xref: /dflybsd-src/sys/dev/netif/wpi/if_wpi.c (revision d9ea1be3e2886810aaa5c005106dfc90c64882e7)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $
19  */
20 
21 #define VERSION "20071127"
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_intr) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60 
61 #include <sys/param.h>
62 #include <sys/sysctl.h>
63 #include <sys/sockio.h>
64 #include <sys/mbuf.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/systm.h>
68 #include <sys/malloc.h>
69 #include <sys/queue.h>
70 #include <sys/taskqueue.h>
71 #include <sys/module.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/linker.h>
75 #include <sys/firmware.h>
76 
77 #include <sys/bus.h>
78 #include <sys/resource.h>
79 #include <sys/rman.h>
80 
81 #include <bus/pci/pcireg.h>
82 #include <bus/pci/pcivar.h>
83 
84 #include <net/bpf.h>
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ifq_var.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <netproto/802_11/ieee80211_var.h>
94 #include <netproto/802_11/ieee80211_radiotap.h>
95 #include <netproto/802_11/ieee80211_regdomain.h>
96 #include <netproto/802_11/ieee80211_ratectl.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103 
104 /* XXX: move elsewhere */
105 #define abs(x) (((x) < 0) ? -(x) : (x))
106 
107 #include "if_wpireg.h"
108 #include "if_wpivar.h"
109 
110 #define WPI_DEBUG
111 
112 #ifdef WPI_DEBUG
113 #define DPRINTF(x)	do { if (wpi_debug != 0) kprintf x; } while (0)
114 #define DPRINTFN(n, x)	do { if (wpi_debug & n) kprintf x; } while (0)
115 #define	WPI_DEBUG_SET	(wpi_debug != 0)
116 
117 enum {
118 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
119 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
120 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
121 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
122 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
123 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
124 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
125 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
126 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
127 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
128 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
129 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
130 	WPI_DEBUG_ANY		= 0xffffffff
131 };
132 
133 static int wpi_debug = 1;
134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135 TUNABLE_INT("debug.wpi", &wpi_debug);
136 
137 #else
138 #define DPRINTF(x)
139 #define DPRINTFN(n, x)
140 #define WPI_DEBUG_SET	0
141 #endif
142 
143 struct wpi_ident {
144 	uint16_t	vendor;
145 	uint16_t	device;
146 	uint16_t	subdevice;
147 	const char	*name;
148 };
149 
150 static const struct wpi_ident wpi_ident_table[] = {
151 	/* The below entries support ABG regardless of the subid */
152 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154 	/* The below entries only support BG */
155 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159 	{ 0, 0, 0, NULL }
160 };
161 
162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163 		    const char name[IFNAMSIZ], int unit, int opmode,
164 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
165 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
166 static void	wpi_vap_delete(struct ieee80211vap *);
167 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168 		    void **, bus_size_t, bus_size_t, int);
169 static void	wpi_dma_contig_free(struct wpi_dma_info *);
170 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171 static int	wpi_alloc_shared(struct wpi_softc *);
172 static void	wpi_free_shared(struct wpi_softc *);
173 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177 		    int, int);
178 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
182 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
183 static void	wpi_mem_lock(struct wpi_softc *);
184 static void	wpi_mem_unlock(struct wpi_softc *);
185 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
186 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
187 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
188 		    const uint32_t *, int);
189 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
190 static int	wpi_alloc_fwmem(struct wpi_softc *);
191 static void	wpi_free_fwmem(struct wpi_softc *);
192 static int	wpi_load_firmware(struct wpi_softc *);
193 static void	wpi_unload_firmware(struct wpi_softc *);
194 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
195 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
196 		    struct wpi_rx_data *);
197 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
198 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
199 static void	wpi_notif_intr(struct wpi_softc *);
200 static void	wpi_intr(void *);
201 static uint8_t	wpi_plcp_signal(int);
202 static void	wpi_watchdog_callout(void *);
203 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
204 		    struct ieee80211_node *, int);
205 static void	wpi_start(struct ifnet *);
206 static void	wpi_start_locked(struct ifnet *);
207 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
208 		    const struct ieee80211_bpf_params *);
209 static void	wpi_scan_start(struct ieee80211com *);
210 static void	wpi_scan_end(struct ieee80211com *);
211 static void	wpi_set_channel(struct ieee80211com *);
212 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
213 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
214 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
215 static void	wpi_read_eeprom(struct wpi_softc *,
216 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
217 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
218 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
219 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
220 static int	wpi_wme_update(struct ieee80211com *);
221 static int	wpi_mrr_setup(struct wpi_softc *);
222 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
223 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
224 #if 0
225 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
226 #endif
227 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
228 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
229 static int	wpi_scan(struct wpi_softc *);
230 static int	wpi_config(struct wpi_softc *);
231 static void	wpi_stop_master(struct wpi_softc *);
232 static int	wpi_power_up(struct wpi_softc *);
233 static int	wpi_reset(struct wpi_softc *);
234 static void	wpi_hwreset_task(void *, int);
235 static void	wpi_rfreset_task(void *, int);
236 static void	wpi_hw_config(struct wpi_softc *);
237 static void	wpi_init(void *);
238 static void	wpi_init_locked(struct wpi_softc *, int);
239 static void	wpi_stop(struct wpi_softc *);
240 static void	wpi_stop_locked(struct wpi_softc *);
241 
242 static void	wpi_newassoc(struct ieee80211_node *, int);
243 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
244 		    int);
245 static void	wpi_calib_timeout_callout(void *);
246 static void	wpi_power_calibration(struct wpi_softc *, int);
247 static int	wpi_get_power_index(struct wpi_softc *,
248 		    struct wpi_power_group *, struct ieee80211_channel *, int);
249 #ifdef WPI_DEBUG
250 static const char *wpi_cmd_str(int);
251 #endif
252 static int wpi_probe(device_t);
253 static int wpi_attach(device_t);
254 static int wpi_detach(device_t);
255 static int wpi_shutdown(device_t);
256 static int wpi_suspend(device_t);
257 static int wpi_resume(device_t);
258 
259 
260 static device_method_t wpi_methods[] = {
261 	/* Device interface */
262 	DEVMETHOD(device_probe,		wpi_probe),
263 	DEVMETHOD(device_attach,	wpi_attach),
264 	DEVMETHOD(device_detach,	wpi_detach),
265 	DEVMETHOD(device_shutdown,	wpi_shutdown),
266 	DEVMETHOD(device_suspend,	wpi_suspend),
267 	DEVMETHOD(device_resume,	wpi_resume),
268 
269 	{ 0, 0 }
270 };
271 
272 static driver_t wpi_driver = {
273 	"wpi",
274 	wpi_methods,
275 	sizeof (struct wpi_softc)
276 };
277 
278 static devclass_t wpi_devclass;
279 
280 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
281 
282 static const uint8_t wpi_ridx_to_plcp[] = {
283 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
284 	/* R1-R4 (ral/ural is R4-R1) */
285 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
286 	/* CCK: device-dependent */
287 	10, 20, 55, 110
288 };
289 static const uint8_t wpi_ridx_to_rate[] = {
290 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
291 	2, 4, 11, 22 /*CCK */
292 };
293 
294 
295 static int
296 wpi_probe(device_t dev)
297 {
298 	const struct wpi_ident *ident;
299 
300 	wlan_serialize_enter();
301 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
302 		if (pci_get_vendor(dev) == ident->vendor &&
303 		    pci_get_device(dev) == ident->device) {
304 			device_set_desc(dev, ident->name);
305 			wlan_serialize_exit();
306 			return 0;
307 		}
308 	}
309 	wlan_serialize_exit();
310 	return ENXIO;
311 }
312 
313 /**
314  * Load the firmare image from disk to the allocated dma buffer.
315  * we also maintain the reference to the firmware pointer as there
316  * is times where we may need to reload the firmware but we are not
317  * in a context that can access the filesystem (ie taskq cause by restart)
318  *
319  * @return 0 on success, an errno on failure
320  */
321 static int
322 wpi_load_firmware(struct wpi_softc *sc)
323 {
324 	const struct firmware *fp;
325 	struct wpi_dma_info *dma = &sc->fw_dma;
326 	const struct wpi_firmware_hdr *hdr;
327 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
328 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
329 	int error;
330 
331 	DPRINTFN(WPI_DEBUG_FIRMWARE,
332 	    ("Attempting Loading Firmware from wpi_fw module\n"));
333 
334 	wlan_assert_serialized();
335 	wlan_serialize_exit();
336 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
337 		device_printf(sc->sc_dev,
338 		    "could not load firmware image 'wpifw_fw'\n");
339 		error = ENOENT;
340 		wlan_serialize_enter();
341 		goto fail;
342 	}
343 	wlan_serialize_enter();
344 
345 	fp = sc->fw_fp;
346 
347 	/* Validate the firmware is minimum a particular version */
348 	if (fp->version < WPI_FW_MINVERSION) {
349 	    device_printf(sc->sc_dev,
350 			   "firmware version is too old. Need %d, got %d\n",
351 			   WPI_FW_MINVERSION,
352 			   fp->version);
353 	    error = ENXIO;
354 	    goto fail;
355 	}
356 
357 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
358 		device_printf(sc->sc_dev,
359 		    "firmware file too short: %zu bytes\n", fp->datasize);
360 		error = ENXIO;
361 		goto fail;
362 	}
363 
364 	hdr = (const struct wpi_firmware_hdr *)fp->data;
365 
366 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
367 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
368 
369 	rtextsz = le32toh(hdr->rtextsz);
370 	rdatasz = le32toh(hdr->rdatasz);
371 	itextsz = le32toh(hdr->itextsz);
372 	idatasz = le32toh(hdr->idatasz);
373 	btextsz = le32toh(hdr->btextsz);
374 
375 	/* check that all firmware segments are present */
376 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
377 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
378 		device_printf(sc->sc_dev,
379 		    "firmware file too short: %zu bytes\n", fp->datasize);
380 		error = ENXIO; /* XXX appropriate error code? */
381 		goto fail;
382 	}
383 
384 	/* get pointers to firmware segments */
385 	rtext = (const uint8_t *)(hdr + 1);
386 	rdata = rtext + rtextsz;
387 	itext = rdata + rdatasz;
388 	idata = itext + itextsz;
389 	btext = idata + idatasz;
390 
391 	DPRINTFN(WPI_DEBUG_FIRMWARE,
392 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
393 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
394 	     (le32toh(hdr->version) & 0xff000000) >> 24,
395 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
396 	     (le32toh(hdr->version) & 0x0000ffff),
397 	     rtextsz, rdatasz,
398 	     itextsz, idatasz, btextsz));
399 
400 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
401 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
402 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
403 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
404 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
405 
406 	/* sanity checks */
407 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
408 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
409 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
410 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
411 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
412 	    (btextsz & 3) != 0) {
413 		device_printf(sc->sc_dev, "firmware invalid\n");
414 		error = EINVAL;
415 		goto fail;
416 	}
417 
418 	/* copy initialization images into pre-allocated DMA-safe memory */
419 	memcpy(dma->vaddr, idata, idatasz);
420 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
421 
422 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
423 
424 	/* tell adapter where to find initialization images */
425 	wpi_mem_lock(sc);
426 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
427 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
428 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
429 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
430 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
431 	wpi_mem_unlock(sc);
432 
433 	/* load firmware boot code */
434 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
435 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
436 	    goto fail;
437 	}
438 
439 	/* now press "execute" */
440 	WPI_WRITE(sc, WPI_RESET, 0);
441 
442 	/* wait at most one second for the first alive notification */
443 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
444 		device_printf(sc->sc_dev,
445 		    "timeout waiting for adapter to initialize\n");
446 		goto fail;
447 	}
448 
449 	/* copy runtime images into pre-allocated DMA-sage memory */
450 	memcpy(dma->vaddr, rdata, rdatasz);
451 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
452 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
453 
454 	/* tell adapter where to find runtime images */
455 	wpi_mem_lock(sc);
456 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
457 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
458 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
459 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
460 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
461 	wpi_mem_unlock(sc);
462 
463 	/* wait at most one second for the first alive notification */
464 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
465 		device_printf(sc->sc_dev,
466 		    "timeout waiting for adapter to initialize2\n");
467 		goto fail;
468 	}
469 
470 	DPRINTFN(WPI_DEBUG_FIRMWARE,
471 	    ("Firmware loaded to driver successfully\n"));
472 	return error;
473 fail:
474 	wpi_unload_firmware(sc);
475 	return error;
476 }
477 
478 /**
479  * Free the referenced firmware image
480  */
481 static void
482 wpi_unload_firmware(struct wpi_softc *sc)
483 {
484 	struct ifnet *ifp;
485 	ifp = sc->sc_ifp;
486 
487 	if (sc->fw_fp) {
488 		wlan_assert_serialized();
489 		wlan_serialize_exit();
490 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
491 		wlan_serialize_enter();
492 		sc->fw_fp = NULL;
493 	}
494 }
495 
496 static int
497 wpi_attach(device_t dev)
498 {
499 	struct wpi_softc *sc = device_get_softc(dev);
500 	struct ifnet *ifp;
501 	struct ieee80211com *ic;
502 	int ac, error, supportsa = 1;
503 	uint32_t tmp;
504 	const struct wpi_ident *ident;
505 	uint8_t macaddr[IEEE80211_ADDR_LEN];
506 
507 	wlan_serialize_enter();
508 
509 	sc->sc_dev = dev;
510 
511 	if (bootverbose || WPI_DEBUG_SET)
512 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
513 
514 	/*
515 	 * Some card's only support 802.11b/g not a, check to see if
516 	 * this is one such card. A 0x0 in the subdevice table indicates
517 	 * the entire subdevice range is to be ignored.
