1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 * 18 * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $ 19 */ 20 21 #define VERSION "20071127" 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 * 26 * The 3945ABG network adapter doesn't use traditional hardware as 27 * many other adaptors do. Instead at run time the eeprom is set into a known 28 * state and told to load boot firmware. The boot firmware loads an init and a 29 * main binary firmware image into SRAM on the card via DMA. 30 * Once the firmware is loaded, the driver/hw then 31 * communicate by way of circular dma rings via the the SRAM to the firmware. 32 * 33 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 34 * The 4 tx data rings allow for prioritization QoS. 35 * 36 * The rx data ring consists of 32 dma buffers. Two registers are used to 37 * indicate where in the ring the driver and the firmware are up to. The 38 * driver sets the initial read index (reg1) and the initial write index (reg2), 39 * the firmware updates the read index (reg1) on rx of a packet and fires an 40 * interrupt. The driver then processes the buffers starting at reg1 indicating 41 * to the firmware which buffers have been accessed by updating reg2. At the 42 * same time allocating new memory for the processed buffer. 43 * 44 * A similar thing happens with the tx rings. The difference is the firmware 45 * stop processing buffers once the queue is full and until confirmation 46 * of a successful transmition (tx_intr) has occurred. 47 * 48 * The command ring operates in the same manner as the tx queues. 49 * 50 * All communication direct to the card (ie eeprom) is classed as Stage1 51 * communication 52 * 53 * All communication via the firmware to the card is classed as State2. 54 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 55 * firmware. The bootstrap firmware and runtime firmware are loaded 56 * from host memory via dma to the card then told to execute. From this point 57 * on the majority of communications between the driver and the card goes 58 * via the firmware. 59 */ 60 61 #include <sys/param.h> 62 #include <sys/sysctl.h> 63 #include <sys/sockio.h> 64 #include <sys/mbuf.h> 65 #include <sys/kernel.h> 66 #include <sys/socket.h> 67 #include <sys/systm.h> 68 #include <sys/malloc.h> 69 #include <sys/queue.h> 70 #include <sys/taskqueue.h> 71 #include <sys/module.h> 72 #include <sys/bus.h> 73 #include <sys/endian.h> 74 #include <sys/linker.h> 75 #include <sys/firmware.h> 76 77 #include <sys/bus.h> 78 #include <sys/resource.h> 79 #include <sys/rman.h> 80 81 #include <bus/pci/pcireg.h> 82 #include <bus/pci/pcivar.h> 83 84 #include <net/bpf.h> 85 #include <net/if.h> 86 #include <net/if_arp.h> 87 #include <net/ifq_var.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <netproto/802_11/ieee80211_var.h> 94 #include <netproto/802_11/ieee80211_radiotap.h> 95 #include <netproto/802_11/ieee80211_regdomain.h> 96 #include <netproto/802_11/ieee80211_ratectl.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_systm.h> 100 #include <netinet/in_var.h> 101 #include <netinet/ip.h> 102 #include <netinet/if_ether.h> 103 104 /* XXX: move elsewhere */ 105 #define abs(x) (((x) < 0) ? -(x) : (x)) 106 107 #include "if_wpireg.h" 108 #include "if_wpivar.h" 109 110 #define WPI_DEBUG 111 112 #ifdef WPI_DEBUG 113 #define DPRINTF(x) do { if (wpi_debug != 0) kprintf x; } while (0) 114 #define DPRINTFN(n, x) do { if (wpi_debug & n) kprintf x; } while (0) 115 #define WPI_DEBUG_SET (wpi_debug != 0) 116 117 enum { 118 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 119 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 120 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 121 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 122 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 123 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 124 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 125 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 126 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 127 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 128 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 129 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 130 WPI_DEBUG_ANY = 0xffffffff 131 }; 132 133 static int wpi_debug = 1; 134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 135 TUNABLE_INT("debug.wpi", &wpi_debug); 136 137 #else 138 #define DPRINTF(x) 139 #define DPRINTFN(n, x) 140 #define WPI_DEBUG_SET 0 141 #endif 142 143 struct wpi_ident { 144 uint16_t vendor; 145 uint16_t device; 146 uint16_t subdevice; 147 const char *name; 148 }; 149 150 static const struct wpi_ident wpi_ident_table[] = { 151 /* The below entries support ABG regardless of the subid */ 152 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 153 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 154 /* The below entries only support BG */ 155 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 156 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 157 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 158 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 159 { 0, 0, 0, NULL } 160 }; 161 162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 163 const char name[IFNAMSIZ], int unit, int opmode, 164 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 165 const uint8_t mac[IEEE80211_ADDR_LEN]); 166 static void wpi_vap_delete(struct ieee80211vap *); 167 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 168 void **, bus_size_t, bus_size_t, int); 169 static void wpi_dma_contig_free(struct wpi_dma_info *); 170 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 171 static int wpi_alloc_shared(struct wpi_softc *); 172 static void wpi_free_shared(struct wpi_softc *); 173 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 174 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 175 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 176 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 177 int, int); 178 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 179 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *, 181 const uint8_t mac[IEEE80211_ADDR_LEN]); 182 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 183 static void wpi_mem_lock(struct wpi_softc *); 184 static void wpi_mem_unlock(struct wpi_softc *); 185 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 186 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 187 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 188 const uint32_t *, int); 189 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 190 static int wpi_alloc_fwmem(struct wpi_softc *); 191 static void wpi_free_fwmem(struct wpi_softc *); 192 static int wpi_load_firmware(struct wpi_softc *); 193 static void wpi_unload_firmware(struct wpi_softc *); 194 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 195 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 196 struct wpi_rx_data *); 197 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 198 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 199 static void wpi_notif_intr(struct wpi_softc *); 200 static void wpi_intr(void *); 201 static uint8_t wpi_plcp_signal(int); 202 static void wpi_watchdog_callout(void *); 203 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 204 struct ieee80211_node *, int); 205 static void wpi_start(struct ifnet *); 206 static void wpi_start_locked(struct ifnet *); 207 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 208 const struct ieee80211_bpf_params *); 209 static void wpi_scan_start(struct ieee80211com *); 210 static void wpi_scan_end(struct ieee80211com *); 211 static void wpi_set_channel(struct ieee80211com *); 212 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 213 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 214 static int wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); 215 static void wpi_read_eeprom(struct wpi_softc *, 216 uint8_t macaddr[IEEE80211_ADDR_LEN]); 217 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 218 static void wpi_read_eeprom_group(struct wpi_softc *, int); 219 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 220 static int wpi_wme_update(struct ieee80211com *); 221 static int wpi_mrr_setup(struct wpi_softc *); 222 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 223 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 224 #if 0 225 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 226 #endif 227 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 228 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 229 static int wpi_scan(struct wpi_softc *); 230 static int wpi_config(struct wpi_softc *); 231 static void wpi_stop_master(struct wpi_softc *); 232 static int wpi_power_up(struct wpi_softc *); 233 static int wpi_reset(struct wpi_softc *); 234 static void wpi_hwreset_task(void *, int); 235 static void wpi_rfreset_task(void *, int); 236 static void wpi_hw_config(struct wpi_softc *); 237 static void wpi_init(void *); 238 static void wpi_init_locked(struct wpi_softc *, int); 239 static void wpi_stop(struct wpi_softc *); 240 static void wpi_stop_locked(struct wpi_softc *); 241 242 static void wpi_newassoc(struct ieee80211_node *, int); 243 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 244 int); 245 static void wpi_calib_timeout_callout(void *); 246 static void wpi_power_calibration(struct wpi_softc *, int); 247 static int wpi_get_power_index(struct wpi_softc *, 248 struct wpi_power_group *, struct ieee80211_channel *, int); 249 #ifdef WPI_DEBUG 250 static const char *wpi_cmd_str(int); 251 #endif 252 static int wpi_probe(device_t); 253 static int wpi_attach(device_t); 254 static int wpi_detach(device_t); 255 static int wpi_shutdown(device_t); 256 static int wpi_suspend(device_t); 257 static int wpi_resume(device_t); 258 259 260 static device_method_t wpi_methods[] = { 261 /* Device interface */ 262 DEVMETHOD(device_probe, wpi_probe), 263 DEVMETHOD(device_attach, wpi_attach), 264 DEVMETHOD(device_detach, wpi_detach), 265 DEVMETHOD(device_shutdown, wpi_shutdown), 266 DEVMETHOD(device_suspend, wpi_suspend), 267 DEVMETHOD(device_resume, wpi_resume), 268 269 { 0, 0 } 270 }; 271 272 static driver_t wpi_driver = { 273 "wpi", 274 wpi_methods, 275 sizeof (struct wpi_softc) 276 }; 277 278 static devclass_t wpi_devclass; 279 280 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 281 282 static const uint8_t wpi_ridx_to_plcp[] = { 283 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 284 /* R1-R4 (ral/ural is R4-R1) */ 285 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 286 /* CCK: device-dependent */ 287 10, 20, 55, 110 288 }; 289 static const uint8_t wpi_ridx_to_rate[] = { 290 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 291 2, 4, 11, 22 /*CCK */ 292 }; 293 294 295 static int 296 wpi_probe(device_t dev) 297 { 298 const struct wpi_ident *ident; 299 300 wlan_serialize_enter(); 301 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 302 if (pci_get_vendor(dev) == ident->vendor && 303 pci_get_device(dev) == ident->device) { 304 device_set_desc(dev, ident->name); 305 wlan_serialize_exit(); 306 return 0; 307 } 308 } 309 wlan_serialize_exit(); 310 return ENXIO; 311 } 312 313 /** 314 * Load the firmare image from disk to the allocated dma buffer. 315 * we also maintain the reference to the firmware pointer as there 316 * is times where we may need to reload the firmware but we are not 317 * in a context that can access the filesystem (ie taskq cause by restart) 318 * 319 * @return 0 on success, an errno on failure 320 */ 321 static int 322 wpi_load_firmware(struct wpi_softc *sc) 323 { 324 const struct firmware *fp; 325 struct wpi_dma_info *dma = &sc->fw_dma; 326 const struct wpi_firmware_hdr *hdr; 327 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 328 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 329 int error; 330 331 DPRINTFN(WPI_DEBUG_FIRMWARE, 332 ("Attempting Loading Firmware from wpi_fw module\n")); 333 334 wlan_assert_serialized(); 335 wlan_serialize_exit(); 336 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 337 device_printf(sc->sc_dev, 338 "could not load firmware image 'wpifw_fw'\n"); 339 error = ENOENT; 340 wlan_serialize_enter(); 341 goto fail; 342 } 343 wlan_serialize_enter(); 344 345 fp = sc->fw_fp; 346 347 /* Validate the firmware is minimum a particular version */ 348 if (fp->version < WPI_FW_MINVERSION) { 349 device_printf(sc->sc_dev, 350 "firmware version is too old. Need %d, got %d\n", 351 WPI_FW_MINVERSION, 352 fp->version); 353 error = ENXIO; 354 goto fail; 355 } 356 357 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 358 device_printf(sc->sc_dev, 359 "firmware file too short: %zu bytes\n", fp->datasize); 360 error = ENXIO; 361 goto fail; 362 } 363 364 hdr = (const struct wpi_firmware_hdr *)fp->data; 365 366 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 367 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 368 369 rtextsz = le32toh(hdr->rtextsz); 370 rdatasz = le32toh(hdr->rdatasz); 371 itextsz = le32toh(hdr->itextsz); 372 idatasz = le32toh(hdr->idatasz); 373 btextsz = le32toh(hdr->btextsz); 374 375 /* check that all firmware segments are present */ 376 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 377 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 378 device_printf(sc->sc_dev, 379 "firmware file too short: %zu bytes\n", fp->datasize); 380 error = ENXIO; /* XXX appropriate error code? */ 381 goto fail; 382 } 383 384 /* get pointers to firmware segments */ 385 rtext = (const uint8_t *)(hdr + 1); 386 rdata = rtext + rtextsz; 387 itext = rdata + rdatasz; 388 idata = itext + itextsz; 389 btext = idata + idatasz; 390 391 DPRINTFN(WPI_DEBUG_FIRMWARE, 392 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 393 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 394 (le32toh(hdr->version) & 0xff000000) >> 24, 395 (le32toh(hdr->version) & 0x00ff0000) >> 16, 396 (le32toh(hdr->version) & 0x0000ffff), 397 rtextsz, rdatasz, 398 