get errors here. */
138 #include "miibus_if.h"
139 
140 #include "if_xlreg.h"
141 
142 #define XL905B_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
143 
144 /*
145  * Various supported device vendors/types and their names.
146  */
147 static struct xl_type xl_devs[] = {
148 	{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT,
149 		"3Com 3c900-TPO Etherlink XL" },
150 	{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT_COMBO,
151 		"3Com 3c900-COMBO Etherlink XL" },
152 	{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10_100BT,
153 		"3Com 3c905-TX Fast Etherlink XL" },
154 	{ TC_VENDORID, TC_DEVICEID_BOOMERANG_100BT4,
155 		"3Com 3c905-T4 Fast Etherlink XL" },
156 	{ TC_VENDORID, TC_DEVICEID_KRAKATOA_10BT,
157 		"3Com 3c900B-TPO Etherlink XL" },
158 	{ TC_VENDORID, TC_DEVICEID_KRAKATOA_10BT_COMBO,
159 		"3Com 3c900B-COMBO Etherlink XL" },
160 	{ TC_VENDORID, TC_DEVICEID_KRAKATOA_10BT_TPC,
161 		"3Com 3c900B-TPC Etherlink XL" },
162 	{ TC_VENDORID, TC_DEVICEID_CYCLONE_10FL,
163 		"3Com 3c900B-FL Etherlink XL" },
164 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_10_100BT,
165 		"3Com 3c905B-TX Fast Etherlink XL" },
166 	{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100BT4,
167 		"3Com 3c905B-T4 Fast Etherlink XL" },
168 	{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100FX,
169 		"3Com 3c905B-FX/SC Fast Etherlink XL" },
170 	{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100_COMBO,
171 		"3Com 3c905B-COMBO Fast Etherlink XL" },
172 	{ TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT,
173 		"3Com 3c905C-TX Fast Etherlink XL" },
174 	{ TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT_920B,
175 		"3Com 3c920B-EMB Integrated Fast Etherlink XL" },
176 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_10_100BT_SERV,
177 		"3Com 3c980 Fast Etherlink XL" },
178 	{ TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT_SERV,
179 		"3Com 3c980C Fast Etherlink XL" },
180 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_SOHO100TX,
181 		"3Com 3cSOHO100-TX OfficeConnect" },
182 	{ TC_VENDORID, TC_DEVICEID_TORNADO_HOMECONNECT,
183 		"3Com 3c450-TX HomeConnect" },
184 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_555,
185 		"3Com 3c555 Fast Etherlink XL" },
186 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_556,
187 		"3Com 3c556 Fast Etherlink XL" },
188 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_556B,
189 		"3Com 3c556B Fast Etherlink XL" },
190 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_575A,
191 		"3Com 3c575TX Fast Etherlink XL" },
192 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_575B,
193 		"3Com 3c575B Fast Etherlink XL" },
194 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_575C,
195 		"3Com 3c575C Fast Etherlink XL" },
196 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_656,
197 		"3Com 3c656 Fast Etherlink XL" },
198 	{ TC_VENDORID, TC_DEVICEID_HURRICANE_656B,
199 		"3Com 3c656B Fast Etherlink XL" },
200 	{ TC_VENDORID, TC_DEVICEID_TORNADO_656C,
201 		"3Com 3c656C Fast Etherlink XL" },
202 	{ 0, 0, NULL }
203 };
204 
205 static int xl_probe		(device_t);
206 static int xl_attach		(device_t);
207 static int xl_detach		(device_t);
208 
209 static int xl_newbuf		(struct xl_softc *, struct xl_chain_onefrag *);
210 static void xl_stats_update	(void *);
211 static int xl_encap		(struct xl_softc *, struct xl_chain *,
212 						struct mbuf *);
213 static void xl_rxeof		(struct xl_softc *);
214 static int xl_rx_resync		(struct xl_softc *);
215 static void xl_txeof		(struct xl_softc *);
216 static void xl_txeof_90xB	(struct xl_softc *);
217 static void xl_txeoc		(struct xl_softc *);
218 static void xl_intr		(void *);
219 static void xl_start		(struct ifnet *);
220 static void xl_start_90xB	(struct ifnet *);
221 static int xl_ioctl		(struct ifnet *, u_long, caddr_t,
222 						struct ucred *);
223 static void xl_init		(void *);
224 static void xl_stop		(struct xl_softc *);
225 static void xl_watchdog		(struct ifnet *);
226 static void xl_shutdown		(device_t);
227 static int xl_suspend		(device_t);
228 static int xl_resume		(device_t);
229 
230 static int xl_ifmedia_upd	(struct ifnet *);
231 static void xl_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
232 
233 static int xl_eeprom_wait	(struct xl_softc *);
234 static int xl_read_eeprom	(struct xl_softc *, caddr_t, int, int, int);
235 static void xl_mii_sync		(struct xl_softc *);
236 static void xl_mii_send		(struct xl_softc *, u_int32_t, int);
237 static int xl_mii_readreg	(struct xl_softc *, struct xl_mii_frame *);
238 static int xl_mii_writereg	(struct xl_softc *, struct xl_mii_frame *);
239 
240 static void xl_setcfg		(struct xl_softc *);
241 static void xl_setmode		(struct xl_softc *, int);
242 static u_int8_t xl_calchash	(caddr_t);
243 static void xl_setmulti		(struct xl_softc *);
244 static void xl_setmulti_hash	(struct xl_softc *);
245 static void xl_reset		(struct xl_softc *);
246 static int xl_list_rx_init	(struct xl_softc *);
247 static int xl_list_tx_init	(struct xl_softc *);
248 static int xl_list_tx_init_90xB	(struct xl_softc *);
249 static void xl_wait		(struct xl_softc *);
250 static void xl_mediacheck	(struct xl_softc *);
251 static void xl_choose_xcvr	(struct xl_softc *, int);
252 static void xl_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
253 static void xl_dma_map_rxbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
254 						int);
255 static void xl_dma_map_txbuf	(void *, bus_dma_segment_t *, int, bus_size_t,
256 						int);
257 #ifdef notdef
258 static void xl_testpacket	(struct xl_softc *);
259 #endif
260 
261 static int xl_miibus_readreg	(device_t, int, int);
262 static int xl_miibus_writereg	(device_t, int, int, int);
263 static void xl_miibus_statchg	(device_t);
264 static void xl_miibus_mediainit	(device_t);
265 
266 static device_method_t xl_methods[] = {
267 	/* Device interface */
268 	DEVMETHOD(device_probe,		xl_probe),
269 	DEVMETHOD(device_attach,	xl_attach),
270 	DEVMETHOD(device_detach,	xl_detach),
271 	DEVMETHOD(device_shutdown,	xl_shutdown),
272 	DEVMETHOD(device_suspend,	xl_suspend),
273 	DEVMETHOD(device_resume,	xl_resume),
274 
275 	/* bus interface */
276 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
277 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
278 
279 	/* MII interface */
280 	DEVMETHOD(miibus_readreg,	xl_miibus_readreg),
281 	DEVMETHOD(miibus_writereg,	xl_miibus_writereg),
282 	DEVMETHOD(miibus_statchg,	xl_miibus_statchg),
283 	DEVMETHOD(miibus_mediainit,	xl_miibus_mediainit),
284 
285 	{ 0, 0 }
286 };
287 
288 static driver_t xl_driver = {
289 	"xl",
290 	xl_methods,
291 	sizeof(struct xl_softc)
292 };
293 
294 static devclass_t xl_devclass;
295 
296 DECLARE_DUMMY_MODULE(if_xl);
297 MODULE_DEPEND(if_xl, miibus, 1, 1, 1);
298 DRIVER_MODULE(if_xl, pci, xl_driver, xl_devclass, 0, 0);
299 DRIVER_MODULE(miibus, xl, miibus_driver, miibus_devclass, 0, 0);
300 
301 static void
302 xl_dma_map_addr(arg, segs, nseg, error)
303 	void *arg;
304 	bus_dma_segment_t *segs;
305 	int nseg, error;
306 {
307 	u_int32_t *paddr;
308 
309 	paddr = arg;
310 	*paddr = segs->ds_addr;
311 }
312 
313 static void
314 xl_dma_map_rxbuf(arg, segs, nseg, mapsize, error)
315 	void *arg;
316 	bus_dma_segment_t *segs;
317 	int nseg;
318 	bus_size_t mapsize;
319 	int error;
320 {
321 	u_int32_t *paddr;
322 
323 	if (error)
324 		return;
325 	KASSERT(nseg == 1, ("xl_dma_map_rxbuf: too many DMA segments"));
326 	paddr = arg;
327 	*paddr = segs->ds_addr;
328 }
329 
330 static void
331 xl_dma_map_txbuf(arg, segs, nseg, mapsize, error)
332 	void *arg;
333 	bus_dma_segment_t *segs;
334 	int nseg;
335 	bus_size_t mapsize;
336 	int error;
337 {
338 	struct xl_list *l;
339 	int i, total_len;
340 
341 	if (error)
342 		return;
343 
344 	KASSERT(nseg <= XL_MAXFRAGS, ("too many DMA segments"));
345 
346 	total_len = 0;
347 	l = arg;
348 	for (i = 0; i < nseg; i++) {
349 		KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
350 		l->xl_frag[i].xl_addr = htole32(segs[i].ds_addr);
351 		l->xl_frag[i].xl_len = htole32(segs[i].ds_len);
352 		total_len += segs[i].ds_len;
353 	}
354 	l->xl_frag[nseg - 1].xl_len = htole32(segs[nseg - 1].ds_len |
355 	    XL_LAST_FRAG);
356 	l->xl_status = htole32(total_len);
357 	l->xl_next = 0;
358 }
359 
360 /*
361  * Murphy's law says that it's possible the chip can wedge and
362  * the 'command in progress' bit may never clear. Hence, we wait
363  * only a finite amount of time to avoid getting caught in an
364  * infinite loop. Normally this delay routine would be a macro,
365  * but it isn't called during normal operation so we can afford
366  * to make it a function.
367  */
368 static void
369 xl_wait(sc)
370 	struct xl_softc		*sc;
371 {
372 	int		i;
373 
374 	for (i = 0; i < XL_TIMEOUT; i++) {
375 		if (!(CSR_READ_2(sc, XL_STATUS) & XL_STAT_CMDBUSY))
376 			break;
377 	}
378 
379 	if (i == XL_TIMEOUT)
380 		printf("xl%d: command never completed!\n", sc->xl_unit);
381 
382 	return;
383 }
384 
385 /*
386  * MII access routines are provided for adapters with external
387  * PHYs (3c905-TX, 3c905-T4, 3c905B-T4) and those with built-in
388  * autoneg logic that's faked up to look like a PHY (3c905B-TX).
389  * Note: if you don't perform the MDIO operations just right,
390  * it's possible to end up with code that works correctly with
391  * some chips/CPUs/processor speeds/bus speeds/etc but not
392  * with others.
393  */
394 #define MII_SET(x)					\
395 	CSR_WRITE_2(sc, XL_W4_PHY_MGMT,			\
396 		CSR_READ_2(sc, XL_W4_PHY_MGMT) | (x))
397 
398 #define MII_CLR(x)					\
399 	CSR_WRITE_2(sc, XL_W4_PHY_MGMT,			\
400 		CSR_READ_2(sc, XL_W4_PHY_MGMT) & ~(x))
401 
402 /*
403  * Sync the PHYs by setting data bit and strobing the clock 32 times.
404  */
405 static void
406 xl_mii_sync(sc)
407 	struct xl_softc		*sc;
408 {
409 	int		i;
410 
411 	XL_SEL_WIN(4);
412 	MII_SET(XL_MII_DIR|XL_MII_DATA);
413 
414 	for (i = 0; i < 32; i++) {
415 		MII_SET(XL_MII_CLK);
416 		MII_SET(XL_MII_DATA);
417 		MII_SET(XL_MII_DATA);
418 		MII_CLR(XL_MII_CLK);
419 		MII_SET(XL_MII_DATA);
420 		MII_SET(XL_MII_DATA);
421 	}
422 
423 	return;
424 }
425 
426 /*
427  * Clock a series of bits through the MII.
428  */
429 static void
430 xl_mii_send(sc, bits, cnt)
431 	struct xl_softc		*sc;
432 	u_int32_t		bits;
433 	int			cnt;
434 {
435 	int			i;
436 
437 	XL_SEL_WIN(4);
438 	MII_CLR(XL_MII_CLK);
439 
440 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
441                 if (bits & i) {
442 			MII_SET(XL_MII_DATA);
443                 } else {
444 			MII_CLR(XL_MII_DATA);
445                 }
446 		MII_CLR(XL_MII_CLK);
447 		MII_SET(XL_MII_CLK);
448 	}
449 }
450 
451 /*
452  * Read an PHY register through the MII.
453  */
454 static int
455 xl_mii_readreg(sc, frame)
456 	struct xl_softc		*sc;
457 	struct xl_mii_frame	*frame;
458 
459 {
460 	int			i, ack, s;
461 
462 	s = splimp();
463 
464 	/*
465 	 * Set up frame for RX.
466 	 */
467 	frame->mii_stdelim = XL_MII_STARTDELIM;
468 	frame->mii_opcode = XL_MII_READOP;
469 	frame->mii_turnaround = 0;
470 	frame->mii_data = 0;
471 
472 	/*
473 	 * Select register window 4.
474 	 */
475 
476 	XL_SEL_WIN(4);
477 
478 	CSR_WRITE_2(sc, XL_W4_PHY_MGMT, 0);
479 	/*
480  	 * Turn on data xmit.
481 	 */
482 	MII_SET(XL_MII_DIR);
483 
484 	xl_mii_sync(sc);
485 
486 	/*
487 	 * Send command/address info.
488 	 */
489 	xl_mii_send(sc, frame->mii_stdelim, 2);
490 	xl_mii_send(sc, frame->mii_opcode, 2);
491 	xl_mii_send(sc, frame->mii_phyaddr, 5);
492 	xl_mii_send(sc, frame->mii_regaddr, 5);
493 
494 	/* Idle bit */
495 	MII_CLR((XL_MII_CLK|XL_MII_DATA));
496 	MII_SET(XL_MII_CLK);
497 
498 	/* Turn off xmit. */
499 	MII_CLR(XL_MII_DIR);
500 
501 	/* Check for ack */
502 	MII_CLR(XL_MII_CLK);
503 	ack = CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA;
504 	MII_SET(XL_MII_CLK);
505 
506 	/*
507 	 * Now try reading data bits. If the ack failed, we still
508 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
509 	 */
510 	if (ack) {
511 		for(i = 0; i < 16; i++) {
512 			MII_CLR(XL_MII_CLK);
513 			MII_SET(XL_MII_CLK);
514 		}
515 		goto fail;
516 	}
517 
518 	for (i = 0x8000; i; i >>= 1) {
519 		MII_CLR(XL_MII_CLK);
520 		if (!ack) {
521 			if (CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA)
522 				frame->mii_data |= i;
523 		}
524 		MII_SET(XL_MII_CLK);
525 	}
526 
527 fail:
528 
529 	MII_CLR(XL_MII_CLK);
530 	MII_SET(XL_MII_CLK);
531 
532 	splx(s);
533 
534 	if (ack)
535 		return(1);
536 	return(0);
537 }
538 
539 /*
540  * Write to a PHY register through the MII.
541  */
542 static int
543 xl_mii_writereg(sc, frame)
544 	struct xl_softc		*sc;
545 	struct xl_mii_frame	*frame;
546 
547 {
548 	int			s;
549 
550 	s = splimp();
551 
552 	/*
553 	 * Set up frame for TX.
554 	 */
555 
556 	frame->mii_stdelim = XL_MII_STARTDELIM;
557 	frame->mii_opcode = XL_MII_WRITEOP;
558 	frame->mii_turnaround = XL_MII_TURNAROUND;
559 
560 	/*
561 	 * Select the window 4.
562 	 */
563 	XL_SEL_WIN(4);
564 
565 	/*
566  	 * Turn on data output.
