1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 * 18 * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $ 19 */ 20 21 #define VERSION "20071127" 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 * 26 * The 3945ABG network adapter doesn't use traditional hardware as 27 * many other adaptors do. Instead at run time the eeprom is set into a known 28 * state and told to load boot firmware. The boot firmware loads an init and a 29 * main binary firmware image into SRAM on the card via DMA. 30 * Once the firmware is loaded, the driver/hw then 31 * communicate by way of circular dma rings via the the SRAM to the firmware. 32 * 33 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 34 * The 4 tx data rings allow for prioritization QoS. 35 * 36 * The rx data ring consists of 32 dma buffers. Two registers are used to 37 * indicate where in the ring the driver and the firmware are up to. The 38 * driver sets the initial read index (reg1) and the initial write index (reg2), 39 * the firmware updates the read index (reg1) on rx of a packet and fires an 40 * interrupt. The driver then processes the buffers starting at reg1 indicating 41 * to the firmware which buffers have been accessed by updating reg2. At the 42 * same time allocating new memory for the processed buffer. 43 * 44 * A similar thing happens with the tx rings. The difference is the firmware 45 * stop processing buffers once the queue is full and until confirmation 46 * of a successful transmition (tx_intr) has occurred. 47 * 48 * The command ring operates in the same manner as the tx queues. 49 * 50 * All communication direct to the card (ie eeprom) is classed as Stage1 51 * communication 52 * 53 * All communication via the firmware to the card is classed as State2. 54 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 55 * firmware. The bootstrap firmware and runtime firmware are loaded 56 * from host memory via dma to the card then told to execute. From this point 57 * on the majority of communications between the driver and the card goes 58 * via the firmware. 59 */ 60 61 #include <sys/param.h> 62 #include <sys/sysctl.h> 63 #include <sys/sockio.h> 64 #include <sys/mbuf.h> 65 #include <sys/kernel.h> 66 #include <sys/socket.h> 67 #include <sys/systm.h> 68 #include <sys/malloc.h> 69 #include <sys/queue.h> 70 #include <sys/taskqueue.h> 71 #include <sys/module.h> 72 #include <sys/bus.h> 73 #include <sys/endian.h> 74 #include <sys/linker.h> 75 #include <sys/firmware.h> 76 77 #include <sys/bus.h> 78 #include <sys/resource.h> 79 #include <sys/rman.h> 80 81 #include <bus/pci/pcireg.h> 82 #include <bus/pci/pcivar.h> 83 84 #include <net/bpf.h> 85 #include <net/if.h> 86 #include <net/if_arp.h> 87 #include <net/ifq_var.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <netproto/802_11/ieee80211_var.h> 94 #include <netproto/802_11/ieee80211_radiotap.h> 95 #include <netproto/802_11/ieee80211_regdomain.h> 96 #include <netproto/802_11/ieee80211_ratectl.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_systm.h> 100 #include <netinet/in_var.h> 101 #include <netinet/ip.h> 102 #include <netinet/if_ether.h> 103 104 /* XXX: move elsewhere */ 105 #define abs(x) (((x) < 0) ? -(x) : (x)) 106 107 #include "if_wpireg.h" 108 #include "if_wpivar.h" 109 110 #define WPI_DEBUG 111 112 #ifdef WPI_DEBUG 113 #define DPRINTF(x) do { if (wpi_debug != 0) kprintf x; } while (0) 114 #define DPRINTFN(n, x) do { if (wpi_debug & n) kprintf x; } while (0) 115 #define WPI_DEBUG_SET (wpi_debug != 0) 116 117 enum { 118 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 119 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 120 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 121 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 122 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 123 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 124 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 125 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 126 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 127 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 128 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 129 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 130 WPI_DEBUG_ANY = 0xffffffff 131 }; 132 133 static int wpi_debug = 1; 134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 135 TUNABLE_INT("debug.wpi", &wpi_debug); 136 137 #else 138 #define DPRINTF(x) 139 #define DPRINTFN(n, x) 140 #define WPI_DEBUG_SET 0 141 #endif 142 143 struct wpi_ident { 144 uint16_t vendor; 145 uint16_t device; 146 uint16_t subdevice; 147 const char *name; 148 }; 149 150 static const struct wpi_ident wpi_ident_table[] = { 151 /* The below entries support ABG regardless of the subid */ 152 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 153 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 154 /* The below entries only support BG */ 155 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 156 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 157 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 158 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 159 { 0, 0, 0, NULL } 160 }; 161 162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 163 const char name[IFNAMSIZ], int unit, 164 enum ieee80211_opmode opmode, 165 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 166 const uint8_t mac[IEEE80211_ADDR_LEN]); 167 static void wpi_vap_delete(struct ieee80211vap *); 168 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 169 void **, bus_size_t, bus_size_t, int); 170 static void wpi_dma_contig_free(struct wpi_dma_info *); 171 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 172 static int wpi_alloc_shared(struct wpi_softc *); 173 static void wpi_free_shared(struct wpi_softc *); 174 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 175 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 176 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 177 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 178 int, int); 179 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 180 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 181 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *, 182 const uint8_t mac[IEEE80211_ADDR_LEN]); 183 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 184 static void wpi_mem_lock(struct wpi_softc *); 185 static void wpi_mem_unlock(struct wpi_softc *); 186 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 187 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 188 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 189 const uint32_t *, int); 190 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 191 static int wpi_alloc_fwmem(struct wpi_softc *); 192 static void wpi_free_fwmem(struct wpi_softc *); 193 static int wpi_load_firmware(struct wpi_softc *); 194 static void wpi_unload_firmware(struct wpi_softc *); 195 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 196 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 197 struct wpi_rx_data *); 198 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 199 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 200 static void wpi_notif_intr(struct wpi_softc *); 201 static void wpi_intr(void *); 202 static uint8_t wpi_plcp_signal(int); 203 static void wpi_watchdog_callout(void *); 204 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 205 struct ieee80211_node *, int); 206 static void wpi_start(struct ifnet *, struct ifaltq_subque *); 207 static void wpi_start_locked(struct ifnet *); 208 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 209 const struct ieee80211_bpf_params *); 210 static void wpi_scan_start(struct ieee80211com *); 211 static void wpi_scan_end(struct ieee80211com *); 212 static void wpi_set_channel(struct ieee80211com *); 213 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 214 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 215 static int wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); 216 static void wpi_read_eeprom(struct wpi_softc *, 217 uint8_t macaddr[IEEE80211_ADDR_LEN]); 218 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 219 static void wpi_read_eeprom_group(struct wpi_softc *, int); 220 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 221 static int wpi_wme_update(struct ieee80211com *); 222 static int wpi_mrr_setup(struct wpi_softc *); 223 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 224 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 225 #if 0 226 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 227 #endif 228 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 229 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 230 static int wpi_scan(struct wpi_softc *); 231 static int wpi_config(struct wpi_softc *); 232 static void wpi_stop_master(struct wpi_softc *); 233 static int wpi_power_up(struct wpi_softc *); 234 static int wpi_reset(struct wpi_softc *); 235 static void wpi_hwreset_task(void *, int); 236 static void wpi_rfreset_task(void *, int); 237 static void wpi_hw_config(struct wpi_softc *); 238 static void wpi_init(void *); 239 static void wpi_init_locked(struct wpi_softc *, int); 240 static void wpi_stop(struct wpi_softc *); 241 static void wpi_stop_locked(struct wpi_softc *); 242 243 static void wpi_newassoc(struct ieee80211_node *, int); 244 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 245 int); 246 static void wpi_calib_timeout_callout(void *); 247 static void wpi_power_calibration(struct wpi_softc *, int); 248 static int wpi_get_power_index(struct wpi_softc *, 249 struct wpi_power_group *, struct ieee80211_channel *, int); 250 #ifdef WPI_DEBUG 251 static const char *wpi_cmd_str(int); 252 #endif 253 static int wpi_probe(device_t); 254 static int wpi_attach(device_t); 255 static int wpi_detach(device_t); 256 static int wpi_shutdown(device_t); 257 static int wpi_suspend(device_t); 258 static int wpi_resume(device_t); 259 260 261 static device_method_t wpi_methods[] = { 262 /* Device interface */ 263 DEVMETHOD(device_probe, wpi_probe), 264 DEVMETHOD(device_attach, wpi_attach), 265 DEVMETHOD(device_detach, wpi_detach), 266 DEVMETHOD(device_shutdown, wpi_shutdown), 267 DEVMETHOD(device_suspend, wpi_suspend), 268 DEVMETHOD(device_resume, wpi_resume), 269 270 DEVMETHOD_END 271 }; 272 273 static