itextsz, idatasz, btextsz)); 399 400 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 401 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 402 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 403 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 404 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 405 406 /* sanity checks */ 407 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 408 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 409 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 410 idatasz > WPI_FW_INIT_DATA_MAXSZ || 411 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 412 (btextsz & 3) != 0) { 413 device_printf(sc->sc_dev, "firmware invalid\n"); 414 error = EINVAL; 415 goto fail; 416 } 417 418 /* copy initialization images into pre-allocated DMA-safe memory */ 419 memcpy(dma->vaddr, idata, idatasz); 420 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 421 422 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 423 424 /* tell adapter where to find initialization images */ 425 wpi_mem_lock(sc); 426 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 427 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 428 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 429 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 430 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 431 wpi_mem_unlock(sc); 432 433 /* load firmware boot code */ 434 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 435 device_printf(sc->sc_dev, "Failed to load microcode\n"); 436 goto fail; 437 } 438 439 /* now press "execute" */ 440 WPI_WRITE(sc, WPI_RESET, 0); 441 442 /* wait at most one second for the first alive notification */ 443 if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) { 444 device_printf(sc->sc_dev, 445 "timeout waiting for adapter to initialize\n"); 446 goto fail; 447 } 448 449 /* copy runtime images into pre-allocated DMA-sage memory */ 450 memcpy(dma->vaddr, rdata, rdatasz); 451 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 452 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 453 454 /* tell adapter where to find runtime images */ 455 wpi_mem_lock(sc); 456 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 457 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 458 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 459 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 460 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 461 wpi_mem_unlock(sc); 462 463 /* wait at most one second for the first alive notification */ 464 if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) { 465 device_printf(sc->sc_dev, 466 "timeout waiting for adapter to initialize2\n"); 467 goto fail; 468 } 469 470 DPRINTFN(WPI_DEBUG_FIRMWARE, 471 ("Firmware loaded to driver successfully\n")); 472 return error; 473 fail: 474 wpi_unload_firmware(sc); 475 return error; 476 } 477 478 /** 479 * Free the referenced firmware image 480 */ 481 static void 482 wpi_unload_firmware(struct wpi_softc *sc) 483 { 484 struct ifnet *ifp; 485 ifp = sc->sc_ifp; 486 487 if (sc->fw_fp) { 488 wlan_assert_serialized(); 489 wlan_serialize_exit(); 490 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 491 wlan_serialize_enter(); 492 sc->fw_fp = NULL; 493 } 494 } 495 496 static int 497 wpi_attach(device_t dev) 498 { 499 struct wpi_softc *sc = device_get_softc(dev); 500 struct ifnet *ifp; 501 struct ieee80211com *ic; 502 int ac, error, supportsa = 1; 503 uint32_t tmp; 504 const struct wpi_ident *ident; 505 uint8_t macaddr[IEEE80211_ADDR_LEN]; 506 507 wlan_serialize_enter(); 508 509 sc->sc_dev = dev; 510 511 if (bootverbose || WPI_DEBUG_SET) 512 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 513 514 /* 515 * Some card's only support 802.11b/g not a, check to see if 516 * this is one such card. A 0x0 in the subdevice table indicates 517 * the entire subdevice range is to be ignored. 518 */ 519 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 520 if (ident->subdevice && 521 pci_get_subdevice(dev) == ident->subdevice) { 522 supportsa = 0; 523 break; 524 } 525 } 526 527 /* Create the tasks that can be queued */ 528 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset_task, sc); 529 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset_task, sc); 530 531 callout_init(&sc->calib_to_callout); 532 callout_init(&sc->watchdog_to_callout); 533 534 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 535 device_printf(dev, "chip is in D%d power mode " 536 "-- setting to D0\n", pci_get_powerstate(dev)); 537 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 538 } 539 540 /* disable the retry timeout register */ 541 pci_write_config(dev, 0x41, 0, 1); 542 543 /* enable bus-mastering */ 544 pci_enable_busmaster(dev); 545 546 sc->mem_rid = PCIR_BAR(0); 547 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 548 RF_ACTIVE); 549 if (sc->mem == NULL) { 550 device_printf(dev, "could not allocate memory resource\n"); 551 error = ENOMEM; 552 goto fail; 553 } 554 555 sc->sc_st = rman_get_bustag(sc->mem); 556 sc->sc_sh = rman_get_bushandle(sc->mem); 557 558 sc->irq_rid = 0; 559 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 560 RF_ACTIVE | RF_SHAREABLE); 561 if (sc->irq == NULL) { 562 device_printf(dev, "could not allocate interrupt resource\n"); 563 error = ENOMEM; 564 goto fail; 565 } 566 567 /* 568 * Allocate DMA memory for firmware transfers. 569 */ 570 if ((error = wpi_alloc_fwmem(sc)) != 0) { 571 kprintf(": could not allocate firmware memory\n"); 572 error = ENOMEM; 573 goto fail; 574 } 575 576 /* 577 * Put adapter into a known state. 578 */ 579 if ((error = wpi_reset(sc)) != 0) { 580 device_printf(dev, "could not reset adapter\n"); 581 goto fail; 582 } 583 584 wpi_mem_lock(sc); 585 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 586 if (bootverbose || WPI_DEBUG_SET) 587 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 588 589 wpi_mem_unlock(sc); 590 591 /* Allocate shared page */ 592 if ((error = wpi_alloc_shared(sc)) != 0) { 593 device_printf(dev, "could not allocate shared page\n"); 594 goto fail; 595 } 596 597 /* tx data queues - 4 for QoS purposes */ 598 for (ac = 0; ac < WME_NUM_AC; ac++) { 599 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 600 if (error != 0) { 601 device_printf(dev, "could not allocate Tx ring %d\n",ac); 602 goto fail; 603 } 604 } 605 606 /* command queue to talk to the card's firmware */ 607 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 608 if (error != 0) { 609 device_printf(dev, "could not allocate command ring\n"); 610 goto fail; 611 } 612 613 /* receive data queue */ 614 error = wpi_alloc_rx_ring(sc, &sc->rxq); 615 if (error != 0) { 616 device_printf(dev, "could not allocate Rx ring\n"); 617 goto fail; 618 } 619 620 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 621 if (ifp == NULL) { 622 device_printf(dev, "can not if_alloc()\n"); 623 error = ENOMEM; 624 goto fail; 625 } 626 ic = ifp->if_l2com; 627 628 ic->ic_ifp = ifp; 629 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 630 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 631 632 /* set device capabilities */ 633 ic->ic_caps = 634 IEEE80211_C_STA /* station mode supported */ 635 | IEEE80211_C_MONITOR /* monitor mode supported */ 636 | IEEE80211_C_TXPMGT /* tx power management */ 637 | IEEE80211_C_SHSLOT /* short slot time supported */ 638 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 639 | IEEE80211_C_WPA /* 802.11i */ 640 /* XXX looks like WME is partly supported? */ 641 #if 0 642 | IEEE80211_C_IBSS /* IBSS mode support */ 643 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 644 | IEEE80211_C_WME /* 802.11e */ 645 | IEEE80211_C_HOSTAP /* Host access point mode */ 646 #endif 647 ; 648 649 /* 650 * Read in the eeprom and also setup the channels for 651 * net80211. We don't set the rates as net80211 does this for us 652 */ 653 wpi_read_eeprom(sc, macaddr); 654 655 if (bootverbose || WPI_DEBUG_SET) { 656 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 657 device_printf(sc->sc_dev, "Hardware Type: %c\n", 658 sc->type > 1 ? 'B': '?'); 659 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 660 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 661 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 662 supportsa ? "does" : "does not"); 663 664 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 665 what sc->rev really represents - benjsc 20070615 */ 666 } 667 668 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 669 ifp->if_softc = sc; 670 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 671 ifp->if_init = wpi_init; 672 ifp->if_ioctl = wpi_ioctl; 673 ifp->if_start = wpi_start; 674 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN); 675 ifq_set_ready(&ifp->if_snd); 676 677 ieee80211_ifattach(ic, macaddr); 678 /* override default methods */ 679 ic->ic_node_alloc = wpi_node_alloc; 680 ic->ic_newassoc = wpi_newassoc; 681 ic->ic_raw_xmit = wpi_raw_xmit; 682 ic->ic_wme.wme_update = wpi_wme_update; 683 ic->ic_scan_start = wpi_scan_start; 684 ic->ic_scan_end = wpi_scan_end; 685 ic->ic_set_channel = wpi_set_channel; 686 ic->ic_scan_curchan = wpi_scan_curchan; 687 ic->ic_scan_mindwell = wpi_scan_mindwell; 688 689 ic->ic_vap_create = wpi_vap_create; 690 ic->ic_vap_delete = wpi_vap_delete; 691 692 ieee80211_radiotap_attach(ic, 693 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 694 WPI_TX_RADIOTAP_PRESENT, 695 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 696 WPI_RX_RADIOTAP_PRESENT); 697 698 /* 699 * Hook our interrupt after all initialization is complete. 700 */ 701 error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE, 702 wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer); 703 if (error != 0) { 704 device_printf(dev, "could not set up interrupt\n"); 705 goto fail; 706 } 707 708 if (bootverbose) 709 ieee80211_announce(ic); 710 #ifdef XXX_DEBUG 711 ieee80211_announce_channels(ic); 712 #endif 713 wlan_serialize_exit(); 714 return 0; 715 716 fail: 717 wlan_serialize_exit(); 718 wpi_detach(dev); 719 return ENXIO; 720 } 721 722 static int 723 wpi_detach(device_t dev) 724 { 725 struct wpi_softc *sc = device_get_softc(dev); 726 struct ifnet *ifp = sc->sc_ifp; 727 struct ieee80211com *ic; 728 int ac; 729 730 wlan_serialize_enter(); 731 if (ifp != NULL) { 732 ic = ifp->if_l2com; 733 734 ieee80211_draintask(ic, &sc->sc_restarttask); 735 ieee80211_draintask(ic, &sc->sc_radiotask); 736 wpi_stop(sc); 737 callout_stop(&sc->watchdog_to_callout); 738 callout_stop(&sc->calib_to_callout); 739 ieee80211_ifdetach(ic); 740 } 741 742 if (sc->txq[0].data_dmat) { 743 for (ac = 0; ac < WME_NUM_AC; ac++) 744 wpi_free_tx_ring(sc, &sc->txq[ac]); 745 746 wpi_free_tx_ring(sc, &sc->cmdq); 747 wpi_free_rx_ring(sc, &sc->rxq); 748 wpi_free_shared(sc); 749 } 750 751 if (sc->fw_fp != NULL) { 752 wpi_unload_firmware(sc); 753 } 754 755 if (sc->fw_dma.tag) 756 wpi_free_fwmem(sc); 757 758 if (sc->irq != NULL) { 759 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 760 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 761 } 762 763 if (sc->mem != NULL) 764 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 765 766 if (ifp != NULL) 767 if_free(ifp); 768 769 wlan_serialize_exit(); 770 return 0; 771 } 772 773 static struct ieee80211vap * 774 wpi_vap_create(struct ieee80211com *ic, 775 const char name[IFNAMSIZ], int unit, int opmode, int flags, 776 const uint8_t bssid[IEEE80211_ADDR_LEN], 777 const uint8_t mac[IEEE80211_ADDR_LEN]) 778 { 779 struct wpi_vap *wvp; 780 struct ieee80211vap *vap; 781 782 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 783 return NULL; 784 wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap), 785 M_80211_VAP, M_INTWAIT | M_ZERO); 786 if (wvp == NULL) 787 return NULL; 788 vap = &wvp->vap; 789 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 790 /* override with driver methods */ 791 wvp->newstate = vap->iv_newstate; 792 vap->iv_newstate = wpi_newstate; 793 794 ieee80211_ratectl_init(vap); 795 796 /* complete setup */ 797 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 798 ic->ic_opmode = opmode; 799 return vap; 800 } 801 802 static void 803 wpi_vap_delete(struct ieee80211vap *vap) 804 { 805 struct wpi_vap *wvp = WPI_VAP(vap); 806 807 ieee80211_ratectl_deinit(vap); 808 ieee80211_vap_detach(vap); 809 kfree(wvp, M_80211_VAP); 810 } 811 812 static void 813 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 814 { 815 if (error != 0) 816 return; 817 818 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 819 820 *(bus_addr_t *)arg = segs[0].ds_addr; 821 } 822 823 /* 824 * Allocates a contiguous block of dma memory of the requested size and 825 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 826 * allocations greater than 4096 may fail. Hence if the requested alignment is 827 * greater we allocate 'alignment' size extra memory and shift the vaddr and 828 * paddr after the dma load. This bypasses the problem at the cost of a little 829 * more memory. 830 */ 831 static int 832 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 833 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 834 { 835 int error; 836 bus_size_t align; 837 bus_size_t reqsize; 838 839 DPRINTFN(WPI_DEBUG_DMA, 840 ("Size: %zd - alignment %zd\n", size, alignment)); 841 842 dma->size = size; 843 dma->tag = NULL; 844 845 if (alignment > 4096) { 846 align = PAGE_SIZE; 847 reqsize = size + alignment; 848 } else { 849 align = alignment; 850 reqsize = size; 851 } 852 error = bus_dma_tag_create(dma->tag, align, 853 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 854 NULL, NULL, reqsize, 855 1, reqsize, flags, 856 &dma->tag); 857 if (error != 0) { 858 device_printf(sc->sc_dev, 859 "could not create shared page DMA tag\n"); 860 goto fail; 861 } 862 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 863 flags | BUS_DMA_ZERO, &dma->map); 864 if (error != 0) { 865 device_printf(sc->sc_dev, 866 "could not allocate shared page DMA memory\n"); 867 goto fail; 868 } 869 870 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 871 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 872 873 /* Save the original pointers so we can free all the memory */ 874 dma->paddr = dma->paddr_start; 875 dma->vaddr = dma->vaddr_start; 876 877 /* 878 * Check the alignment and increment by 4096 until we get the 879 * requested alignment. Fail if can't obtain the alignment 880 * we requested. 