518 	 */
519 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
520 		if (ident->subdevice &&
521 		    pci_get_subdevice(dev) == ident->subdevice) {
522 		    supportsa = 0;
523 		    break;
524 		}
525 	}
526 
527 	/* Create the tasks that can be queued */
528 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset_task, sc);
529 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset_task, sc);
530 
531 	callout_init(&sc->calib_to_callout);
532 	callout_init(&sc->watchdog_to_callout);
533 
534 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
535 		device_printf(dev, "chip is in D%d power mode "
536 		    "-- setting to D0\n", pci_get_powerstate(dev));
537 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
538 	}
539 
540 	/* disable the retry timeout register */
541 	pci_write_config(dev, 0x41, 0, 1);
542 
543 	/* enable bus-mastering */
544 	pci_enable_busmaster(dev);
545 
546 	sc->mem_rid = PCIR_BAR(0);
547 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
548 	    RF_ACTIVE);
549 	if (sc->mem == NULL) {
550 		device_printf(dev, "could not allocate memory resource\n");
551 		error = ENOMEM;
552 		goto fail;
553 	}
554 
555 	sc->sc_st = rman_get_bustag(sc->mem);
556 	sc->sc_sh = rman_get_bushandle(sc->mem);
557 
558 	sc->irq_rid = 0;
559 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
560 	    RF_ACTIVE | RF_SHAREABLE);
561 	if (sc->irq == NULL) {
562 		device_printf(dev, "could not allocate interrupt resource\n");
563 		error = ENOMEM;
564 		goto fail;
565 	}
566 
567 	/*
568 	 * Allocate DMA memory for firmware transfers.
569 	 */
570 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
571 		kprintf(": could not allocate firmware memory\n");
572 		error = ENOMEM;
573 		goto fail;
574 	}
575 
576 	/*
577 	 * Put adapter into a known state.
578 	 */
579 	if ((error = wpi_reset(sc)) != 0) {
580 		device_printf(dev, "could not reset adapter\n");
581 		goto fail;
582 	}
583 
584 	wpi_mem_lock(sc);
585 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
586 	if (bootverbose || WPI_DEBUG_SET)
587 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
588 
589 	wpi_mem_unlock(sc);
590 
591 	/* Allocate shared page */
592 	if ((error = wpi_alloc_shared(sc)) != 0) {
593 		device_printf(dev, "could not allocate shared page\n");
594 		goto fail;
595 	}
596 
597 	/* tx data queues  - 4 for QoS purposes */
598 	for (ac = 0; ac < WME_NUM_AC; ac++) {
599 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
600 		if (error != 0) {
601 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
602 		    goto fail;
603 		}
604 	}
605 
606 	/* command queue to talk to the card's firmware */
607 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
608 	if (error != 0) {
609 		device_printf(dev, "could not allocate command ring\n");
610 		goto fail;
611 	}
612 
613 	/* receive data queue */
614 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
615 	if (error != 0) {
616 		device_printf(dev, "could not allocate Rx ring\n");
617 		goto fail;
618 	}
619 
620 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
621 	if (ifp == NULL) {
622 		device_printf(dev, "can not if_alloc()\n");
623 		error = ENOMEM;
624 		goto fail;
625 	}
626 	ic = ifp->if_l2com;
627 
628 	ic->ic_ifp = ifp;
629 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
630 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
631 
632 	/* set device capabilities */
633 	ic->ic_caps =
634 		  IEEE80211_C_STA		/* station mode supported */
635 		| IEEE80211_C_MONITOR		/* monitor mode supported */
636 		| IEEE80211_C_TXPMGT		/* tx power management */
637 		| IEEE80211_C_SHSLOT		/* short slot time supported */
638 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
639 		| IEEE80211_C_WPA		/* 802.11i */
640 /* XXX looks like WME is partly supported? */
641 #if 0
642 		| IEEE80211_C_IBSS		/* IBSS mode support */
643 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
644 		| IEEE80211_C_WME		/* 802.11e */
645 		| IEEE80211_C_HOSTAP		/* Host access point mode */
646 #endif
647 		;
648 
649 	/*
650 	 * Read in the eeprom and also setup the channels for
651 	 * net80211. We don't set the rates as net80211 does this for us
652 	 */
653 	wpi_read_eeprom(sc, macaddr);
654 
655 	if (bootverbose || WPI_DEBUG_SET) {
656 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
657 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
658 			  sc->type > 1 ? 'B': '?');
659 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
660 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
661 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
662 			  supportsa ? "does" : "does not");
663 
664 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
665 	       what sc->rev really represents - benjsc 20070615 */
666 	}
667 
668 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
669 	ifp->if_softc = sc;
670 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
671 	ifp->if_init = wpi_init;
672 	ifp->if_ioctl = wpi_ioctl;
673 	ifp->if_start = wpi_start;
674 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
675 	ifq_set_ready(&ifp->if_snd);
676 
677 	ieee80211_ifattach(ic, macaddr);
678 	/* override default methods */
679 	ic->ic_node_alloc = wpi_node_alloc;
680 	ic->ic_newassoc = wpi_newassoc;
681 	ic->ic_raw_xmit = wpi_raw_xmit;
682 	ic->ic_wme.wme_update = wpi_wme_update;
683 	ic->ic_scan_start = wpi_scan_start;
684 	ic->ic_scan_end = wpi_scan_end;
685 	ic->ic_set_channel = wpi_set_channel;
686 	ic->ic_scan_curchan = wpi_scan_curchan;
687 	ic->ic_scan_mindwell = wpi_scan_mindwell;
688 
689 	ic->ic_vap_create = wpi_vap_create;
690 	ic->ic_vap_delete = wpi_vap_delete;
691 
692 	ieee80211_radiotap_attach(ic,
693 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
694 		WPI_TX_RADIOTAP_PRESENT,
695 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
696 		WPI_RX_RADIOTAP_PRESENT);
697 
698 	/*
699 	 * Hook our interrupt after all initialization is complete.
700 	 */
701 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
702 	    wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
703 	if (error != 0) {
704 		device_printf(dev, "could not set up interrupt\n");
705 		goto fail;
706 	}
707 
708 	if (bootverbose)
709 		ieee80211_announce(ic);
710 #ifdef XXX_DEBUG
711 	ieee80211_announce_channels(ic);
712 #endif
713 	wlan_serialize_exit();
714 	return 0;
715 
716 fail:
717 	wlan_serialize_exit();
718 	wpi_detach(dev);
719 	return ENXIO;
720 }
721 
722 static int
723 wpi_detach(device_t dev)
724 {
725 	struct wpi_softc *sc = device_get_softc(dev);
726 	struct ifnet *ifp = sc->sc_ifp;
727 	struct ieee80211com *ic;
728 	int ac;
729 
730 	wlan_serialize_enter();
731 	if (ifp != NULL) {
732 		ic = ifp->if_l2com;
733 
734 		ieee80211_draintask(ic, &sc->sc_restarttask);
735 		ieee80211_draintask(ic, &sc->sc_radiotask);
736 		wpi_stop(sc);
737 		callout_stop(&sc->watchdog_to_callout);
738 		callout_stop(&sc->calib_to_callout);
739 		ieee80211_ifdetach(ic);
740 	}
741 
742 	if (sc->txq[0].data_dmat) {
743 		for (ac = 0; ac < WME_NUM_AC; ac++)
744 			wpi_free_tx_ring(sc, &sc->txq[ac]);
745 
746 		wpi_free_tx_ring(sc, &sc->cmdq);
747 		wpi_free_rx_ring(sc, &sc->rxq);
748 		wpi_free_shared(sc);
749 	}
750 
751 	if (sc->fw_fp != NULL) {
752 		wpi_unload_firmware(sc);
753 	}
754 
755 	if (sc->fw_dma.tag)
756 		wpi_free_fwmem(sc);
757 
758 	if (sc->irq != NULL) {
759 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
760 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
761 	}
762 
763 	if (sc->mem != NULL)
764 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
765 
766 	if (ifp != NULL)
767 		if_free(ifp);
768 
769 	wlan_serialize_exit();
770 	return 0;
771 }
772 
773 static struct ieee80211vap *
774 wpi_vap_create(struct ieee80211com *ic,
775 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
776 	const uint8_t bssid[IEEE80211_ADDR_LEN],
777 	const uint8_t mac[IEEE80211_ADDR_LEN])
778 {
779 	struct wpi_vap *wvp;
780 	struct ieee80211vap *vap;
781 
782 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
783 		return NULL;
784 	wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
785 	    M_80211_VAP, M_INTWAIT | M_ZERO);
786 	if (wvp == NULL)
787 		return NULL;
788 	vap = &wvp->vap;
789 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
790 	/* override with driver methods */
791 	wvp->newstate = vap->iv_newstate;
792 	vap->iv_newstate = wpi_newstate;
793 
794 	ieee80211_ratectl_init(vap);
795 
796 	/* complete setup */
797 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
798 	ic->ic_opmode = opmode;
799 	return vap;
800 }
801 
802 static void
803 wpi_vap_delete(struct ieee80211vap *vap)
804 {
805 	struct wpi_vap *wvp = WPI_VAP(vap);
806 
807 	ieee80211_ratectl_deinit(vap);
808 	ieee80211_vap_detach(vap);
809 	kfree(wvp, M_80211_VAP);
810 }
811 
812 static void
813 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
814 {
815 	if (error != 0)
816 		return;
817 
818 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
819 
820 	*(bus_addr_t *)arg = segs[0].ds_addr;
821 }
822 
823 /*
824  * Allocates a contiguous block of dma memory of the requested size and
825  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
826  * allocations greater than 4096 may fail. Hence if the requested alignment is
827  * greater we allocate 'alignment' size extra memory and shift the vaddr and
828  * paddr after the dma load. This bypasses the problem at the cost of a little
829  * more memory.
830  */
831 static int
832 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
833     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
834 {
835 	int error;
836 	bus_size_t align;
837 	bus_size_t reqsize;
838 
839 	DPRINTFN(WPI_DEBUG_DMA,
840 	    ("Size: %zd - alignment %zd\n", size, alignment));
841 
842 	dma->size = size;
843 	dma->tag = NULL;
844 
845 	if (alignment > 4096) {
846 		align = PAGE_SIZE;
847 		reqsize = size + alignment;
848 	} else {
849 		align = alignment;
850 		reqsize = size;
851 	}
852 	error = bus_dma_tag_create(dma->tag, align,
853 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
854 	    NULL, NULL, reqsize,
855 	    1, reqsize, flags,
856 	    &dma->tag);
857 	if (error != 0) {
858 		device_printf(sc->sc_dev,
859 		    "could not create shared page DMA tag\n");
860 		goto fail;
861 	}
862 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
863 	    flags | BUS_DMA_ZERO, &dma->map);
864 	if (error != 0) {
865 		device_printf(sc->sc_dev,
866 		    "could not allocate shared page DMA memory\n");
867 		goto fail;
868 	}
869 
870 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
871 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
872 
873 	/* Save the original pointers so we can free all the memory */
874 	dma->paddr = dma->paddr_start;
875 	dma->vaddr = dma->vaddr_start;
876 
877 	/*
878 	 * Check the alignment and increment by 4096 until we get the
879 	 * requested alignment. Fail if can't obtain the alignment
880 	 * we requested.
881 	 */
882 	if ((dma->paddr & (alignment -1 )) != 0) {
883 		int i;
884 
885 		for (i = 0; i < alignment / 4096; i++) {
886 			if ((dma->paddr & (alignment - 1 )) == 0)
887 				break;
888 			dma->paddr += 4096;
889 			dma->vaddr += 4096;
890 		}
891 		if (i == alignment / 4096) {
892 			device_printf(sc->sc_dev,
893 			    "alignment requirement was not satisfied\n");
894 			goto fail;
895 		}
896 	}
897 
898 	if (error != 0) {
899 		device_printf(sc->sc_dev,
900 		    "could not load shared page DMA map\n");
901 		goto fail;
902 	}
903 
904 	if (kvap != NULL)
905 		*kvap = dma->vaddr;
906 
907 	return 0;
908 
909 fail:
910 	wpi_dma_contig_free(dma);
911 	return error;
912 }
913 
914 static void
915 wpi_dma_contig_free(struct wpi_dma_info *dma)
916 {
917 	if (dma->tag) {
918 		if (dma->map != NULL) {
919 			if (dma->paddr_start != 0) {
920 				bus_dmamap_sync(dma->tag, dma->map,
921 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
922 				bus_dmamap_unload(dma->tag, dma->map);
923 			}
924 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
925 		}
926 		bus_dma_tag_destroy(dma->tag);
927 	}
928 }
929 
930 /*
931  * Allocate a shared page between host and NIC.
932  */
933 static int
934 wpi_alloc_shared(struct wpi_softc *sc)
935 {
936 	int error;
937 
938 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
939 	    (void **)&sc->shared, sizeof (struct wpi_shared),
940 	    PAGE_SIZE,
941 	    BUS_DMA_NOWAIT);
942 
943 	if (error != 0) {
944 		device_printf(sc->sc_dev,
945 		    "could not allocate shared area DMA memory\n");
946 	}
947 
948 	return error;
949 }
950 
951 static void
952 wpi_free_shared(struct wpi_softc *sc)
953 {
954 	wpi_dma_contig_free(&sc->shared_dma);
955 }
956 
957 static int
958 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
959 {
960 
961 	int i, error;
962 
963 	ring->cur = 0;
964 
965 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
966 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
967 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
968 
969 	if (error != 0) {
970 		device_printf(sc->sc_dev,
971 		    "%s: could not allocate rx ring DMA memory, error %d\n",
972 		    __func__, error);
973 		goto fail;
974 	}
975 
976         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
977 	    BUS_SPACE_MAXADDR_32BIT,
978             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
979             MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
980         if (error != 0) {
981                 device_printf(sc->sc_dev,
982 		    "%s: bus_dma_tag_create_failed, error %d\n",
983 		    __func__, error);
984                 goto fail;
985         }
986 
987 	/*
988 	 * Setup Rx buffers.