567 	 */
568 	MII_SET(XL_MII_DIR);
569 
570 	xl_mii_sync(sc);
571 
572 	xl_mii_send(sc, frame->mii_stdelim, 2);
573 	xl_mii_send(sc, frame->mii_opcode, 2);
574 	xl_mii_send(sc, frame->mii_phyaddr, 5);
575 	xl_mii_send(sc, frame->mii_regaddr, 5);
576 	xl_mii_send(sc, frame->mii_turnaround, 2);
577 	xl_mii_send(sc, frame->mii_data, 16);
578 
579 	/* Idle bit. */
580 	MII_SET(XL_MII_CLK);
581 	MII_CLR(XL_MII_CLK);
582 
583 	/*
584 	 * Turn off xmit.
585 	 */
586 	MII_CLR(XL_MII_DIR);
587 
588 	splx(s);
589 
590 	return(0);
591 }
592 
593 static int
594 xl_miibus_readreg(dev, phy, reg)
595 	device_t		dev;
596 	int			phy, reg;
597 {
598 	struct xl_softc		*sc;
599 	struct xl_mii_frame	frame;
600 
601 	sc = device_get_softc(dev);
602 
603 	/*
604 	 * Pretend that PHYs are only available at MII address 24.
605 	 * This is to guard against problems with certain 3Com ASIC
606 	 * revisions that incorrectly map the internal transceiver
607 	 * control registers at all MII addresses. This can cause
608 	 * the miibus code to attach the same PHY several times over.
609 	 */
610 	if ((!(sc->xl_flags & XL_FLAG_PHYOK)) && phy != 24)
611 		return(0);
612 
613 	bzero((char *)&frame, sizeof(frame));
614 
615 	frame.mii_phyaddr = phy;
616 	frame.mii_regaddr = reg;
617 	xl_mii_readreg(sc, &frame);
618 
619 	return(frame.mii_data);
620 }
621 
622 static int
623 xl_miibus_writereg(dev, phy, reg, data)
624 	device_t		dev;
625 	int			phy, reg, data;
626 {
627 	struct xl_softc		*sc;
628 	struct xl_mii_frame	frame;
629 
630 	sc = device_get_softc(dev);
631 
632 	if ((!(sc->xl_flags & XL_FLAG_PHYOK)) && phy != 24)
633 		return(0);
634 
635 	bzero((char *)&frame, sizeof(frame));
636 
637 	frame.mii_phyaddr = phy;
638 	frame.mii_regaddr = reg;
639 	frame.mii_data = data;
640 
641 	xl_mii_writereg(sc, &frame);
642 
643 	return(0);
644 }
645 
646 static void
647 xl_miibus_statchg(dev)
648 	device_t		dev;
649 {
650         struct xl_softc		*sc;
651         struct mii_data		*mii;
652 
653 
654 	sc = device_get_softc(dev);
655 	mii = device_get_softc(sc->xl_miibus);
656 
657 	xl_setcfg(sc);
658 
659 	/* Set ASIC's duplex mode to match the PHY. */
660 	XL_SEL_WIN(3);
661 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
662 		CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX);
663 	else
664 		CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
665 			(CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX));
666 
667         return;
668 }
669 
670 /*
671  * Special support for the 3c905B-COMBO. This card has 10/100 support
672  * plus BNC and AUI ports. This means we will have both an miibus attached
673  * plus some non-MII media settings. In order to allow this, we have to
674  * add the extra media to the miibus's ifmedia struct, but we can't do
675  * that during xl_attach() because the miibus hasn't been attached yet.
676  * So instead, we wait until the miibus probe/attach is done, at which
677  * point we will get a callback telling is that it's safe to add our
678  * extra media.
679  */
680 static void
681 xl_miibus_mediainit(dev)
682 	device_t		dev;
683 {
684         struct xl_softc		*sc;
685         struct mii_data		*mii;
686 	struct ifmedia		*ifm;
687 
688 	sc = device_get_softc(dev);
689 	mii = device_get_softc(sc->xl_miibus);
690 	ifm = &mii->mii_media;
691 
692 	if (sc->xl_media & (XL_MEDIAOPT_AUI|XL_MEDIAOPT_10FL)) {
693 		/*
694 		 * Check for a 10baseFL board in disguise.
695 		 */
696 		if (sc->xl_type == XL_TYPE_905B &&
697 		    sc->xl_media == XL_MEDIAOPT_10FL) {
698 			if (bootverbose)
699 				printf("xl%d: found 10baseFL\n", sc->xl_unit);
700 			ifmedia_add(ifm, IFM_ETHER|IFM_10_FL, 0, NULL);
701 			ifmedia_add(ifm, IFM_ETHER|IFM_10_FL|IFM_HDX, 0, NULL);
702 			if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
703 				ifmedia_add(ifm,
704 				    IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
705 		} else {
706 			if (bootverbose)
707 				printf("xl%d: found AUI\n", sc->xl_unit);
708 			ifmedia_add(ifm, IFM_ETHER|IFM_10_5, 0, NULL);
709 		}
710 	}
711 
712 	if (sc->xl_media & XL_MEDIAOPT_BNC) {
713 		if (bootverbose)
714 			printf("xl%d: found BNC\n", sc->xl_unit);
715 		ifmedia_add(ifm, IFM_ETHER|IFM_10_2, 0, NULL);
716 	}
717 
718 	return;
719 }
720 
721 /*
722  * The EEPROM is slow: give it time to come ready after issuing
723  * it a command.
724  */
725 static int
726 xl_eeprom_wait(sc)
727 	struct xl_softc		*sc;
728 {
729 	int			i;
730 
731 	for (i = 0; i < 100; i++) {
732 		if (CSR_READ_2(sc, XL_W0_EE_CMD) & XL_EE_BUSY)
733 			DELAY(162);
734 		else
735 			break;
736 	}
737 
738 	if (i == 100) {
739 		printf("xl%d: eeprom failed to come ready\n", sc->xl_unit);
740 		return(1);
741 	}
742 
743 	return(0);
744 }
745 
746 /*
747  * Read a sequence of words from the EEPROM. Note that ethernet address
748  * data is stored in the EEPROM in network byte order.
749  */
750 static int
751 xl_read_eeprom(sc, dest, off, cnt, swap)
752 	struct xl_softc		*sc;
753 	caddr_t			dest;
754 	int			off;
755 	int			cnt;
756 	int			swap;
757 {
758 	int			err = 0, i;
759 	u_int16_t		word = 0, *ptr;
760 #define EEPROM_5BIT_OFFSET(A) ((((A) << 2) & 0x7F00) | ((A) & 0x003F))
761 #define EEPROM_8BIT_OFFSET(A) ((A) & 0x003F)
762 	/* WARNING! DANGER!
763 	 * It's easy to accidentally overwrite the rom content!
764 	 * Note: the 3c575 uses 8bit EEPROM offsets.
765 	 */
766 	XL_SEL_WIN(0);
767 
768 	if (xl_eeprom_wait(sc))
769 		return(1);
770 
771 	if (sc->xl_flags & XL_FLAG_EEPROM_OFFSET_30)
772 		off += 0x30;
773 
774 	for (i = 0; i < cnt; i++) {
775 		if (sc->xl_flags & XL_FLAG_8BITROM)
776 			CSR_WRITE_2(sc, XL_W0_EE_CMD,
777 			    XL_EE_8BIT_READ | EEPROM_8BIT_OFFSET(off + i));
778 		else
779 			CSR_WRITE_2(sc, XL_W0_EE_CMD,
780 			    XL_EE_READ | EEPROM_5BIT_OFFSET(off + i));
781 		err = xl_eeprom_wait(sc);
782 		if (err)
783 			break;
784 		word = CSR_READ_2(sc, XL_W0_EE_DATA);
785 		ptr = (u_int16_t *)(dest + (i * 2));
786 		if (swap)
787 			*ptr = ntohs(word);
788 		else
789 			*ptr = word;
790 	}
791 
792 	return(err ? 1 : 0);
793 }
794 
795 /*
796  * This routine is taken from the 3Com Etherlink XL manual,
797  * page 10-7. It calculates a CRC of the supplied multicast
798  * group address and returns the lower 8 bits, which are used
799  * as the multicast filter position.
800  * Note: the 3c905B currently only supports a 64-bit hash table,
801  * which means we really only need 6 bits, but the manual indicates
802  * that future chip revisions will have a 256-bit hash table,
803  * hence the routine is set up to calculate 8 bits of position
804  * info in case we need it some day.
805  * Note II, The Sequel: _CURRENT_ versions of the 3c905B have a
806  * 256 bit hash table. This means we have to use all 8 bits regardless.
807  * On older cards, the upper 2 bits will be ignored. Grrrr....
808  */
809 static u_int8_t xl_calchash(addr)
810 	caddr_t			addr;
811 {
812 	u_int32_t		crc, carry;
813 	int			i, j;
814 	u_int8_t		c;
815 
816 	/* Compute CRC for the address value. */
817 	crc = 0xFFFFFFFF; /* initial value */
818 
819 	for (i = 0; i < 6; i++) {
820 		c = *(addr + i);
821 		for (j = 0; j < 8; j++) {
822 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
823 			crc <<= 1;
824 			c >>= 1;
825 			if (carry)
826 				crc = (crc ^ 0x04c11db6) | carry;
827 		}
828 	}
829 
830 	/* return the filter bit position */
831 	return(crc & 0x000000FF);
832 }
833 
834 /*
835  * NICs older than the 3c905B have only one multicast option, which
836  * is to enable reception of all multicast frames.
837  */
838 static void
839 xl_setmulti(sc)
840 	struct xl_softc		*sc;
841 {
842 	struct ifnet		*ifp;
843 	struct ifmultiaddr	*ifma;
844 	u_int8_t		rxfilt;
845 	int			mcnt = 0;
846 
847 	ifp = &sc->arpcom.ac_if;
848 
849 	XL_SEL_WIN(5);
850 	rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
851 
852 	if (ifp->if_flags & IFF_ALLMULTI) {
853 		rxfilt |= XL_RXFILTER_ALLMULTI;
854 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
855 		return;
856 	}
857 
858 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
859 				ifma = ifma->ifma_link.le_next)
860 		mcnt++;
861 
862 	if (mcnt)
863 		rxfilt |= XL_RXFILTER_ALLMULTI;
864 	else
865 		rxfilt &= ~XL_RXFILTER_ALLMULTI;
866 
867 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
868 
869 	return;
870 }
871 
872 /*
873  * 3c905B adapters have a hash filter that we can program.
874  */
875 static void
876 xl_setmulti_hash(sc)
877 	struct xl_softc		*sc;
878 {
879 	struct ifnet		*ifp;
880 	int			h = 0, i;
881 	struct ifmultiaddr	*ifma;
882 	u_int8_t		rxfilt;
883 	int			mcnt = 0;
884 
885 	ifp = &sc->arpcom.ac_if;
886 
887 	XL_SEL_WIN(5);
888 	rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
889 
890 	if (ifp->if_flags & IFF_ALLMULTI) {
891 		rxfilt |= XL_RXFILTER_ALLMULTI;
892 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
893 		return;
894 	} else
895 		rxfilt &= ~XL_RXFILTER_ALLMULTI;
896 
897 
898 	/* first, zot all the existing hash bits */
899 	for (i = 0; i < XL_HASHFILT_SIZE; i++)
900 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|i);
901 
902 	/* now program new ones */
903         for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
904                                 ifma = ifma->ifma_link.le_next) {
905 		if (ifma->ifma_addr->sa_family != AF_LINK)
906 			continue;
907 		h = xl_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
908 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|XL_HASH_SET|h);
909 		mcnt++;
910 	}
911 
912 	if (mcnt)
913 		rxfilt |= XL_RXFILTER_MULTIHASH;
914 	else
915 		rxfilt &= ~XL_RXFILTER_MULTIHASH;
916 
917 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
918 
919 	return;
920 }
921 
922 #ifdef notdef
923 static void
924 xl_testpacket(sc)
925 	struct xl_softc		*sc;
926 {
927 	struct mbuf		*m;
928 	struct ifnet		*ifp;
929 
930 	ifp = &sc->arpcom.ac_if;
931 
932 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
933 
934 	if (m == NULL)
935 		return;
936 
937 	bcopy(&sc->arpcom.ac_enaddr,
938 		mtod(m, struct ether_header *)->ether_dhost, ETHER_ADDR_LEN);
939 	bcopy(&sc->arpcom.ac_enaddr,
940 		mtod(m, struct ether_header *)->ether_shost, ETHER_ADDR_LEN);
941 	mtod(m, struct ether_header *)->ether_type = htons(3);
942 	mtod(m, unsigned char *)[14] = 0;
943 	mtod(m, unsigned char *)[15] = 0;
944 	mtod(m, unsigned char *)[16] = 0xE3;
945 	m->m_len = m->m_pkthdr.len = sizeof(struct ether_header) + 3;
946 	IF_ENQUEUE(&ifp->if_snd, m);
947 	xl_start(ifp);
948 
949 	return;
950 }
951 #endif
952 
953 static void
954 xl_setcfg(sc)
955 	struct xl_softc		*sc;
956 {
957 	u_int32_t		icfg;
958 
959 	XL_SEL_WIN(3);
960 	icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG);
961 	icfg &= ~XL_ICFG_CONNECTOR_MASK;
962 	if (sc->xl_media & XL_MEDIAOPT_MII ||
963 		sc->xl_media & XL_MEDIAOPT_BT4)
964 		icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS);
965 	if (sc->xl_media & XL_MEDIAOPT_BTX)
966 		icfg |= (XL_XCVR_AUTO << XL_ICFG_CONNECTOR_BITS);
967 
968 	CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
969 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
970 
971 	return;
972 }
973 
974 static void
975 xl_setmode(sc, media)
976 	struct xl_softc		*sc;
977 	int			media;
978 {
979 	u_int32_t		icfg;
980 	u_int16_t		mediastat;
981 
982 	printf("xl%d: selecting ", sc->xl_unit);
983 
984 	XL_SEL_WIN(4);
985 	mediastat = CSR_READ_2(sc, XL_W4_MEDIA_STATUS);
986 	XL_SEL_WIN(3);
987 	icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG);
988 
989 	if (sc->xl_media & XL_MEDIAOPT_BT) {
990 		if (IFM_SUBTYPE(media) == IFM_10_T) {
991 			printf("10baseT transceiver, ");
992 			sc->xl_xcvr = XL_XCVR_10BT;
993 			icfg &= ~XL_ICFG_CONNECTOR_MASK;
994 			icfg |= (XL_XCVR_10BT << XL_ICFG_CONNECTOR_BITS);
995 			mediastat |= XL_MEDIASTAT_LINKBEAT|
996 					XL_MEDIASTAT_JABGUARD;
997 			mediastat &= ~XL_MEDIASTAT_SQEENB;
998 		}
999 	}
1000 
1001 	if (sc->xl_media & XL_MEDIAOPT_BFX) {
1002 		if (IFM_SUBTYPE(media) == IFM_100_FX) {
1003 			printf("100baseFX port, ");
1004 			sc->xl_xcvr = XL_XCVR_100BFX;
1005 			icfg &= ~XL_ICFG_CONNECTOR_MASK;
1006 			icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS);
1007 			mediastat |= XL_MEDIASTAT_LINKBEAT;
1008 			mediastat &= ~XL_MEDIASTAT_SQEENB;
1009 		}
1010 	}
1011 
1012 	if (sc->xl_media & (XL_MEDIAOPT_AUI|XL_MEDIAOPT_10FL)) {
1013 		if (IFM_SUBTYPE(media) == IFM_10_5) {
1014 			printf("AUI port, ");
1015 			sc->xl_xcvr = XL_XCVR_AUI;
1016 			icfg &= ~XL_ICFG_CONNECTOR_MASK;
1017 			icfg |= (XL_XCVR_AUI << XL_ICFG_CONNECTOR_BITS);
1018 			mediastat &= ~(XL_MEDIASTAT_LINKBEAT|
1019 					XL_MEDIASTAT_JABGUARD);
1020 			mediastat |= ~XL_MEDIASTAT_SQEENB;
1021 		}
1022 		if (IFM_SUBTYPE(media) == IFM_10_FL) {
1023 			printf("10baseFL transceiver, ");
1024 			sc->xl_xcvr = XL_XCVR_AUI;
1025 			icfg &= ~XL_ICFG_CONNECTOR_MASK;
1026 			icfg |= (XL_XCVR_AUI << XL_ICFG_CONNECTOR_BITS);
1027 			mediastat &= ~(XL_MEDIASTAT_LINKBEAT|
1028 					XL_MEDIASTAT_JABGUARD);
1029 			mediastat |= ~XL_MEDIASTAT_SQEENB;
1030 		}
1031 	}
1032 
1033 	if (sc->xl_media & XL_MEDIAOPT_BNC) {
1034 		if (IFM_SUBTYPE(media) == IFM_10_2) {
1035 			printf("BNC port, ");
1036 			sc->xl_xcvr = XL_XCVR_COAX;
1037 			icfg &= ~XL_ICFG_CONNECTOR_MASK;
1038 			icfg |= (XL_XCVR_COAX << XL_ICFG_CONNECTOR_BITS);
1039 			mediastat &= ~(XL_MEDIASTAT_LINKBEAT|
1040 					XL_MEDIASTAT_JABGUARD|
1041 					XL_MEDIASTAT_SQEENB);
1042 		}
1043 	}
1044 
1045 	if ((media & IFM_GMASK) == IFM_FDX ||
1046 			IFM_SUBTYPE(media) == IFM_100_FX) {
1047 		printf("full duplex\n");
1048 		XL_SEL_WIN(3);
1049 		CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX);
1050 	} else {
1051 		printf("half duplex\n");
1052 		XL_SEL_WIN(3);
1053 		CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
1054 			(CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX));
1055 	}
1056 
1057 	if (IFM_SUBTYPE(media) == IFM_10_2)
1058 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START);
1059 	else
1060 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
1061 	CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
1062 	XL_SEL_WIN(4);
1063 	CSR_WRITE_2(sc, XL_W4_MEDIA_STATUS, mediastat);
1064 	DELAY(800);
1065 	XL_SEL_WIN(7);
1066 
1067 	return;
1068 }
1069 
1070 static void
1071 xl_reset(sc)
1072 	struct xl_softc		*sc;
1073 {
1074 	int		i;
1075 
1076 	XL_SEL_WIN(0);
1077 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RESET |
1078 		    ((sc->xl_flags & XL_FLAG_WEIRDRESET) ?