881 */ 882 if ((dma->paddr & (alignment -1 )) != 0) { 883 int i; 884 885 for (i = 0; i < alignment / 4096; i++) { 886 if ((dma->paddr & (alignment - 1 )) == 0) 887 break; 888 dma->paddr += 4096; 889 dma->vaddr += 4096; 890 } 891 if (i == alignment / 4096) { 892 device_printf(sc->sc_dev, 893 "alignment requirement was not satisfied\n"); 894 goto fail; 895 } 896 } 897 898 if (error != 0) { 899 device_printf(sc->sc_dev, 900 "could not load shared page DMA map\n"); 901 goto fail; 902 } 903 904 if (kvap != NULL) 905 *kvap = dma->vaddr; 906 907 return 0; 908 909 fail: 910 wpi_dma_contig_free(dma); 911 return error; 912 } 913 914 static void 915 wpi_dma_contig_free(struct wpi_dma_info *dma) 916 { 917 if (dma->tag) { 918 if (dma->map != NULL) { 919 if (dma->paddr_start != 0) { 920 bus_dmamap_sync(dma->tag, dma->map, 921 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 922 bus_dmamap_unload(dma->tag, dma->map); 923 } 924 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 925 } 926 bus_dma_tag_destroy(dma->tag); 927 } 928 } 929 930 /* 931 * Allocate a shared page between host and NIC. 932 */ 933 static int 934 wpi_alloc_shared(struct wpi_softc *sc) 935 { 936 int error; 937 938 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 939 (void **)&sc->shared, sizeof (struct wpi_shared), 940 PAGE_SIZE, 941 BUS_DMA_NOWAIT); 942 943 if (error != 0) { 944 device_printf(sc->sc_dev, 945 "could not allocate shared area DMA memory\n"); 946 } 947 948 return error; 949 } 950 951 static void 952 wpi_free_shared(struct wpi_softc *sc) 953 { 954 wpi_dma_contig_free(&sc->shared_dma); 955 } 956 957 static int 958 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 959 { 960 961 int i, error; 962 963 ring->cur = 0; 964 965 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 966 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 967 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 968 969 if (error != 0) { 970 device_printf(sc->sc_dev, 971 "%s: could not allocate rx ring DMA memory, error %d\n", 972 __func__, error); 973 goto fail; 974 } 975 976 error = bus_dma_tag_create(ring->data_dmat, 1, 0, 977 BUS_SPACE_MAXADDR_32BIT, 978 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, 979 MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat); 980 if (error != 0) { 981 device_printf(sc->sc_dev, 982 "%s: bus_dma_tag_create_failed, error %d\n", 983 __func__, error); 984 goto fail; 985 } 986 987 /* 988 * Setup Rx buffers. 989 */ 990 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 991 struct wpi_rx_data *data = &ring->data[i]; 992 struct mbuf *m; 993 bus_addr_t paddr; 994 995 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 996 if (error != 0) { 997 device_printf(sc->sc_dev, 998 "%s: bus_dmamap_create failed, error %d\n", 999 __func__, error); 1000 goto fail; 1001 } 1002 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 1003 if (m == NULL) { 1004 device_printf(sc->sc_dev, 1005 "%s: could not allocate rx mbuf\n", __func__); 1006 error = ENOMEM; 1007 goto fail; 1008 } 1009 /* map page */ 1010 error = bus_dmamap_load(ring->data_dmat, data->map, 1011 mtod(m, caddr_t), MCLBYTES, 1012 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1013 if (error != 0 && error != EFBIG) { 1014 device_printf(sc->sc_dev, 1015 "%s: bus_dmamap_load failed, error %d\n", 1016 __func__, error); 1017 m_freem(m); 1018 error = ENOMEM; /* XXX unique code */ 1019 goto fail; 1020 } 1021 bus_dmamap_sync(ring->data_dmat, data->map, 1022 BUS_DMASYNC_PREWRITE); 1023 1024 data->m = m; 1025 ring->desc[i] = htole32(paddr); 1026 } 1027 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1028 BUS_DMASYNC_PREWRITE); 1029 return 0; 1030 fail: 1031 wpi_free_rx_ring(sc, ring); 1032 return error; 1033 } 1034 1035 static void 1036 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1037 { 1038 int ntries; 1039 1040 wpi_mem_lock(sc); 1041 1042 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1043 1044 for (ntries = 0; ntries < 100; ntries++) { 1045 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1046 break; 1047 DELAY(10); 1048 } 1049 1050 wpi_mem_unlock(sc); 1051 1052 #ifdef WPI_DEBUG 1053 if (ntries == 100 && wpi_debug > 0) 1054 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1055 #endif 1056 1057 ring->cur = 0; 1058 } 1059 1060 static void 1061 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1062 { 1063 int i; 1064 1065 wpi_dma_contig_free(&ring->desc_dma); 1066 1067 for (i = 0; i < WPI_RX_RING_COUNT; i++) 1068 if (ring->data[i].m != NULL) 1069 m_freem(ring->data[i].m); 1070 } 1071 1072 static int 1073 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1074 int qid) 1075 { 1076 struct wpi_tx_data *data; 1077 int i, error; 1078 1079 ring->qid = qid; 1080 ring->count = count; 1081 ring->queued = 0; 1082 ring->cur = 0; 1083 ring->data = NULL; 1084 1085 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1086 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1087 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1088 1089 if (error != 0) { 1090 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1091 goto fail; 1092 } 1093 1094 /* update shared page with ring's base address */ 1095 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1096 1097 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1098 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1099 BUS_DMA_NOWAIT); 1100 1101 if (error != 0) { 1102 device_printf(sc->sc_dev, 1103 "could not allocate tx command DMA memory\n"); 1104 goto fail; 1105 } 1106 1107 ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1108 M_INTWAIT | M_ZERO); 1109 if (ring->data == NULL) { 1110 device_printf(sc->sc_dev, 1111 "could not allocate tx data slots\n"); 1112 goto fail; 1113 } 1114 1115 error = bus_dma_tag_create(ring->data_dmat, 1, 0, 1116 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1117 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, 1118 &ring->data_dmat); 1119 if (error != 0) { 1120 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1121 goto fail; 1122 } 1123 1124 for (i = 0; i < count; i++) { 1125 data = &ring->data[i]; 1126 1127 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1128 if (error != 0) { 1129 device_printf(sc->sc_dev, 1130 "could not create tx buf DMA map\n"); 1131 goto fail; 1132 } 1133 bus_dmamap_sync(ring->data_dmat, data->map, 1134 BUS_DMASYNC_PREWRITE); 1135 } 1136 1137 return 0; 1138 1139 fail: 1140 wpi_free_tx_ring(sc, ring); 1141 return error; 1142 } 1143 1144 static void 1145 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1146 { 1147 struct wpi_tx_data *data; 1148 int i, ntries; 1149 1150 wpi_mem_lock(sc); 1151 1152 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1153 for (ntries = 0; ntries < 100; ntries++) { 1154 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1155 break; 1156 DELAY(10); 1157 } 1158 #ifdef WPI_DEBUG 1159 if (ntries == 100 && wpi_debug > 0) 1160 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1161 ring->qid); 1162 #endif 1163 wpi_mem_unlock(sc); 1164 1165 for (i = 0; i < ring->count; i++) { 1166 data = &ring->data[i]; 1167 1168 if (data->m != NULL) { 1169 bus_dmamap_unload(ring->data_dmat, data->map); 1170 m_freem(data->m); 1171 data->m = NULL; 1172 } 1173 } 1174 1175 ring->queued = 0; 1176 ring->cur = 0; 1177 } 1178 1179 static void 1180 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1181 { 1182 struct wpi_tx_data *data; 1183 int i; 1184 1185 wpi_dma_contig_free(&ring->desc_dma); 1186 wpi_dma_contig_free(&ring->cmd_dma); 1187 1188 if (ring->data != NULL) { 1189 for (i = 0; i < ring->count; i++) { 1190 data = &ring->data[i]; 1191 1192 if (data->m != NULL) { 1193 bus_dmamap_sync(ring->data_dmat, data->map, 1194 BUS_DMASYNC_POSTWRITE); 1195 bus_dmamap_unload(ring->data_dmat, data->map); 1196 m_freem(data->m); 1197 data->m = NULL; 1198 } 1199 } 1200 kfree(ring->data, M_DEVBUF); 1201 } 1202 1203 if (ring->data_dmat != NULL) 1204 bus_dma_tag_destroy(ring->data_dmat); 1205 } 1206 1207 static int 1208 wpi_shutdown(device_t dev) 1209 { 1210 struct wpi_softc *sc = device_get_softc(dev); 1211 1212 wlan_serialize_enter(); 1213 wpi_stop_locked(sc); 1214 wpi_unload_firmware(sc); 1215 wlan_serialize_exit(); 1216 1217 return 0; 1218 } 1219 1220 static int 1221 wpi_suspend(device_t dev) 1222 { 1223 struct wpi_softc *sc = device_get_softc(dev); 1224 1225 wlan_serialize_enter(); 1226 wpi_stop(sc); 1227 wlan_serialize_exit(); 1228 return 0; 1229 } 1230 1231 static int 1232 wpi_resume(device_t dev) 1233 { 1234 struct wpi_softc *sc = device_get_softc(dev); 1235 struct ifnet *ifp = sc->sc_ifp; 1236 1237 wlan_serialize_enter(); 1238 pci_write_config(dev, 0x41, 0, 1); 1239 1240 if (ifp->if_flags & IFF_UP) { 1241 wpi_init(ifp->if_softc); 1242 if (ifp->if_flags & IFF_RUNNING) 1243 wpi_start(ifp); 1244 } 1245 wlan_serialize_exit(); 1246 return 0; 1247 } 1248 1249 /* ARGSUSED */ 1250 static struct ieee80211_node * 1251 wpi_node_alloc(struct ieee80211vap *vap __unused, 1252 const uint8_t mac[IEEE80211_ADDR_LEN] __unused) 1253 { 1254 struct wpi_node *wn; 1255 1256 wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO); 1257 1258 return &wn->ni; 1259 } 1260 1261 /** 1262 * Called by net80211 when ever there is a change to 80211 state machine 1263 */ 1264 static int 1265 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1266 { 1267 struct wpi_vap *wvp = WPI_VAP(vap); 1268 struct ieee80211com *ic = vap->iv_ic; 1269 struct ifnet *ifp = ic->ic_ifp; 1270 struct wpi_softc *sc = ifp->if_softc; 1271 int error; 1272 1273 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1274 ieee80211_state_name[vap->iv_state], 1275 ieee80211_state_name[nstate], sc->flags)); 1276 1277 if (nstate == IEEE80211_S_AUTH) { 1278 /* The node must be registered in the firmware before auth */ 1279 error = wpi_auth(sc, vap); 1280 if (error != 0) { 1281 device_printf(sc->sc_dev, 1282 "%s: could not move to auth state, error %d\n", 1283 __func__, error); 1284 } 1285 } 1286 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1287 error = wpi_run(sc, vap); 1288 if (error != 0) { 1289 device_printf(sc->sc_dev, 1290 "%s: could not move to run state, error %d\n", 1291 __func__, error); 1292 } 1293 } 1294 if (nstate == IEEE80211_S_RUN) { 1295 /* RUN -> RUN transition; just restart the timers */ 1296 wpi_calib_timeout_callout(sc); 1297 /* XXX split out rate control timer */ 1298 } 1299 return wvp->newstate(vap, nstate, arg); 1300 } 1301 1302 /* 1303 * Grab exclusive access to NIC memory. 1304 */ 1305 static void 1306 wpi_mem_lock(struct wpi_softc *sc) 1307 { 1308 int ntries; 1309 uint32_t tmp; 1310 1311 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1312 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1313 1314 /* spin until we actually get the lock */ 1315 for (ntries = 0; ntries < 100; ntries++) { 1316 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1317 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1318 break; 1319 DELAY(10); 1320 } 1321 if (ntries == 100) 1322 device_printf(sc->sc_dev, "could not lock memory\n"); 1323 } 1324 1325 /* 1326 * Release lock on NIC memory. 1327 */ 1328 static void 1329 wpi_mem_unlock(struct wpi_softc *sc) 1330 { 1331 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1332 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1333 } 1334 1335 static uint32_t 1336 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1337 { 1338 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1339 return WPI_READ(sc, WPI_READ_MEM_DATA); 1340 } 1341 1342 static void 1343 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1344 { 1345 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1346 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1347 } 1348 1349 static void 1350 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1351 const uint32_t *data, int wlen) 1352 { 1353 for (; wlen > 0; wlen--, data++, addr+=4) 1354 wpi_mem_write(sc, addr, *data); 1355 } 1356 1357 /* 1358 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1359 * using the traditional bit-bang method. Data is read up until len bytes have 1360 * been obtained. 1361 */ 1362 static uint16_t 1363 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1364 { 1365 int ntries; 1366 uint32_t val; 1367 uint8_t *out = data; 1368 1369 wpi_mem_lock(sc); 1370 1371 for (; len > 0; len -= 2, addr++) { 1372 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1373 1374 for (ntries = 0; ntries < 10; ntries++) { 1375 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1376 break; 1377 DELAY(5); 1378 } 1379 1380 if (ntries == 10) { 1381 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1382 return ETIMEDOUT; 1383 } 1384 1385 *out++= val >> 16; 1386 if (len > 1) 1387 *out ++= val >> 24; 1388 } 1389 1390 wpi_mem_unlock(sc); 1391 1392 return 0; 1393 } 1394 1395 /* 1396 * The firmware text and data segments are transferred to the NIC using DMA. 1397 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1398 * where to find it. Once the NIC has copied the firmware into its internal 1399 * memory, we can free our local copy in the driver. 