989 	 */
990 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
991 		struct wpi_rx_data *data = &ring->data[i];
992 		struct mbuf *m;
993 		bus_addr_t paddr;
994 
995 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
996 		if (error != 0) {
997 			device_printf(sc->sc_dev,
998 			    "%s: bus_dmamap_create failed, error %d\n",
999 			    __func__, error);
1000 			goto fail;
1001 		}
1002 		m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1003 		if (m == NULL) {
1004 			device_printf(sc->sc_dev,
1005 			   "%s: could not allocate rx mbuf\n", __func__);
1006 			error = ENOMEM;
1007 			goto fail;
1008 		}
1009 		/* map page */
1010 		error = bus_dmamap_load(ring->data_dmat, data->map,
1011 		    mtod(m, caddr_t), MCLBYTES,
1012 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1013 		if (error != 0 && error != EFBIG) {
1014 			device_printf(sc->sc_dev,
1015 			    "%s: bus_dmamap_load failed, error %d\n",
1016 			    __func__, error);
1017 			m_freem(m);
1018 			error = ENOMEM;	/* XXX unique code */
1019 			goto fail;
1020 		}
1021 		bus_dmamap_sync(ring->data_dmat, data->map,
1022 		    BUS_DMASYNC_PREWRITE);
1023 
1024 		data->m = m;
1025 		ring->desc[i] = htole32(paddr);
1026 	}
1027 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1028 	    BUS_DMASYNC_PREWRITE);
1029 	return 0;
1030 fail:
1031 	wpi_free_rx_ring(sc, ring);
1032 	return error;
1033 }
1034 
1035 static void
1036 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1037 {
1038 	int ntries;
1039 
1040 	wpi_mem_lock(sc);
1041 
1042 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1043 
1044 	for (ntries = 0; ntries < 100; ntries++) {
1045 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1046 			break;
1047 		DELAY(10);
1048 	}
1049 
1050 	wpi_mem_unlock(sc);
1051 
1052 #ifdef WPI_DEBUG
1053 	if (ntries == 100 && wpi_debug > 0)
1054 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1055 #endif
1056 
1057 	ring->cur = 0;
1058 }
1059 
1060 static void
1061 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1062 {
1063 	int i;
1064 
1065 	wpi_dma_contig_free(&ring->desc_dma);
1066 
1067 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1068 		if (ring->data[i].m != NULL)
1069 			m_freem(ring->data[i].m);
1070 }
1071 
1072 static int
1073 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1074 	int qid)
1075 {
1076 	struct wpi_tx_data *data;
1077 	int i, error;
1078 
1079 	ring->qid = qid;
1080 	ring->count = count;
1081 	ring->queued = 0;
1082 	ring->cur = 0;
1083 	ring->data = NULL;
1084 
1085 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1086 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1087 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1088 
1089 	if (error != 0) {
1090 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1091 	    goto fail;
1092 	}
1093 
1094 	/* update shared page with ring's base address */
1095 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1096 
1097 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1098 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1099 		BUS_DMA_NOWAIT);
1100 
1101 	if (error != 0) {
1102 		device_printf(sc->sc_dev,
1103 		    "could not allocate tx command DMA memory\n");
1104 		goto fail;
1105 	}
1106 
1107 	ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1108 	    M_INTWAIT | M_ZERO);
1109 	if (ring->data == NULL) {
1110 		device_printf(sc->sc_dev,
1111 		    "could not allocate tx data slots\n");
1112 		goto fail;
1113 	}
1114 
1115 	error = bus_dma_tag_create(ring->data_dmat, 1, 0,
1116 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1117 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT,
1118 	    &ring->data_dmat);
1119 	if (error != 0) {
1120 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1121 		goto fail;
1122 	}
1123 
1124 	for (i = 0; i < count; i++) {
1125 		data = &ring->data[i];
1126 
1127 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1128 		if (error != 0) {
1129 			device_printf(sc->sc_dev,
1130 			    "could not create tx buf DMA map\n");
1131 			goto fail;
1132 		}
1133 		bus_dmamap_sync(ring->data_dmat, data->map,
1134 		    BUS_DMASYNC_PREWRITE);
1135 	}
1136 
1137 	return 0;
1138 
1139 fail:
1140 	wpi_free_tx_ring(sc, ring);
1141 	return error;
1142 }
1143 
1144 static void
1145 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1146 {
1147 	struct wpi_tx_data *data;
1148 	int i, ntries;
1149 
1150 	wpi_mem_lock(sc);
1151 
1152 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1153 	for (ntries = 0; ntries < 100; ntries++) {
1154 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1155 			break;
1156 		DELAY(10);
1157 	}
1158 #ifdef WPI_DEBUG
1159 	if (ntries == 100 && wpi_debug > 0)
1160 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1161 		    ring->qid);
1162 #endif
1163 	wpi_mem_unlock(sc);
1164 
1165 	for (i = 0; i < ring->count; i++) {
1166 		data = &ring->data[i];
1167 
1168 		if (data->m != NULL) {
1169 			bus_dmamap_unload(ring->data_dmat, data->map);
1170 			m_freem(data->m);
1171 			data->m = NULL;
1172 		}
1173 	}
1174 
1175 	ring->queued = 0;
1176 	ring->cur = 0;
1177 }
1178 
1179 static void
1180 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1181 {
1182 	struct wpi_tx_data *data;
1183 	int i;
1184 
1185 	wpi_dma_contig_free(&ring->desc_dma);
1186 	wpi_dma_contig_free(&ring->cmd_dma);
1187 
1188 	if (ring->data != NULL) {
1189 		for (i = 0; i < ring->count; i++) {
1190 			data = &ring->data[i];
1191 
1192 			if (data->m != NULL) {
1193 				bus_dmamap_sync(ring->data_dmat, data->map,
1194 				    BUS_DMASYNC_POSTWRITE);
1195 				bus_dmamap_unload(ring->data_dmat, data->map);
1196 				m_freem(data->m);
1197 				data->m = NULL;
1198 			}
1199 		}
1200 		kfree(ring->data, M_DEVBUF);
1201 	}
1202 
1203 	if (ring->data_dmat != NULL)
1204 		bus_dma_tag_destroy(ring->data_dmat);
1205 }
1206 
1207 static int
1208 wpi_shutdown(device_t dev)
1209 {
1210 	struct wpi_softc *sc = device_get_softc(dev);
1211 
1212 	wlan_serialize_enter();
1213 	wpi_stop_locked(sc);
1214 	wpi_unload_firmware(sc);
1215 	wlan_serialize_exit();
1216 
1217 	return 0;
1218 }
1219 
1220 static int
1221 wpi_suspend(device_t dev)
1222 {
1223 	struct wpi_softc *sc = device_get_softc(dev);
1224 
1225 	wlan_serialize_enter();
1226 	wpi_stop(sc);
1227 	wlan_serialize_exit();
1228 	return 0;
1229 }
1230 
1231 static int
1232 wpi_resume(device_t dev)
1233 {
1234 	struct wpi_softc *sc = device_get_softc(dev);
1235 	struct ifnet *ifp = sc->sc_ifp;
1236 
1237 	wlan_serialize_enter();
1238 	pci_write_config(dev, 0x41, 0, 1);
1239 
1240 	if (ifp->if_flags & IFF_UP) {
1241 		wpi_init(ifp->if_softc);
1242 		if (ifp->if_flags & IFF_RUNNING)
1243 			wpi_start(ifp);
1244 	}
1245 	wlan_serialize_exit();
1246 	return 0;
1247 }
1248 
1249 /* ARGSUSED */
1250 static struct ieee80211_node *
1251 wpi_node_alloc(struct ieee80211vap *vap __unused,
1252 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1253 {
1254 	struct wpi_node *wn;
1255 
1256 	wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO);
1257 
1258 	return &wn->ni;
1259 }
1260 
1261 /**
1262  * Called by net80211 when ever there is a change to 80211 state machine
1263  */
1264 static int
1265 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1266 {
1267 	struct wpi_vap *wvp = WPI_VAP(vap);
1268 	struct ieee80211com *ic = vap->iv_ic;
1269 	struct ifnet *ifp = ic->ic_ifp;
1270 	struct wpi_softc *sc = ifp->if_softc;
1271 	int error;
1272 
1273 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1274 		ieee80211_state_name[vap->iv_state],
1275 		ieee80211_state_name[nstate], sc->flags));
1276 
1277 	if (nstate == IEEE80211_S_AUTH) {
1278 		/* The node must be registered in the firmware before auth */
1279 		error = wpi_auth(sc, vap);
1280 		if (error != 0) {
1281 			device_printf(sc->sc_dev,
1282 			    "%s: could not move to auth state, error %d\n",
1283 			    __func__, error);
1284 		}
1285 	}
1286 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1287 		error = wpi_run(sc, vap);
1288 		if (error != 0) {
1289 			device_printf(sc->sc_dev,
1290 			    "%s: could not move to run state, error %d\n",
1291 			    __func__, error);
1292 		}
1293 	}
1294 	if (nstate == IEEE80211_S_RUN) {
1295 		/* RUN -> RUN transition; just restart the timers */
1296 		wpi_calib_timeout_callout(sc);
1297 		/* XXX split out rate control timer */
1298 	}
1299 	return wvp->newstate(vap, nstate, arg);
1300 }
1301 
1302 /*
1303  * Grab exclusive access to NIC memory.
1304  */
1305 static void
1306 wpi_mem_lock(struct wpi_softc *sc)
1307 {
1308 	int ntries;
1309 	uint32_t tmp;
1310 
1311 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1312 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1313 
1314 	/* spin until we actually get the lock */
1315 	for (ntries = 0; ntries < 100; ntries++) {
1316 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1317 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1318 			break;
1319 		DELAY(10);
1320 	}
1321 	if (ntries == 100)
1322 		device_printf(sc->sc_dev, "could not lock memory\n");
1323 }
1324 
1325 /*
1326  * Release lock on NIC memory.
1327  */
1328 static void
1329 wpi_mem_unlock(struct wpi_softc *sc)
1330 {
1331 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1332 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1333 }
1334 
1335 static uint32_t
1336 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1337 {
1338 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1339 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1340 }
1341 
1342 static void
1343 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1344 {
1345 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1346 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1347 }
1348 
1349 static void
1350 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1351     const uint32_t *data, int wlen)
1352 {
1353 	for (; wlen > 0; wlen--, data++, addr+=4)
1354 		wpi_mem_write(sc, addr, *data);
1355 }
1356 
1357 /*
1358  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1359  * using the traditional bit-bang method. Data is read up until len bytes have
1360  * been obtained.
1361  */
1362 static uint16_t
1363 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1364 {
1365 	int ntries;
1366 	uint32_t val;
1367 	uint8_t *out = data;
1368 
1369 	wpi_mem_lock(sc);
1370 
1371 	for (; len > 0; len -= 2, addr++) {
1372 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1373 
1374 		for (ntries = 0; ntries < 10; ntries++) {
1375 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1376 				break;
1377 			DELAY(5);
1378 		}
1379 
1380 		if (ntries == 10) {
1381 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1382 			return ETIMEDOUT;
1383 		}
1384 
1385 		*out++= val >> 16;
1386 		if (len > 1)
1387 			*out ++= val >> 24;
1388 	}
1389 
1390 	wpi_mem_unlock(sc);
1391 
1392 	return 0;
1393 }
1394 
1395 /*
1396  * The firmware text and data segments are transferred to the NIC using DMA.
1397  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1398  * where to find it.  Once the NIC has copied the firmware into its internal
1399  * memory, we can free our local copy in the driver.