driver_t wpi_driver = { 274 "wpi", 275 wpi_methods, 276 sizeof (struct wpi_softc) 277 }; 278 279 static devclass_t wpi_devclass; 280 281 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL); 282 283 static const uint8_t wpi_ridx_to_plcp[] = { 284 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 285 /* R1-R4 (ral/ural is R4-R1) */ 286 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 287 /* CCK: device-dependent */ 288 10, 20, 55, 110 289 }; 290 static const uint8_t wpi_ridx_to_rate[] = { 291 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 292 2, 4, 11, 22 /*CCK */ 293 }; 294 295 296 static int 297 wpi_probe(device_t dev) 298 { 299 const struct wpi_ident *ident; 300 301 wlan_serialize_enter(); 302 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 303 if (pci_get_vendor(dev) == ident->vendor && 304 pci_get_device(dev) == ident->device) { 305 device_set_desc(dev, ident->name); 306 wlan_serialize_exit(); 307 return 0; 308 } 309 } 310 wlan_serialize_exit(); 311 return ENXIO; 312 } 313 314 /** 315 * Load the firmare image from disk to the allocated dma buffer. 316 * we also maintain the reference to the firmware pointer as there 317 * is times where we may need to reload the firmware but we are not 318 * in a context that can access the filesystem (ie taskq cause by restart) 319 * 320 * @return 0 on success, an errno on failure 321 */ 322 static int 323 wpi_load_firmware(struct wpi_softc *sc) 324 { 325 const struct firmware *fp; 326 struct wpi_dma_info *dma = &sc->fw_dma; 327 const struct wpi_firmware_hdr *hdr; 328 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 329 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 330 int error; 331 332 DPRINTFN(WPI_DEBUG_FIRMWARE, 333 ("Attempting Loading Firmware from wpi_fw module\n")); 334 335 wlan_assert_serialized(); 336 wlan_serialize_exit(); 337 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 338 device_printf(sc->sc_dev, 339 "could not load firmware image 'wpifw_fw'\n"); 340 error = ENOENT; 341 wlan_serialize_enter(); 342 goto fail; 343 } 344 wlan_serialize_enter(); 345 346 fp = sc->fw_fp; 347 348 /* Validate the firmware is minimum a particular version */ 349 if (fp->version < WPI_FW_MINVERSION) { 350 device_printf(sc->sc_dev, 351 "firmware version is too old. Need %d, got %d\n", 352 WPI_FW_MINVERSION, 353 fp->version); 354 error = ENXIO; 355 goto fail; 356 } 357 358 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 359 device_printf(sc->sc_dev, 360 "firmware file too short: %zu bytes\n", fp->datasize); 361 error = ENXIO; 362 goto fail; 363 } 364 365 hdr = (const struct wpi_firmware_hdr *)fp->data; 366 367 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 368 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 369 370 rtextsz = le32toh(hdr->rtextsz); 371 rdatasz = le32toh(hdr->rdatasz); 372 itextsz = le32toh(hdr->itextsz); 373 idatasz = le32toh(hdr->idatasz); 374 btextsz = le32toh(hdr->btextsz); 375 376 /* check that all firmware segments are present */ 377 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 378 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 379 device_printf(sc->sc_dev, 380 "firmware file too short: %zu bytes\n", fp->datasize); 381 error = ENXIO; /* XXX appropriate error code? */ 382 goto fail; 383 } 384 385 /* get pointers to firmware segments */ 386 rtext = (const uint8_t *)(hdr + 1); 387 rdata = rtext + rtextsz; 388 itext = rdata + rdatasz; 389 idata = itext + itextsz; 390 btext = idata + idatasz; 391 392 DPRINTFN(WPI_DEBUG_FIRMWARE, 393 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 394 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 395 (le32toh(hdr->version) & 0xff000000) >> 24, 396 (le32toh(hdr->version) & 0x00ff0000) >> 16, 397 (le32toh(hdr->version) & 0x0000ffff), 398 rtextsz, rdatasz, 399 itextsz, idatasz, btextsz)); 400 401 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 402 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 403 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 404 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 405 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 406 407 /* sanity checks */ 408 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 409 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 410 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 411 idatasz > WPI_FW_INIT_DATA_MAXSZ || 412 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 413 (btextsz & 3) != 0) { 414 device_printf(sc->sc_dev, "firmware invalid\n"); 415 error = EINVAL; 416 goto fail; 417 } 418 419 /* copy initialization images into pre-allocated DMA-safe memory */ 420 memcpy(dma->vaddr, idata, idatasz); 421 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 422 423 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 424 425 /* tell adapter where to find initialization images */ 426 wpi_mem_lock(sc); 427 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 428 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 429 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 430 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 431 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 