1400 */ 1401 static int 1402 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1403 { 1404 int error, ntries; 1405 1406 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1407 1408 size /= sizeof(uint32_t); 1409 1410 wpi_mem_lock(sc); 1411 1412 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1413 (const uint32_t *)fw, size); 1414 1415 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1416 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1417 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1418 1419 /* run microcode */ 1420 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1421 1422 /* wait while the adapter is busy copying the firmware */ 1423 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1424 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1425 DPRINTFN(WPI_DEBUG_HW, 1426 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1427 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1428 if (status & WPI_TX_IDLE(6)) { 1429 DPRINTFN(WPI_DEBUG_HW, 1430 ("Status Match! - ntries = %d\n", ntries)); 1431 break; 1432 } 1433 DELAY(10); 1434 } 1435 if (ntries == 1000) { 1436 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1437 error = ETIMEDOUT; 1438 } 1439 1440 /* start the microcode executing */ 1441 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1442 1443 wpi_mem_unlock(sc); 1444 1445 return (error); 1446 } 1447 1448 static void 1449 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1450 struct wpi_rx_data *data) 1451 { 1452 struct ifnet *ifp = sc->sc_ifp; 1453 struct ieee80211com *ic = ifp->if_l2com; 1454 struct wpi_rx_ring *ring = &sc->rxq; 1455 struct wpi_rx_stat *stat; 1456 struct wpi_rx_head *head; 1457 struct wpi_rx_tail *tail; 1458 struct ieee80211_node *ni; 1459 struct mbuf *m, *mnew; 1460 bus_addr_t paddr; 1461 int error; 1462 1463 stat = (struct wpi_rx_stat *)(desc + 1); 1464 1465 if (stat->len > WPI_STAT_MAXLEN) { 1466 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1467 ifp->if_ierrors++; 1468 return; 1469 } 1470 1471 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1472 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1473 1474 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1475 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1476 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1477 (uintmax_t)le64toh(tail->tstamp))); 1478 1479 /* discard Rx frames with bad CRC early */ 1480 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1481 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1482 le32toh(tail->flags))); 1483 ifp->if_ierrors++; 1484 return; 1485 } 1486 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1487 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1488 le16toh(head->len))); 1489 ifp->if_ierrors++; 1490 return; 1491 } 1492 1493 /* XXX don't need mbuf, just dma buffer */ 1494 mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 1495 if (mnew == NULL) { 1496 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1497 __func__)); 1498 ifp->if_ierrors++; 1499 return; 1500 } 1501 error = bus_dmamap_load(ring->data_dmat, data->map, 1502 mtod(mnew, caddr_t), MCLBYTES, 1503 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1504 if (error != 0 && error != EFBIG) { 1505 device_printf(sc->sc_dev, 1506 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1507 m_freem(mnew); 1508 ifp->if_ierrors++; 1509 return; 1510 } 1511 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1512 1513 /* finalize mbuf and swap in new one */ 1514 m = data->m; 1515 m->m_pkthdr.rcvif = ifp; 1516 m->m_data = (caddr_t)(head + 1); 1517 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1518 1519 data->m = mnew; 1520 /* update Rx descriptor */ 1521 ring->desc[ring->cur] = htole32(paddr); 1522 1523 if (ieee80211_radiotap_active(ic)) { 1524 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1525 1526 tap->wr_flags = 0; 1527 tap->wr_chan_freq = 1528 htole16(ic->ic_channels[head->chan].ic_freq); 1529 tap->wr_chan_flags = 1530 htole16(ic->ic_channels[head->chan].ic_flags); 1531 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1532 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1533 tap->wr_tsft = tail->tstamp; 1534 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1535 switch (head->rate) { 1536 /* CCK rates */ 1537 case 10: tap->wr_rate = 2; break; 1538 case 20: tap->wr_rate = 4; break; 1539 case 55: tap->wr_rate = 11; break; 1540 case 110: tap->wr_rate = 22; break; 1541 /* OFDM rates */ 1542 case 0xd: tap->wr_rate = 12; break; 1543 case 0xf: tap->wr_rate = 18; break; 1544 case 0x5: tap->wr_rate = 24; break; 1545 case 0x7: tap->wr_rate = 36; break; 1546 case 0x9: tap->wr_rate = 48; break; 1547 case 0xb: tap->wr_rate = 72; break; 1548 case 0x1: tap->wr_rate = 96; break; 1549 case 0x3: tap->wr_rate = 108; break; 1550 /* unknown rate: should not happen */ 1551 default: tap->wr_rate = 0; 1552 } 1553 if (le16toh(head->flags) & 0x4) 1554 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1555 } 1556 1557 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1558 if (ni != NULL) { 1559 (void) ieee80211_input(ni, m, stat->rssi, 0); 1560 ieee80211_free_node(ni); 1561 } else 1562 (void) ieee80211_input_all(ic, m, stat->rssi, 0); 1563 } 1564 1565 static void 1566 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1567 { 1568 struct ifnet *ifp = sc->sc_ifp; 1569 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1570 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1571 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1572 struct ieee80211_node *ni = txdata->ni; 1573 struct ieee80211vap *vap = ni->ni_vap; 1574 int retrycnt = 0; 1575 1576 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1577 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1578 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1579 le32toh(stat->status))); 1580 1581 /* 1582 * Update rate control statistics for the node. 1583 * XXX we should not count mgmt frames since they're always sent at 1584 * the lowest available bit-rate. 1585 * XXX frames w/o ACK shouldn't be used either 1586 */ 1587 if (stat->ntries > 0) { 1588 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1589 retrycnt = 1; 1590 } 1591 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, 1592 &retrycnt, NULL); 1593 1594 /* XXX oerrors should only count errors !maxtries */ 1595 if ((le32toh(stat->status) & 0xff) != 1) 1596 ifp->if_oerrors++; 1597 else 1598 ifp->if_opackets++; 1599 1600 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1601 bus_dmamap_unload(ring->data_dmat, txdata->map); 1602 /* XXX handle M_TXCB? */ 1603 m_freem(txdata->m); 1604 txdata->m = NULL; 1605 ieee80211_free_node(txdata->ni); 1606 txdata->ni = NULL; 1607 1608 ring->queued--; 1609 1610 sc->sc_tx_timer = 0; 1611 ifp->if_flags &= ~IFF_OACTIVE; 1612 wpi_start_locked(ifp); 1613 } 1614 1615 static void 1616 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1617 { 1618 struct wpi_tx_ring *ring = &sc->cmdq; 1619 struct wpi_tx_data *data; 1620 1621 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1622 "type=%s len=%d\n", desc->qid, desc->idx, 1623 desc->flags, wpi_cmd_str(desc->type), 1624 le32toh(desc->len))); 1625 1626 if ((desc->qid & 7) != 4) 1627 return; /* not a command ack */ 1628 1629 data = &ring->data[desc->idx]; 1630 1631 /* if the command was mapped in a mbuf, free it */ 1632 if (data->m != NULL) { 1633 bus_dmamap_unload(ring->data_dmat, data->map); 1634 m_freem(data->m); 1635 data->m = NULL; 1636 } 1637 1638 sc->flags &= ~WPI_FLAG_BUSY; 1639 wakeup(&ring->cmd[desc->idx]); 1640 } 1641 1642 static void 1643 wpi_notif_intr(struct wpi_softc *sc) 1644 { 1645 struct ifnet *ifp = sc->sc_ifp; 1646 struct ieee80211com *ic = ifp->if_l2com; 1647 struct wpi_rx_desc *desc; 1648 struct wpi_rx_data *data; 1649 uint32_t hw; 1650 1651 hw = le32toh(sc->shared->next); 1652 while (sc->rxq.cur != hw) { 1653 data = &sc->rxq.data[sc->rxq.cur]; 1654 desc = (void *)data->m->m_ext.ext_buf; 1655 1656 DPRINTFN(WPI_DEBUG_NOTIFY, 1657 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1658 desc->qid, 1659 desc->idx, 1660 desc->flags, 1661 desc->type, 1662 le32toh(desc->len))); 1663 1664 if (!(desc->qid & 0x80)) /* reply to a command */ 1665 wpi_cmd_intr(sc, desc); 1666 1667 switch (desc->type) { 1668 case WPI_RX_DONE: 1669 /* a 802.11 frame was received */ 1670 wpi_rx_intr(sc, desc, data); 1671 break; 1672 1673 case WPI_TX_DONE: 1674 /* a 802.11 frame has been transmitted */ 1675 wpi_tx_intr(sc, desc); 1676 break; 1677 1678 case WPI_UC_READY: 1679 { 1680 struct wpi_ucode_info *uc = 1681 (struct wpi_ucode_info *)(desc + 1); 1682 1683 /* the microcontroller is ready */ 1684 DPRINTF(("microcode alive notification version %x " 1685 "alive %x\n", le32toh(uc->version), 1686 le32toh(uc->valid))); 1687 1688 if (le32toh(uc->valid) != 1) { 1689 device_printf(sc->sc_dev, 1690 "microcontroller initialization failed\n"); 1691 wpi_stop_locked(sc); 1692 } 1693 break; 1694 } 1695 case WPI_STATE_CHANGED: 1696 { 1697 uint32_t *status = (uint32_t *)(desc + 1); 1698 1699 /* enabled/disabled notification */ 1700 DPRINTF(("state changed to %x\n", le32toh(*status))); 1701 1702 if (le32toh(*status) & 1) { 1703 device_printf(sc->sc_dev, 1704 "Radio transmitter is switched off\n"); 1705 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1706 ifp->if_flags &= ~IFF_RUNNING; 1707 /* Disable firmware commands */ 1708 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1709 } 1710 break; 1711 } 1712 case WPI_START_SCAN: 1713 { 1714 #ifdef WPI_DEBUG 1715 struct wpi_start_scan *scan = 1716 (struct wpi_start_scan *)(desc + 1); 1717 #endif 1718 1719 DPRINTFN(WPI_DEBUG_SCANNING, 1720 ("scanning channel %d status %x\n", 1721 scan->chan, le32toh(scan->status))); 1722 break; 1723 } 1724 case WPI_STOP_SCAN: 1725 { 1726 #ifdef WPI_DEBUG 1727 struct wpi_stop_scan *scan = 1728 (struct wpi_stop_scan *)(desc + 1); 1729 #endif 1730 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1731 1732 DPRINTFN(WPI_DEBUG_SCANNING, 1733 ("scan finished nchan=%d status=%d chan=%d\n", 1734 scan->nchan, scan->status, scan->chan)); 1735 1736 sc->sc_scan_timer = 0; 1737 ieee80211_scan_next(vap); 1738 break; 1739 } 1740 case WPI_MISSED_BEACON: 1741 { 1742 struct wpi_missed_beacon *beacon = 1743 (struct wpi_missed_beacon *)(desc + 1); 1744 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1745 1746 if (le32toh(beacon->consecutive) >= 1747 vap->iv_bmissthreshold) { 1748 DPRINTF(("Beacon miss: %u >= %u\n", 1749 le32toh(beacon->consecutive), 1750 vap->iv_bmissthreshold)); 1751 ieee80211_beacon_miss(ic); 1752 } 1753 break; 1754 } 1755 } 1756 1757 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1758 } 1759 1760 /* tell the firmware what we have processed */ 1761 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1762 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1763 } 1764 1765 static void 1766 wpi_intr(void *arg) 1767 { 1768 struct wpi_softc *sc = arg; 1769 uint32_t r; 1770 1771 r = WPI_READ(sc, WPI_INTR); 1772 if (r == 0 || r == 0xffffffff) { 1773 return; 1774 } 1775 1776 /* disable interrupts */ 1777 WPI_WRITE(sc, WPI_MASK, 0); 1778 /* ack interrupts */ 1779 WPI_WRITE(sc, WPI_INTR, r); 1780 1781 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1782 struct ifnet *ifp = sc->sc_ifp; 1783 struct ieee80211com *ic = ifp->if_l2com; 1784 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1785 1786 device_printf(sc->sc_dev, "fatal firmware error\n"); 1787 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1788 "(Hardware Error)")); 1789 if (vap != NULL) 1790 ieee80211_cancel_scan(vap); 1791 ieee80211_runtask(ic, &sc->sc_restarttask); 1792 sc->flags &= ~WPI_FLAG_BUSY; 1793 return; 1794 } 1795 1796 if (r & WPI_RX_INTR) 1797 wpi_notif_intr(sc); 1798 1799 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1800 wakeup(sc); 1801 1802 /* re-enable interrupts */ 1803 if (sc->sc_ifp->if_flags & IFF_UP) 1804 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1805 1806 } 1807 1808 static uint8_t 1809 wpi_plcp_signal(int rate) 1810 { 1811 switch (rate) { 1812 /* CCK rates (returned values are device-dependent) */ 1813 case 2: return 10; 1814 case 4: return 20; 1815 case 11: return 55; 1816 case 22: return 110; 1817 1818 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1819 /* R1-R4 (ral/ural is R4-R1) */ 1820 case 12: return 0xd; 1821 case 18: return 0xf; 1822 case 24: return 0x5; 1823 case 36: return 0x7; 1824 case 48: return 0x9; 1825 case 72: return 0xb; 1826 case 96: return 0x1; 1827 case 108: return 0x3; 1828 1829 /* unsupported rates (should not get there) */ 1830 default: return 0; 1831 } 1832 } 1833 1834 /* quickly determine if a given rate is CCK or OFDM */ 1835 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1836 1837 /* 1838 * Construct the data packet for a transmit buffer and acutally put 1839 * the buffer onto the transmit ring, kicking the card to process the 1840 * the buffer. 