1400  */
1401 static int
1402 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1403 {
1404 	int error, ntries;
1405 
1406 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1407 
1408 	size /= sizeof(uint32_t);
1409 
1410 	wpi_mem_lock(sc);
1411 
1412 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1413 	    (const uint32_t *)fw, size);
1414 
1415 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1416 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1417 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1418 
1419 	/* run microcode */
1420 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1421 
1422 	/* wait while the adapter is busy copying the firmware */
1423 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1424 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1425 		DPRINTFN(WPI_DEBUG_HW,
1426 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1427 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1428 		if (status & WPI_TX_IDLE(6)) {
1429 			DPRINTFN(WPI_DEBUG_HW,
1430 			    ("Status Match! - ntries = %d\n", ntries));
1431 			break;
1432 		}
1433 		DELAY(10);
1434 	}
1435 	if (ntries == 1000) {
1436 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1437 		error = ETIMEDOUT;
1438 	}
1439 
1440 	/* start the microcode executing */
1441 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1442 
1443 	wpi_mem_unlock(sc);
1444 
1445 	return (error);
1446 }
1447 
1448 static void
1449 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1450 	struct wpi_rx_data *data)
1451 {
1452 	struct ifnet *ifp = sc->sc_ifp;
1453 	struct ieee80211com *ic = ifp->if_l2com;
1454 	struct wpi_rx_ring *ring = &sc->rxq;
1455 	struct wpi_rx_stat *stat;
1456 	struct wpi_rx_head *head;
1457 	struct wpi_rx_tail *tail;
1458 	struct ieee80211_node *ni;
1459 	struct mbuf *m, *mnew;
1460 	bus_addr_t paddr;
1461 	int error;
1462 
1463 	stat = (struct wpi_rx_stat *)(desc + 1);
1464 
1465 	if (stat->len > WPI_STAT_MAXLEN) {
1466 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1467 		ifp->if_ierrors++;
1468 		return;
1469 	}
1470 
1471 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1472 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1473 
1474 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1475 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1476 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1477 	    (uintmax_t)le64toh(tail->tstamp)));
1478 
1479 	/* discard Rx frames with bad CRC early */
1480 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1481 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1482 		    le32toh(tail->flags)));
1483 		ifp->if_ierrors++;
1484 		return;
1485 	}
1486 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1487 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1488 		    le16toh(head->len)));
1489 		ifp->if_ierrors++;
1490 		return;
1491 	}
1492 
1493 	/* XXX don't need mbuf, just dma buffer */
1494 	mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1495 	if (mnew == NULL) {
1496 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1497 		    __func__));
1498 		ifp->if_ierrors++;
1499 		return;
1500 	}
1501 	error = bus_dmamap_load(ring->data_dmat, data->map,
1502 	    mtod(mnew, caddr_t), MCLBYTES,
1503 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1504 	if (error != 0 && error != EFBIG) {
1505 		device_printf(sc->sc_dev,
1506 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1507 		m_freem(mnew);
1508 		ifp->if_ierrors++;
1509 		return;
1510 	}
1511 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1512 
1513 	/* finalize mbuf and swap in new one */
1514 	m = data->m;
1515 	m->m_pkthdr.rcvif = ifp;
1516 	m->m_data = (caddr_t)(head + 1);
1517 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1518 
1519 	data->m = mnew;
1520 	/* update Rx descriptor */
1521 	ring->desc[ring->cur] = htole32(paddr);
1522 
1523 	if (ieee80211_radiotap_active(ic)) {
1524 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1525 
1526 		tap->wr_flags = 0;
1527 		tap->wr_chan_freq =
1528 			htole16(ic->ic_channels[head->chan].ic_freq);
1529 		tap->wr_chan_flags =
1530 			htole16(ic->ic_channels[head->chan].ic_flags);
1531 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1532 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1533 		tap->wr_tsft = tail->tstamp;
1534 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1535 		switch (head->rate) {
1536 		/* CCK rates */
1537 		case  10: tap->wr_rate =   2; break;
1538 		case  20: tap->wr_rate =   4; break;
1539 		case  55: tap->wr_rate =  11; break;
1540 		case 110: tap->wr_rate =  22; break;
1541 		/* OFDM rates */
1542 		case 0xd: tap->wr_rate =  12; break;
1543 		case 0xf: tap->wr_rate =  18; break;
1544 		case 0x5: tap->wr_rate =  24; break;
1545 		case 0x7: tap->wr_rate =  36; break;
1546 		case 0x9: tap->wr_rate =  48; break;
1547 		case 0xb: tap->wr_rate =  72; break;
1548 		case 0x1: tap->wr_rate =  96; break;
1549 		case 0x3: tap->wr_rate = 108; break;
1550 		/* unknown rate: should not happen */
1551 		default:  tap->wr_rate =   0;
1552 		}
1553 		if (le16toh(head->flags) & 0x4)
1554 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1555 	}
1556 
1557 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1558 	if (ni != NULL) {
1559 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1560 		ieee80211_free_node(ni);
1561 	} else
1562 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1563 }
1564 
1565 static void
1566 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1567 {
1568 	struct ifnet *ifp = sc->sc_ifp;
1569 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1570 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1571 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1572 	struct ieee80211_node *ni = txdata->ni;
1573 	struct ieee80211vap *vap = ni->ni_vap;
1574 	int retrycnt = 0;
1575 
1576 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1577 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1578 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1579 	    le32toh(stat->status)));
1580 
1581 	/*
1582 	 * Update rate control statistics for the node.
1583 	 * XXX we should not count mgmt frames since they're always sent at
1584 	 * the lowest available bit-rate.
1585 	 * XXX frames w/o ACK shouldn't be used either
1586 	 */
1587 	if (stat->ntries > 0) {
1588 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1589 		retrycnt = 1;
1590 	}
1591 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1592 		&retrycnt, NULL);
1593 
1594 	/* XXX oerrors should only count errors !maxtries */
1595 	if ((le32toh(stat->status) & 0xff) != 1)
1596 		ifp->if_oerrors++;
1597 	else
1598 		ifp->if_opackets++;
1599 
1600 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1601 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1602 	/* XXX handle M_TXCB? */
1603 	m_freem(txdata->m);
1604 	txdata->m = NULL;
1605 	ieee80211_free_node(txdata->ni);
1606 	txdata->ni = NULL;
1607 
1608 	ring->queued--;
1609 
1610 	sc->sc_tx_timer = 0;
1611 	ifp->if_flags &= ~IFF_OACTIVE;
1612 	wpi_start_locked(ifp);
1613 }
1614 
1615 static void
1616 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1617 {
1618 	struct wpi_tx_ring *ring = &sc->cmdq;
1619 	struct wpi_tx_data *data;
1620 
1621 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1622 				 "type=%s len=%d\n", desc->qid, desc->idx,
1623 				 desc->flags, wpi_cmd_str(desc->type),
1624 				 le32toh(desc->len)));
1625 
1626 	if ((desc->qid & 7) != 4)
1627 		return;	/* not a command ack */
1628 
1629 	data = &ring->data[desc->idx];
1630 
1631 	/* if the command was mapped in a mbuf, free it */
1632 	if (data->m != NULL) {
1633 		bus_dmamap_unload(ring->data_dmat, data->map);
1634 		m_freem(data->m);
1635 		data->m = NULL;
1636 	}
1637 
1638 	sc->flags &= ~WPI_FLAG_BUSY;
1639 	wakeup(&ring->cmd[desc->idx]);
1640 }
1641 
1642 static void
1643 wpi_notif_intr(struct wpi_softc *sc)
1644 {
1645 	struct ifnet *ifp = sc->sc_ifp;
1646 	struct ieee80211com *ic = ifp->if_l2com;
1647 	struct wpi_rx_desc *desc;
1648 	struct wpi_rx_data *data;
1649 	uint32_t hw;
1650 
1651 	hw = le32toh(sc->shared->next);
1652 	while (sc->rxq.cur != hw) {
1653 		data = &sc->rxq.data[sc->rxq.cur];
1654 		desc = (void *)data->m->m_ext.ext_buf;
1655 
1656 		DPRINTFN(WPI_DEBUG_NOTIFY,
1657 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1658 			  desc->qid,
1659 			  desc->idx,
1660 			  desc->flags,
1661 			  desc->type,
1662 			  le32toh(desc->len)));
1663 
1664 		if (!(desc->qid & 0x80))	/* reply to a command */
1665 			wpi_cmd_intr(sc, desc);
1666 
1667 		switch (desc->type) {
1668 		case WPI_RX_DONE:
1669 			/* a 802.11 frame was received */
1670 			wpi_rx_intr(sc, desc, data);
1671 			break;
1672 
1673 		case WPI_TX_DONE:
1674 			/* a 802.11 frame has been transmitted */
1675 			wpi_tx_intr(sc, desc);
1676 			break;
1677 
1678 		case WPI_UC_READY:
1679 		{
1680 			struct wpi_ucode_info *uc =
1681 				(struct wpi_ucode_info *)(desc + 1);
1682 
1683 			/* the microcontroller is ready */
1684 			DPRINTF(("microcode alive notification version %x "
1685 				"alive %x\n", le32toh(uc->version),
1686 				le32toh(uc->valid)));
1687 
1688 			if (le32toh(uc->valid) != 1) {
1689 				device_printf(sc->sc_dev,
1690 				    "microcontroller initialization failed\n");
1691 				wpi_stop_locked(sc);
1692 			}
1693 			break;
1694 		}
1695 		case WPI_STATE_CHANGED:
1696 		{
1697 			uint32_t *status = (uint32_t *)(desc + 1);
1698 
1699 			/* enabled/disabled notification */
1700 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1701 
1702 			if (le32toh(*status) & 1) {
1703 				device_printf(sc->sc_dev,
1704 				    "Radio transmitter is switched off\n");
1705 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1706 				ifp->if_flags &= ~IFF_RUNNING;
1707 				/* Disable firmware commands */
1708 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1709 			}
1710 			break;
1711 		}
1712 		case WPI_START_SCAN:
1713 		{
1714 #ifdef WPI_DEBUG
1715 			struct wpi_start_scan *scan =
1716 				(struct wpi_start_scan *)(desc + 1);
1717 #endif
1718 
1719 			DPRINTFN(WPI_DEBUG_SCANNING,
1720 				 ("scanning channel %d status %x\n",
1721 			    scan->chan, le32toh(scan->status)));
1722 			break;
1723 		}
1724 		case WPI_STOP_SCAN:
1725 		{
1726 #ifdef WPI_DEBUG
1727 			struct wpi_stop_scan *scan =
1728 				(struct wpi_stop_scan *)(desc + 1);
1729 #endif
1730 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1731 
1732 			DPRINTFN(WPI_DEBUG_SCANNING,
1733 			    ("scan finished nchan=%d status=%d chan=%d\n",
1734 			     scan->nchan, scan->status, scan->chan));
1735 
1736 			sc->sc_scan_timer = 0;
1737 			ieee80211_scan_next(vap);
1738 			break;
1739 		}
1740 		case WPI_MISSED_BEACON:
1741 		{
1742 			struct wpi_missed_beacon *beacon =
1743 				(struct wpi_missed_beacon *)(desc + 1);
1744 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1745 
1746 			if (le32toh(beacon->consecutive) >=
1747 			    vap->iv_bmissthreshold) {
1748 				DPRINTF(("Beacon miss: %u >= %u\n",
1749 					 le32toh(beacon->consecutive),
1750 					 vap->iv_bmissthreshold));
1751 				ieee80211_beacon_miss(ic);
1752 			}
1753 			break;
1754 		}
1755 		}
1756 
1757 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1758 	}
1759 
1760 	/* tell the firmware what we have processed */
1761 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1762 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1763 }
1764 
1765 static void
1766 wpi_intr(void *arg)
1767 {
1768 	struct wpi_softc *sc = arg;
1769 	uint32_t r;
1770 
1771 	r = WPI_READ(sc, WPI_INTR);
1772 	if (r == 0 || r == 0xffffffff) {
1773 		return;
1774 	}
1775 
1776 	/* disable interrupts */
1777 	WPI_WRITE(sc, WPI_MASK, 0);
1778 	/* ack interrupts */
1779 	WPI_WRITE(sc, WPI_INTR, r);
1780 
1781 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1782 		struct ifnet *ifp = sc->sc_ifp;
1783 		struct ieee80211com *ic = ifp->if_l2com;
1784 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1785 
1786 		device_printf(sc->sc_dev, "fatal firmware error\n");
1787 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1788 				"(Hardware Error)"));
1789 		if (vap != NULL)
1790 			ieee80211_cancel_scan(vap);
1791 		ieee80211_runtask(ic, &sc->sc_restarttask);
1792 		sc->flags &= ~WPI_FLAG_BUSY;
1793 		return;
1794 	}
1795 
1796 	if (r & WPI_RX_INTR)
1797 		wpi_notif_intr(sc);
1798 
1799 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1800 		wakeup(sc);
1801 
1802 	/* re-enable interrupts */
1803 	if (sc->sc_ifp->if_flags & IFF_UP)
1804 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1805 
1806 }
1807 
1808 static uint8_t
1809 wpi_plcp_signal(int rate)
1810 {
1811 	switch (rate) {
1812 	/* CCK rates (returned values are device-dependent) */
1813 	case 2:		return 10;
1814 	case 4:		return 20;
1815 	case 11:	return 55;
1816 	case 22:	return 110;
1817 
1818 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1819 	/* R1-R4 (ral/ural is R4-R1) */
1820 	case 12:	return 0xd;
1821 	case 18:	return 0xf;
1822 	case 24:	return 0x5;
1823 	case 36:	return 0x7;
1824 	case 48:	return 0x9;
1825 	case 72:	return 0xb;
1826 	case 96:	return 0x1;
1827 	case 108:	return 0x3;
1828 
1829 	/* unsupported rates (should not get there) */
1830 	default:	return 0;
1831 	}
1832 }
1833 
1834 /* quickly determine if a given rate is CCK or OFDM */
1835 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1836 
1837 /*
1838  * Construct the data packet for a transmit buffer and acutally put
1839  * the buffer onto the transmit ring, kicking the card to process the
1840  * the buffer.