1079 		     XL_RESETOPT_DISADVFD:0));
1080 
1081 	/*
1082 	 * If we're using memory mapped register mode, pause briefly
1083 	 * after issuing the reset command before trying to access any
1084 	 * other registers. With my 3c575C cardbus card, failing to do
1085 	 * this results in the system locking up while trying to poll
1086 	 * the command busy bit in the status register.
1087 	 */
1088 	if (sc->xl_flags & XL_FLAG_USE_MMIO)
1089 		DELAY(100000);
1090 
1091 	for (i = 0; i < XL_TIMEOUT; i++) {
1092 		DELAY(10);
1093 		if (!(CSR_READ_2(sc, XL_STATUS) & XL_STAT_CMDBUSY))
1094 			break;
1095 	}
1096 
1097 	if (i == XL_TIMEOUT)
1098 		printf("xl%d: reset didn't complete\n", sc->xl_unit);
1099 
1100 	/* Reset TX and RX. */
1101 	/* Note: the RX reset takes an absurd amount of time
1102 	 * on newer versions of the Tornado chips such as those
1103 	 * on the 3c905CX and newer 3c908C cards. We wait an
1104 	 * extra amount of time so that xl_wait() doesn't complain
1105 	 * and annoy the users.
1106 	 */
1107 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
1108 	DELAY(100000);
1109 	xl_wait(sc);
1110 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
1111 	xl_wait(sc);
1112 
1113 	if (sc->xl_flags & XL_FLAG_INVERT_LED_PWR ||
1114 	    sc->xl_flags & XL_FLAG_INVERT_MII_PWR) {
1115 		XL_SEL_WIN(2);
1116 		CSR_WRITE_2(sc, XL_W2_RESET_OPTIONS, CSR_READ_2(sc,
1117 		    XL_W2_RESET_OPTIONS)
1118 		    | ((sc->xl_flags & XL_FLAG_INVERT_LED_PWR)?XL_RESETOPT_INVERT_LED:0)
1119 		    | ((sc->xl_flags & XL_FLAG_INVERT_MII_PWR)?XL_RESETOPT_INVERT_MII:0)
1120 		    );
1121 	}
1122 
1123 	/* Wait a little while for the chip to get its brains in order. */
1124 	DELAY(100000);
1125         return;
1126 }
1127 
1128 /*
1129  * Probe for a 3Com Etherlink XL chip. Check the PCI vendor and device
1130  * IDs against our list and return a device name if we find a match.
1131  */
1132 static int
1133 xl_probe(dev)
1134 	device_t		dev;
1135 {
1136 	struct xl_type		*t;
1137 
1138 	t = xl_devs;
1139 
1140 	while(t->xl_name != NULL) {
1141 		if ((pci_get_vendor(dev) == t->xl_vid) &&
1142 		    (pci_get_device(dev) == t->xl_did)) {
1143 			device_set_desc(dev, t->xl_name);
1144 			return(0);
1145 		}
1146 		t++;
1147 	}
1148 
1149 	return(ENXIO);
1150 }
1151 
1152 /*
1153  * This routine is a kludge to work around possible hardware faults
1154  * or manufacturing defects that can cause the media options register
1155  * (or reset options register, as it's called for the first generation
1156  * 3c90x adapters) to return an incorrect result. I have encountered
1157  * one Dell Latitude laptop docking station with an integrated 3c905-TX
1158  * which doesn't have any of the 'mediaopt' bits set. This screws up
1159  * the attach routine pretty badly because it doesn't know what media
1160  * to look for. If we find ourselves in this predicament, this routine
1161  * will try to guess the media options values and warn the user of a
1162  * possible manufacturing defect with his adapter/system/whatever.
1163  */
1164 static void
1165 xl_mediacheck(sc)
1166 	struct xl_softc		*sc;
1167 {
1168 
1169 	/*
1170 	 * If some of the media options bits are set, assume they are
1171 	 * correct. If not, try to figure it out down below.
1172 	 * XXX I should check for 10baseFL, but I don't have an adapter
1173 	 * to test with.
1174 	 */
1175 	if (sc->xl_media & (XL_MEDIAOPT_MASK & ~XL_MEDIAOPT_VCO)) {
1176 		/*
1177 	 	 * Check the XCVR value. If it's not in the normal range
1178 	 	 * of values, we need to fake it up here.
1179 	 	 */
1180 		if (sc->xl_xcvr <= XL_XCVR_AUTO)
1181 			return;
1182 		else {
1183 			printf("xl%d: bogus xcvr value "
1184 			"in EEPROM (%x)\n", sc->xl_unit, sc->xl_xcvr);
1185 			printf("xl%d: choosing new default based "
1186 				"on card type\n", sc->xl_unit);
1187 		}
1188 	} else {
1189 		if (sc->xl_type == XL_TYPE_905B &&
1190 		    sc->xl_media & XL_MEDIAOPT_10FL)
1191 			return;
1192 		printf("xl%d: WARNING: no media options bits set in "
1193 			"the media options register!!\n", sc->xl_unit);
1194 		printf("xl%d: this could be a manufacturing defect in "
1195 			"your adapter or system\n", sc->xl_unit);
1196 		printf("xl%d: attempting to guess media type; you "
1197 			"should probably consult your vendor\n", sc->xl_unit);
1198 	}
1199 
1200 	xl_choose_xcvr(sc, 1);
1201 
1202 	return;
1203 }
1204 
1205 static void
1206 xl_choose_xcvr(sc, verbose)
1207 	struct xl_softc		*sc;
1208 	int			verbose;
1209 {
1210 	u_int16_t		devid;
1211 
1212 	/*
1213 	 * Read the device ID from the EEPROM.
1214 	 * This is what's loaded into the PCI device ID register, so it has
1215 	 * to be correct otherwise we wouldn't have gotten this far.
1216 	 */
1217 	xl_read_eeprom(sc, (caddr_t)&devid, XL_EE_PRODID, 1, 0);
1218 
1219 	switch(devid) {
1220 	case TC_DEVICEID_BOOMERANG_10BT:	/* 3c900-TPO */
1221 	case TC_DEVICEID_KRAKATOA_10BT:		/* 3c900B-TPO */
1222 		sc->xl_media = XL_MEDIAOPT_BT;
1223 		sc->xl_xcvr = XL_XCVR_10BT;
1224 		if (verbose)
1225 			printf("xl%d: guessing 10BaseT "
1226 			    "transceiver\n", sc->xl_unit);
1227 		break;
1228 	case TC_DEVICEID_BOOMERANG_10BT_COMBO:	/* 3c900-COMBO */
1229 	case TC_DEVICEID_KRAKATOA_10BT_COMBO:	/* 3c900B-COMBO */
1230 		sc->xl_media = XL_MEDIAOPT_BT|XL_MEDIAOPT_BNC|XL_MEDIAOPT_AUI;
1231 		sc->xl_xcvr = XL_XCVR_10BT;
1232 		if (verbose)
1233 			printf("xl%d: guessing COMBO "
1234 			    "(AUI/BNC/TP)\n", sc->xl_unit);
1235 		break;
1236 	case TC_DEVICEID_KRAKATOA_10BT_TPC:	/* 3c900B-TPC */
1237 		sc->xl_media = XL_MEDIAOPT_BT|XL_MEDIAOPT_BNC;
1238 		sc->xl_xcvr = XL_XCVR_10BT;
1239 		if (verbose)
1240 			printf("xl%d: guessing TPC (BNC/TP)\n", sc->xl_unit);
1241 		break;
1242 	case TC_DEVICEID_CYCLONE_10FL:		/* 3c900B-FL */
1243 		sc->xl_media = XL_MEDIAOPT_10FL;
1244 		sc->xl_xcvr = XL_XCVR_AUI;
1245 		if (verbose)
1246 			printf("xl%d: guessing 10baseFL\n", sc->xl_unit);
1247 		break;
1248 	case TC_DEVICEID_BOOMERANG_10_100BT:	/* 3c905-TX */
1249 	case TC_DEVICEID_HURRICANE_555:		/* 3c555 */
1250 	case TC_DEVICEID_HURRICANE_556:		/* 3c556 */
1251 	case TC_DEVICEID_HURRICANE_556B:	/* 3c556B */
1252 	case TC_DEVICEID_HURRICANE_575A:	/* 3c575TX */
1253 	case TC_DEVICEID_HURRICANE_575B:	/* 3c575B */
1254 	case TC_DEVICEID_HURRICANE_575C:	/* 3c575C */
1255 	case TC_DEVICEID_HURRICANE_656:		/* 3c656 */
1256 	case TC_DEVICEID_HURRICANE_656B:	/* 3c656B */
1257 	case TC_DEVICEID_TORNADO_656C:		/* 3c656C */
1258 	case TC_DEVICEID_TORNADO_10_100BT_920B:	/* 3c920B-EMB */
1259 		sc->xl_media = XL_MEDIAOPT_MII;
1260 		sc->xl_xcvr = XL_XCVR_MII;
1261 		if (verbose)
1262 			printf("xl%d: guessing MII\n", sc->xl_unit);
1263 		break;
1264 	case TC_DEVICEID_BOOMERANG_100BT4:	/* 3c905-T4 */
1265 	case TC_DEVICEID_CYCLONE_10_100BT4:	/* 3c905B-T4 */
1266 		sc->xl_media = XL_MEDIAOPT_BT4;
1267 		sc->xl_xcvr = XL_XCVR_MII;
1268 		if (verbose)
1269 			printf("xl%d: guessing 100BaseT4/MII\n", sc->xl_unit);
1270 		break;
1271 	case TC_DEVICEID_HURRICANE_10_100BT:	/* 3c905B-TX */
1272 	case TC_DEVICEID_HURRICANE_10_100BT_SERV:/*3c980-TX */
1273 	case TC_DEVICEID_TORNADO_10_100BT_SERV:	/* 3c980C-TX */
1274 	case TC_DEVICEID_HURRICANE_SOHO100TX:	/* 3cSOHO100-TX */
1275 	case TC_DEVICEID_TORNADO_10_100BT:	/* 3c905C-TX */
1276 	case TC_DEVICEID_TORNADO_HOMECONNECT:	/* 3c450-TX */
1277 		sc->xl_media = XL_MEDIAOPT_BTX;
1278 		sc->xl_xcvr = XL_XCVR_AUTO;
1279 		if (verbose)
1280 			printf("xl%d: guessing 10/100 internal\n", sc->xl_unit);
1281 		break;
1282 	case TC_DEVICEID_CYCLONE_10_100_COMBO:	/* 3c905B-COMBO */
1283 		sc->xl_media = XL_MEDIAOPT_BTX|XL_MEDIAOPT_BNC|XL_MEDIAOPT_AUI;
1284 		sc->xl_xcvr = XL_XCVR_AUTO;
1285 		if (verbose)
1286 			printf("xl%d: guessing 10/100 "
1287 			    "plus BNC/AUI\n", sc->xl_unit);
1288 		break;
1289 	default:
1290 		printf("xl%d: unknown device ID: %x -- "
1291 			"defaulting to 10baseT\n", sc->xl_unit, devid);
1292 		sc->xl_media = XL_MEDIAOPT_BT;
1293 		break;
1294 	}
1295 
1296 	return;
1297 }
1298 
1299 /*
1300  * Attach the interface. Allocate softc structures, do ifmedia
1301  * setup and ethernet/BPF attach.
1302  */
1303 static int
1304 xl_attach(dev)
1305 	device_t		dev;
1306 {
1307 	int			s;
1308 	u_char			eaddr[ETHER_ADDR_LEN];
1309 	u_int16_t		xcvr[2];
1310 	u_int32_t		command;
1311 	struct xl_softc		*sc;
1312 	struct ifnet		*ifp;
1313 	int			media = IFM_ETHER|IFM_100_TX|IFM_FDX;
1314 	int			unit, error = 0, rid, res;
1315 
1316 	s = splimp();
1317 
1318 	sc = device_get_softc(dev);
1319 	unit = device_get_unit(dev);
1320 
1321 	ifmedia_init(&sc->ifmedia, 0, xl_ifmedia_upd, xl_ifmedia_sts);
1322 
1323 	sc->xl_flags = 0;
1324 	if (pci_get_device(dev) == TC_DEVICEID_HURRICANE_555)
1325 		sc->xl_flags |= XL_FLAG_EEPROM_OFFSET_30 | XL_FLAG_PHYOK;
1326 	if (pci_get_device(dev) == TC_DEVICEID_HURRICANE_556 ||
1327 	    pci_get_device(dev) == TC_DEVICEID_HURRICANE_556B)
1328 		sc->xl_flags |= XL_FLAG_FUNCREG | XL_FLAG_PHYOK |
1329 		    XL_FLAG_EEPROM_OFFSET_30 | XL_FLAG_WEIRDRESET |
1330 		    XL_FLAG_INVERT_LED_PWR | XL_FLAG_INVERT_MII_PWR;
1331 	if (pci_get_device(dev) == TC_DEVICEID_HURRICANE_555 ||
1332 	    pci_get_device(dev) == TC_DEVICEID_HURRICANE_556)
1333 		sc->xl_flags |= XL_FLAG_8BITROM;
1334 	if (pci_get_device(dev) == TC_DEVICEID_HURRICANE_556B)
1335 		sc->xl_flags |= XL_FLAG_NO_XCVR_PWR;
1336 
1337 	if (pci_get_device(dev) == TC_DEVICEID_HURRICANE_575A ||
1338 	    pci_get_device(dev) == TC_DEVICEID_HURRICANE_575B ||
1339 	    pci_get_device(dev) == TC_DEVICEID_HURRICANE_575C ||
1340 	    pci_get_device(dev) == TC_DEVICEID_HURRICANE_656B ||
1341 	    pci_get_device(dev) == TC_DEVICEID_TORNADO_656C)
1342 		sc->xl_flags |= XL_FLAG_FUNCREG | XL_FLAG_PHYOK |
1343 		    XL_FLAG_EEPROM_OFFSET_30 | XL_FLAG_8BITROM;
1344 	if (pci_get_device(dev) == TC_DEVICEID_HURRICANE_656)
1345 		sc->xl_flags |= XL_FLAG_FUNCREG | XL_FLAG_PHYOK;
1346 	if (pci_get_device(dev) == TC_DEVICEID_HURRICANE_575B)
1347 		sc->xl_flags |= XL_FLAG_INVERT_LED_PWR;
1348 	if (pci_get_device(dev) == TC_DEVICEID_HURRICANE_575C)
1349 		sc->xl_flags |= XL_FLAG_INVERT_MII_PWR;
1350 	if (pci_get_device(dev) == TC_DEVICEID_TORNADO_656C)
1351 		sc->xl_flags |= XL_FLAG_INVERT_MII_PWR;
1352 	if (pci_get_device(dev) == TC_DEVICEID_HURRICANE_656 ||
1353 	    pci_get_device(dev) == TC_DEVICEID_HURRICANE_656B)
1354 		sc->xl_flags |= XL_FLAG_INVERT_MII_PWR |
1355 		    XL_FLAG_INVERT_LED_PWR;
1356 	if (pci_get_device(dev) == TC_DEVICEID_TORNADO_10_100BT_920B)
1357 		sc->xl_flags |= XL_FLAG_PHYOK;
1358 #ifndef BURN_BRIDGES
1359 	/*
1360 	 * If this is a 3c905B, we have to check one extra thing.