1841 */ 1842 static int 1843 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1844 int ac) 1845 { 1846 struct ieee80211vap *vap = ni->ni_vap; 1847 struct ifnet *ifp = sc->sc_ifp; 1848 struct ieee80211com *ic = ifp->if_l2com; 1849 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1850 struct wpi_tx_ring *ring = &sc->txq[ac]; 1851 struct wpi_tx_desc *desc; 1852 struct wpi_tx_data *data; 1853 struct wpi_tx_cmd *cmd; 1854 struct wpi_cmd_data *tx; 1855 struct ieee80211_frame *wh; 1856 const struct ieee80211_txparam *tp; 1857 struct ieee80211_key *k; 1858 struct mbuf *mnew; 1859 int i, error, nsegs, rate, hdrlen, ismcast; 1860 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1861 1862 desc = &ring->desc[ring->cur]; 1863 data = &ring->data[ring->cur]; 1864 1865 wh = mtod(m0, struct ieee80211_frame *); 1866 1867 hdrlen = ieee80211_hdrsize(wh); 1868 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1869 1870 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1871 k = ieee80211_crypto_encap(ni, m0); 1872 if (k == NULL) { 1873 m_freem(m0); 1874 return ENOBUFS; 1875 } 1876 /* packet header may have moved, reset our local pointer */ 1877 wh = mtod(m0, struct ieee80211_frame *); 1878 } 1879 1880 cmd = &ring->cmd[ring->cur]; 1881 cmd->code = WPI_CMD_TX_DATA; 1882 cmd->flags = 0; 1883 cmd->qid = ring->qid; 1884 cmd->idx = ring->cur; 1885 1886 tx = (struct wpi_cmd_data *)cmd->data; 1887 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1888 tx->timeout = htole16(0); 1889 tx->ofdm_mask = 0xff; 1890 tx->cck_mask = 0x0f; 1891 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1892 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1893 tx->len = htole16(m0->m_pkthdr.len); 1894 1895 if (!ismcast) { 1896 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1897 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1898 tx->flags |= htole32(WPI_TX_NEED_ACK); 1899 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1900 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1901 tx->rts_ntries = 7; 1902 } 1903 } 1904 /* pick a rate */ 1905 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1906 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1907 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1908 /* tell h/w to set timestamp in probe responses */ 1909 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1910 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1911 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1912 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1913 tx->timeout = htole16(3); 1914 else 1915 tx->timeout = htole16(2); 1916 rate = tp->mgmtrate; 1917 } else if (ismcast) { 1918 rate = tp->mcastrate; 1919 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1920 rate = tp->ucastrate; 1921 } else { 1922 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1923 rate = ni->ni_txrate; 1924 } 1925 tx->rate = wpi_plcp_signal(rate); 1926 1927 /* be very persistant at sending frames out */ 1928 #if 0 1929 tx->data_ntries = tp->maxretry; 1930 #else 1931 tx->data_ntries = 30; /* XXX way too high */ 1932 #endif 1933 1934 if (ieee80211_radiotap_active_vap(vap)) { 1935 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1936 tap->wt_flags = 0; 1937 tap->wt_rate = rate; 1938 tap->wt_hwqueue = ac; 1939 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1940 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1941 1942 ieee80211_radiotap_tx(vap, m0); 1943 } 1944 1945 /* save and trim IEEE802.11 header */ 1946 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1947 m_adj(m0, hdrlen); 1948 1949 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs, 1950 1, &nsegs, BUS_DMA_NOWAIT); 1951 if (error != 0 && error != EFBIG) { 1952 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1953 error); 1954 m_freem(m0); 1955 return error; 1956 } 1957 if (error != 0) { 1958 /* XXX use m_collapse */ 1959 mnew = m_defrag(m0, MB_DONTWAIT); 1960 if (mnew == NULL) { 1961 device_printf(sc->sc_dev, 1962 "could not defragment mbuf\n"); 1963 m_freem(m0); 1964 return ENOBUFS; 1965 } 1966 m0 = mnew; 1967 1968 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, 1969 m0, segs, 1, &nsegs, BUS_DMA_NOWAIT); 1970 if (error != 0) { 1971 device_printf(sc->sc_dev, 1972 "could not map mbuf (error %d)\n", error); 1973 m_freem(m0); 1974 return error; 1975 } 1976 } 1977 1978 data->m = m0; 1979 data->ni = ni; 1980 1981 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1982 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 1983 1984 /* first scatter/gather segment is used by the tx data command */ 1985 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1986 (1 + nsegs) << 24); 1987 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1988 ring->cur * sizeof (struct wpi_tx_cmd)); 1989 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 1990 for (i = 1; i <= nsegs; i++) { 1991 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 1992 desc->segs[i].len = htole32(segs[i - 1].ds_len); 1993 } 1994 1995 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1996 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1997 BUS_DMASYNC_PREWRITE); 1998 1999 ring->queued++; 2000 2001 /* kick ring */ 2002 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2003 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2004 2005 return 0; 2006 } 2007 2008 /** 2009 * Process data waiting to be sent on the IFNET output queue 2010 */ 2011 static void 2012 wpi_start(struct ifnet *ifp) 2013 { 2014 wpi_start_locked(ifp); 2015 } 2016 2017 static void 2018 wpi_start_locked(struct ifnet *ifp) 2019 { 2020 struct wpi_softc *sc = ifp->if_softc; 2021 struct ieee80211_node *ni; 2022 struct mbuf *m; 2023 int ac; 2024 2025 if ((ifp->if_flags & IFF_RUNNING) == 0) { 2026 ifq_purge(&ifp->if_snd); 2027 return; 2028 } 2029 2030 for (;;) { 2031 IF_DEQUEUE(&ifp->if_snd, m); 2032 if (m == NULL) 2033 break; 2034 ac = M_WME_GETAC(m); 2035 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2036 /* there is no place left in this ring */ 2037 ifq_prepend(&ifp->if_snd, m); 2038 ifp->if_flags |= IFF_OACTIVE; 2039 break; 2040 } 2041 ni = ieee80211_ref_node((struct ieee80211_node *)m->m_pkthdr.rcvif); 2042 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2043 ieee80211_free_node(ni); 2044 ifp->if_oerrors++; 2045 break; 2046 } 2047 sc->sc_tx_timer = 5; 2048 } 2049 } 2050 2051 static int 2052 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2053 const struct ieee80211_bpf_params *params) 2054 { 2055 struct ieee80211com *ic = ni->ni_ic; 2056 struct ifnet *ifp = ic->ic_ifp; 2057 struct wpi_softc *sc = ifp->if_softc; 2058 2059 /* prevent management frames from being sent if we're not ready */ 2060 if (!(ifp->if_flags & IFF_RUNNING)) { 2061 m_freem(m); 2062 ieee80211_free_node(ni); 2063 return ENETDOWN; 2064 } 2065 2066 /* management frames go into ring 0 */ 2067 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2068 ifp->if_flags |= IFF_OACTIVE; 2069 m_freem(m); 2070 ieee80211_free_node(ni); 2071 return ENOBUFS; /* XXX */ 2072 } 2073 2074 ifp->if_opackets++; 2075 if (wpi_tx_data(sc, m, ni, 0) != 0) 2076 goto bad; 2077 sc->sc_tx_timer = 5; 2078 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc); 2079 2080 return 0; 2081 bad: 2082 ifp->if_oerrors++; 2083 ieee80211_free_node(ni); 2084 return EIO; /* XXX */ 2085 } 2086 2087 static int 2088 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred) 2089 { 2090 struct wpi_softc *sc = ifp->if_softc; 2091 struct ieee80211com *ic = ifp->if_l2com; 2092 struct ifreq *ifr = (struct ifreq *) data; 2093 int error = 0, startall = 0; 2094 2095 switch (cmd) { 2096 case SIOCSIFFLAGS: 2097 if ((ifp->if_flags & IFF_UP)) { 2098 if (!(ifp->if_flags & IFF_RUNNING)) { 2099 wpi_init_locked(sc, 0); 2100 startall = 1; 2101 } 2102 } else if ((ifp->if_flags & IFF_RUNNING) || 2103 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2104 wpi_stop_locked(sc); 2105 if (startall) 2106 ieee80211_start_all(ic); 2107 break; 2108 case SIOCGIFMEDIA: 2109 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2110 break; 2111 case SIOCGIFADDR: 2112 error = ether_ioctl(ifp, cmd, data); 2113 break; 2114 default: 2115 error = EINVAL; 2116 break; 2117 } 2118 return error; 2119 } 2120 2121 /* 2122 * Extract various information from EEPROM. 2123 */ 2124 static void 2125 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2126 { 2127 int i; 2128 2129 /* read the hardware capabilities, revision and SKU type */ 2130 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2131 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2132 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2133 2134 /* read the regulatory domain */ 2135 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2136 2137 /* read in the hw MAC address */ 2138 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2139 2140 /* read the list of authorized channels */ 2141 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2142 wpi_read_eeprom_channels(sc,i); 2143 2144 /* read the power level calibration info for each group */ 2145 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2146 wpi_read_eeprom_group(sc,i); 2147 } 2148 2149 /* 2150 * Send a command to the firmware. 2151 */ 2152 static int 2153 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2154 { 2155 struct wpi_tx_ring *ring = &sc->cmdq; 2156 struct wpi_tx_desc *desc; 2157 struct wpi_tx_cmd *cmd; 2158 2159 #ifdef WPI_DEBUG 2160 if (!async) { 2161 wlan_assert_serialized(); 2162 } 2163 #endif 2164 2165 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2166 async)); 2167 2168 if (sc->flags & WPI_FLAG_BUSY) { 2169 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2170 __func__, code); 2171 return EAGAIN; 2172 } 2173 sc->flags|= WPI_FLAG_BUSY; 2174 2175 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2176 code, size)); 2177 2178 desc = &ring->desc[ring->cur]; 2179 cmd = &ring->cmd[ring->cur]; 2180 2181 cmd->code = code; 2182 cmd->flags = 0; 2183 cmd->qid = ring->qid; 2184 cmd->idx = ring->cur; 2185 memcpy(cmd->data, buf, size); 2186 2187 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2188 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2189 ring->cur * sizeof (struct wpi_tx_cmd)); 2190 desc->segs[0].len = htole32(4 + size); 2191 2192 /* kick cmd ring */ 2193 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2194 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2195 2196 if (async) { 2197 sc->flags &= ~ WPI_FLAG_BUSY; 2198 return 0; 2199 } 2200 2201 return zsleep(cmd, &wlan_global_serializer, 0, "wpicmd", hz); 2202 } 2203 2204 static int 2205 wpi_wme_update(struct ieee80211com *ic) 2206 { 2207 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2208 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2209 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2210 const struct wmeParams *wmep; 2211 struct wpi_wme_setup wme; 2212 int ac; 2213 2214 /* don't override default WME values if WME is not actually enabled */ 2215 if (!(ic->ic_flags & IEEE80211_F_WME)) 2216 return 0; 2217 2218 wme.flags = 0; 2219 for (ac = 0; ac < WME_NUM_AC; ac++) { 2220 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2221 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2222 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2223 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2224 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2225 2226 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2227 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2228 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2229 } 2230 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2231 #undef WPI_USEC 2232 #undef WPI_EXP2 2233 } 2234 2235 /* 2236 * Configure h/w multi-rate retries. 2237 */ 2238 static int 2239 wpi_mrr_setup(struct wpi_softc *sc) 2240 { 2241 struct ifnet *ifp = sc->sc_ifp; 2242 struct ieee80211com *ic = ifp->if_l2com; 2243 struct wpi_mrr_setup mrr; 2244 int i, error; 2245 2246 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2247 2248 /* CCK rates (not used with 802.11a) */ 2249 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2250 mrr.rates[i].flags = 0; 2251 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2252 /* fallback to the immediate lower CCK rate (if any) */ 2253 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2254 /* try one time at this rate before falling back to "next" */ 2255 mrr.rates[i].ntries = 1; 2256 } 2257 2258 /* OFDM rates (not used with 802.11b) */ 2259 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2260 mrr.rates[i].flags = 0; 2261 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2262 /* fallback to the immediate lower OFDM rate (if any) */ 2263 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2264 mrr.rates[i].next = (i == WPI_OFDM6) ? 2265 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2266 WPI_OFDM6 : WPI_CCK2) : 2267 i - 1; 2268 /* try one time at this rate before falling back to "next" */ 2269 mrr.rates[i].ntries = 1; 2270 } 2271 2272 /* setup MRR for control frames */ 2273 mrr.which = htole32(WPI_MRR_CTL); 2274 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2275 if (error != 0) { 2276 device_printf(sc->sc_dev, 2277 "could not setup MRR for control frames\n"); 2278 return error; 2279 } 2280 2281 /* setup MRR for data frames */ 2282 mrr.which = htole32(WPI_MRR_DATA); 2283 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2284 if (error != 0) { 2285 device_printf(sc->sc_dev, 2286 "could not setup MRR for data frames\n"); 2287 return error; 2288 } 2289 2290 return 0; 2291 } 2292 2293 static void 2294 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2295 { 2296 struct wpi_cmd_led led; 2297 2298 led.which = which; 2299 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2300 led.off = off; 2301 led.on = on; 2302 2303 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2304 } 2305 2306 static void 2307 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2308 { 2309 struct wpi_cmd_tsf tsf; 2310 uint64_t val, mod; 2311 2312 memset(&tsf, 0, sizeof tsf); 2313 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2314 tsf.bintval = htole16(ni->ni_intval); 2315 tsf.lintval = htole16(10); 2316 2317 /* compute remaining time until next beacon */ 2318 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2319 mod = le64toh(tsf.tstamp) % val; 2320 tsf.binitval = htole32((uint32_t)(val - mod)); 2321 2322 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2323 device_printf(sc->sc_dev, "could not enable TSF\n"); 2324 } 2325 2326 #if 0 2327 /* 2328 * Build a beacon frame that the firmware will broadcast periodically in 2329 * IBSS or HostAP modes. 