1841  */
1842 static int
1843 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1844 	int ac)
1845 {
1846 	struct ieee80211vap *vap = ni->ni_vap;
1847 	struct ifnet *ifp = sc->sc_ifp;
1848 	struct ieee80211com *ic = ifp->if_l2com;
1849 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1850 	struct wpi_tx_ring *ring = &sc->txq[ac];
1851 	struct wpi_tx_desc *desc;
1852 	struct wpi_tx_data *data;
1853 	struct wpi_tx_cmd *cmd;
1854 	struct wpi_cmd_data *tx;
1855 	struct ieee80211_frame *wh;
1856 	const struct ieee80211_txparam *tp;
1857 	struct ieee80211_key *k;
1858 	struct mbuf *mnew;
1859 	int i, error, nsegs, rate, hdrlen, ismcast;
1860 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1861 
1862 	desc = &ring->desc[ring->cur];
1863 	data = &ring->data[ring->cur];
1864 
1865 	wh = mtod(m0, struct ieee80211_frame *);
1866 
1867 	hdrlen = ieee80211_hdrsize(wh);
1868 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1869 
1870 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1871 		k = ieee80211_crypto_encap(ni, m0);
1872 		if (k == NULL) {
1873 			m_freem(m0);
1874 			return ENOBUFS;
1875 		}
1876 		/* packet header may have moved, reset our local pointer */
1877 		wh = mtod(m0, struct ieee80211_frame *);
1878 	}
1879 
1880 	cmd = &ring->cmd[ring->cur];
1881 	cmd->code = WPI_CMD_TX_DATA;
1882 	cmd->flags = 0;
1883 	cmd->qid = ring->qid;
1884 	cmd->idx = ring->cur;
1885 
1886 	tx = (struct wpi_cmd_data *)cmd->data;
1887 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1888 	tx->timeout = htole16(0);
1889 	tx->ofdm_mask = 0xff;
1890 	tx->cck_mask = 0x0f;
1891 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1892 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1893 	tx->len = htole16(m0->m_pkthdr.len);
1894 
1895 	if (!ismcast) {
1896 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1897 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1898 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1899 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1900 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1901 			tx->rts_ntries = 7;
1902 		}
1903 	}
1904 	/* pick a rate */
1905 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1906 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1907 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1908 		/* tell h/w to set timestamp in probe responses */
1909 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1910 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1911 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1912 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1913 			tx->timeout = htole16(3);
1914 		else
1915 			tx->timeout = htole16(2);
1916 		rate = tp->mgmtrate;
1917 	} else if (ismcast) {
1918 		rate = tp->mcastrate;
1919 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1920 		rate = tp->ucastrate;
1921 	} else {
1922 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1923 		rate = ni->ni_txrate;
1924 	}
1925 	tx->rate = wpi_plcp_signal(rate);
1926 
1927 	/* be very persistant at sending frames out */
1928 #if 0
1929 	tx->data_ntries = tp->maxretry;
1930 #else
1931 	tx->data_ntries = 30;		/* XXX way too high */
1932 #endif
1933 
1934 	if (ieee80211_radiotap_active_vap(vap)) {
1935 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1936 		tap->wt_flags = 0;
1937 		tap->wt_rate = rate;
1938 		tap->wt_hwqueue = ac;
1939 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1940 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1941 
1942 		ieee80211_radiotap_tx(vap, m0);
1943 	}
1944 
1945 	/* save and trim IEEE802.11 header */
1946 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1947 	m_adj(m0, hdrlen);
1948 
1949 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs,
1950 	    1, &nsegs, BUS_DMA_NOWAIT);
1951 	if (error != 0 && error != EFBIG) {
1952 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1953 		    error);
1954 		m_freem(m0);
1955 		return error;
1956 	}
1957 	if (error != 0) {
1958 		/* XXX use m_collapse */
1959 		mnew = m_defrag(m0, MB_DONTWAIT);
1960 		if (mnew == NULL) {
1961 			device_printf(sc->sc_dev,
1962 			    "could not defragment mbuf\n");
1963 			m_freem(m0);
1964 			return ENOBUFS;
1965 		}
1966 		m0 = mnew;
1967 
1968 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
1969 		    m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1970 		if (error != 0) {
1971 			device_printf(sc->sc_dev,
1972 			    "could not map mbuf (error %d)\n", error);
1973 			m_freem(m0);
1974 			return error;
1975 		}
1976 	}
1977 
1978 	data->m = m0;
1979 	data->ni = ni;
1980 
1981 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1982 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1983 
1984 	/* first scatter/gather segment is used by the tx data command */
1985 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1986 	    (1 + nsegs) << 24);
1987 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1988 	    ring->cur * sizeof (struct wpi_tx_cmd));
1989 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1990 	for (i = 1; i <= nsegs; i++) {
1991 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1992 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1993 	}
1994 
1995 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1996 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1997 	    BUS_DMASYNC_PREWRITE);
1998 
1999 	ring->queued++;
2000 
2001 	/* kick ring */
2002 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2003 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2004 
2005 	return 0;
2006 }
2007 
2008 /**
2009  * Process data waiting to be sent on the IFNET output queue
2010  */
2011 static void
2012 wpi_start(struct ifnet *ifp)
2013 {
2014 	wpi_start_locked(ifp);
2015 }
2016 
2017 static void
2018 wpi_start_locked(struct ifnet *ifp)
2019 {
2020 	struct wpi_softc *sc = ifp->if_softc;
2021 	struct ieee80211_node *ni;
2022 	struct mbuf *m;
2023 	int ac;
2024 
2025 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2026 		ifq_purge(&ifp->if_snd);
2027 		return;
2028 	}
2029 
2030 	for (;;) {
2031 		IF_DEQUEUE(&ifp->if_snd, m);
2032 		if (m == NULL)
2033 			break;
2034 		ac = M_WME_GETAC(m);
2035 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2036 			/* there is no place left in this ring */
2037 			ifq_prepend(&ifp->if_snd, m);
2038 			ifp->if_flags |= IFF_OACTIVE;
2039 			break;
2040 		}
2041 		ni = ieee80211_ref_node((struct ieee80211_node *)m->m_pkthdr.rcvif);
2042 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2043 			ieee80211_free_node(ni);
2044 			ifp->if_oerrors++;
2045 			break;
2046 		}
2047 		sc->sc_tx_timer = 5;
2048 	}
2049 }
2050 
2051 static int
2052 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2053 	const struct ieee80211_bpf_params *params)
2054 {
2055 	struct ieee80211com *ic = ni->ni_ic;
2056 	struct ifnet *ifp = ic->ic_ifp;
2057 	struct wpi_softc *sc = ifp->if_softc;
2058 
2059 	/* prevent management frames from being sent if we're not ready */
2060 	if (!(ifp->if_flags & IFF_RUNNING)) {
2061 		m_freem(m);
2062 		ieee80211_free_node(ni);
2063 		return ENETDOWN;
2064 	}
2065 
2066 	/* management frames go into ring 0 */
2067 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2068 		ifp->if_flags |= IFF_OACTIVE;
2069 		m_freem(m);
2070 		ieee80211_free_node(ni);
2071 		return ENOBUFS;		/* XXX */
2072 	}
2073 
2074 	ifp->if_opackets++;
2075 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2076 		goto bad;
2077 	sc->sc_tx_timer = 5;
2078 	callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
2079 
2080 	return 0;
2081 bad:
2082 	ifp->if_oerrors++;
2083 	ieee80211_free_node(ni);
2084 	return EIO;		/* XXX */
2085 }
2086 
2087 static int
2088 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred)
2089 {
2090 	struct wpi_softc *sc = ifp->if_softc;
2091 	struct ieee80211com *ic = ifp->if_l2com;
2092 	struct ifreq *ifr = (struct ifreq *) data;
2093 	int error = 0, startall = 0;
2094 
2095 	switch (cmd) {
2096 	case SIOCSIFFLAGS:
2097 		if ((ifp->if_flags & IFF_UP)) {
2098 			if (!(ifp->if_flags & IFF_RUNNING)) {
2099 				wpi_init_locked(sc, 0);
2100 				startall = 1;
2101 			}
2102 		} else if ((ifp->if_flags & IFF_RUNNING) ||
2103 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2104 			wpi_stop_locked(sc);
2105 		if (startall)
2106 			ieee80211_start_all(ic);
2107 		break;
2108 	case SIOCGIFMEDIA:
2109 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2110 		break;
2111 	case SIOCGIFADDR:
2112 		error = ether_ioctl(ifp, cmd, data);
2113 		break;
2114 	default:
2115 		error = EINVAL;
2116 		break;
2117 	}
2118 	return error;
2119 }
2120 
2121 /*
2122  * Extract various information from EEPROM.
2123  */
2124 static void
2125 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2126 {
2127 	int i;
2128 
2129 	/* read the hardware capabilities, revision and SKU type */
2130 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2131 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2132 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2133 
2134 	/* read the regulatory domain */
2135 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2136 
2137 	/* read in the hw MAC address */
2138 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2139 
2140 	/* read the list of authorized channels */
2141 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2142 		wpi_read_eeprom_channels(sc,i);
2143 
2144 	/* read the power level calibration info for each group */
2145 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2146 		wpi_read_eeprom_group(sc,i);
2147 }
2148 
2149 /*
2150  * Send a command to the firmware.
2151  */
2152 static int
2153 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2154 {
2155 	struct wpi_tx_ring *ring = &sc->cmdq;
2156 	struct wpi_tx_desc *desc;
2157 	struct wpi_tx_cmd *cmd;
2158 
2159 #ifdef WPI_DEBUG
2160 	if (!async) {
2161 		wlan_assert_serialized();
2162 	}
2163 #endif
2164 
2165 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2166 		    async));
2167 
2168 	if (sc->flags & WPI_FLAG_BUSY) {
2169 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2170 		    __func__, code);
2171 		return EAGAIN;
2172 	}
2173 	sc->flags|= WPI_FLAG_BUSY;
2174 
2175 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2176 	    code, size));
2177 
2178 	desc = &ring->desc[ring->cur];
2179 	cmd = &ring->cmd[ring->cur];
2180 
2181 	cmd->code = code;
2182 	cmd->flags = 0;
2183 	cmd->qid = ring->qid;
2184 	cmd->idx = ring->cur;
2185 	memcpy(cmd->data, buf, size);
2186 
2187 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2188 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2189 		ring->cur * sizeof (struct wpi_tx_cmd));
2190 	desc->segs[0].len  = htole32(4 + size);
2191 
2192 	/* kick cmd ring */
2193 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2194 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2195 
2196 	if (async) {
2197 		sc->flags &= ~ WPI_FLAG_BUSY;
2198 		return 0;
2199 	}
2200 
2201 	return zsleep(cmd, &wlan_global_serializer, 0, "wpicmd", hz);
2202 }
2203 
2204 static int
2205 wpi_wme_update(struct ieee80211com *ic)
2206 {
2207 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2208 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2209 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2210 	const struct wmeParams *wmep;
2211 	struct wpi_wme_setup wme;
2212 	int ac;
2213 
2214 	/* don't override default WME values if WME is not actually enabled */
2215 	if (!(ic->ic_flags & IEEE80211_F_WME))
2216 		return 0;
2217 
2218 	wme.flags = 0;
2219 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2220 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2221 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2222 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2223 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2224 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2225 
2226 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2227 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2228 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2229 	}
2230 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2231 #undef WPI_USEC
2232 #undef WPI_EXP2
2233 }
2234 
2235 /*
2236  * Configure h/w multi-rate retries.
2237  */
2238 static int
2239 wpi_mrr_setup(struct wpi_softc *sc)
2240 {
2241 	struct ifnet *ifp = sc->sc_ifp;
2242 	struct ieee80211com *ic = ifp->if_l2com;
2243 	struct wpi_mrr_setup mrr;
2244 	int i, error;
2245 
2246 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2247 
2248 	/* CCK rates (not used with 802.11a) */
2249 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2250 		mrr.rates[i].flags = 0;
2251 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2252 		/* fallback to the immediate lower CCK rate (if any) */
2253 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2254 		/* try one time at this rate before falling back to "next" */
2255 		mrr.rates[i].ntries = 1;
2256 	}
2257 
2258 	/* OFDM rates (not used with 802.11b) */
2259 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2260 		mrr.rates[i].flags = 0;
2261 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2262 		/* fallback to the immediate lower OFDM rate (if any) */
2263 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2264 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2265 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2266 			WPI_OFDM6 : WPI_CCK2) :
2267 		    i - 1;
2268 		/* try one time at this rate before falling back to "next" */
2269 		mrr.rates[i].ntries = 1;
2270 	}
2271 
2272 	/* setup MRR for control frames */
2273 	mrr.which = htole32(WPI_MRR_CTL);
2274 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2275 	if (error != 0) {
2276 		device_printf(sc->sc_dev,
2277 		    "could not setup MRR for control frames\n");
2278 		return error;
2279 	}
2280 
2281 	/* setup MRR for data frames */
2282 	mrr.which = htole32(WPI_MRR_DATA);
2283 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2284 	if (error != 0) {
2285 		device_printf(sc->sc_dev,
2286 		    "could not setup MRR for data frames\n");
2287 		return error;
2288 	}
2289 
2290 	return 0;
2291 }
2292 
2293 static void
2294 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2295 {
2296 	struct wpi_cmd_led led;
2297 
2298 	led.which = which;
2299 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2300 	led.off = off;
2301 	led.on = on;
2302 
2303 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2304 }
2305 
2306 static void
2307 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2308 {
2309 	struct wpi_cmd_tsf tsf;
2310 	uint64_t val, mod;
2311 
2312 	memset(&tsf, 0, sizeof tsf);
2313 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2314 	tsf.bintval = htole16(ni->ni_intval);
2315 	tsf.lintval = htole16(10);
2316 
2317 	/* compute remaining time until next beacon */
2318 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2319 	mod = le64toh(tsf.tstamp) % val;
2320 	tsf.binitval = htole32((uint32_t)(val - mod));
2321 
2322 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2323 		device_printf(sc->sc_dev, "could not enable TSF\n");
2324 }
2325 
2326 #if 0
2327 /*
2328  * Build a beacon frame that the firmware will broadcast periodically in
2329  * IBSS or HostAP modes.