1361 	 * The 905B supports power management and may be placed in
1362 	 * a low-power mode (D3 mode), typically by certain operating
1363 	 * systems which shall not be named. The PCI BIOS is supposed
1364 	 * to reset the NIC and bring it out of low-power mode, but
1365 	 * some do not. Consequently, we have to see if this chip
1366 	 * supports power management, and if so, make sure it's not
1367 	 * in low-power mode. If power management is available, the
1368 	 * capid byte will be 0x01.
1369 	 *
1370 	 * I _think_ that what actually happens is that the chip
1371 	 * loses its PCI configuration during the transition from
1372 	 * D3 back to D0; this means that it should be possible for
1373 	 * us to save the PCI iobase, membase and IRQ, put the chip
1374 	 * back in the D0 state, then restore the PCI config ourselves.
1375 	 */
1376 
1377 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1378 		u_int32_t		iobase, membase, irq;
1379 
1380 		/* Save important PCI config data. */
1381 		iobase = pci_read_config(dev, XL_PCI_LOIO, 4);
1382 		membase = pci_read_config(dev, XL_PCI_LOMEM, 4);
1383 		irq = pci_read_config(dev, XL_PCI_INTLINE, 4);
1384 
1385 		/* Reset the power state. */
1386 		printf("xl%d: chip is in D%d power mode "
1387 		    "-- setting to D0\n", unit,
1388 		    pci_get_powerstate(dev));
1389 
1390 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1391 
1392 		/* Restore PCI config data. */
1393 		pci_write_config(dev, XL_PCI_LOIO, iobase, 4);
1394 		pci_write_config(dev, XL_PCI_LOMEM, membase, 4);
1395 		pci_write_config(dev, XL_PCI_INTLINE, irq, 4);
1396 	}
1397 #endif
1398 	/*
1399 	 * Map control/status registers.
1400 	 */
1401 	pci_enable_busmaster(dev);
1402 	pci_enable_io(dev, SYS_RES_IOPORT);
1403 	pci_enable_io(dev, SYS_RES_MEMORY);
1404 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1405 
1406 	if (!(command & PCIM_CMD_PORTEN) && !(command & PCIM_CMD_MEMEN)) {
1407 		printf("xl%d: failed to enable I/O ports and memory mappings!\n", unit);
1408 		error = ENXIO;
1409 		goto fail;
1410 	}
1411 
1412 	rid = XL_PCI_LOMEM;
1413 	res = SYS_RES_MEMORY;
1414 
1415 #if 0
1416 	sc->xl_res = bus_alloc_resource(dev, res, &rid,
1417 	    0, ~0, 1, RF_ACTIVE);
1418 #endif
1419 
1420 	if (sc->xl_res != NULL) {
1421 		sc->xl_flags |= XL_FLAG_USE_MMIO;
1422 		if (bootverbose)
1423 			printf("xl%d: using memory mapped I/O\n", unit);
1424 	} else {
1425 		rid = XL_PCI_LOIO;
1426 		res = SYS_RES_IOPORT;
1427 		sc->xl_res = bus_alloc_resource(dev, res, &rid,
1428 		    0, ~0, 1, RF_ACTIVE);
1429 		if (sc->xl_res == NULL) {
1430 			printf ("xl%d: couldn't map ports/memory\n", unit);
1431 			error = ENXIO;
1432 			goto fail;
1433 		}
1434 		if (bootverbose)
1435 			printf("xl%d: using port I/O\n", unit);
1436 	}
1437 
1438 	sc->xl_btag = rman_get_bustag(sc->xl_res);
1439 	sc->xl_bhandle = rman_get_bushandle(sc->xl_res);
1440 
1441 	if (sc->xl_flags & XL_FLAG_FUNCREG) {
1442 		rid = XL_PCI_FUNCMEM;
1443 		sc->xl_fres = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1444 		    0, ~0, 1, RF_ACTIVE);
1445 
1446 		if (sc->xl_fres == NULL) {
1447 			printf ("xl%d: couldn't map ports/memory\n", unit);
1448 			error = ENXIO;
1449 			goto fail;
1450 		}
1451 
1452 		sc->xl_ftag = rman_get_bustag(sc->xl_fres);
1453 		sc->xl_fhandle = rman_get_bushandle(sc->xl_fres);
1454 	}
1455 
1456 	/* Allocate interrupt */
1457 	rid = 0;
1458 	sc->xl_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1459 	    RF_SHAREABLE | RF_ACTIVE);
1460 	if (sc->xl_irq == NULL) {
1461 		printf("xl%d: couldn't map interrupt\n", unit);
1462 		error = ENXIO;
1463 		goto fail;
1464 	}
1465 
1466 	sc->xl_flags |= XL_FLAG_ATTACH_MAPPED;
1467 
1468 	/* Reset the adapter. */
1469 	xl_reset(sc);
1470 
1471 	/*
1472 	 * Get station address from the EEPROM.
1473 	 */
1474 	if (xl_read_eeprom(sc, (caddr_t)&eaddr, XL_EE_OEM_ADR0, 3, 1)) {
1475 		printf("xl%d: failed to read station address\n", sc->xl_unit);
1476 		error = ENXIO;
1477 		goto fail;
1478 	}
1479 
1480 	sc->xl_unit = unit;
1481 	callout_init(&sc->xl_stat_timer);
1482 
1483 	/*
1484 	 * Now allocate a tag for the DMA descriptor lists and a chunk
1485 	 * of DMA-able memory based on the tag.  Also obtain the DMA
1486 	 * addresses of the RX and TX ring, which we'll need later.
1487 	 * All of our lists are allocated as a contiguous block
1488 	 * of memory.
1489 	 */
1490 	error = bus_dma_tag_create(NULL, 8, 0,
1491 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1492 	    XL_RX_LIST_SZ, 1, XL_RX_LIST_SZ, 0,
1493 	    &sc->xl_ldata.xl_rx_tag);
1494 	if (error) {
1495 		printf("xl%d: failed to allocate rx dma tag\n", unit);
1496 		goto fail;
1497 	}
1498 
1499 	error = bus_dmamem_alloc(sc->xl_ldata.xl_rx_tag,
1500 	    (void **)&sc->xl_ldata.xl_rx_list, BUS_DMA_NOWAIT,
1501 	    &sc->xl_ldata.xl_rx_dmamap);
1502 	if (error) {
1503 		printf("xl%d: no memory for rx list buffers!\n", unit);
1504 		bus_dma_tag_destroy(sc->xl_ldata.xl_rx_tag);
1505 		sc->xl_ldata.xl_rx_tag = NULL;
1506 		goto fail;
1507 	}
1508 
1509 	error = bus_dmamap_load(sc->xl_ldata.xl_rx_tag,
1510 	    sc->xl_ldata.xl_rx_dmamap, sc->xl_ldata.xl_rx_list,
1511 	    XL_RX_LIST_SZ, xl_dma_map_addr,
1512 	    &sc->xl_ldata.xl_rx_dmaaddr, BUS_DMA_NOWAIT);
1513 	if (error) {
1514 		printf("xl%d: cannot get dma address of the rx ring!\n", unit);
1515 		bus_dmamem_free(sc->xl_ldata.xl_rx_tag, sc->xl_ldata.xl_rx_list,
1516 		    sc->xl_ldata.xl_rx_dmamap);
1517 		bus_dma_tag_destroy(sc->xl_ldata.xl_rx_tag);
1518 		sc->xl_ldata.xl_rx_tag = NULL;
1519 		goto fail;
1520 	}
1521 
1522 	error = bus_dma_tag_create(NULL, 8, 0,
1523 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1524 	    XL_TX_LIST_SZ, 1, XL_TX_LIST_SZ, 0,
1525 	    &sc->xl_ldata.xl_tx_tag);
1526 	if (error) {
1527 		printf("xl%d: failed to allocate tx dma tag\n", unit);
1528 		goto fail;
1529 	}
1530 
1531 	error = bus_dmamem_alloc(sc->xl_ldata.xl_tx_tag,
1532 	    (void **)&sc->xl_ldata.xl_tx_list, BUS_DMA_NOWAIT,
1533 	    &sc->xl_ldata.xl_tx_dmamap);
1534 	if (error) {
1535 		printf("xl%d: no memory for list buffers!\n", unit);
1536 		bus_dma_tag_destroy(sc->xl_ldata.xl_tx_tag);
1537 		sc->xl_ldata.xl_tx_tag = NULL;
1538 		goto fail;
1539 	}
1540 
1541 	error = bus_dmamap_load(sc->xl_ldata.xl_tx_tag,
1542 	    sc->xl_ldata.xl_tx_dmamap, sc->xl_ldata.xl_tx_list,
1543 	    XL_TX_LIST_SZ, xl_dma_map_addr,
1544 	    &sc->xl_ldata.xl_tx_dmaaddr, BUS_DMA_NOWAIT);
1545 	if (error) {
1546 		printf("xl%d: cannot get dma address of the tx ring!\n", unit);
1547 		bus_dmamem_free(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_list,
1548 		    sc->xl_ldata.xl_tx_dmamap);
1549 		bus_dma_tag_destroy(sc->xl_ldata.xl_tx_tag);
1550 		sc->xl_ldata.xl_tx_tag = NULL;
1551 		goto fail;
1552 	}
1553 
1554 	/*
1555 	 * Allocate a DMA tag for the mapping of mbufs.
1556 	 */
1557 	error = bus_dma_tag_create(NULL, 1, 0,
1558 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1559 	    MCLBYTES * XL_MAXFRAGS, XL_MAXFRAGS, MCLBYTES, 0,
1560 	    &sc->xl_mtag);
1561 	if (error) {
1562 		printf("xl%d: failed to allocate mbuf dma tag\n", unit);
1563 		goto fail;
1564 	}
1565 
1566 	bzero(sc->xl_ldata.xl_tx_list, XL_TX_LIST_SZ);
1567 	bzero(sc->xl_ldata.xl_rx_list, XL_RX_LIST_SZ);
1568 
1569 	/* We need a spare DMA map for the RX ring. */
1570 	error = bus_dmamap_create(sc->xl_mtag, 0, &sc->xl_tmpmap);
1571 	if (error)
1572 		goto fail;
1573 
1574 	/*
1575 	 * Figure out the card type. 3c905B adapters have the
1576 	 * 'supportsNoTxLength' bit set in the capabilities
1577 	 * word in the EEPROM.
1578 	 * Note: my 3c575C cardbus card lies. It returns a value
1579 	 * of 0x1578 for its capabilities word, which is somewhat
1580  	 * nonsensical. Another way to distinguish a 3c90x chip
1581 	 * from a 3c90xB/C chip is to check for the 'supportsLargePackets'
1582 	 * bit. This will only be set for 3c90x boomerage chips.
1583 	 */
1584 	xl_read_eeprom(sc, (caddr_t)&sc->xl_caps, XL_EE_CAPS, 1, 0);
1585 	if (sc->xl_caps & XL_CAPS_NO_TXLENGTH ||
1586 	    !(sc->xl_caps & XL_CAPS_LARGE_PKTS))
1587 		sc->xl_type = XL_TYPE_905B;
1588 	else
1589 		sc->xl_type = XL_TYPE_90X;
1590 
1591 	ifp = &sc->arpcom.ac_if;
1592 	ifp->if_softc = sc;
1593 	if_initname(ifp, "xl", unit);
1594 	ifp->if_mtu = ETHERMTU;
1595 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1596 	ifp->if_ioctl = xl_ioctl;
1597 	ifp->if_capabilities = 0;
1598 	if (sc->xl_type == XL_TYPE_905B) {
1599 		ifp->if_start = xl_start_90xB;
1600 		ifp->if_capabilities |= IFCAP_HWCSUM;
1601 	} else {
1602 		ifp->if_start = xl_start;
1603 	}
1604 	ifp->if_watchdog = xl_watchdog;
1605 	ifp->if_init = xl_init;
1606 	ifp->if_baudrate = 10000000;
1607 	ifq_set_maxlen(&ifp->if_snd, XL_TX_LIST_CNT - 1);
1608 	ifq_set_ready(&ifp->if_snd);
1609 	/*
1610 	 * NOTE: features disabled by default.  This seems to corrupt
1611 	 * tx packet data one out of a million packets or so and then
1612 	 * generates a good checksum so the receiver doesn't
1613 	 * know the packet is bad
1614 	 */
1615 	ifp->if_capenable = 0; /*ifp->if_capabilities;*/
1616 	if (ifp->if_capenable & IFCAP_TXCSUM)
1617 		ifp->if_hwassist = XL905B_CSUM_FEATURES;
1618 
1619 	/*
1620 	 * Now we have to see what sort of media we have.
1621 	 * This includes probing for an MII interace and a
1622 	 * possible PHY.
1623 	 */
1624 	XL_SEL_WIN(3);
1625 	sc->xl_media = CSR_READ_2(sc, XL_W3_MEDIA_OPT);
1626 	if (bootverbose)
1627 		printf("xl%d: media options word: %x\n", sc->xl_unit,
1628 							 sc->xl_media);
1629 
1630 	xl_read_eeprom(sc, (char *)&xcvr, XL_EE_ICFG_0, 2, 0);
1631 	sc->xl_xcvr = xcvr[0] | xcvr[1] << 16;
1632 	sc->xl_xcvr &= XL_ICFG_CONNECTOR_MASK;
1633 	sc->xl_xcvr >>= XL_ICFG_CONNECTOR_BITS;
1634 
1635 	xl_mediacheck(sc);
1636 
1637 	if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX
1638 			|| sc->xl_media & XL_MEDIAOPT_BT4) {
1639 		if (bootverbose)
1640 			printf("xl%d: found MII/AUTO\n", sc->xl_unit);
1641 		xl_setcfg(sc);
1642 		if (mii_phy_probe(dev, &sc->xl_miibus,
1643 		    xl_ifmedia_upd, xl_ifmedia_sts)) {
1644 			printf("xl%d: no PHY found!\n", sc->xl_unit);
1645 			error = ENXIO;
1646 			goto fail;
1647 		}
1648 
1649 		goto done;
1650 	}
1651 
1652 	/*
1653 	 * Sanity check. If the user has selected "auto" and this isn't
1654 	 * a 10/100 card of some kind, we need to force the transceiver
1655 	 * type to something sane.
1656 	 */
1657 	if (sc->xl_xcvr == XL_XCVR_AUTO)
1658 		xl_choose_xcvr(sc, bootverbose);
1659 
1660 	/*
1661 	 * Do ifmedia setup.
1662 	 */
1663 	if (sc->xl_media & XL_MEDIAOPT_BT) {
1664 		if (bootverbose)
1665 			printf("xl%d: found 10baseT\n", sc->xl_unit);
1666 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1667 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1668 		if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
1669 			ifmedia_add(&sc->ifmedia,
1670 			    IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1671 	}
1672 
1673 	if (sc->xl_media & (XL_MEDIAOPT_AUI|XL_MEDIAOPT_10FL)) {
1674 		/*
1675 		 * Check for a 10baseFL board in disguise.