2330 */ 2331 static int 2332 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2333 { 2334 struct ifnet *ifp = sc->sc_ifp; 2335 struct ieee80211com *ic = ifp->if_l2com; 2336 struct wpi_tx_ring *ring = &sc->cmdq; 2337 struct wpi_tx_desc *desc; 2338 struct wpi_tx_data *data; 2339 struct wpi_tx_cmd *cmd; 2340 struct wpi_cmd_beacon *bcn; 2341 struct ieee80211_beacon_offsets bo; 2342 struct mbuf *m0; 2343 bus_addr_t physaddr; 2344 int error; 2345 2346 desc = &ring->desc[ring->cur]; 2347 data = &ring->data[ring->cur]; 2348 2349 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2350 if (m0 == NULL) { 2351 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2352 return ENOMEM; 2353 } 2354 2355 cmd = &ring->cmd[ring->cur]; 2356 cmd->code = WPI_CMD_SET_BEACON; 2357 cmd->flags = 0; 2358 cmd->qid = ring->qid; 2359 cmd->idx = ring->cur; 2360 2361 bcn = (struct wpi_cmd_beacon *)cmd->data; 2362 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2363 bcn->id = WPI_ID_BROADCAST; 2364 bcn->ofdm_mask = 0xff; 2365 bcn->cck_mask = 0x0f; 2366 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2367 bcn->len = htole16(m0->m_pkthdr.len); 2368 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2369 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2370 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2371 2372 /* save and trim IEEE802.11 header */ 2373 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2374 m_adj(m0, sizeof (struct ieee80211_frame)); 2375 2376 /* assume beacon frame is contiguous */ 2377 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2378 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2379 if (error != 0) { 2380 device_printf(sc->sc_dev, "could not map beacon\n"); 2381 m_freem(m0); 2382 return error; 2383 } 2384 2385 data->m = m0; 2386 2387 /* first scatter/gather segment is used by the beacon command */ 2388 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2389 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2390 ring->cur * sizeof (struct wpi_tx_cmd)); 2391 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2392 desc->segs[1].addr = htole32(physaddr); 2393 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2394 2395 /* kick cmd ring */ 2396 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2397 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2398 2399 return 0; 2400 } 2401 #endif 2402 2403 static int 2404 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2405 { 2406 struct ieee80211com *ic = vap->iv_ic; 2407 struct ieee80211_node *ni; 2408 struct wpi_node_info node; 2409 int error; 2410 2411 2412 /* update adapter's configuration */ 2413 sc->config.associd = 0; 2414 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2415 ni = ieee80211_ref_node(vap->iv_bss); 2416 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2417 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2418 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2419 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2420 WPI_CONFIG_24GHZ); 2421 } 2422 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2423 sc->config.cck_mask = 0; 2424 sc->config.ofdm_mask = 0x15; 2425 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2426 sc->config.cck_mask = 0x03; 2427 sc->config.ofdm_mask = 0; 2428 } else { 2429 /* XXX assume 802.11b/g */ 2430 sc->config.cck_mask = 0x0f; 2431 sc->config.ofdm_mask = 0x15; 2432 } 2433 2434 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2435 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2436 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2437 sizeof (struct wpi_config), 1); 2438 if (error != 0) { 2439 device_printf(sc->sc_dev, "could not configure\n"); 2440 ieee80211_free_node(ni); 2441 return error; 2442 } 2443 2444 /* configuration has changed, set Tx power accordingly */ 2445 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2446 device_printf(sc->sc_dev, "could not set Tx power\n"); 2447 ieee80211_free_node(ni); 2448 return error; 2449 } 2450 2451 /* add default node */ 2452 memset(&node, 0, sizeof node); 2453 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2454 ieee80211_free_node(ni); 2455 node.id = WPI_ID_BSS; 2456 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2457 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2458 node.action = htole32(WPI_ACTION_SET_RATE); 2459 node.antenna = WPI_ANTENNA_BOTH; 2460 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2461 if (error != 0) 2462 device_printf(sc->sc_dev, "could not add BSS node\n"); 2463 2464 return (error); 2465 } 2466 2467 static int 2468 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2469 { 2470 struct ieee80211com *ic = vap->iv_ic; 2471 struct ieee80211_node *ni; 2472 int error; 2473 2474 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2475 /* link LED blinks while monitoring */ 2476 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2477 return 0; 2478 } 2479 2480 ni = ieee80211_ref_node(vap->iv_bss); 2481 wpi_enable_tsf(sc, ni); 2482 2483 /* update adapter's configuration */ 2484 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2485 /* short preamble/slot time are negotiated when associating */ 2486 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2487 WPI_CONFIG_SHSLOT); 2488 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2489 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2490 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2491 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2492 sc->config.filter |= htole32(WPI_FILTER_BSS); 2493 2494 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2495 2496 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2497 sc->config.flags)); 2498 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2499 wpi_config), 1); 2500 if (error != 0) { 2501 device_printf(sc->sc_dev, "could not update configuration\n"); 2502 ieee80211_free_node(ni); 2503 return error; 2504 } 2505 2506 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2507 ieee80211_free_node(ni); 2508 if (error != 0) { 2509 device_printf(sc->sc_dev, "could set txpower\n"); 2510 return error; 2511 } 2512 2513 /* link LED always on while associated */ 2514 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2515 2516 /* start automatic rate control timer */ 2517 callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc); 2518 2519 return (error); 2520 } 2521 2522 /* 2523 * Send a scan request to the firmware. Since this command is huge, we map it 2524 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2525 * much of this code is similar to that in wpi_cmd but because we must manually 2526 * construct the probe & channels, we duplicate what's needed here. XXX In the 2527 * future, this function should be modified to use wpi_cmd to help cleanup the 2528 * code base. 2529 */ 2530 static int 2531 wpi_scan(struct wpi_softc *sc) 2532 { 2533 struct ifnet *ifp = sc->sc_ifp; 2534 struct ieee80211com *ic = ifp->if_l2com; 2535 struct ieee80211_scan_state *ss = ic->ic_scan; 2536 struct wpi_tx_ring *ring = &sc->cmdq; 2537 struct wpi_tx_desc *desc; 2538 struct wpi_tx_data *data; 2539 struct wpi_tx_cmd *cmd; 2540 struct wpi_scan_hdr *hdr; 2541 struct wpi_scan_chan *chan; 2542 struct ieee80211_frame *wh; 2543 struct ieee80211_rateset *rs; 2544 struct ieee80211_channel *c; 2545 enum ieee80211_phymode mode; 2546 uint8_t *frm; 2547 int nrates, pktlen, error, i, nssid; 2548 bus_addr_t physaddr; 2549 2550 desc = &ring->desc[ring->cur]; 2551 data = &ring->data[ring->cur]; 2552 2553 data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 2554 if (data->m == NULL) { 2555 device_printf(sc->sc_dev, 2556 "could not allocate mbuf for scan command\n"); 2557 return ENOMEM; 2558 } 2559 2560 cmd = mtod(data->m, struct wpi_tx_cmd *); 2561 cmd->code = WPI_CMD_SCAN; 2562 cmd->flags = 0; 2563 cmd->qid = ring->qid; 2564 cmd->idx = ring->cur; 2565 2566 hdr = (struct wpi_scan_hdr *)cmd->data; 2567 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2568 2569 /* 2570 * Move to the next channel if no packets are received within 5 msecs 2571 * after sending the probe request (this helps to reduce the duration 2572 * of active scans). 2573 */ 2574 hdr->quiet = htole16(5); 2575 hdr->threshold = htole16(1); 2576 2577 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2578 /* send probe requests at 6Mbps */ 2579 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2580 2581 /* Enable crc checking */ 2582 hdr->promotion = htole16(1); 2583 } else { 2584 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2585 /* send probe requests at 1Mbps */ 2586 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2587 } 2588 hdr->tx.id = WPI_ID_BROADCAST; 2589 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2590 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2591 2592 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2593 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2594 for (i = 0; i < nssid; i++) { 2595 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2596 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2597 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2598 hdr->scan_essids[i].esslen); 2599 #ifdef WPI_DEBUG 2600 if (wpi_debug & WPI_DEBUG_SCANNING) { 2601 kprintf("Scanning Essid: "); 2602 ieee80211_print_essid(hdr->scan_essids[i].essid, 2603 hdr->scan_essids[i].esslen); 2604 kprintf("\n"); 2605 } 2606 #endif 2607 } 2608 2609 /* 2610 * Build a probe request frame. Most of the following code is a 2611 * copy & paste of what is done in net80211. 2612 */ 2613 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2614 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2615 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2616 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2617 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2618 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2619 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2620 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2621 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2622 2623 frm = (uint8_t *)(wh + 1); 2624 2625 /* add essid IE, the hardware will fill this in for us */ 2626 *frm++ = IEEE80211_ELEMID_SSID; 2627 *frm++ = 0; 2628 2629 mode = ieee80211_chan2mode(ic->ic_curchan); 2630 rs = &ic->ic_sup_rates[mode]; 2631 2632 /* add supported rates IE */ 2633 *frm++ = IEEE80211_ELEMID_RATES; 2634 nrates = rs->rs_nrates; 2635 if (nrates > IEEE80211_RATE_SIZE) 2636 nrates = IEEE80211_RATE_SIZE; 2637 *frm++ = nrates; 2638 memcpy(frm, rs->rs_rates, nrates); 2639 frm += nrates; 2640 2641 /* add supported xrates IE */ 2642 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2643 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2644 *frm++ = IEEE80211_ELEMID_XRATES; 2645 *frm++ = nrates; 2646 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2647 frm += nrates; 2648 } 2649 2650 /* setup length of probe request */ 2651 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2652 2653 /* 2654 * Construct information about the channel that we 2655 * want to scan. The firmware expects this to be directly 2656 * after the scan probe request 2657 */ 2658 c = ic->ic_curchan; 2659 chan = (struct wpi_scan_chan *)frm; 2660 chan->chan = ieee80211_chan2ieee(ic, c); 2661 chan->flags = 0; 2662 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2663 chan->flags |= WPI_CHAN_ACTIVE; 2664 if (nssid != 0) 2665 chan->flags |= WPI_CHAN_DIRECT; 2666 } 2667 chan->gain_dsp = 0x6e; /* Default level */ 2668 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2669 chan->active = htole16(10); 2670 chan->passive = htole16(ss->ss_maxdwell); 2671 chan->gain_radio = 0x3b; 2672 } else { 2673 chan->active = htole16(20); 2674 chan->passive = htole16(ss->ss_maxdwell); 2675 chan->gain_radio = 0x28; 2676 } 2677 2678 DPRINTFN(WPI_DEBUG_SCANNING, 2679 ("Scanning %u Passive: %d\n", 2680 chan->chan, 2681 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2682 2683 hdr->nchan++; 2684 chan++; 2685 2686 frm += sizeof (struct wpi_scan_chan); 2687 #if 0 2688 // XXX All Channels.... 2689 for (c = &ic->ic_channels[1]; 2690 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2691 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2692 continue; 2693 2694 chan->chan = ieee80211_chan2ieee(ic, c); 2695 chan->flags = 0; 2696 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2697 chan->flags |= WPI_CHAN_ACTIVE; 2698 if (ic->ic_des_ssid[0].len != 0) 2699 chan->flags |= WPI_CHAN_DIRECT; 2700 } 2701 chan->gain_dsp = 0x6e; /* Default level */ 2702 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2703 chan->active = htole16(10); 2704 chan->passive = htole16(110); 2705 chan->gain_radio = 0x3b; 2706 } else { 2707 chan->active = htole16(20); 2708 chan->passive = htole16(120); 2709 chan->gain_radio = 0x28; 2710 } 2711 2712 DPRINTFN(WPI_DEBUG_SCANNING, 2713 ("Scanning %u Passive: %d\n", 2714 chan->chan, 2715 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2716 2717 hdr->nchan++; 2718 chan++; 2719 2720 frm += sizeof (struct wpi_scan_chan); 2721 } 2722 #endif 2723 2724 hdr->len = htole16(frm - (uint8_t *)hdr); 2725 pktlen = frm - (uint8_t *)cmd; 2726 2727 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2728 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2729 if (error != 0) { 2730 device_printf(sc->sc_dev, "could not map scan command\n"); 2731 m_freem(data->m); 2732 data->m = NULL; 2733 return error; 2734 } 2735 2736 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2737 desc->segs[0].addr = htole32(physaddr); 2738 desc->segs[0].len = htole32(pktlen); 2739 2740 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2741 BUS_DMASYNC_PREWRITE); 2742 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2743 2744 /* kick cmd ring */ 2745 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2746 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2747 2748 sc->sc_scan_timer = 5; 2749 return 0; /* will be notified async. of failure/success */ 2750 } 2751 2752 /** 2753 * Configure the card to listen to a particular channel, this transisions the 2754 * card in to being able to receive frames from remote devices. 