2330  */
2331 static int
2332 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2333 {
2334 	struct ifnet *ifp = sc->sc_ifp;
2335 	struct ieee80211com *ic = ifp->if_l2com;
2336 	struct wpi_tx_ring *ring = &sc->cmdq;
2337 	struct wpi_tx_desc *desc;
2338 	struct wpi_tx_data *data;
2339 	struct wpi_tx_cmd *cmd;
2340 	struct wpi_cmd_beacon *bcn;
2341 	struct ieee80211_beacon_offsets bo;
2342 	struct mbuf *m0;
2343 	bus_addr_t physaddr;
2344 	int error;
2345 
2346 	desc = &ring->desc[ring->cur];
2347 	data = &ring->data[ring->cur];
2348 
2349 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2350 	if (m0 == NULL) {
2351 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2352 		return ENOMEM;
2353 	}
2354 
2355 	cmd = &ring->cmd[ring->cur];
2356 	cmd->code = WPI_CMD_SET_BEACON;
2357 	cmd->flags = 0;
2358 	cmd->qid = ring->qid;
2359 	cmd->idx = ring->cur;
2360 
2361 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2362 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2363 	bcn->id = WPI_ID_BROADCAST;
2364 	bcn->ofdm_mask = 0xff;
2365 	bcn->cck_mask = 0x0f;
2366 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2367 	bcn->len = htole16(m0->m_pkthdr.len);
2368 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2369 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2370 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2371 
2372 	/* save and trim IEEE802.11 header */
2373 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2374 	m_adj(m0, sizeof (struct ieee80211_frame));
2375 
2376 	/* assume beacon frame is contiguous */
2377 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2378 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2379 	if (error != 0) {
2380 		device_printf(sc->sc_dev, "could not map beacon\n");
2381 		m_freem(m0);
2382 		return error;
2383 	}
2384 
2385 	data->m = m0;
2386 
2387 	/* first scatter/gather segment is used by the beacon command */
2388 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2389 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2390 		ring->cur * sizeof (struct wpi_tx_cmd));
2391 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2392 	desc->segs[1].addr = htole32(physaddr);
2393 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2394 
2395 	/* kick cmd ring */
2396 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2397 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2398 
2399 	return 0;
2400 }
2401 #endif
2402 
2403 static int
2404 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2405 {
2406 	struct ieee80211com *ic = vap->iv_ic;
2407 	struct ieee80211_node *ni;
2408 	struct wpi_node_info node;
2409 	int error;
2410 
2411 
2412 	/* update adapter's configuration */
2413 	sc->config.associd = 0;
2414 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2415 	ni = ieee80211_ref_node(vap->iv_bss);
2416 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2417 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2418 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2419 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2420 		    WPI_CONFIG_24GHZ);
2421 	}
2422 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2423 		sc->config.cck_mask  = 0;
2424 		sc->config.ofdm_mask = 0x15;
2425 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2426 		sc->config.cck_mask  = 0x03;
2427 		sc->config.ofdm_mask = 0;
2428 	} else {
2429 		/* XXX assume 802.11b/g */
2430 		sc->config.cck_mask  = 0x0f;
2431 		sc->config.ofdm_mask = 0x15;
2432 	}
2433 
2434 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2435 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2436 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2437 		sizeof (struct wpi_config), 1);
2438 	if (error != 0) {
2439 		device_printf(sc->sc_dev, "could not configure\n");
2440 		ieee80211_free_node(ni);
2441 		return error;
2442 	}
2443 
2444 	/* configuration has changed, set Tx power accordingly */
2445 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2446 		device_printf(sc->sc_dev, "could not set Tx power\n");
2447 		ieee80211_free_node(ni);
2448 		return error;
2449 	}
2450 
2451 	/* add default node */
2452 	memset(&node, 0, sizeof node);
2453 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2454 	ieee80211_free_node(ni);
2455 	node.id = WPI_ID_BSS;
2456 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2457 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2458 	node.action = htole32(WPI_ACTION_SET_RATE);
2459 	node.antenna = WPI_ANTENNA_BOTH;
2460 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2461 	if (error != 0)
2462 		device_printf(sc->sc_dev, "could not add BSS node\n");
2463 
2464 	return (error);
2465 }
2466 
2467 static int
2468 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2469 {
2470 	struct ieee80211com *ic = vap->iv_ic;
2471 	struct ieee80211_node *ni;
2472 	int error;
2473 
2474 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2475 		/* link LED blinks while monitoring */
2476 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2477 		return 0;
2478 	}
2479 
2480 	ni = ieee80211_ref_node(vap->iv_bss);
2481 	wpi_enable_tsf(sc, ni);
2482 
2483 	/* update adapter's configuration */
2484 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2485 	/* short preamble/slot time are negotiated when associating */
2486 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2487 	    WPI_CONFIG_SHSLOT);
2488 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2489 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2490 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2491 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2492 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2493 
2494 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2495 
2496 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2497 		    sc->config.flags));
2498 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2499 		    wpi_config), 1);
2500 	if (error != 0) {
2501 		device_printf(sc->sc_dev, "could not update configuration\n");
2502 		ieee80211_free_node(ni);
2503 		return error;
2504 	}
2505 
2506 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2507 	ieee80211_free_node(ni);
2508 	if (error != 0) {
2509 		device_printf(sc->sc_dev, "could set txpower\n");
2510 		return error;
2511 	}
2512 
2513 	/* link LED always on while associated */
2514 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2515 
2516 	/* start automatic rate control timer */
2517 	callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
2518 
2519 	return (error);
2520 }
2521 
2522 /*
2523  * Send a scan request to the firmware.  Since this command is huge, we map it
2524  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2525  * much of this code is similar to that in wpi_cmd but because we must manually
2526  * construct the probe & channels, we duplicate what's needed here. XXX In the
2527  * future, this function should be modified to use wpi_cmd to help cleanup the
2528  * code base.
2529  */
2530 static int
2531 wpi_scan(struct wpi_softc *sc)
2532 {
2533 	struct ifnet *ifp = sc->sc_ifp;
2534 	struct ieee80211com *ic = ifp->if_l2com;
2535 	struct ieee80211_scan_state *ss = ic->ic_scan;
2536 	struct wpi_tx_ring *ring = &sc->cmdq;
2537 	struct wpi_tx_desc *desc;
2538 	struct wpi_tx_data *data;
2539 	struct wpi_tx_cmd *cmd;
2540 	struct wpi_scan_hdr *hdr;
2541 	struct wpi_scan_chan *chan;
2542 	struct ieee80211_frame *wh;
2543 	struct ieee80211_rateset *rs;
2544 	struct ieee80211_channel *c;
2545 	enum ieee80211_phymode mode;
2546 	uint8_t *frm;
2547 	int nrates, pktlen, error, i, nssid;
2548 	bus_addr_t physaddr;
2549 
2550 	desc = &ring->desc[ring->cur];
2551 	data = &ring->data[ring->cur];
2552 
2553 	data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2554 	if (data->m == NULL) {
2555 		device_printf(sc->sc_dev,
2556 		    "could not allocate mbuf for scan command\n");
2557 		return ENOMEM;
2558 	}
2559 
2560 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2561 	cmd->code = WPI_CMD_SCAN;
2562 	cmd->flags = 0;
2563 	cmd->qid = ring->qid;
2564 	cmd->idx = ring->cur;
2565 
2566 	hdr = (struct wpi_scan_hdr *)cmd->data;
2567 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2568 
2569 	/*
2570 	 * Move to the next channel if no packets are received within 5 msecs
2571 	 * after sending the probe request (this helps to reduce the duration
2572 	 * of active scans).
2573 	 */
2574 	hdr->quiet = htole16(5);
2575 	hdr->threshold = htole16(1);
2576 
2577 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2578 		/* send probe requests at 6Mbps */
2579 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2580 
2581 		/* Enable crc checking */
2582 		hdr->promotion = htole16(1);
2583 	} else {
2584 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2585 		/* send probe requests at 1Mbps */
2586 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2587 	}
2588 	hdr->tx.id = WPI_ID_BROADCAST;
2589 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2590 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2591 
2592 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2593 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2594 	for (i = 0; i < nssid; i++) {
2595 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2596 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2597 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2598 		    hdr->scan_essids[i].esslen);
2599 #ifdef WPI_DEBUG
2600 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2601 			kprintf("Scanning Essid: ");
2602 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2603 			    hdr->scan_essids[i].esslen);
2604 			kprintf("\n");
2605 		}
2606 #endif
2607 	}
2608 
2609 	/*
2610 	 * Build a probe request frame.  Most of the following code is a
2611 	 * copy & paste of what is done in net80211.
2612 	 */
2613 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2614 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2615 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2616 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2617 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2618 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2619 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2620 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2621 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2622 
2623 	frm = (uint8_t *)(wh + 1);
2624 
2625 	/* add essid IE, the hardware will fill this in for us */
2626 	*frm++ = IEEE80211_ELEMID_SSID;
2627 	*frm++ = 0;
2628 
2629 	mode = ieee80211_chan2mode(ic->ic_curchan);
2630 	rs = &ic->ic_sup_rates[mode];
2631 
2632 	/* add supported rates IE */
2633 	*frm++ = IEEE80211_ELEMID_RATES;
2634 	nrates = rs->rs_nrates;
2635 	if (nrates > IEEE80211_RATE_SIZE)
2636 		nrates = IEEE80211_RATE_SIZE;
2637 	*frm++ = nrates;
2638 	memcpy(frm, rs->rs_rates, nrates);
2639 	frm += nrates;
2640 
2641 	/* add supported xrates IE */
2642 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2643 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2644 		*frm++ = IEEE80211_ELEMID_XRATES;
2645 		*frm++ = nrates;
2646 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2647 		frm += nrates;
2648 	}
2649 
2650 	/* setup length of probe request */
2651 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2652 
2653 	/*
2654 	 * Construct information about the channel that we
2655 	 * want to scan. The firmware expects this to be directly
2656 	 * after the scan probe request
2657 	 */
2658 	c = ic->ic_curchan;
2659 	chan = (struct wpi_scan_chan *)frm;
2660 	chan->chan = ieee80211_chan2ieee(ic, c);
2661 	chan->flags = 0;
2662 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2663 		chan->flags |= WPI_CHAN_ACTIVE;
2664 		if (nssid != 0)
2665 			chan->flags |= WPI_CHAN_DIRECT;
2666 	}
2667 	chan->gain_dsp = 0x6e; /* Default level */
2668 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2669 		chan->active = htole16(10);
2670 		chan->passive = htole16(ss->ss_maxdwell);
2671 		chan->gain_radio = 0x3b;
2672 	} else {
2673 		chan->active = htole16(20);
2674 		chan->passive = htole16(ss->ss_maxdwell);
2675 		chan->gain_radio = 0x28;
2676 	}
2677 
2678 	DPRINTFN(WPI_DEBUG_SCANNING,
2679 	    ("Scanning %u Passive: %d\n",
2680 	     chan->chan,
2681 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2682 
2683 	hdr->nchan++;
2684 	chan++;
2685 
2686 	frm += sizeof (struct wpi_scan_chan);
2687 #if 0
2688 	// XXX All Channels....
2689 	for (c  = &ic->ic_channels[1];
2690 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2691 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2692 			continue;
2693 
2694 		chan->chan = ieee80211_chan2ieee(ic, c);
2695 		chan->flags = 0;
2696 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2697 		    chan->flags |= WPI_CHAN_ACTIVE;
2698 		    if (ic->ic_des_ssid[0].len != 0)
2699 			chan->flags |= WPI_CHAN_DIRECT;
2700 		}
2701 		chan->gain_dsp = 0x6e; /* Default level */
2702 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2703 			chan->active = htole16(10);
2704 			chan->passive = htole16(110);
2705 			chan->gain_radio = 0x3b;
2706 		} else {
2707 			chan->active = htole16(20);
2708 			chan->passive = htole16(120);
2709 			chan->gain_radio = 0x28;
2710 		}
2711 
2712 		DPRINTFN(WPI_DEBUG_SCANNING,
2713 			 ("Scanning %u Passive: %d\n",
2714 			  chan->chan,
2715 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2716 
2717 		hdr->nchan++;
2718 		chan++;
2719 
2720 		frm += sizeof (struct wpi_scan_chan);
2721 	}
2722 #endif
2723 
2724 	hdr->len = htole16(frm - (uint8_t *)hdr);
2725 	pktlen = frm - (uint8_t *)cmd;
2726 
2727 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2728 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2729 	if (error != 0) {
2730 		device_printf(sc->sc_dev, "could not map scan command\n");
2731 		m_freem(data->m);
2732 		data->m = NULL;
2733 		return error;
2734 	}
2735 
2736 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2737 	desc->segs[0].addr = htole32(physaddr);
2738 	desc->segs[0].len  = htole32(pktlen);
2739 
2740 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2741 	    BUS_DMASYNC_PREWRITE);
2742 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2743 
2744 	/* kick cmd ring */
2745 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2746 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2747 
2748 	sc->sc_scan_timer = 5;
2749 	return 0;	/* will be notified async. of failure/success */
2750 }
2751 
2752 /**
2753  * Configure the card to listen to a particular channel, this transisions the
2754  * card in to being able to receive frames from remote devices.