1676 		 */
1677 		if (sc->xl_type == XL_TYPE_905B &&
1678 		    sc->xl_media == XL_MEDIAOPT_10FL) {
1679 			if (bootverbose)
1680 				printf("xl%d: found 10baseFL\n", sc->xl_unit);
1681 			ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
1682 			ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_HDX,
1683 			    0, NULL);
1684 			if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
1685 				ifmedia_add(&sc->ifmedia,
1686 				    IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
1687 		} else {
1688 			if (bootverbose)
1689 				printf("xl%d: found AUI\n", sc->xl_unit);
1690 			ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1691 		}
1692 	}
1693 
1694 	if (sc->xl_media & XL_MEDIAOPT_BNC) {
1695 		if (bootverbose)
1696 			printf("xl%d: found BNC\n", sc->xl_unit);
1697 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_2, 0, NULL);
1698 	}
1699 
1700 	if (sc->xl_media & XL_MEDIAOPT_BFX) {
1701 		if (bootverbose)
1702 			printf("xl%d: found 100baseFX\n", sc->xl_unit);
1703 		ifp->if_baudrate = 100000000;
1704 		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
1705 	}
1706 
1707 	/* Choose a default media. */
1708 	switch(sc->xl_xcvr) {
1709 	case XL_XCVR_10BT:
1710 		media = IFM_ETHER|IFM_10_T;
1711 		xl_setmode(sc, media);
1712 		break;
1713 	case XL_XCVR_AUI:
1714 		if (sc->xl_type == XL_TYPE_905B &&
1715 		    sc->xl_media == XL_MEDIAOPT_10FL) {
1716 			media = IFM_ETHER|IFM_10_FL;
1717 			xl_setmode(sc, media);
1718 		} else {
1719 			media = IFM_ETHER|IFM_10_5;
1720 			xl_setmode(sc, media);
1721 		}
1722 		break;
1723 	case XL_XCVR_COAX:
1724 		media = IFM_ETHER|IFM_10_2;
1725 		xl_setmode(sc, media);
1726 		break;
1727 	case XL_XCVR_AUTO:
1728 	case XL_XCVR_100BTX:
1729 	case XL_XCVR_MII:
1730 		/* Chosen by miibus */
1731 		break;
1732 	case XL_XCVR_100BFX:
1733 		media = IFM_ETHER|IFM_100_FX;
1734 		break;
1735 	default:
1736 		printf("xl%d: unknown XCVR type: %d\n", sc->xl_unit,
1737 							sc->xl_xcvr);
1738 		/*
1739 		 * This will probably be wrong, but it prevents
1740 	 	 * the ifmedia code from panicking.
1741 		 */
1742 		media = IFM_ETHER|IFM_10_T;
1743 		break;
1744 	}
1745 
1746 	if (sc->xl_miibus == NULL)
1747 		ifmedia_set(&sc->ifmedia, media);
1748 
1749 done:
1750 
1751 	if (sc->xl_flags & XL_FLAG_NO_XCVR_PWR) {
1752 		XL_SEL_WIN(0);
1753 		CSR_WRITE_2(sc, XL_W0_MFG_ID, XL_NO_XCVR_PWR_MAGICBITS);
1754 	}
1755 
1756 	/*
1757 	 * Call MI attach routine.
1758 	 */
1759 	ether_ifattach(ifp, eaddr);
1760 
1761         /*
1762          * Tell the upper layer(s) we support long frames.
1763          */
1764         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1765 
1766 	/* Hook interrupt last to avoid having to lock softc */
1767 	error = bus_setup_intr(dev, sc->xl_irq, INTR_TYPE_NET,
1768 	    xl_intr, sc, &sc->xl_intrhand);
1769 	if (error) {
1770 		printf("xl%d: couldn't set up irq\n", unit);
1771 		ether_ifdetach(ifp);
1772 		goto fail;
1773 	}
1774 
1775 fail:
1776 	if (error)
1777 		xl_detach(dev);
1778 
1779 	splx(s);
1780 
1781 	return(error);
1782 }
1783 
1784 /*
1785  * Shutdown hardware and free up resources. This can be called any
1786  * time after the mutex has been initialized. It is called in both
1787  * the error case in attach and the normal detach case so it needs
1788  * to be careful about only freeing resources that have actually been
1789  * allocated.
1790  */
1791 static int
1792 xl_detach(dev)
1793 	device_t		dev;
1794 {
1795 	struct xl_softc		*sc;
1796 	struct ifnet		*ifp;
1797 	int			rid, res;
1798 	int			s;
1799 
1800 	s = splimp();
1801 
1802 	sc = device_get_softc(dev);
1803 	ifp = &sc->arpcom.ac_if;
1804 
1805 	if (sc->xl_flags & XL_FLAG_USE_MMIO) {
1806 		rid = XL_PCI_LOMEM;
1807 		res = SYS_RES_MEMORY;
1808 	} else {
1809 		rid = XL_PCI_LOIO;
1810 		res = SYS_RES_IOPORT;
1811 	}
1812 
1813 	/*
1814 	 * Only try to communicate with the device if we were able to map
1815 	 * the ports.  This flag is set before ether_ifattach() so it also
1816 	 * governs our call to ether_ifdetach().
1817 	 */
1818 	if (sc->xl_flags & XL_FLAG_ATTACH_MAPPED) {
1819 		xl_reset(sc);
1820 		xl_stop(sc);
1821 		ether_ifdetach(ifp);
1822 	}
1823 
1824 	if (sc->xl_miibus)
1825 		device_delete_child(dev, sc->xl_miibus);
1826 	bus_generic_detach(dev);
1827 	ifmedia_removeall(&sc->ifmedia);
1828 
1829 	if (sc->xl_intrhand)
1830 		bus_teardown_intr(dev, sc->xl_irq, sc->xl_intrhand);
1831 	if (sc->xl_irq)
1832 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->xl_irq);
1833 	if (sc->xl_fres != NULL)
1834 		bus_release_resource(dev, SYS_RES_MEMORY,
1835 		    XL_PCI_FUNCMEM, sc->xl_fres);
1836 	if (sc->xl_res)
1837 		bus_release_resource(dev, res, rid, sc->xl_res);
1838 
1839 	if (sc->xl_mtag) {
1840 		bus_dmamap_destroy(sc->xl_mtag, sc->xl_tmpmap);
1841 		bus_dma_tag_destroy(sc->xl_mtag);
1842 	}
1843 	if (sc->xl_ldata.xl_rx_tag) {
1844 		bus_dmamap_unload(sc->xl_ldata.xl_rx_tag,
1845 		    sc->xl_ldata.xl_rx_dmamap);
1846 		bus_dmamem_free(sc->xl_ldata.xl_rx_tag, sc->xl_ldata.xl_rx_list,
1847 		    sc->xl_ldata.xl_rx_dmamap);
1848 		bus_dma_tag_destroy(sc->xl_ldata.xl_rx_tag);
1849 	}
1850 	if (sc->xl_ldata.xl_tx_tag) {
1851 		bus_dmamap_unload(sc->xl_ldata.xl_tx_tag,
1852 		    sc->xl_ldata.xl_tx_dmamap);
1853 		bus_dmamem_free(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_list,
1854 		    sc->xl_ldata.xl_tx_dmamap);
1855 		bus_dma_tag_destroy(sc->xl_ldata.xl_tx_tag);
1856 	}
1857 
1858 	splx(s);
1859 
1860 	return(0);
1861 }
1862 
1863 /*
1864  * Initialize the transmit descriptors.
1865  */
1866 static int
1867 xl_list_tx_init(sc)
1868 	struct xl_softc		*sc;
1869 {
1870 	struct xl_chain_data	*cd;
1871 	struct xl_list_data	*ld;
1872 	int			error, i;
1873 
1874 	cd = &sc->xl_cdata;
1875 	ld = &sc->xl_ldata;
1876 	for (i = 0; i < XL_TX_LIST_CNT; i++) {
1877 		cd->xl_tx_chain[i].xl_ptr = &ld->xl_tx_list[i];
1878 		error = bus_dmamap_create(sc->xl_mtag, 0,
1879 		    &cd->xl_tx_chain[i].xl_map);
1880 		if (error)
1881 			return(error);
1882 		cd->xl_tx_chain[i].xl_phys = ld->xl_tx_dmaaddr +
1883 		    i * sizeof(struct xl_list);
1884 		if (i == (XL_TX_LIST_CNT - 1))
1885 			cd->xl_tx_chain[i].xl_next = NULL;
1886 		else
1887 			cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[i + 1];
1888 	}
1889 
1890 	cd->xl_tx_free = &cd->xl_tx_chain[0];
1891 	cd->xl_tx_tail = cd->xl_tx_head = NULL;
1892 
1893 	bus_dmamap_sync(ld->xl_tx_tag, ld->xl_tx_dmamap, BUS_DMASYNC_PREWRITE);
1894 	return(0);
1895 }
1896 
1897 /*
1898  * Initialize the transmit descriptors.
1899  */
1900 static int
1901 xl_list_tx_init_90xB(sc)
1902 	struct xl_softc		*sc;
1903 {
1904 	struct xl_chain_data	*cd;
1905 	struct xl_list_data	*ld;
1906 	int			error, i;
1907 
1908 	cd = &sc->xl_cdata;
1909 	ld = &sc->xl_ldata;
1910 	for (i = 0; i < XL_TX_LIST_CNT; i++) {
1911 		cd->xl_tx_chain[i].xl_ptr = &ld->xl_tx_list[i];
1912 		error = bus_dmamap_create(sc->xl_mtag, 0,
1913 		    &cd->xl_tx_chain[i].xl_map);
1914 		if (error)
1915 			return(error);
1916 		cd->xl_tx_chain[i].xl_phys = ld->xl_tx_dmaaddr +
1917 		    i * sizeof(struct xl_list);
1918 		if (i == (XL_TX_LIST_CNT - 1))
1919 			cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[0];
1920 		else
1921 			cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[i + 1];
1922 		if (i == 0)
1923 			cd->xl_tx_chain[i].xl_prev =
1924 			    &cd->xl_tx_chain[XL_TX_LIST_CNT - 1];
1925 		else
1926 			cd->xl_tx_chain[i].xl_prev =
1927 			    &cd->xl_tx_chain[i - 1];
1928 	}
1929 
1930 	bzero(ld->xl_tx_list, XL_TX_LIST_SZ);
1931 	ld->xl_tx_list[0].xl_status = htole32(XL_TXSTAT_EMPTY);
1932 
1933 	cd->xl_tx_prod = 1;
1934 	cd->xl_tx_cons = 1;
1935 	cd->xl_tx_cnt = 0;
1936 
1937 	bus_dmamap_sync(ld->xl_tx_tag, ld->xl_tx_dmamap, BUS_DMASYNC_PREWRITE);
1938 	return(0);
1939 }
1940 
1941 /*
1942  * Initialize the RX descriptors and allocate mbufs for them. Note that
1943  * we arrange the descriptors in a closed ring, so that the last descriptor
1944  * points back to the first.
1945  */
1946 static int
1947 xl_list_rx_init(sc)
1948 	struct xl_softc		*sc;
1949 {
1950 	struct xl_chain_data	*cd;
1951 	struct xl_list_data	*ld;
1952 	int			error, i, next;
1953 	u_int32_t		nextptr;
1954 
1955 	cd = &sc->xl_cdata;
1956 	ld = &sc->xl_ldata;
1957 
1958 	for (i = 0; i < XL_RX_LIST_CNT; i++) {
1959 		cd->xl_rx_chain[i].xl_ptr = &ld->xl_rx_list[i];
1960 		error = bus_dmamap_create(sc->xl_mtag, 0,
1961 		    &cd->xl_rx_chain[i].xl_map);
1962 		if (error)
1963 			return(error);
1964 		error = xl_newbuf(sc, &cd->xl_rx_chain[i]);
1965 		if (error)
1966 			return(error);
1967 		if (i == (XL_RX_LIST_CNT - 1))
1968 			next = 0;
1969 		else
1970 			next = i + 1;
1971 		nextptr = ld->xl_rx_dmaaddr +
1972 		    next * sizeof(struct xl_list_onefrag);
1973 		cd->xl_rx_chain[i].xl_next = &cd->xl_rx_chain[next];
1974 		ld->xl_rx_list[i].xl_next = htole32(nextptr);
1975 	}
1976 
1977 	bus_dmamap_sync(ld->xl_rx_tag, ld->xl_rx_dmamap, BUS_DMASYNC_PREWRITE);
1978 	cd->xl_rx_head = &cd->xl_rx_chain[0];
1979 
1980 	return(0);
1981 }
1982 
1983 /*
1984  * Initialize an RX descriptor and attach an MBUF cluster.
1985  * If we fail to do so, we need to leave the old mbuf and
1986  * the old DMA map untouched so that it can be reused.
1987  */
1988 static int
1989 xl_newbuf(sc, c)
1990 	struct xl_softc		*sc;
1991 	struct xl_chain_onefrag	*c;
1992 {
1993 	struct mbuf		*m_new = NULL;
1994 	bus_dmamap_t		map;
1995 	int			error;
1996 	u_int32_t		baddr;
1997 
1998 	m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1999 	if (m_new == NULL)
2000 		return(ENOBUFS);
2001 
2002 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2003 
2004 	/* Force longword alignment for packet payload. */
2005 	m_adj(m_new, ETHER_ALIGN);
2006 
2007 	error = bus_dmamap_load_mbuf(sc->xl_mtag, sc->xl_tmpmap, m_new,
2008 	    xl_dma_map_rxbuf, &baddr, BUS_DMA_NOWAIT);
2009 	if (error) {
2010 		m_freem(m_new);
2011 		printf("xl%d: can't map mbuf (error %d)\n", sc->xl_unit, error);
2012 		return(error);
2013 	}
2014 
2015 	bus_dmamap_unload(sc->xl_mtag, c->xl_map);
2016 	map = c->xl_map;
2017 	c->xl_map = sc->xl_tmpmap;
2018 	sc->xl_tmpmap = map;
2019 	c->xl_mbuf = m_new;
2020 	c->xl_ptr->xl_frag.xl_len = htole32(m_new->m_len | XL_LAST_FRAG);
2021 	c->xl_ptr->xl_status = 0;
2022 	c->xl_ptr->xl_frag.xl_addr = htole32(baddr);
2023 	bus_dmamap_sync(sc->xl_mtag, c->xl_map, BUS_DMASYNC_PREREAD);
2024 	return(0);
2025 }
2026 
2027 static int
2028 xl_rx_resync(sc)
2029 	struct xl_softc		*sc;
2030 {
2031 	struct xl_chain_onefrag	*pos;
2032 	int			i;
2033 
2034 	pos = sc->xl_cdata.xl_rx_head;
2035 
2036 	for (i = 0; i < XL_RX_LIST_CNT; i++) {
2037 		if (pos->xl_ptr->xl_status)
2038 			break;
2039 		pos = pos->xl_next;
2040 	}
2041 
2042 	if (i == XL_RX_LIST_CNT)
2043 		return(0);
2044 
2045 	sc->xl_cdata.xl_rx_head = pos;
2046 
2047 	return(EAGAIN);
2048 }
2049 
2050 /*
2051  * A frame has been uploaded: pass the resulting mbuf chain up to
2052  * the higher level protocols.
2053  */
2054 static void
2055 xl_rxeof(sc)
2056 	struct xl_softc		*sc;
2057 {
2058         struct mbuf		*m;
2059         struct ifnet		*ifp;
2060 	struct xl_chain_onefrag	*cur_rx;
2061 	int			total_len = 0;
2062 	u_int32_t		rxstat;
2063 
2064 	ifp = &sc->arpcom.ac_if;
2065 
2066 again:
2067 
2068 	bus_dmamap_sync(sc->xl_ldata.xl_rx_tag, sc->xl_ldata.xl_rx_dmamap,
2069 	    BUS_DMASYNC_POSTREAD);
2070 	while((rxstat = le32toh(sc->xl_cdata.xl_rx_head->xl_ptr->xl_status))) {
2071 		cur_rx = sc->xl_cdata.xl_rx_head;
2072 		sc->xl_cdata.xl_rx_head = cur_rx->xl_next;
2073 		total_len = rxstat & XL_RXSTAT_LENMASK;
2074 
2075 		/*
2076 		 * Since we have told the chip to allow large frames,
2077 		 * we need to trap giant frame errors in software. We allow
2078 		 * a little more than the normal frame size to account for
2079 		 * frames with VLAN tags.