2755 */ 2756 static int 2757 wpi_config(struct wpi_softc *sc) 2758 { 2759 struct ifnet *ifp = sc->sc_ifp; 2760 struct ieee80211com *ic = ifp->if_l2com; 2761 struct wpi_power power; 2762 struct wpi_bluetooth bluetooth; 2763 struct wpi_node_info node; 2764 int error; 2765 2766 /* set power mode */ 2767 memset(&power, 0, sizeof power); 2768 power.flags = htole32(WPI_POWER_CAM|0x8); 2769 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2770 if (error != 0) { 2771 device_printf(sc->sc_dev, "could not set power mode\n"); 2772 return error; 2773 } 2774 2775 /* configure bluetooth coexistence */ 2776 memset(&bluetooth, 0, sizeof bluetooth); 2777 bluetooth.flags = 3; 2778 bluetooth.lead = 0xaa; 2779 bluetooth.kill = 1; 2780 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2781 0); 2782 if (error != 0) { 2783 device_printf(sc->sc_dev, 2784 "could not configure bluetooth coexistence\n"); 2785 return error; 2786 } 2787 2788 /* configure adapter */ 2789 memset(&sc->config, 0, sizeof (struct wpi_config)); 2790 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2791 /*set default channel*/ 2792 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2793 sc->config.flags = htole32(WPI_CONFIG_TSF); 2794 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2795 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2796 WPI_CONFIG_24GHZ); 2797 } 2798 sc->config.filter = 0; 2799 switch (ic->ic_opmode) { 2800 case IEEE80211_M_STA: 2801 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2802 sc->config.mode = WPI_MODE_STA; 2803 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2804 break; 2805 case IEEE80211_M_IBSS: 2806 case IEEE80211_M_AHDEMO: 2807 sc->config.mode = WPI_MODE_IBSS; 2808 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2809 WPI_FILTER_MULTICAST); 2810 break; 2811 case IEEE80211_M_HOSTAP: 2812 sc->config.mode = WPI_MODE_HOSTAP; 2813 break; 2814 case IEEE80211_M_MONITOR: 2815 sc->config.mode = WPI_MODE_MONITOR; 2816 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2817 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2818 break; 2819 default: 2820 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2821 return EINVAL; 2822 } 2823 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2824 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2825 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2826 sizeof (struct wpi_config), 0); 2827 if (error != 0) { 2828 device_printf(sc->sc_dev, "configure command failed\n"); 2829 return error; 2830 } 2831 2832 /* configuration has changed, set Tx power accordingly */ 2833 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2834 device_printf(sc->sc_dev, "could not set Tx power\n"); 2835 return error; 2836 } 2837 2838 /* add broadcast node */ 2839 memset(&node, 0, sizeof node); 2840 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2841 node.id = WPI_ID_BROADCAST; 2842 node.rate = wpi_plcp_signal(2); 2843 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2844 if (error != 0) { 2845 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2846 return error; 2847 } 2848 2849 /* Setup rate scalling */ 2850 error = wpi_mrr_setup(sc); 2851 if (error != 0) { 2852 device_printf(sc->sc_dev, "could not setup MRR\n"); 2853 return error; 2854 } 2855 2856 return 0; 2857 } 2858 2859 static void 2860 wpi_stop_master(struct wpi_softc *sc) 2861 { 2862 uint32_t tmp; 2863 int ntries; 2864 2865 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2866 2867 tmp = WPI_READ(sc, WPI_RESET); 2868 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2869 2870 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2871 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2872 return; /* already asleep */ 2873 2874 for (ntries = 0; ntries < 100; ntries++) { 2875 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2876 break; 2877 DELAY(10); 2878 } 2879 if (ntries == 100) { 2880 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2881 } 2882 } 2883 2884 static int 2885 wpi_power_up(struct wpi_softc *sc) 2886 { 2887 uint32_t tmp; 2888 int ntries; 2889 2890 wpi_mem_lock(sc); 2891 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2892 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2893 wpi_mem_unlock(sc); 2894 2895 for (ntries = 0; ntries < 5000; ntries++) { 2896 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2897 break; 2898 DELAY(10); 2899 } 2900 if (ntries == 5000) { 2901 device_printf(sc->sc_dev, 2902 "timeout waiting for NIC to power up\n"); 2903 return ETIMEDOUT; 2904 } 2905 return 0; 2906 } 2907 2908 static int 2909 wpi_reset(struct wpi_softc *sc) 2910 { 2911 uint32_t tmp; 2912 int ntries; 2913 2914 DPRINTFN(WPI_DEBUG_HW, 2915 ("Resetting the card - clearing any uploaded firmware\n")); 2916 2917 /* clear any pending interrupts */ 2918 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2919 2920 tmp = WPI_READ(sc, WPI_PLL_CTL); 2921 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2922 2923 tmp = WPI_READ(sc, WPI_CHICKEN); 2924 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2925 2926 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2927 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2928 2929 /* wait for clock stabilization */ 2930 for (ntries = 0; ntries < 25000; ntries++) { 2931 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2932 break; 2933 DELAY(10); 2934 } 2935 if (ntries == 25000) { 2936 device_printf(sc->sc_dev, 2937 "timeout waiting for clock stabilization\n"); 2938 return ETIMEDOUT; 2939 } 2940 2941 /* initialize EEPROM */ 2942 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2943 2944 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2945 device_printf(sc->sc_dev, "EEPROM not found\n"); 2946 return EIO; 2947 } 2948 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2949 2950 return 0; 2951 } 2952 2953 static void 2954 wpi_hw_config(struct wpi_softc *sc) 2955 { 2956 uint32_t rev, hw; 2957 2958 /* voodoo from the Linux "driver".. */ 2959 hw = WPI_READ(sc, WPI_HWCONFIG); 2960 2961 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2962 if ((rev & 0xc0) == 0x40) 2963 hw |= WPI_HW_ALM_MB; 2964 else if (!(rev & 0x80)) 2965 hw |= WPI_HW_ALM_MM; 2966 2967 if (sc->cap == 0x80) 2968 hw |= WPI_HW_SKU_MRC; 2969 2970 hw &= ~WPI_HW_REV_D; 2971 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2972 hw |= WPI_HW_REV_D; 2973 2974 if (sc->type > 1) 2975 hw |= WPI_HW_TYPE_B; 2976 2977 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2978 } 2979 2980 static void 2981 wpi_rfkill_resume(struct wpi_softc *sc) 2982 { 2983 struct ifnet *ifp = sc->sc_ifp; 2984 struct ieee80211com *ic = ifp->if_l2com; 2985 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2986 int ntries; 2987 2988 /* enable firmware again */ 2989 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 2990 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 2991 2992 /* wait for thermal sensors to calibrate */ 2993 for (ntries = 0; ntries < 1000; ntries++) { 2994 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 2995 break; 2996 DELAY(10); 2997 } 2998 2999 if (ntries == 1000) { 3000 device_printf(sc->sc_dev, 3001 "timeout waiting for thermal calibration\n"); 3002 return; 3003 } 3004 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3005 3006 if (wpi_config(sc) != 0) { 3007 device_printf(sc->sc_dev, "device config failed\n"); 3008 return; 3009 } 3010 3011 ifp->if_flags &= ~IFF_OACTIVE; 3012 ifp->if_flags |= IFF_RUNNING; 3013 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3014 3015 if (vap != NULL) { 3016 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3017 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3018 ieee80211_beacon_miss(ic); 3019 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3020 } else 3021 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3022 } else { 3023 ieee80211_scan_next(vap); 3024 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3025 } 3026 } 3027 3028 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc); 3029 } 3030 3031 static void 3032 wpi_init_locked(struct wpi_softc *sc, int force) 3033 { 3034 struct ifnet *ifp = sc->sc_ifp; 3035 uint32_t tmp; 3036 int ntries, qid; 3037 3038 wpi_stop_locked(sc); 3039 (void)wpi_reset(sc); 3040 3041 wpi_mem_lock(sc); 3042 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3043 DELAY(20); 3044 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3045 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3046 wpi_mem_unlock(sc); 3047 3048 (void)wpi_power_up(sc); 3049 wpi_hw_config(sc); 3050 3051 /* init Rx ring */ 3052 wpi_mem_lock(sc); 3053 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3054 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3055 offsetof(struct wpi_shared, next)); 3056 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3057 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3058 wpi_mem_unlock(sc); 3059 3060 /* init Tx rings */ 3061 wpi_mem_lock(sc); 3062 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3063 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3064 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3065 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3066 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3067 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3068 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3069 3070 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3071 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3072 3073 for (qid = 0; qid < 6; qid++) { 3074 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3075 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3076 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3077 } 3078 wpi_mem_unlock(sc); 3079 3080 /* clear "radio off" and "disable command" bits (reversed logic) */ 3081 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3082 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3083 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3084 3085 /* clear any pending interrupts */ 3086 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3087 3088 /* enable interrupts */ 3089 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3090 3091 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3092 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3093 3094 if ((wpi_load_firmware(sc)) != 0) { 3095 device_printf(sc->sc_dev, 3096 "A problem occurred loading the firmware to the driver\n"); 3097 return; 3098 } 3099 3100 /* At this point the firmware is up and running. If the hardware 3101 * RF switch is turned off thermal calibration will fail, though 3102 * the card is still happy to continue to accept commands, catch 3103 * this case and schedule a task to watch for it to be turned on. 3104 */ 3105 wpi_mem_lock(sc); 3106 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3107 wpi_mem_unlock(sc); 3108 3109 if (!(tmp & 0x1)) { 3110 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3111 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3112 goto out; 3113 } 3114 3115 /* wait for thermal sensors to calibrate */ 3116 for (ntries = 0; ntries < 1000; ntries++) { 3117 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3118 break; 3119 DELAY(10); 3120 } 3121 3122 if (ntries == 1000) { 3123 device_printf(sc->sc_dev, 3124 "timeout waiting for thermal sensors calibration\n"); 3125 return; 3126 } 3127 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3128 3129 if (wpi_config(sc) != 0) { 3130 device_printf(sc->sc_dev, "device config failed\n"); 3131 return; 3132 } 3133 3134 ifp->if_flags &= ~IFF_OACTIVE; 3135 ifp->if_flags |= IFF_RUNNING; 3136 out: 3137 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc); 3138 } 3139 3140 static void 3141 wpi_init(void *arg) 3142 { 3143 struct wpi_softc *sc = arg; 3144 struct ifnet *ifp = sc->sc_ifp; 3145 struct ieee80211com *ic = ifp->if_l2com; 3146 3147 wpi_init_locked(sc, 0); 3148 3149 if (ifp->if_flags & IFF_RUNNING) 3150 ieee80211_start_all(ic); /* start all vaps */ 3151 } 3152 3153 static void 3154 wpi_stop_locked(struct wpi_softc *sc) 3155 { 3156 struct ifnet *ifp = sc->sc_ifp; 3157 uint32_t tmp; 3158 int ac; 3159 3160 sc->sc_tx_timer = 0; 3161 sc->sc_scan_timer = 0; 3162 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3163 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3164 callout_stop(&sc->watchdog_to_callout); 3165 callout_stop(&sc->calib_to_callout); 3166 3167 3168 /* disable interrupts */ 3169 WPI_WRITE(sc, WPI_MASK, 0); 3170 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3171 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3172 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3173 3174 wpi_mem_lock(sc); 3175 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3176 wpi_mem_unlock(sc); 3177 3178 /* reset all Tx rings */ 3179 for (ac = 0; ac < 4; ac++) 3180 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3181 wpi_reset_tx_ring(sc, &sc->cmdq); 3182 3183 /* reset Rx ring */ 3184 wpi_reset_rx_ring(sc, &sc->rxq); 3185 3186 wpi_mem_lock(sc); 3187 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3188 wpi_mem_unlock(sc); 3189 3190 DELAY(5); 3191 3192 wpi_stop_master(sc); 3193 3194 tmp = WPI_READ(sc, WPI_RESET); 3195 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3196 sc->flags &= ~WPI_FLAG_BUSY; 3197 } 3198 3199 static void 3200 wpi_stop(struct wpi_softc *sc) 3201 { 3202 wpi_stop_locked(sc); 3203 } 3204 3205 static void 3206 wpi_newassoc(struct ieee80211_node *ni, int isnew) 3207 { 3208 /* XXX move */ 3209 ieee80211_ratectl_node_init(ni); 3210 } 3211 3212 static void 3213 wpi_calib_timeout_callout(void *arg) 3214 { 3215 struct wpi_softc *sc = arg; 3216 struct ifnet *ifp = sc->sc_ifp; 3217 struct ieee80211com *ic = ifp->if_l2com; 3218 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3219 int temp; 3220 3221 if (vap->iv_state != IEEE80211_S_RUN) 3222 return; 3223 3224 /* update sensor data */ 3225 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3226 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3227 3228 wpi_power_calibration(sc, temp); 3229 3230 callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc); 3231 } 3232 3233 /* 3234 * This function is called periodically (every 60 seconds) to adjust output 3235 * power to temperature changes. 