2755  */
2756 static int
2757 wpi_config(struct wpi_softc *sc)
2758 {
2759 	struct ifnet *ifp = sc->sc_ifp;
2760 	struct ieee80211com *ic = ifp->if_l2com;
2761 	struct wpi_power power;
2762 	struct wpi_bluetooth bluetooth;
2763 	struct wpi_node_info node;
2764 	int error;
2765 
2766 	/* set power mode */
2767 	memset(&power, 0, sizeof power);
2768 	power.flags = htole32(WPI_POWER_CAM|0x8);
2769 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2770 	if (error != 0) {
2771 		device_printf(sc->sc_dev, "could not set power mode\n");
2772 		return error;
2773 	}
2774 
2775 	/* configure bluetooth coexistence */
2776 	memset(&bluetooth, 0, sizeof bluetooth);
2777 	bluetooth.flags = 3;
2778 	bluetooth.lead = 0xaa;
2779 	bluetooth.kill = 1;
2780 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2781 	    0);
2782 	if (error != 0) {
2783 		device_printf(sc->sc_dev,
2784 		    "could not configure bluetooth coexistence\n");
2785 		return error;
2786 	}
2787 
2788 	/* configure adapter */
2789 	memset(&sc->config, 0, sizeof (struct wpi_config));
2790 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2791 	/*set default channel*/
2792 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2793 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2794 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2795 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2796 		    WPI_CONFIG_24GHZ);
2797 	}
2798 	sc->config.filter = 0;
2799 	switch (ic->ic_opmode) {
2800 	case IEEE80211_M_STA:
2801 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2802 		sc->config.mode = WPI_MODE_STA;
2803 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2804 		break;
2805 	case IEEE80211_M_IBSS:
2806 	case IEEE80211_M_AHDEMO:
2807 		sc->config.mode = WPI_MODE_IBSS;
2808 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2809 					     WPI_FILTER_MULTICAST);
2810 		break;
2811 	case IEEE80211_M_HOSTAP:
2812 		sc->config.mode = WPI_MODE_HOSTAP;
2813 		break;
2814 	case IEEE80211_M_MONITOR:
2815 		sc->config.mode = WPI_MODE_MONITOR;
2816 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2817 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2818 		break;
2819 	default:
2820 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2821 		return EINVAL;
2822 	}
2823 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2824 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2825 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2826 		sizeof (struct wpi_config), 0);
2827 	if (error != 0) {
2828 		device_printf(sc->sc_dev, "configure command failed\n");
2829 		return error;
2830 	}
2831 
2832 	/* configuration has changed, set Tx power accordingly */
2833 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2834 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2835 	    return error;
2836 	}
2837 
2838 	/* add broadcast node */
2839 	memset(&node, 0, sizeof node);
2840 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2841 	node.id = WPI_ID_BROADCAST;
2842 	node.rate = wpi_plcp_signal(2);
2843 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2844 	if (error != 0) {
2845 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2846 		return error;
2847 	}
2848 
2849 	/* Setup rate scalling */
2850 	error = wpi_mrr_setup(sc);
2851 	if (error != 0) {
2852 		device_printf(sc->sc_dev, "could not setup MRR\n");
2853 		return error;
2854 	}
2855 
2856 	return 0;
2857 }
2858 
2859 static void
2860 wpi_stop_master(struct wpi_softc *sc)
2861 {
2862 	uint32_t tmp;
2863 	int ntries;
2864 
2865 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2866 
2867 	tmp = WPI_READ(sc, WPI_RESET);
2868 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2869 
2870 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2871 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2872 		return;	/* already asleep */
2873 
2874 	for (ntries = 0; ntries < 100; ntries++) {
2875 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2876 			break;
2877 		DELAY(10);
2878 	}
2879 	if (ntries == 100) {
2880 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2881 	}
2882 }
2883 
2884 static int
2885 wpi_power_up(struct wpi_softc *sc)
2886 {
2887 	uint32_t tmp;
2888 	int ntries;
2889 
2890 	wpi_mem_lock(sc);
2891 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2892 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2893 	wpi_mem_unlock(sc);
2894 
2895 	for (ntries = 0; ntries < 5000; ntries++) {
2896 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2897 			break;
2898 		DELAY(10);
2899 	}
2900 	if (ntries == 5000) {
2901 		device_printf(sc->sc_dev,
2902 		    "timeout waiting for NIC to power up\n");
2903 		return ETIMEDOUT;
2904 	}
2905 	return 0;
2906 }
2907 
2908 static int
2909 wpi_reset(struct wpi_softc *sc)
2910 {
2911 	uint32_t tmp;
2912 	int ntries;
2913 
2914 	DPRINTFN(WPI_DEBUG_HW,
2915 	    ("Resetting the card - clearing any uploaded firmware\n"));
2916 
2917 	/* clear any pending interrupts */
2918 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2919 
2920 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2921 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2922 
2923 	tmp = WPI_READ(sc, WPI_CHICKEN);
2924 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2925 
2926 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2927 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2928 
2929 	/* wait for clock stabilization */
2930 	for (ntries = 0; ntries < 25000; ntries++) {
2931 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2932 			break;
2933 		DELAY(10);
2934 	}
2935 	if (ntries == 25000) {
2936 		device_printf(sc->sc_dev,
2937 		    "timeout waiting for clock stabilization\n");
2938 		return ETIMEDOUT;
2939 	}
2940 
2941 	/* initialize EEPROM */
2942 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2943 
2944 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2945 		device_printf(sc->sc_dev, "EEPROM not found\n");
2946 		return EIO;
2947 	}
2948 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2949 
2950 	return 0;
2951 }
2952 
2953 static void
2954 wpi_hw_config(struct wpi_softc *sc)
2955 {
2956 	uint32_t rev, hw;
2957 
2958 	/* voodoo from the Linux "driver".. */
2959 	hw = WPI_READ(sc, WPI_HWCONFIG);
2960 
2961 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2962 	if ((rev & 0xc0) == 0x40)
2963 		hw |= WPI_HW_ALM_MB;
2964 	else if (!(rev & 0x80))
2965 		hw |= WPI_HW_ALM_MM;
2966 
2967 	if (sc->cap == 0x80)
2968 		hw |= WPI_HW_SKU_MRC;
2969 
2970 	hw &= ~WPI_HW_REV_D;
2971 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2972 		hw |= WPI_HW_REV_D;
2973 
2974 	if (sc->type > 1)
2975 		hw |= WPI_HW_TYPE_B;
2976 
2977 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2978 }
2979 
2980 static void
2981 wpi_rfkill_resume(struct wpi_softc *sc)
2982 {
2983 	struct ifnet *ifp = sc->sc_ifp;
2984 	struct ieee80211com *ic = ifp->if_l2com;
2985 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2986 	int ntries;
2987 
2988 	/* enable firmware again */
2989 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2990 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2991 
2992 	/* wait for thermal sensors to calibrate */
2993 	for (ntries = 0; ntries < 1000; ntries++) {
2994 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
2995 			break;
2996 		DELAY(10);
2997 	}
2998 
2999 	if (ntries == 1000) {
3000 		device_printf(sc->sc_dev,
3001 		    "timeout waiting for thermal calibration\n");
3002 		return;
3003 	}
3004 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3005 
3006 	if (wpi_config(sc) != 0) {
3007 		device_printf(sc->sc_dev, "device config failed\n");
3008 		return;
3009 	}
3010 
3011 	ifp->if_flags &= ~IFF_OACTIVE;
3012 	ifp->if_flags |= IFF_RUNNING;
3013 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3014 
3015 	if (vap != NULL) {
3016 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3017 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3018 				ieee80211_beacon_miss(ic);
3019 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3020 			} else
3021 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3022 		} else {
3023 			ieee80211_scan_next(vap);
3024 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3025 		}
3026 	}
3027 
3028 	callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3029 }
3030 
3031 static void
3032 wpi_init_locked(struct wpi_softc *sc, int force)
3033 {
3034 	struct ifnet *ifp = sc->sc_ifp;
3035 	uint32_t tmp;
3036 	int ntries, qid;
3037 
3038 	wpi_stop_locked(sc);
3039 	(void)wpi_reset(sc);
3040 
3041 	wpi_mem_lock(sc);
3042 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3043 	DELAY(20);
3044 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3045 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3046 	wpi_mem_unlock(sc);
3047 
3048 	(void)wpi_power_up(sc);
3049 	wpi_hw_config(sc);
3050 
3051 	/* init Rx ring */
3052 	wpi_mem_lock(sc);
3053 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3054 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3055 	    offsetof(struct wpi_shared, next));
3056 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3057 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3058 	wpi_mem_unlock(sc);
3059 
3060 	/* init Tx rings */
3061 	wpi_mem_lock(sc);
3062 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3063 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3064 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3065 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3066 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3067 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3068 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3069 
3070 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3071 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3072 
3073 	for (qid = 0; qid < 6; qid++) {
3074 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3075 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3076 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3077 	}
3078 	wpi_mem_unlock(sc);
3079 
3080 	/* clear "radio off" and "disable command" bits (reversed logic) */
3081 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3082 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3083 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3084 
3085 	/* clear any pending interrupts */
3086 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3087 
3088 	/* enable interrupts */
3089 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3090 
3091 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3092 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3093 
3094 	if ((wpi_load_firmware(sc)) != 0) {
3095 	    device_printf(sc->sc_dev,
3096 		"A problem occurred loading the firmware to the driver\n");
3097 	    return;
3098 	}
3099 
3100 	/* At this point the firmware is up and running. If the hardware
3101 	 * RF switch is turned off thermal calibration will fail, though
3102 	 * the card is still happy to continue to accept commands, catch
3103 	 * this case and schedule a task to watch for it to be turned on.
3104 	 */
3105 	wpi_mem_lock(sc);
3106 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3107 	wpi_mem_unlock(sc);
3108 
3109 	if (!(tmp & 0x1)) {
3110 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3111 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3112 		goto out;
3113 	}
3114 
3115 	/* wait for thermal sensors to calibrate */
3116 	for (ntries = 0; ntries < 1000; ntries++) {
3117 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3118 			break;
3119 		DELAY(10);
3120 	}
3121 
3122 	if (ntries == 1000) {
3123 		device_printf(sc->sc_dev,
3124 		    "timeout waiting for thermal sensors calibration\n");
3125 		return;
3126 	}
3127 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3128 
3129 	if (wpi_config(sc) != 0) {
3130 		device_printf(sc->sc_dev, "device config failed\n");
3131 		return;
3132 	}
3133 
3134 	ifp->if_flags &= ~IFF_OACTIVE;
3135 	ifp->if_flags |= IFF_RUNNING;
3136 out:
3137 	callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3138 }
3139 
3140 static void
3141 wpi_init(void *arg)
3142 {
3143 	struct wpi_softc *sc = arg;
3144 	struct ifnet *ifp = sc->sc_ifp;
3145 	struct ieee80211com *ic = ifp->if_l2com;
3146 
3147 	wpi_init_locked(sc, 0);
3148 
3149 	if (ifp->if_flags & IFF_RUNNING)
3150 		ieee80211_start_all(ic);		/* start all vaps */
3151 }
3152 
3153 static void
3154 wpi_stop_locked(struct wpi_softc *sc)
3155 {
3156 	struct ifnet *ifp = sc->sc_ifp;
3157 	uint32_t tmp;
3158 	int ac;
3159 
3160 	sc->sc_tx_timer = 0;
3161 	sc->sc_scan_timer = 0;
3162 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3163 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3164 	callout_stop(&sc->watchdog_to_callout);
3165 	callout_stop(&sc->calib_to_callout);
3166 
3167 
3168 	/* disable interrupts */
3169 	WPI_WRITE(sc, WPI_MASK, 0);
3170 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3171 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3172 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3173 
3174 	wpi_mem_lock(sc);
3175 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3176 	wpi_mem_unlock(sc);
3177 
3178 	/* reset all Tx rings */
3179 	for (ac = 0; ac < 4; ac++)
3180 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3181 	wpi_reset_tx_ring(sc, &sc->cmdq);
3182 
3183 	/* reset Rx ring */
3184 	wpi_reset_rx_ring(sc, &sc->rxq);
3185 
3186 	wpi_mem_lock(sc);
3187 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3188 	wpi_mem_unlock(sc);
3189 
3190 	DELAY(5);
3191 
3192 	wpi_stop_master(sc);
3193 
3194 	tmp = WPI_READ(sc, WPI_RESET);
3195 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3196 	sc->flags &= ~WPI_FLAG_BUSY;
3197 }
3198 
3199 static void
3200 wpi_stop(struct wpi_softc *sc)
3201 {
3202 	wpi_stop_locked(sc);
3203 }
3204 
3205 static void
3206 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3207 {
3208 	/* XXX move */
3209 	ieee80211_ratectl_node_init(ni);
3210 }
3211 
3212 static void
3213 wpi_calib_timeout_callout(void *arg)
3214 {
3215 	struct wpi_softc *sc = arg;
3216 	struct ifnet *ifp = sc->sc_ifp;
3217 	struct ieee80211com *ic = ifp->if_l2com;
3218 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3219 	int temp;
3220 
3221 	if (vap->iv_state != IEEE80211_S_RUN)
3222 		return;
3223 
3224 	/* update sensor data */
3225 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3226 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3227 
3228 	wpi_power_calibration(sc, temp);
3229 
3230 	callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
3231 }
3232 
3233 /*
3234  * This function is called periodically (every 60 seconds) to adjust output
3235  * power to temperature changes.
3236  */
3237 static void
3238 wpi_power_calibration(struct wpi_softc *sc, int temp)
3239 {
3240 	struct ifnet *ifp = sc->sc_ifp;
3241 	struct ieee80211com *ic = ifp->if_l2com;
3242 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3243 
3244 	/* sanity-check read value */
3245 	if (temp < -260 || temp > 25) {
3246 		/* this can't be correct, ignore */
3247 		DPRINTFN(WPI_DEBUG_TEMP,
3248 		    ("out-of-range temperature reported: %d\n", temp));
3249 		return;
3250 	}
3251 
3252 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3253 
3254 	/* adjust Tx power if need be */
3255 	if (abs(temp - sc->temp) <= 6)
3256 		return;
3257 
3258 	sc->temp = temp;
3259 
3260 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3261 		/* just warn, too bad for the automatic calibration... */
3262 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3263 	}
3264 }
3265 
3266 /**
3267  * Read the eeprom to find out what channels are valid for the given
3268  * band and update net80211 with what we find.