2080 		 */
2081 		if (total_len > XL_MAX_FRAMELEN)
2082 			rxstat |= (XL_RXSTAT_UP_ERROR|XL_RXSTAT_OVERSIZE);
2083 
2084 		/*
2085 		 * If an error occurs, update stats, clear the
2086 		 * status word and leave the mbuf cluster in place:
2087 		 * it should simply get re-used next time this descriptor
2088 	 	 * comes up in the ring.
2089 		 */
2090 		if (rxstat & XL_RXSTAT_UP_ERROR) {
2091 			ifp->if_ierrors++;
2092 			cur_rx->xl_ptr->xl_status = 0;
2093 			bus_dmamap_sync(sc->xl_ldata.xl_rx_tag,
2094 			    sc->xl_ldata.xl_rx_dmamap, BUS_DMASYNC_PREWRITE);
2095 			continue;
2096 		}
2097 
2098 		/*
2099 		 * If the error bit was not set, the upload complete
2100 		 * bit should be set which means we have a valid packet.
2101 		 * If not, something truly strange has happened.
2102 		 */
2103 		if (!(rxstat & XL_RXSTAT_UP_CMPLT)) {
2104 			printf("xl%d: bad receive status -- "
2105 			    "packet dropped\n", sc->xl_unit);
2106 			ifp->if_ierrors++;
2107 			cur_rx->xl_ptr->xl_status = 0;
2108 			bus_dmamap_sync(sc->xl_ldata.xl_rx_tag,
2109 			    sc->xl_ldata.xl_rx_dmamap, BUS_DMASYNC_PREWRITE);
2110 			continue;
2111 		}
2112 
2113 		/* No errors; receive the packet. */
2114 		bus_dmamap_sync(sc->xl_mtag, cur_rx->xl_map,
2115 		    BUS_DMASYNC_POSTREAD);
2116 		m = cur_rx->xl_mbuf;
2117 
2118 		/*
2119 		 * Try to conjure up a new mbuf cluster. If that
2120 		 * fails, it means we have an out of memory condition and
2121 		 * should leave the buffer in place and continue. This will
2122 		 * result in a lost packet, but there's little else we
2123 		 * can do in this situation.
2124 		 */
2125 		if (xl_newbuf(sc, cur_rx)) {
2126 			ifp->if_ierrors++;
2127 			cur_rx->xl_ptr->xl_status = 0;
2128 			bus_dmamap_sync(sc->xl_ldata.xl_rx_tag,
2129 			    sc->xl_ldata.xl_rx_dmamap, BUS_DMASYNC_PREWRITE);
2130 			continue;
2131 		}
2132 		bus_dmamap_sync(sc->xl_ldata.xl_rx_tag,
2133 		    sc->xl_ldata.xl_rx_dmamap, BUS_DMASYNC_PREWRITE);
2134 
2135 		ifp->if_ipackets++;
2136 		m->m_pkthdr.rcvif = ifp;
2137 		m->m_pkthdr.len = m->m_len = total_len;
2138 
2139 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2140 			/* Do IP checksum checking. */
2141 			if (rxstat & XL_RXSTAT_IPCKOK)
2142 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2143 			if (!(rxstat & XL_RXSTAT_IPCKERR))
2144 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2145 			if ((rxstat & XL_RXSTAT_TCPCOK &&
2146 			     !(rxstat & XL_RXSTAT_TCPCKERR)) ||
2147 			    (rxstat & XL_RXSTAT_UDPCKOK &&
2148 			     !(rxstat & XL_RXSTAT_UDPCKERR))) {
2149 				m->m_pkthdr.csum_flags |=
2150 					CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2151 				m->m_pkthdr.csum_data = 0xffff;
2152 			}
2153 		}
2154 
2155 		(*ifp->if_input)(ifp, m);
2156 	}
2157 
2158 	/*
2159 	 * Handle the 'end of channel' condition. When the upload
2160 	 * engine hits the end of the RX ring, it will stall. This
2161 	 * is our cue to flush the RX ring, reload the uplist pointer
2162 	 * register and unstall the engine.
2163 	 * XXX This is actually a little goofy. With the ThunderLAN
2164 	 * chip, you get an interrupt when the receiver hits the end
2165 	 * of the receive ring, which tells you exactly when you
2166 	 * you need to reload the ring pointer. Here we have to
2167 	 * fake it. I'm mad at myself for not being clever enough
2168 	 * to avoid the use of a goto here.
2169 	 */
2170 	if (CSR_READ_4(sc, XL_UPLIST_PTR) == 0 ||
2171 		CSR_READ_4(sc, XL_UPLIST_STATUS) & XL_PKTSTAT_UP_STALLED) {
2172 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL);
2173 		xl_wait(sc);
2174 		CSR_WRITE_4(sc, XL_UPLIST_PTR, sc->xl_ldata.xl_rx_dmaaddr);
2175 		sc->xl_cdata.xl_rx_head = &sc->xl_cdata.xl_rx_chain[0];
2176 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL);
2177 		goto again;
2178 	}
2179 
2180 	return;
2181 }
2182 
2183 /*
2184  * A frame was downloaded to the chip. It's safe for us to clean up
2185  * the list buffers.
2186  */
2187 static void
2188 xl_txeof(sc)
2189 	struct xl_softc		*sc;
2190 {
2191 	struct xl_chain		*cur_tx;
2192 	struct ifnet		*ifp;
2193 
2194 	ifp = &sc->arpcom.ac_if;
2195 
2196 	/* Clear the timeout timer. */
2197 	ifp->if_timer = 0;
2198 
2199 	/*
2200 	 * Go through our tx list and free mbufs for those
2201 	 * frames that have been uploaded. Note: the 3c905B
2202 	 * sets a special bit in the status word to let us
2203 	 * know that a frame has been downloaded, but the
2204 	 * original 3c900/3c905 adapters don't do that.
2205 	 * Consequently, we have to use a different test if
2206 	 * xl_type != XL_TYPE_905B.
2207 	 */
2208 	while(sc->xl_cdata.xl_tx_head != NULL) {
2209 		cur_tx = sc->xl_cdata.xl_tx_head;
2210 
2211 		if (CSR_READ_4(sc, XL_DOWNLIST_PTR))
2212 			break;
2213 
2214 		sc->xl_cdata.xl_tx_head = cur_tx->xl_next;
2215 		bus_dmamap_sync(sc->xl_mtag, cur_tx->xl_map,
2216 		    BUS_DMASYNC_POSTWRITE);
2217 		bus_dmamap_unload(sc->xl_mtag, cur_tx->xl_map);
2218 		m_freem(cur_tx->xl_mbuf);
2219 		cur_tx->xl_mbuf = NULL;
2220 		ifp->if_opackets++;
2221 
2222 		cur_tx->xl_next = sc->xl_cdata.xl_tx_free;
2223 		sc->xl_cdata.xl_tx_free = cur_tx;
2224 	}
2225 
2226 	if (sc->xl_cdata.xl_tx_head == NULL) {
2227 		ifp->if_flags &= ~IFF_OACTIVE;
2228 		sc->xl_cdata.xl_tx_tail = NULL;
2229 	} else {
2230 		if (CSR_READ_4(sc, XL_DMACTL) & XL_DMACTL_DOWN_STALLED ||
2231 			!CSR_READ_4(sc, XL_DOWNLIST_PTR)) {
2232 			CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
2233 				sc->xl_cdata.xl_tx_head->xl_phys);
2234 			CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
2235 		}
2236 	}
2237 
2238 	return;
2239 }
2240 
2241 static void
2242 xl_txeof_90xB(sc)
2243 	struct xl_softc		*sc;
2244 {
2245 	struct xl_chain		*cur_tx = NULL;
2246 	struct ifnet		*ifp;
2247 	int			idx;
2248 
2249 	ifp = &sc->arpcom.ac_if;
2250 
2251 	bus_dmamap_sync(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_dmamap,
2252 	    BUS_DMASYNC_POSTREAD);
2253 	idx = sc->xl_cdata.xl_tx_cons;
2254 	while(idx != sc->xl_cdata.xl_tx_prod) {
2255 
2256 		cur_tx = &sc->xl_cdata.xl_tx_chain[idx];
2257 
2258 		if (!(le32toh(cur_tx->xl_ptr->xl_status) &
2259 		      XL_TXSTAT_DL_COMPLETE))
2260 			break;
2261 
2262 		if (cur_tx->xl_mbuf != NULL) {
2263 			bus_dmamap_sync(sc->xl_mtag, cur_tx->xl_map,
2264 			    BUS_DMASYNC_POSTWRITE);
2265 			bus_dmamap_unload(sc->xl_mtag, cur_tx->xl_map);
2266 			m_freem(cur_tx->xl_mbuf);
2267 			cur_tx->xl_mbuf = NULL;
2268 		}
2269 
2270 		ifp->if_opackets++;
2271 
2272 		sc->xl_cdata.xl_tx_cnt--;
2273 		XL_INC(idx, XL_TX_LIST_CNT);
2274 		ifp->if_timer = 0;
2275 	}
2276 
2277 	sc->xl_cdata.xl_tx_cons = idx;
2278 
2279 	if (cur_tx != NULL)
2280 		ifp->if_flags &= ~IFF_OACTIVE;
2281 
2282 	return;
2283 }
2284 
2285 /*
2286  * TX 'end of channel' interrupt handler. Actually, we should
2287  * only get a 'TX complete' interrupt if there's a transmit error,
2288  * so this is really TX error handler.
2289  */
2290 static void
2291 xl_txeoc(sc)
2292 	struct xl_softc		*sc;
2293 {
2294 	u_int8_t		txstat;
2295 
2296 	while((txstat = CSR_READ_1(sc, XL_TX_STATUS))) {
2297 		if (txstat & XL_TXSTATUS_UNDERRUN ||
2298 			txstat & XL_TXSTATUS_JABBER ||
2299 			txstat & XL_TXSTATUS_RECLAIM) {
2300 			printf("xl%d: transmission error: %x\n",
2301 						sc->xl_unit, txstat);
2302 			CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
2303 			xl_wait(sc);
2304 			if (sc->xl_type == XL_TYPE_905B) {
2305 				if (sc->xl_cdata.xl_tx_cnt) {
2306 					int			i;
2307 					struct xl_chain		*c;
2308 					i = sc->xl_cdata.xl_tx_cons;
2309 					c = &sc->xl_cdata.xl_tx_chain[i];
2310 					CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
2311 					    c->xl_phys);
2312 					CSR_WRITE_1(sc, XL_DOWN_POLL, 64);
2313 				}
2314 			} else {
2315 				if (sc->xl_cdata.xl_tx_head != NULL)
2316 					CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
2317 					    sc->xl_cdata.xl_tx_head->xl_phys);
2318 			}
2319 			/*
2320 			 * Remember to set this for the
2321 			 * first generation 3c90X chips.
2322 			 */
2323 			CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8);
2324 			if (txstat & XL_TXSTATUS_UNDERRUN &&
2325 			    sc->xl_tx_thresh < XL_PACKET_SIZE) {
2326 				sc->xl_tx_thresh += XL_MIN_FRAMELEN;
2327 				printf("xl%d: tx underrun, increasing tx start"
2328 				    " threshold to %d bytes\n", sc->xl_unit,
2329 				    sc->xl_tx_thresh);
2330 			}
2331 			CSR_WRITE_2(sc, XL_COMMAND,
2332 			    XL_CMD_TX_SET_START|sc->xl_tx_thresh);
2333 			if (sc->xl_type == XL_TYPE_905B) {
2334 				CSR_WRITE_2(sc, XL_COMMAND,
2335 				XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4));
2336 			}
2337 			CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
2338 			CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
2339 		} else {
2340 			CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
2341 			CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
2342 		}
2343 		/*
2344 		 * Write an arbitrary byte to the TX_STATUS register
2345 	 	 * to clear this interrupt/error and advance to the next.
2346 		 */
2347 		CSR_WRITE_1(sc, XL_TX_STATUS, 0x01);
2348 	}
2349 
2350 	return;
2351 }
2352 
2353 static void
2354 xl_intr(arg)
2355 	void			*arg;
2356 {
2357 	struct xl_softc		*sc;
2358 	struct ifnet		*ifp;
2359 	u_int16_t		status;
2360 
2361 	sc = arg;
2362 	ifp = &sc->arpcom.ac_if;
2363 
2364 	while((status = CSR_READ_2(sc, XL_STATUS)) & XL_INTRS && status != 0xFFFF) {
2365 
2366 		CSR_WRITE_2(sc, XL_COMMAND,
2367 		    XL_CMD_INTR_ACK|(status & XL_INTRS));
2368 
2369 		if (status & XL_STAT_UP_COMPLETE) {
2370 			int			curpkts;
2371 
2372 			curpkts = ifp->if_ipackets;
2373 			xl_rxeof(sc);
2374 			if (curpkts == ifp->if_ipackets) {
2375 				while (xl_rx_resync(sc))
2376 					xl_rxeof(sc);
2377 			}
2378 		}
2379 
2380 		if (status & XL_STAT_DOWN_COMPLETE) {
2381 			if (sc->xl_type == XL_TYPE_905B)
2382 				xl_txeof_90xB(sc);
2383 			else
2384 				xl_txeof(sc);
2385 		}
2386 
2387 		if (status & XL_STAT_TX_COMPLETE) {
2388 			ifp->if_oerrors++;
2389 			xl_txeoc(sc);
2390 		}
2391 
2392 		if (status & XL_STAT_ADFAIL) {
2393 			xl_reset(sc);
2394 			xl_init(sc);
2395 		}
2396 
2397 		if (status & XL_STAT_STATSOFLOW) {
2398 			sc->xl_stats_no_timeout = 1;
2399 			xl_stats_update(sc);
2400 			sc->xl_stats_no_timeout = 0;
2401 		}
2402 	}
2403 
2404 	if (!ifq_is_empty(&ifp->if_snd))
2405 		(*ifp->if_start)(ifp);
2406 
2407 	return;
2408 }
2409 
2410 static void
2411 xl_stats_update(xsc)
2412 	void			*xsc;
2413 {
2414 	struct xl_softc		*sc;
2415 	struct ifnet		*ifp;
2416 	struct xl_stats		xl_stats;
2417 	u_int8_t		*p;
2418 	int			i;
2419 	struct mii_data		*mii = NULL;
2420 
2421 	bzero((char *)&xl_stats, sizeof(struct xl_stats));
2422 
2423 	sc = xsc;
2424 	ifp = &sc->arpcom.ac_if;
2425 	if (sc->xl_miibus != NULL)
2426 		mii = device_get_softc(sc->xl_miibus);
2427 
2428 	p = (u_int8_t *)&xl_stats;
2429 
2430 	/* Read all the stats registers. */
2431 	XL_SEL_WIN(6);
2432 
2433 	for (i = 0; i < 16; i++)
2434 		*p++ = CSR_READ_1(sc, XL_W6_CARRIER_LOST + i);
2435 
2436 	ifp->if_ierrors += xl_stats.xl_rx_overrun;
2437 
2438 	ifp->if_collisions += xl_stats.xl_tx_multi_collision +
2439 				xl_stats.xl_tx_single_collision +
2440 				xl_stats.xl_tx_late_collision;
2441 
2442 	/*
2443 	 * Boomerang and cyclone chips have an extra stats counter
2444 	 * in window 4 (BadSSD). We have to read this too in order
2445 	 * to clear out all the stats registers and avoid a statsoflow
2446 	 * interrupt.
2447 	 */
2448 	XL_SEL_WIN(4);
2449 	CSR_READ_1(sc, XL_W4_BADSSD);
2450 
2451 	if ((mii != NULL) && (!sc->xl_stats_no_timeout))
2452 		mii_tick(mii);
2453 
2454 	XL_SEL_WIN(7);
2455 
2456 	if (!sc->xl_stats_no_timeout)
2457 		callout_reset(&sc->xl_stat_timer, hz, xl_stats_update, sc);
2458 
2459 	return;
2460 }
2461 
2462 /*
2463  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2464  * pointers to the fragment pointers.