3236 */ 3237 static void 3238 wpi_power_calibration(struct wpi_softc *sc, int temp) 3239 { 3240 struct ifnet *ifp = sc->sc_ifp; 3241 struct ieee80211com *ic = ifp->if_l2com; 3242 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3243 3244 /* sanity-check read value */ 3245 if (temp < -260 || temp > 25) { 3246 /* this can't be correct, ignore */ 3247 DPRINTFN(WPI_DEBUG_TEMP, 3248 ("out-of-range temperature reported: %d\n", temp)); 3249 return; 3250 } 3251 3252 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3253 3254 /* adjust Tx power if need be */ 3255 if (abs(temp - sc->temp) <= 6) 3256 return; 3257 3258 sc->temp = temp; 3259 3260 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3261 /* just warn, too bad for the automatic calibration... */ 3262 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3263 } 3264 } 3265 3266 /** 3267 * Read the eeprom to find out what channels are valid for the given 3268 * band and update net80211 with what we find. 3269 */ 3270 static void 3271 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3272 { 3273 struct ifnet *ifp = sc->sc_ifp; 3274 struct ieee80211com *ic = ifp->if_l2com; 3275 const struct wpi_chan_band *band = &wpi_bands[n]; 3276 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3277 struct ieee80211_channel *c; 3278 int chan, i, passive; 3279 3280 wpi_read_prom_data(sc, band->addr, channels, 3281 band->nchan * sizeof (struct wpi_eeprom_chan)); 3282 3283 for (i = 0; i < band->nchan; i++) { 3284 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3285 DPRINTFN(WPI_DEBUG_HW, 3286 ("Channel Not Valid: %d, band %d\n", 3287 band->chan[i],n)); 3288 continue; 3289 } 3290 3291 passive = 0; 3292 chan = band->chan[i]; 3293 c = &ic->ic_channels[ic->ic_nchans++]; 3294 3295 /* is active scan allowed on this channel? */ 3296 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3297 passive = IEEE80211_CHAN_PASSIVE; 3298 } 3299 3300 if (n == 0) { /* 2GHz band */ 3301 c->ic_ieee = chan; 3302 c->ic_freq = ieee80211_ieee2mhz(chan, 3303 IEEE80211_CHAN_2GHZ); 3304 c->ic_flags = IEEE80211_CHAN_B | passive; 3305 3306 c = &ic->ic_channels[ic->ic_nchans++]; 3307 c->ic_ieee = chan; 3308 c->ic_freq = ieee80211_ieee2mhz(chan, 3309 IEEE80211_CHAN_2GHZ); 3310 c->ic_flags = IEEE80211_CHAN_G | passive; 3311 3312 } else { /* 5GHz band */ 3313 /* 3314 * Some 3945ABG adapters support channels 7, 8, 11 3315 * and 12 in the 2GHz *and* 5GHz bands. 3316 * Because of limitations in our net80211(9) stack, 3317 * we can't support these channels in 5GHz band. 3318 * XXX not true; just need to map to proper frequency 3319 */ 3320 if (chan <= 14) 3321 continue; 3322 3323 c->ic_ieee = chan; 3324 c->ic_freq = ieee80211_ieee2mhz(chan, 3325 IEEE80211_CHAN_5GHZ); 3326 c->ic_flags = IEEE80211_CHAN_A | passive; 3327 } 3328 3329 /* save maximum allowed power for this channel */ 3330 sc->maxpwr[chan] = channels[i].maxpwr; 3331 3332 #if 0 3333 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3334 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3335 //ic->ic_channels[chan].ic_minpower... 3336 //ic->ic_channels[chan].ic_maxregtxpower... 3337 #endif 3338 3339 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3340 " passive=%d, offset %d\n", chan, c->ic_freq, 3341 channels[i].flags, sc->maxpwr[chan], 3342 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3343 ic->ic_nchans)); 3344 } 3345 } 3346 3347 static void 3348 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3349 { 3350 struct wpi_power_group *group = &sc->groups[n]; 3351 struct wpi_eeprom_group rgroup; 3352 int i; 3353 3354 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3355 sizeof rgroup); 3356 3357 /* save power group information */ 3358 group->chan = rgroup.chan; 3359 group->maxpwr = rgroup.maxpwr; 3360 /* temperature at which the samples were taken */ 3361 group->temp = (int16_t)le16toh(rgroup.temp); 3362 3363 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3364 group->chan, group->maxpwr, group->temp)); 3365 3366 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3367 group->samples[i].index = rgroup.samples[i].index; 3368 group->samples[i].power = rgroup.samples[i].power; 3369 3370 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3371 group->samples[i].index, group->samples[i].power)); 3372 } 3373 } 3374 3375 /* 3376 * Update Tx power to match what is defined for channel `c'. 3377 */ 3378 static int 3379 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3380 { 3381 struct ifnet *ifp = sc->sc_ifp; 3382 struct ieee80211com *ic = ifp->if_l2com; 3383 struct wpi_power_group *group; 3384 struct wpi_cmd_txpower txpower; 3385 u_int chan; 3386 int i; 3387 3388 /* get channel number */ 3389 chan = ieee80211_chan2ieee(ic, c); 3390 3391 /* find the power group to which this channel belongs */ 3392 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3393 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3394 if (chan <= group->chan) 3395 break; 3396 } else 3397 group = &sc->groups[0]; 3398 3399 memset(&txpower, 0, sizeof txpower); 3400 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3401 txpower.channel = htole16(chan); 3402 3403 /* set Tx power for all OFDM and CCK rates */ 3404 for (i = 0; i <= 11 ; i++) { 3405 /* retrieve Tx power for this channel/rate combination */ 3406 int idx = wpi_get_power_index(sc, group, c, 3407 wpi_ridx_to_rate[i]); 3408 3409 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3410 3411 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3412 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3413 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3414 } else { 3415 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3416 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3417 } 3418 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3419 chan, wpi_ridx_to_rate[i], idx)); 3420 } 3421 3422 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3423 } 3424 3425 /* 3426 * Determine Tx power index for a given channel/rate combination. 3427 * This takes into account the regulatory information from EEPROM and the 3428 * current temperature. 3429 */ 3430 static int 3431 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3432 struct ieee80211_channel *c, int rate) 3433 { 3434 /* fixed-point arithmetic division using a n-bit fractional part */ 3435 #define fdivround(a, b, n) \ 3436 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3437 3438 /* linear interpolation */ 3439 #define interpolate(x, x1, y1, x2, y2, n) \ 3440 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3441 3442 struct ifnet *ifp = sc->sc_ifp; 3443 struct ieee80211com *ic = ifp->if_l2com; 3444 struct wpi_power_sample *sample; 3445 int pwr, idx; 3446 u_int chan; 3447 3448 /* get channel number */ 3449 chan = ieee80211_chan2ieee(ic, c); 3450 3451 /* default power is group's maximum power - 3dB */ 3452 pwr = group->maxpwr / 2; 3453 3454 /* decrease power for highest OFDM rates to reduce distortion */ 3455 switch (rate) { 3456 case 72: /* 36Mb/s */ 3457 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3458 break; 3459 case 96: /* 48Mb/s */ 3460 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3461 break; 3462 case 108: /* 54Mb/s */ 3463 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3464 break; 3465 } 3466 3467 /* never exceed channel's maximum allowed Tx power */ 3468 pwr = min(pwr, sc->maxpwr[chan]); 3469 3470 /* retrieve power index into gain tables from samples */ 3471 for (sample = group->samples; sample < &group->samples[3]; sample++) 3472 if (pwr > sample[1].power) 3473 break; 3474 /* fixed-point linear interpolation using a 19-bit fractional part */ 3475 idx = interpolate(pwr, sample[0].power, sample[0].index, 3476 sample[1].power, sample[1].index, 19); 3477 3478 /* 3479 * Adjust power index based on current temperature 3480 * - if colder than factory-calibrated: decreate output power 3481 * - if warmer than factory-calibrated: increase output power 3482 */ 3483 idx -= (sc->temp - group->temp) * 11 / 100; 3484 3485 /* decrease power for CCK rates (-5dB) */ 3486 if (!WPI_RATE_IS_OFDM(rate)) 3487 idx += 10; 3488 3489 /* keep power index in a valid range */ 3490 if (idx < 0) 3491 return 0; 3492 if (idx > WPI_MAX_PWR_INDEX) 3493 return WPI_MAX_PWR_INDEX; 3494 return idx; 3495 3496 #undef interpolate 3497 #undef fdivround 3498 } 3499 3500 /** 3501 * Called by net80211 framework to indicate that a scan 3502 * is starting. This function doesn't actually do the scan, 3503 * wpi_scan_curchan starts things off. This function is more 3504 * of an early warning from the framework we should get ready 3505 * for the scan. 3506 */ 3507 static void 3508 wpi_scan_start(struct ieee80211com *ic) 3509 { 3510 struct ifnet *ifp = ic->ic_ifp; 3511 struct wpi_softc *sc = ifp->if_softc; 3512 3513 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3514 } 3515 3516 /** 3517 * Called by the net80211 framework, indicates that the 3518 * scan has ended. If there is a scan in progress on the card 3519 * then it should be aborted. 3520 */ 3521 static void 3522 wpi_scan_end(struct ieee80211com *ic) 3523 { 3524 /* XXX ignore */ 3525 } 3526 3527 /** 3528 * Called by the net80211 framework to indicate to the driver 3529 * that the channel should be changed 3530 */ 3531 static void 3532 wpi_set_channel(struct ieee80211com *ic) 3533 { 3534 struct ifnet *ifp = ic->ic_ifp; 3535 struct wpi_softc *sc = ifp->if_softc; 3536 int error; 3537 3538 /* 3539 * Only need to set the channel in Monitor mode. AP scanning and auth 3540 * are already taken care of by their respective firmware commands. 3541 */ 3542 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3543 error = wpi_config(sc); 3544 if (error != 0) 3545 device_printf(sc->sc_dev, 3546 "error %d settting channel\n", error); 3547 } 3548 } 3549 3550 /** 3551 * Called by net80211 to indicate that we need to scan the current 3552 * channel. The channel is previously be set via the wpi_set_channel 3553 * callback. 3554 */ 3555 static void 3556 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3557 { 3558 struct ieee80211vap *vap = ss->ss_vap; 3559 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3560 struct wpi_softc *sc = ifp->if_softc; 3561 3562 if (wpi_scan(sc)) 3563 ieee80211_cancel_scan(vap); 3564 } 3565 3566 /** 3567 * Called by the net80211 framework to indicate 3568 * the minimum dwell time has been met, terminate the scan. 3569 * We don't actually terminate the scan as the firmware will notify 3570 * us when it's finished and we have no way to interrupt it. 3571 */ 3572 static void 3573 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3574 { 3575 /* NB: don't try to abort scan; wait for firmware to finish */ 3576 } 3577 3578 static void 3579 wpi_hwreset_task(void *arg, int pending) 3580 { 3581 struct wpi_softc *sc = arg; 3582 3583 wlan_serialize_enter(); 3584 wpi_init_locked(sc, 0); 3585 wlan_serialize_exit(); 3586 } 3587 3588 static void 3589 wpi_rfreset_task(void *arg, int pending) 3590 { 3591 struct wpi_softc *sc = arg; 3592 3593 wlan_serialize_enter(); 3594 wpi_rfkill_resume(sc); 3595 wlan_serialize_exit(); 3596 } 3597 3598 /* 3599 * Allocate DMA-safe memory for firmware transfer. 3600 */ 3601 static int 3602 wpi_alloc_fwmem(struct wpi_softc *sc) 3603 { 3604 /* allocate enough contiguous space to store text and data */ 3605 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3606 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3607 BUS_DMA_NOWAIT); 3608 } 3609 3610 static void 3611 wpi_free_fwmem(struct wpi_softc *sc) 3612 { 3613 wpi_dma_contig_free(&sc->fw_dma); 3614 } 3615 3616 /** 3617 * Called every second, wpi_watchdog_callout used by the watch dog timer 3618 * to check that the card is still alive 3619 */ 3620 static void 3621 wpi_watchdog_callout(void *arg) 3622 { 3623 struct wpi_softc *sc = arg; 3624 struct ifnet *ifp = sc->sc_ifp; 3625 struct ieee80211com *ic = ifp->if_l2com; 3626 uint32_t tmp; 3627 3628 wlan_serialize_enter(); 3629 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3630 3631 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3632 /* No need to lock firmware memory */ 3633 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3634 3635 if ((tmp & 0x1) == 0) { 3636 /* Radio kill switch is still off */ 3637 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc); 3638 wlan_serialize_exit(); 3639 return; 3640 } 3641 3642 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3643 ieee80211_runtask(ic, &sc->sc_radiotask); 3644 wlan_serialize_exit(); 3645 return; 3646 } 3647 3648 if (sc->sc_tx_timer > 0) { 3649 if (--sc->sc_tx_timer == 0) { 3650 device_printf(sc->sc_dev,"device timeout\n"); 3651 ifp->if_oerrors++; 3652 wlan_serialize_exit(); 3653 ieee80211_runtask(ic, &sc->sc_restarttask); 3654 wlan_serialize_enter(); 3655 } 3656 } 3657 if (sc->sc_scan_timer > 0) { 3658 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3659 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3660 device_printf(sc->sc_dev,"scan timeout\n"); 3661 ieee80211_cancel_scan(vap); 3662 wlan_serialize_exit(); 3663 ieee80211_runtask(ic, &sc->sc_restarttask); 3664 wlan_serialize_enter(); 3665 } 3666 } 3667 3668 if (ifp->if_flags & IFF_RUNNING) 3669 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc); 3670 3671 wlan_serialize_exit(); 3672 } 3673 3674 #ifdef WPI_DEBUG 3675 static const char *wpi_cmd_str(int cmd) 3676 { 3677 switch (cmd) { 3678 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3679 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3680 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3681 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3682 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3683 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3684 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3685 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3686 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3687 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3688 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3689 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3690 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3691 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3692 3693 default: 3694 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3695 return "UNKNOWN CMD"; /* Make the compiler happy */ 3696 } 3697 } 3698 #endif 3699 3700 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3701 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3702 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3703 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1); 3704