3269  */
3270 static void
3271 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3272 {
3273 	struct ifnet *ifp = sc->sc_ifp;
3274 	struct ieee80211com *ic = ifp->if_l2com;
3275 	const struct wpi_chan_band *band = &wpi_bands[n];
3276 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3277 	struct ieee80211_channel *c;
3278 	int chan, i, passive;
3279 
3280 	wpi_read_prom_data(sc, band->addr, channels,
3281 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3282 
3283 	for (i = 0; i < band->nchan; i++) {
3284 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3285 			DPRINTFN(WPI_DEBUG_HW,
3286 			    ("Channel Not Valid: %d, band %d\n",
3287 			     band->chan[i],n));
3288 			continue;
3289 		}
3290 
3291 		passive = 0;
3292 		chan = band->chan[i];
3293 		c = &ic->ic_channels[ic->ic_nchans++];
3294 
3295 		/* is active scan allowed on this channel? */
3296 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3297 			passive = IEEE80211_CHAN_PASSIVE;
3298 		}
3299 
3300 		if (n == 0) {	/* 2GHz band */
3301 			c->ic_ieee = chan;
3302 			c->ic_freq = ieee80211_ieee2mhz(chan,
3303 			    IEEE80211_CHAN_2GHZ);
3304 			c->ic_flags = IEEE80211_CHAN_B | passive;
3305 
3306 			c = &ic->ic_channels[ic->ic_nchans++];
3307 			c->ic_ieee = chan;
3308 			c->ic_freq = ieee80211_ieee2mhz(chan,
3309 			    IEEE80211_CHAN_2GHZ);
3310 			c->ic_flags = IEEE80211_CHAN_G | passive;
3311 
3312 		} else {	/* 5GHz band */
3313 			/*
3314 			 * Some 3945ABG adapters support channels 7, 8, 11
3315 			 * and 12 in the 2GHz *and* 5GHz bands.
3316 			 * Because of limitations in our net80211(9) stack,
3317 			 * we can't support these channels in 5GHz band.
3318 			 * XXX not true; just need to map to proper frequency
3319 			 */
3320 			if (chan <= 14)
3321 				continue;
3322 
3323 			c->ic_ieee = chan;
3324 			c->ic_freq = ieee80211_ieee2mhz(chan,
3325 			    IEEE80211_CHAN_5GHZ);
3326 			c->ic_flags = IEEE80211_CHAN_A | passive;
3327 		}
3328 
3329 		/* save maximum allowed power for this channel */
3330 		sc->maxpwr[chan] = channels[i].maxpwr;
3331 
3332 #if 0
3333 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3334 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3335 		//ic->ic_channels[chan].ic_minpower...
3336 		//ic->ic_channels[chan].ic_maxregtxpower...
3337 #endif
3338 
3339 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3340 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3341 		    channels[i].flags, sc->maxpwr[chan],
3342 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3343 		    ic->ic_nchans));
3344 	}
3345 }
3346 
3347 static void
3348 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3349 {
3350 	struct wpi_power_group *group = &sc->groups[n];
3351 	struct wpi_eeprom_group rgroup;
3352 	int i;
3353 
3354 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3355 	    sizeof rgroup);
3356 
3357 	/* save power group information */
3358 	group->chan   = rgroup.chan;
3359 	group->maxpwr = rgroup.maxpwr;
3360 	/* temperature at which the samples were taken */
3361 	group->temp   = (int16_t)le16toh(rgroup.temp);
3362 
3363 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3364 		    group->chan, group->maxpwr, group->temp));
3365 
3366 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3367 		group->samples[i].index = rgroup.samples[i].index;
3368 		group->samples[i].power = rgroup.samples[i].power;
3369 
3370 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3371 			    group->samples[i].index, group->samples[i].power));
3372 	}
3373 }
3374 
3375 /*
3376  * Update Tx power to match what is defined for channel `c'.
3377  */
3378 static int
3379 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3380 {
3381 	struct ifnet *ifp = sc->sc_ifp;
3382 	struct ieee80211com *ic = ifp->if_l2com;
3383 	struct wpi_power_group *group;
3384 	struct wpi_cmd_txpower txpower;
3385 	u_int chan;
3386 	int i;
3387 
3388 	/* get channel number */
3389 	chan = ieee80211_chan2ieee(ic, c);
3390 
3391 	/* find the power group to which this channel belongs */
3392 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3393 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3394 			if (chan <= group->chan)
3395 				break;
3396 	} else
3397 		group = &sc->groups[0];
3398 
3399 	memset(&txpower, 0, sizeof txpower);
3400 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3401 	txpower.channel = htole16(chan);
3402 
3403 	/* set Tx power for all OFDM and CCK rates */
3404 	for (i = 0; i <= 11 ; i++) {
3405 		/* retrieve Tx power for this channel/rate combination */
3406 		int idx = wpi_get_power_index(sc, group, c,
3407 		    wpi_ridx_to_rate[i]);
3408 
3409 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3410 
3411 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3412 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3413 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3414 		} else {
3415 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3416 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3417 		}
3418 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3419 			    chan, wpi_ridx_to_rate[i], idx));
3420 	}
3421 
3422 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3423 }
3424 
3425 /*
3426  * Determine Tx power index for a given channel/rate combination.
3427  * This takes into account the regulatory information from EEPROM and the
3428  * current temperature.
3429  */
3430 static int
3431 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3432     struct ieee80211_channel *c, int rate)
3433 {
3434 /* fixed-point arithmetic division using a n-bit fractional part */
3435 #define fdivround(a, b, n)      \
3436 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3437 
3438 /* linear interpolation */
3439 #define interpolate(x, x1, y1, x2, y2, n)       \
3440 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3441 
3442 	struct ifnet *ifp = sc->sc_ifp;
3443 	struct ieee80211com *ic = ifp->if_l2com;
3444 	struct wpi_power_sample *sample;
3445 	int pwr, idx;
3446 	u_int chan;
3447 
3448 	/* get channel number */
3449 	chan = ieee80211_chan2ieee(ic, c);
3450 
3451 	/* default power is group's maximum power - 3dB */
3452 	pwr = group->maxpwr / 2;
3453 
3454 	/* decrease power for highest OFDM rates to reduce distortion */
3455 	switch (rate) {
3456 		case 72:	/* 36Mb/s */
3457 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3458 			break;
3459 		case 96:	/* 48Mb/s */
3460 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3461 			break;
3462 		case 108:	/* 54Mb/s */
3463 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3464 			break;
3465 	}
3466 
3467 	/* never exceed channel's maximum allowed Tx power */
3468 	pwr = min(pwr, sc->maxpwr[chan]);
3469 
3470 	/* retrieve power index into gain tables from samples */
3471 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3472 		if (pwr > sample[1].power)
3473 			break;
3474 	/* fixed-point linear interpolation using a 19-bit fractional part */
3475 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3476 	    sample[1].power, sample[1].index, 19);
3477 
3478 	/*
3479 	 *  Adjust power index based on current temperature
3480 	 *	- if colder than factory-calibrated: decreate output power
3481 	 *	- if warmer than factory-calibrated: increase output power
3482 	 */
3483 	idx -= (sc->temp - group->temp) * 11 / 100;
3484 
3485 	/* decrease power for CCK rates (-5dB) */
3486 	if (!WPI_RATE_IS_OFDM(rate))
3487 		idx += 10;
3488 
3489 	/* keep power index in a valid range */
3490 	if (idx < 0)
3491 		return 0;
3492 	if (idx > WPI_MAX_PWR_INDEX)
3493 		return WPI_MAX_PWR_INDEX;
3494 	return idx;
3495 
3496 #undef interpolate
3497 #undef fdivround
3498 }
3499 
3500 /**
3501  * Called by net80211 framework to indicate that a scan
3502  * is starting. This function doesn't actually do the scan,
3503  * wpi_scan_curchan starts things off. This function is more
3504  * of an early warning from the framework we should get ready
3505  * for the scan.
3506  */
3507 static void
3508 wpi_scan_start(struct ieee80211com *ic)
3509 {
3510 	struct ifnet *ifp = ic->ic_ifp;
3511 	struct wpi_softc *sc = ifp->if_softc;
3512 
3513 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3514 }
3515 
3516 /**
3517  * Called by the net80211 framework, indicates that the
3518  * scan has ended. If there is a scan in progress on the card
3519  * then it should be aborted.
3520  */
3521 static void
3522 wpi_scan_end(struct ieee80211com *ic)
3523 {
3524 	/* XXX ignore */
3525 }
3526 
3527 /**
3528  * Called by the net80211 framework to indicate to the driver
3529  * that the channel should be changed
3530  */
3531 static void
3532 wpi_set_channel(struct ieee80211com *ic)
3533 {
3534 	struct ifnet *ifp = ic->ic_ifp;
3535 	struct wpi_softc *sc = ifp->if_softc;
3536 	int error;
3537 
3538 	/*
3539 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3540 	 * are already taken care of by their respective firmware commands.
3541 	 */
3542 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3543 		error = wpi_config(sc);
3544 		if (error != 0)
3545 			device_printf(sc->sc_dev,
3546 			    "error %d settting channel\n", error);
3547 	}
3548 }
3549 
3550 /**
3551  * Called by net80211 to indicate that we need to scan the current
3552  * channel. The channel is previously be set via the wpi_set_channel
3553  * callback.
3554  */
3555 static void
3556 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3557 {
3558 	struct ieee80211vap *vap = ss->ss_vap;
3559 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3560 	struct wpi_softc *sc = ifp->if_softc;
3561 
3562 	if (wpi_scan(sc))
3563 		ieee80211_cancel_scan(vap);
3564 }
3565 
3566 /**
3567  * Called by the net80211 framework to indicate
3568  * the minimum dwell time has been met, terminate the scan.
3569  * We don't actually terminate the scan as the firmware will notify
3570  * us when it's finished and we have no way to interrupt it.
3571  */
3572 static void
3573 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3574 {
3575 	/* NB: don't try to abort scan; wait for firmware to finish */
3576 }
3577 
3578 static void
3579 wpi_hwreset_task(void *arg, int pending)
3580 {
3581 	struct wpi_softc *sc = arg;
3582 
3583 	wlan_serialize_enter();
3584 	wpi_init_locked(sc, 0);
3585 	wlan_serialize_exit();
3586 }
3587 
3588 static void
3589 wpi_rfreset_task(void *arg, int pending)
3590 {
3591 	struct wpi_softc *sc = arg;
3592 
3593 	wlan_serialize_enter();
3594 	wpi_rfkill_resume(sc);
3595 	wlan_serialize_exit();
3596 }
3597 
3598 /*
3599  * Allocate DMA-safe memory for firmware transfer.
3600  */
3601 static int
3602 wpi_alloc_fwmem(struct wpi_softc *sc)
3603 {
3604 	/* allocate enough contiguous space to store text and data */
3605 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3606 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3607 	    BUS_DMA_NOWAIT);
3608 }
3609 
3610 static void
3611 wpi_free_fwmem(struct wpi_softc *sc)
3612 {
3613 	wpi_dma_contig_free(&sc->fw_dma);
3614 }
3615 
3616 /**
3617  * Called every second, wpi_watchdog_callout used by the watch dog timer
3618  * to check that the card is still alive
3619  */
3620 static void
3621 wpi_watchdog_callout(void *arg)
3622 {
3623 	struct wpi_softc *sc = arg;
3624 	struct ifnet *ifp = sc->sc_ifp;
3625 	struct ieee80211com *ic = ifp->if_l2com;
3626 	uint32_t tmp;
3627 
3628 	wlan_serialize_enter();
3629 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3630 
3631 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3632 		/* No need to lock firmware memory */
3633 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3634 
3635 		if ((tmp & 0x1) == 0) {
3636 			/* Radio kill switch is still off */
3637 			callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3638 			wlan_serialize_exit();
3639 			return;
3640 		}
3641 
3642 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3643 		ieee80211_runtask(ic, &sc->sc_radiotask);
3644 		wlan_serialize_exit();
3645 		return;
3646 	}
3647 
3648 	if (sc->sc_tx_timer > 0) {
3649 		if (--sc->sc_tx_timer == 0) {
3650 			device_printf(sc->sc_dev,"device timeout\n");
3651 			ifp->if_oerrors++;
3652 			wlan_serialize_exit();
3653 			ieee80211_runtask(ic, &sc->sc_restarttask);
3654 			wlan_serialize_enter();
3655 		}
3656 	}
3657 	if (sc->sc_scan_timer > 0) {
3658 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3659 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3660 			device_printf(sc->sc_dev,"scan timeout\n");
3661 			ieee80211_cancel_scan(vap);
3662 			wlan_serialize_exit();
3663 			ieee80211_runtask(ic, &sc->sc_restarttask);
3664 			wlan_serialize_enter();
3665 		}
3666 	}
3667 
3668 	if (ifp->if_flags & IFF_RUNNING)
3669 		callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3670 
3671 	wlan_serialize_exit();
3672 }
3673 
3674 #ifdef WPI_DEBUG
3675 static const char *wpi_cmd_str(int cmd)
3676 {
3677 	switch (cmd) {
3678 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3679 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3680 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3681 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3682 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3683 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3684 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3685 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3686 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3687 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3688 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3689 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3690 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3691 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3692 
3693 	default:
3694 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3695 		return "UNKNOWN CMD";	/* Make the compiler happy */
3696 	}
3697 }
3698 #endif
3699 
3700 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3701 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3702 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3703 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3704