2465  */
2466 static int
2467 xl_encap(sc, c, m_head)
2468 	struct xl_softc		*sc;
2469 	struct xl_chain		*c;
2470 	struct mbuf		*m_head;
2471 {
2472 	int			error;
2473 	u_int32_t		status;
2474 	struct ifnet		*ifp;
2475 
2476 	ifp = &sc->arpcom.ac_if;
2477 
2478 	/*
2479  	 * Start packing the mbufs in this chain into
2480 	 * the fragment pointers. Stop when we run out
2481  	 * of fragments or hit the end of the mbuf chain.
2482 	 */
2483 	error = bus_dmamap_load_mbuf(sc->xl_mtag, c->xl_map, m_head,
2484 	    xl_dma_map_txbuf, c->xl_ptr, BUS_DMA_NOWAIT);
2485 
2486 	if (error && error != EFBIG) {
2487 		m_freem(m_head);
2488 		printf("xl%d: can't map mbuf (error %d)\n", sc->xl_unit, error);
2489 		return(1);
2490 	}
2491 
2492 	/*
2493 	 * Handle special case: we used up all 63 fragments,
2494 	 * but we have more mbufs left in the chain. Copy the
2495 	 * data into an mbuf cluster. Note that we don't
2496 	 * bother clearing the values in the other fragment
2497 	 * pointers/counters; it wouldn't gain us anything,
2498 	 * and would waste cycles.
2499 	 */
2500 	if (error) {
2501 		struct mbuf		*m_new;
2502 
2503 		m_new = m_defrag(m_head, MB_DONTWAIT);
2504 		if (m_new == NULL) {
2505 			m_freem(m_head);
2506 			return(1);
2507 		} else {
2508 			m_head = m_new;
2509 		}
2510 
2511 		error = bus_dmamap_load_mbuf(sc->xl_mtag, c->xl_map,
2512 			m_head, xl_dma_map_txbuf, c->xl_ptr, BUS_DMA_NOWAIT);
2513 		if (error) {
2514 			m_freem(m_head);
2515 			printf("xl%d: can't map mbuf (error %d)\n",
2516 			    sc->xl_unit, error);
2517 			return(1);
2518 		}
2519 	}
2520 
2521 	if (sc->xl_type == XL_TYPE_905B) {
2522 		status = XL_TXSTAT_RND_DEFEAT;
2523 
2524 		if (m_head->m_pkthdr.csum_flags) {
2525 			if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2526 				status |= XL_TXSTAT_IPCKSUM;
2527 			if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
2528 				status |= XL_TXSTAT_TCPCKSUM;
2529 			if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
2530 				status |= XL_TXSTAT_UDPCKSUM;
2531 		}
2532 		c->xl_ptr->xl_status = htole32(status);
2533 	}
2534 
2535 	c->xl_mbuf = m_head;
2536 	bus_dmamap_sync(sc->xl_mtag, c->xl_map, BUS_DMASYNC_PREWRITE);
2537 	return(0);
2538 }
2539 
2540 /*
2541  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2542  * to the mbuf data regions directly in the transmit lists. We also save a
2543  * copy of the pointers since the transmit list fragment pointers are
2544  * physical addresses.
2545  */
2546 static void
2547 xl_start(ifp)
2548 	struct ifnet		*ifp;
2549 {
2550 	struct xl_softc		*sc;
2551 	struct mbuf		*m_head = NULL;
2552 	struct xl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
2553 	struct xl_chain		*prev_tx;
2554 	u_int32_t		status;
2555 	int			error;
2556 
2557 	sc = ifp->if_softc;
2558 	/*
2559 	 * Check for an available queue slot. If there are none,
2560 	 * punt.
2561 	 */
2562 	if (sc->xl_cdata.xl_tx_free == NULL) {
2563 		xl_txeoc(sc);
2564 		xl_txeof(sc);
2565 		if (sc->xl_cdata.xl_tx_free == NULL) {
2566 			ifp->if_flags |= IFF_OACTIVE;
2567 			return;
2568 		}
2569 	}
2570 
2571 	start_tx = sc->xl_cdata.xl_tx_free;
2572 
2573 	while(sc->xl_cdata.xl_tx_free != NULL) {
2574 		m_head = ifq_dequeue(&ifp->if_snd);
2575 		if (m_head == NULL)
2576 			break;
2577 
2578 		/* Pick a descriptor off the free list. */
2579 		prev_tx = cur_tx;
2580 		cur_tx = sc->xl_cdata.xl_tx_free;
2581 
2582 		/* Pack the data into the descriptor. */
2583 		error = xl_encap(sc, cur_tx, m_head);
2584 		if (error) {
2585 			cur_tx = prev_tx;
2586 			continue;
2587 		}
2588 
2589 		sc->xl_cdata.xl_tx_free = cur_tx->xl_next;
2590 		cur_tx->xl_next = NULL;
2591 
2592 		/* Chain it together. */
2593 		if (prev != NULL) {
2594 			prev->xl_next = cur_tx;
2595 			prev->xl_ptr->xl_next = htole32(cur_tx->xl_phys);
2596 		}
2597 		prev = cur_tx;
2598 
2599 		BPF_MTAP(ifp, cur_tx->xl_mbuf);
2600 	}
2601 
2602 	/*
2603 	 * If there are no packets queued, bail.
2604 	 */
2605 	if (cur_tx == NULL) {
2606 		return;
2607 	}
2608 
2609 	/*
2610 	 * Place the request for the upload interrupt
2611 	 * in the last descriptor in the chain. This way, if
2612 	 * we're chaining several packets at once, we'll only
2613 	 * get an interupt once for the whole chain rather than
2614 	 * once for each packet.
2615 	 */
2616 	cur_tx->xl_ptr->xl_status = htole32(le32toh(cur_tx->xl_ptr->xl_status) |
2617 	    XL_TXSTAT_DL_INTR);
2618 	bus_dmamap_sync(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_dmamap,
2619 	    BUS_DMASYNC_PREWRITE);
2620 
2621 	/*
2622 	 * Queue the packets. If the TX channel is clear, update
2623 	 * the downlist pointer register.
2624 	 */
2625 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_STALL);
2626 	xl_wait(sc);
2627 
2628 	if (sc->xl_cdata.xl_tx_head != NULL) {
2629 		sc->xl_cdata.xl_tx_tail->xl_next = start_tx;
2630 		sc->xl_cdata.xl_tx_tail->xl_ptr->xl_next =
2631 		    htole32(start_tx->xl_phys);
2632 		status = sc->xl_cdata.xl_tx_tail->xl_ptr->xl_status;
2633 		sc->xl_cdata.xl_tx_tail->xl_ptr->xl_status =
2634 		    htole32(le32toh(status) & ~XL_TXSTAT_DL_INTR);
2635 		sc->xl_cdata.xl_tx_tail = cur_tx;
2636 	} else {
2637 		sc->xl_cdata.xl_tx_head = start_tx;
2638 		sc->xl_cdata.xl_tx_tail = cur_tx;
2639 	}
2640 	if (!CSR_READ_4(sc, XL_DOWNLIST_PTR))
2641 		CSR_WRITE_4(sc, XL_DOWNLIST_PTR, start_tx->xl_phys);
2642 
2643 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
2644 
2645 	XL_SEL_WIN(7);
2646 
2647 	/*
2648 	 * Set a timeout in case the chip goes out to lunch.
2649 	 */
2650 	ifp->if_timer = 5;
2651 
2652 	/*
2653 	 * XXX Under certain conditions, usually on slower machines
2654 	 * where interrupts may be dropped, it's possible for the
2655 	 * adapter to chew up all the buffers in the receive ring
2656 	 * and stall, without us being able to do anything about it.
2657 	 * To guard against this, we need to make a pass over the
2658 	 * RX queue to make sure there aren't any packets pending.
2659 	 * Doing it here means we can flush the receive ring at the
2660 	 * same time the chip is DMAing the transmit descriptors we
2661 	 * just gave it.
2662  	 *
2663 	 * 3Com goes to some lengths to emphasize the Parallel Tasking (tm)
2664 	 * nature of their chips in all their marketing literature;
2665 	 * we may as well take advantage of it. :)
2666 	 */
2667 	xl_rxeof(sc);
2668 
2669 	return;
2670 }
2671 
2672 static void
2673 xl_start_90xB(ifp)
2674 	struct ifnet		*ifp;
2675 {
2676 	struct xl_softc		*sc;
2677 	struct mbuf		*m_head = NULL;
2678 	struct xl_chain		*prev = NULL, *cur_tx = NULL, *start_tx;
2679 	struct xl_chain		*prev_tx;
2680 	int			error, idx;
2681 
2682 	sc = ifp->if_softc;
2683 
2684 	if (ifp->if_flags & IFF_OACTIVE) {
2685 		return;
2686 	}
2687 
2688 	idx = sc->xl_cdata.xl_tx_prod;
2689 	start_tx = &sc->xl_cdata.xl_tx_chain[idx];
2690 
2691 	while (sc->xl_cdata.xl_tx_chain[idx].xl_mbuf == NULL) {
2692 
2693 		if ((XL_TX_LIST_CNT - sc->xl_cdata.xl_tx_cnt) < 3) {
2694 			ifp->if_flags |= IFF_OACTIVE;
2695 			break;
2696 		}
2697 
2698 		m_head = ifq_dequeue(&ifp->if_snd);
2699 		if (m_head == NULL)
2700 			break;
2701 
2702 		prev_tx = cur_tx;
2703 		cur_tx = &sc->xl_cdata.xl_tx_chain[idx];
2704 
2705 		/* Pack the data into the descriptor. */
2706 		error = xl_encap(sc, cur_tx, m_head);
2707 		if (error) {
2708 			cur_tx = prev_tx;
2709 			continue;
2710 		}
2711 
2712 		/* Chain it together. */
2713 		if (prev != NULL)
2714 			prev->xl_ptr->xl_next = htole32(cur_tx->xl_phys);
2715 		prev = cur_tx;
2716 
2717 		BPF_MTAP(ifp, cur_tx->xl_mbuf);
2718 
2719 		XL_INC(idx, XL_TX_LIST_CNT);
2720 		sc->xl_cdata.xl_tx_cnt++;
2721 	}
2722 
2723 	/*
2724 	 * If there are no packets queued, bail.
2725 	 */
2726 	if (cur_tx == NULL) {
2727 		return;
2728 	}
2729 
2730 	/*
2731 	 * Place the request for the upload interrupt
2732 	 * in the last descriptor in the chain. This way, if
2733 	 * we're chaining several packets at once, we'll only
2734 	 * get an interupt once for the whole chain rather than
2735 	 * once for each packet.
2736 	 */
2737 	cur_tx->xl_ptr->xl_status = htole32(le32toh(cur_tx->xl_ptr->xl_status) |
2738 	    XL_TXSTAT_DL_INTR);
2739 	bus_dmamap_sync(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_dmamap,
2740 	    BUS_DMASYNC_PREWRITE);
2741 
2742 	/* Start transmission */
2743 	sc->xl_cdata.xl_tx_prod = idx;
2744 	start_tx->xl_prev->xl_ptr->xl_next = htole32(start_tx->xl_phys);
2745 
2746 	/*
2747 	 * Set a timeout in case the chip goes out to lunch.
2748 	 */
2749 	ifp->if_timer = 5;
2750 
2751 	return;
2752 }
2753 
2754 static void
2755 xl_init(xsc)
2756 	void			*xsc;
2757 {
2758 	struct xl_softc		*sc = xsc;
2759 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2760 	int			error, i;
2761 	u_int16_t		rxfilt = 0;
2762 	struct mii_data		*mii = NULL;
2763 	int			s;
2764 
2765 	s = splimp();
2766 
2767 	/*
2768 	 * Cancel pending I/O and free all RX/TX buffers.
2769 	 */
2770 	xl_stop(sc);
2771 
2772 	if (sc->xl_miibus == NULL) {
2773 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
2774 		xl_wait(sc);
2775 	}
2776 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
2777 	xl_wait(sc);
2778 	DELAY(10000);
2779 
2780 	if (sc->xl_miibus != NULL)
2781 		mii = device_get_softc(sc->xl_miibus);
2782 
2783 	/* Init our MAC address */
2784 	XL_SEL_WIN(2);
2785 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
2786 		CSR_WRITE_1(sc, XL_W2_STATION_ADDR_LO + i,
2787 				sc->arpcom.ac_enaddr[i]);
2788 	}
2789 
2790 	/* Clear the station mask. */
2791 	for (i = 0; i < 3; i++)
2792 		CSR_WRITE_2(sc, XL_W2_STATION_MASK_LO + (i * 2), 0);
2793 #ifdef notdef
2794 	/* Reset TX and RX. */
2795 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
2796 	xl_wait(sc);
2797 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
2798 	xl_wait(sc);
2799 #endif
2800 	/* Init circular RX list. */
2801 	error = xl_list_rx_init(sc);
2802 	if (error) {
2803 		printf("xl%d: initialization of the rx ring failed (%d)\n",
2804 		    sc->xl_unit, error);
2805 		xl_stop(sc);
2806 		splx(s);
2807 		return;
2808 	}
2809 
2810 	/* Init TX descriptors. */
2811 	if (sc->xl_type == XL_TYPE_905B)
2812 		error = xl_list_tx_init_90xB(sc);
2813 	else
2814 		error = xl_list_tx_init(sc);
2815 	if (error) {
2816 		printf("xl%d: initialization of the tx ring failed (%d)\n",
2817 		    sc->xl_unit, error);
2818 		xl_stop(sc);
2819 		splx(s);
2820 	}
2821 
2822 	/*
2823 	 * Set the TX freethresh value.
2824 	 * Note that this has no effect on 3c905B "cyclone"
2825 	 * cards but is required for 3c900/3c905 "boomerang"
2826 	 * cards in order to enable the download engine.
2827 	 */
2828 	CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8);
2829 
2830 	/* Set the TX start threshold for best performance. */
2831 	sc->xl_tx_thresh = XL_MIN_FRAMELEN;
2832 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_SET_START|sc->xl_tx_thresh);
2833 
2834 	/*
2835 	 * If this is a 3c905B, also set the tx reclaim threshold.
2836 	 * This helps cut down on the number of tx reclaim errors
2837 	 * that could happen on a busy network. The chip multiplies
2838 	 * the register value by 16 to obtain the actual threshold
2839 	 * in bytes, so we divide by 16 when setting the value here.
2840 	 * The existing threshold value can be examined by reading
2841 	 * the register at offset 9 in window 5.
2842 	 */
2843 	if (sc->xl_type == XL_TYPE_905B) {
2844 		CSR_WRITE_2(sc, XL_COMMAND,
2845 		    XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4));
2846 	}
2847 
2848 	/* Set RX filter bits. */
2849 	XL_SEL_WIN(5);
2850 	rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
2851 
2852 	/* Set the individual bit to receive frames for this host only. */
2853 	rxfilt |= XL_RXFILTER_INDIVIDUAL;
2854 
2855 	/* If we want promiscuous mode, set the allframes bit. */
2856 	if (ifp->if_flags & IFF_PROMISC) {
2857 		rxfilt |= XL_RXFILTER_ALLFRAMES;
2858 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
2859 	} else {
2860 		rxfilt &= ~XL_RXFILTER_ALLFRAMES;
2861 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
2862 	}
2863 
2864 	/*
2865 	 * Set capture broadcast bit to capture broadcast frames.
2866 	 */
2867 	if (ifp->if_flags & IFF_BROADCAST) {
2868 		rxfilt |= XL_RXFILTER_BROADCAST;
2869 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
2870 	} else {
2871 		rxfilt &= ~XL_RXFILTER_BROADCAST;
2872 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
2873 	}
2874 
2875 	/*
2876 	 * Program the multicast filter, if necessary.
2877 	 */
2878 	if (sc->xl_type == XL_TYPE_905B)
2879 		xl_setmulti_hash(sc);
2880 	else
2881 		xl_setmulti(sc);
2882 
2883 	/*
2884 	 * Load the address of the RX list. We have to
2885 	 * stall the upload engine before we can manipulate
2886 	 * the uplist pointer register, then unstall it when
2887 	 * we're finished. We also have to wait for the
2888 	 * stall command to complete before proceeding.
2889 	 * Note that we have to do this after any RX resets
2890 	 * have completed since the uplist register is cleared
2891 	 * by a reset.
2892 	 */
2893 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL);
2894 	xl_wait(sc);
2895 	CSR_WRITE_4(sc, XL_UPLIST_PTR, sc->xl_ldata.xl_rx_dmaaddr);
2896 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL);
2897 	xl_wait(sc);
2898 
2899 
2900 	if (sc->xl_type == XL_TYPE_905B) {
2901 		/* Set polling interval */
2902 		CSR_WRITE_1(sc, XL_DOWN_POLL, 64);
2903 		/* Load the address of the TX list */
2904 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_STALL);
2905 		xl_wait(sc);
2906 		CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
2907 		    sc->xl_cdata.xl_tx_chain[0].xl_phys);
2908 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
2909 		xl_wait(sc);
2910 	}
2911 
2912 	/*
2913 	 * If the coax transceiver is on, make sure to enable
2914 	 * the DC-DC converter.
2915  	 */
2916 	XL_SEL_WIN(3);
2917 	if (sc->xl_xcvr == XL_XCVR_COAX)
2918 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START);
2919 	else
2920 		CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
2921 
2922 	/*
2923 	 * increase packet size to allow reception of 802.1q or ISL packets.
2924 	 * For the 3c90x chip, set the 'allow large packets' bit in the MAC
2925 	 * control register. For 3c90xB/C chips, use the RX packet size
2926 	 * register.
2927 	 */
2928 
2929 	if (sc->xl_type == XL_TYPE_905B)
2930 		CSR_WRITE_2(sc, XL_W3_MAXPKTSIZE, XL_PACKET_SIZE);
2931 	else {
2932 		u_int8_t macctl;
2933 		macctl = CSR_READ_1(sc, XL_W3_MAC_CTRL);
2934 		macctl |= XL_MACCTRL_ALLOW_LARGE_PACK;
2935 		CSR_WRITE_1(sc, XL_W3_MAC_CTRL, macctl);
2936 	}
2937 
2938 	/* Clear out the stats counters. */
2939 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE);
2940 	sc->xl_stats_no_timeout = 1;
2941 	xl_stats_update(sc);
2942 	sc->xl_stats_no_timeout = 0;
2943 	XL_SEL_WIN(4);
2944 	CSR_WRITE_2(sc, XL_W4_NET_DIAG, XL_NETDIAG_UPPER_BYTES_ENABLE);
2945 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_ENABLE);
2946 
2947 	/*
2948 	 * Enable interrupts.
2949 	 */
2950 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|0xFF);
2951 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STAT_ENB|XL_INTRS);
2952 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|XL_INTRS);
2953 	if (sc->xl_flags & XL_FLAG_FUNCREG)
2954 	    bus_space_write_4(sc->xl_ftag, sc->xl_fhandle, 4, 0x8000);
2955 
2956 	/* Set the RX early threshold */
2957 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_THRESH|(XL_PACKET_SIZE >>2));
2958 	CSR_WRITE_2(sc, XL_DMACTL, XL_DMACTL_UP_RX_EARLY);
2959 
2960 	/* Enable receiver and transmitter. */
2961 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
2962 	xl_wait(sc);
2963 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_ENABLE);
2964 	xl_wait(sc);
2965 
2966 	if (mii != NULL)
2967 		mii_mediachg(mii);
2968 
2969 	/* Select window 7 for normal operations. */
2970 	XL_SEL_WIN(7);
2971 
2972 	ifp->if_flags |= IFF_RUNNING;
2973 	ifp->if_flags &= ~IFF_OACTIVE;
2974 
2975 	callout_reset(&sc->xl_stat_timer, hz, xl_stats_update, sc);
2976 
2977 	splx(s);
2978 
2979 	return;
2980 }
2981 
2982 /*
2983  * Set media options.
2984  */
2985 static int
2986 xl_ifmedia_upd(ifp)
2987 	struct ifnet		*ifp;
2988 {
2989 	struct xl_softc		*sc;
2990 	struct ifmedia		*ifm = NULL;
2991 	struct mii_data		*mii = NULL;
2992 
2993 	sc = ifp->if_softc;
2994 	if (sc->xl_miibus != NULL)
2995 		mii = device_get_softc(sc->xl_miibus);
2996 	if (mii == NULL)
2997 		ifm = &sc->ifmedia;
2998 	else
2999 		ifm = &mii->mii_media;
3000 
3001 	switch(IFM_SUBTYPE(ifm->ifm_media)) {
3002 	case IFM_100_FX:
3003 	case IFM_10_FL:
3004 	case IFM_10_2:
3005 	case IFM_10_5:
3006 		xl_setmode(sc, ifm->ifm_media);
3007 		return(0);
3008 		break;
3009 	default:
3010 		break;
3011 	}
3012 
3013 	if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX
3014 		|| sc->xl_media & XL_MEDIAOPT_BT4) {
3015 		xl_init(sc);
3016 	} else {
3017 		xl_setmode(sc, ifm->ifm_media);
3018 	}
3019 
3020 	return(0);
3021 }
3022 
3023 /*
3024  * Report current media status.
3025  */
3026 static void
3027 xl_ifmedia_sts(ifp, ifmr)
3028 	struct ifnet		*ifp;
3029 	struct ifmediareq	*ifmr;
3030 {
3031 	struct xl_softc		*sc;
3032 	u_int32_t		icfg;
3033 	struct mii_data		*mii = NULL;
3034 
3035 	sc = ifp->if_softc;
3036 	if (sc->xl_miibus != NULL)
3037 		mii = device_get_softc(sc->xl_miibus);
3038 
3039 	XL_SEL_WIN(3);
3040 	icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG) & XL_ICFG_CONNECTOR_MASK;
3041 	icfg >>= XL_ICFG_CONNECTOR_BITS;
3042 
3043 	ifmr->ifm_active = IFM_ETHER;
3044 
3045 	switch(icfg) {
3046 	case XL_XCVR_10BT:
3047 		ifmr->ifm_active = IFM_ETHER|IFM_10_T;
3048 		if (CSR_READ_1(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX)
3049 			ifmr->ifm_active |= IFM_FDX;
3050 		else
3051 			ifmr->ifm_active |= IFM_HDX;
3052 		break;
3053 	case XL_XCVR_AUI:
3054 		if (sc->xl_type == XL_TYPE_905B &&
3055 		    sc->xl_media == XL_MEDIAOPT_10FL) {
3056 			ifmr->ifm_active = IFM_ETHER|IFM_10_FL;
3057 			if (CSR_READ_1(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX)
3058 				ifmr->ifm_active |= IFM_FDX;
3059 			else
3060 				ifmr->ifm_active |= IFM_HDX;
3061 		} else
3062 			ifmr->ifm_active = IFM_ETHER|IFM_10_5;
3063 		break;
3064 	case XL_XCVR_COAX:
3065 		ifmr->ifm_active = IFM_ETHER|IFM_10_2;
3066 		break;
3067 	/*
3068 	 * XXX MII and BTX/AUTO should be separate cases.
3069 	 */
3070 
3071 	case XL_XCVR_100BTX:
3072 	case XL_XCVR_AUTO:
3073 	case XL_XCVR_MII:
3074 		if (mii != NULL) {
3075 			mii_pollstat(mii);
3076 			ifmr->ifm_active = mii->mii_media_active;
3077 			ifmr->ifm_status = mii->mii_media_status;
3078 		}
3079 		break;
3080 	case XL_XCVR_100BFX:
3081 		ifmr->ifm_active = IFM_ETHER|IFM_100_FX;
3082 		break;
3083 	default:
3084 		printf("xl%d: unknown XCVR type: %d\n", sc->xl_unit, icfg);
3085 		break;
3086 	}
3087 
3088 	return;
3089 }
3090 
3091 static int
3092 xl_ioctl(ifp, command, data, cr)
3093 	struct ifnet		*ifp;
3094 	u_long			command;
3095 	caddr_t			data;
3096 	struct ucred		*cr;
3097 {
3098 	struct xl_softc		*sc = ifp->if_softc;
3099 	struct ifreq		*ifr = (struct ifreq *) data;
3100 	int			error = 0;
3101 	struct mii_data		*mii = NULL;
3102 	u_int8_t		rxfilt;
3103 	int			s;
3104 
3105 	s = splimp();
3106 
3107 	switch(command) {
3108 	case SIOCSIFADDR:
3109 	case SIOCGIFADDR:
3110 	case SIOCSIFMTU:
3111 		error = ether_ioctl(ifp, command, data);
3112 		break;
3113 	case SIOCSIFFLAGS:
3114 		XL_SEL_WIN(5);
3115 		rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
3116 		if (ifp->if_flags & IFF_UP) {
3117 			if (ifp->if_flags & IFF_RUNNING &&
3118 			    ifp->if_flags & IFF_PROMISC &&
3119 			    !(sc->xl_if_flags & IFF_PROMISC)) {
3120 				rxfilt |= XL_RXFILTER_ALLFRAMES;
3121 				CSR_WRITE_2(sc, XL_COMMAND,
3122 				    XL_CMD_RX_SET_FILT|rxfilt);
3123 				XL_SEL_WIN(7);
3124 			} else if (ifp->if_flags & IFF_RUNNING &&
3125 			    !(ifp->if_flags & IFF_PROMISC) &&
3126 			    sc->xl_if_flags & IFF_PROMISC) {
3127 				rxfilt &= ~XL_RXFILTER_ALLFRAMES;
3128 				CSR_WRITE_2(sc, XL_COMMAND,
3129 				    XL_CMD_RX_SET_FILT|rxfilt);
3130 				XL_SEL_WIN(7);
3131 			} else
3132 				xl_init(sc);
3133 		} else {
3134 			if (ifp->if_flags & IFF_RUNNING)
3135 				xl_stop(sc);
3136 		}
3137 		sc->xl_if_flags = ifp->if_flags;
3138 		error = 0;
3139 		break;
3140 	case SIOCADDMULTI:
3141 	case SIOCDELMULTI:
3142 		if (sc->xl_type == XL_TYPE_905B)
3143 			xl_setmulti_hash(sc);
3144 		else
3145 			xl_setmulti(sc);
3146 		error = 0;
3147 		break;
3148 	case SIOCGIFMEDIA:
3149 	case SIOCSIFMEDIA:
3150 		if (sc->xl_miibus != NULL)
3151 			mii = device_get_softc(sc->xl_miibus);
3152 		if (mii == NULL)
3153 			error = ifmedia_ioctl(ifp, ifr,
3154 			    &sc->ifmedia, command);
3155 		else
3156 			error = ifmedia_ioctl(ifp, ifr,
3157 			    &mii->mii_media, command);
3158 		break;
3159         case SIOCSIFCAP:
3160 		ifp->if_capenable = ifr->ifr_reqcap;
3161 		if (ifp->if_capenable & IFCAP_TXCSUM)
3162 			ifp->if_hwassist = XL905B_CSUM_FEATURES;
3163 		else
3164 			ifp->if_hwassist = 0;
3165 		break;
3166 	default:
3167 		error = EINVAL;
3168 		break;
3169 	}
3170 
3171 	splx(s);
3172 	return(error);
3173 }
3174 
3175 static void
3176 xl_watchdog(ifp)
3177 	struct ifnet		*ifp;
3178 {
3179 	struct xl_softc		*sc;
3180 	u_int16_t		status = 0;
3181 
3182 	sc = ifp->if_softc;
3183 
3184 	ifp->if_oerrors++;
3185 	XL_SEL_WIN(4);
3186 	status = CSR_READ_2(sc, XL_W4_MEDIA_STATUS);
3187 	printf("xl%d: watchdog timeout\n", sc->xl_unit);
3188 
3189 	if (status & XL_MEDIASTAT_CARRIER)
3190 		printf("xl%d: no carrier - transceiver cable problem?\n",
3191 								sc->xl_unit);
3192 	xl_txeoc(sc);
3193 	xl_txeof(sc);
3194 	xl_rxeof(sc);
3195 	xl_reset(sc);
3196 	xl_init(sc);
3197 
3198 	if (!ifq_is_empty(&ifp->if_snd))
3199 		(*ifp->if_start)(ifp);
3200 
3201 	return;
3202 }
3203 
3204 /*
3205  * Stop the adapter and free any mbufs allocated to the
3206  * RX and TX lists.
3207  */
3208 static void
3209 xl_stop(sc)
3210 	struct xl_softc		*sc;
3211 {
3212 	int		i;
3213 	struct ifnet		*ifp;
3214 
3215 	ifp = &sc->arpcom.ac_if;
3216 	ifp->if_timer = 0;
3217 
3218 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISABLE);
3219 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE);
3220 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB);
3221 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISCARD);
3222 	xl_wait(sc);
3223 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_DISABLE);
3224 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
3225 	DELAY(800);
3226 
3227 #ifdef foo
3228 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
3229 	xl_wait(sc);
3230 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
3231 	xl_wait(sc);
3232 #endif
3233 
3234 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|XL_STAT_INTLATCH);
3235 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STAT_ENB|0);
3236 	CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|0);
3237 	if (sc->xl_flags & XL_FLAG_FUNCREG) bus_space_write_4 (sc->xl_ftag, sc->xl_fhandle, 4, 0x8000);
3238 
3239 	/* Stop the stats updater. */
3240 	callout_stop(&sc->xl_stat_timer);
3241 
3242 	/*
3243 	 * Free data in the RX lists.
3244 	 */
3245 	for (i = 0; i < XL_RX_LIST_CNT; i++) {
3246 		if (sc->xl_cdata.xl_rx_chain[i].xl_mbuf != NULL) {
3247 			bus_dmamap_unload(sc->xl_mtag,
3248 			    sc->xl_cdata.xl_rx_chain[i].xl_map);
3249 			bus_dmamap_destroy(sc->xl_mtag,
3250 			    sc->xl_cdata.xl_rx_chain[i].xl_map);
3251 			m_freem(sc->xl_cdata.xl_rx_chain[i].xl_mbuf);
3252 			sc->xl_cdata.xl_rx_chain[i].xl_mbuf = NULL;
3253 		}
3254 	}
3255 	bzero(sc->xl_ldata.xl_rx_list, XL_RX_LIST_SZ);
3256 	/*
3257 	 * Free the TX list buffers.
3258 	 */
3259 	for (i = 0; i < XL_TX_LIST_CNT; i++) {
3260 		if (sc->xl_cdata.xl_tx_chain[i].xl_mbuf != NULL) {
3261 			bus_dmamap_unload(sc->xl_mtag,
3262 			    sc->xl_cdata.xl_tx_chain[i].xl_map);
3263 			bus_dmamap_destroy(sc->xl_mtag,
3264 			    sc->xl_cdata.xl_tx_chain[i].xl_map);
3265 			m_freem(sc->xl_cdata.xl_tx_chain[i].xl_mbuf);
3266 			sc->xl_cdata.xl_tx_chain[i].xl_mbuf = NULL;
3267 		}
3268 	}
3269 	bzero(sc->xl_ldata.xl_tx_list, XL_TX_LIST_SZ);
3270 
3271 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3272 
3273 	return;
3274 }
3275 
3276 /*
3277  * Stop all chip I/O so that the kernel's probe routines don't
3278  * get confused by errant DMAs when rebooting.
3279  */
3280 static void
3281 xl_shutdown(dev)
3282 	device_t		dev;
3283 {
3284 	struct xl_softc		*sc;
3285 
3286 	sc = device_get_softc(dev);
3287 
3288 	xl_reset(sc);
3289 	xl_stop(sc);
3290 
3291 	return;
3292 }
3293 
3294 static int
3295 xl_suspend(dev)
3296 	device_t		dev;
3297 {
3298 	struct xl_softc		*sc;
3299 	int			s;
3300 
3301 	s = splimp();
3302 
3303 	sc = device_get_softc(dev);
3304 
3305 	xl_stop(sc);
3306 
3307 	splx(s);
3308 
3309 	return(0);
3310 }
3311 
3312 static int
3313 xl_resume(dev)
3314 	device_t		dev;
3315 {
3316 	struct xl_softc		*sc;
3317 	struct ifnet		*ifp;
3318 	int			s;
3319 
3320 	s = splimp();
3321 
3322 	sc = device_get_softc(dev);
3323 	ifp = &sc->arpcom.ac_if;
3324 
3325 	xl_reset(sc);
3326 	if (ifp->if_flags & IFF_UP)
3327 		xl_init(sc);
3328 
3329 	splx(s);
3330 	return(0);
3331 }
3332