432 wpi_mem_unlock(sc); 433 434 /* load firmware boot code */ 435 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 436 device_printf(sc->sc_dev, "Failed to load microcode\n"); 437 goto fail; 438 } 439 440 /* now press "execute" */ 441 WPI_WRITE(sc, WPI_RESET, 0); 442 443 /* wait at most one second for the first alive notification */ 444 if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) { 445 device_printf(sc->sc_dev, 446 "timeout waiting for adapter to initialize\n"); 447 goto fail; 448 } 449 450 /* copy runtime images into pre-allocated DMA-sage memory */ 451 memcpy(dma->vaddr, rdata, rdatasz); 452 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 453 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 454 455 /* tell adapter where to find runtime images */ 456 wpi_mem_lock(sc); 457 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 458 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 459 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 460 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 461 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 462 wpi_mem_unlock(sc); 463 464 /* wait at most one second for the first alive notification */ 465 if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) { 466 device_printf(sc->sc_dev, 467 "timeout waiting for adapter to initialize2\n"); 468 goto fail; 469 } 470 471 DPRINTFN(WPI_DEBUG_FIRMWARE, 472 ("Firmware loaded to driver successfully\n")); 473 return error; 474 fail: 475 wpi_unload_firmware(sc); 476 return error; 477 } 478 479 /** 480 * Free the referenced firmware image 481 */ 482 static void 483 wpi_unload_firmware(struct wpi_softc *sc) 484 { 485 if (sc->fw_fp) { 486 wlan_assert_serialized(); 487 wlan_serialize_exit(); 488 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 489 wlan_serialize_enter(); 490 sc->fw_fp = NULL; 491 } 492 } 493 494 static int 495 wpi_attach(device_t dev) 496 { 497 struct wpi_softc *sc; 498 struct ifnet *ifp; 499 struct ieee80211com *ic; 500 int ac, error, supportsa = 1; 501 uint32_t tmp; 502 const struct wpi_ident *ident; 503 uint8_t macaddr[IEEE80211_ADDR_LEN]; 504 505 wlan_serialize_enter(); 506 sc = device_get_softc(dev); 507 sc->sc_dev = dev; 508 509 if (bootverbose || WPI_DEBUG_SET) 510 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 511 512 /* 513 * Some card's only support 802.11b/g not a, check to see if 514 * this is one such card. A 0x0 in the subdevice table indicates 515 * the entire subdevice range is to be ignored. 516 */ 517 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 518 if (ident->subdevice && 519 pci_get_subdevice(dev) == ident->subdevice) { 520 supportsa = 0; 521 break; 522 } 523 } 524 525 /* Create the tasks that can be queued */ 526 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset_task, sc); 527 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset_task, sc); 528 529 callout_init(&sc->calib_to_callout); 530 callout_init(&sc->watchdog_to_callout); 531 532 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 533 device_printf(dev, "chip is in D%d power mode " 534 "-- setting to D0\n", pci_get_powerstate(dev)); 535 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 536 } 537 538 /* disable the retry timeout register */ 539 pci_write_config(dev, 0x41, 0, 1); 540 541 /* enable bus-mastering */ 542 pci_enable_busmaster(dev); 543 544 sc->mem_rid = PCIR_BAR(0); 545 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 546 RF_ACTIVE); 547 if (sc->mem == NULL) { 548 device_printf(dev, "could not allocate memory resource\n"); 549 error = ENOMEM; 550 goto fail; 551 } 552 553 sc->sc_st = rman_get_bustag(sc->mem); 554 sc->sc_sh = rman_get_bushandle(sc->mem); 555 556 sc->irq_rid = 0; 557 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 558 RF_ACTIVE | RF_SHAREABLE); 559 if (sc->irq == NULL) { 560 device_printf(dev, "could not allocate interrupt resource\n"); 561 error = ENOMEM; 562 goto fail; 563 } 564 565 /* 566 * Allocate DMA memory for firmware transfers. 567 */ 568 if ((error = wpi_alloc_fwmem(sc)) != 0) { 569 kprintf(": could not allocate firmware memory\n"); 570 error = ENOMEM; 571 goto fail; 572 } 573 574 /* 575 * Put adapter into a known state. 576 */ 577 if ((error = wpi_reset(sc)) != 0) { 578 device_printf(dev, "could not reset adapter\n"); 579 goto fail; 580 } 581 582 wpi_mem_lock(sc); 583 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 584 if (bootverbose || WPI_DEBUG_SET) 585 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 586 587 wpi_mem_unlock(sc); 588 589 /* Allocate shared page */ 590 if ((error = wpi_alloc_shared(sc)) != 0) { 591 device_printf(dev, "could not allocate shared page\n"); 592 goto fail; 593 } 594 595 /* tx data queues - 4 for QoS purposes */ 596 for (ac = 0; ac < WME_NUM_AC; ac++) { 597 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 598 if (error != 0) { 599 device_printf(dev, "could not allocate Tx ring %d\n",ac); 600 goto fail; 601 } 602 } 603 604 /* command queue to talk to the card's firmware */ 605 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 606 if (error != 0) { 607 device_printf(dev, "could not allocate command ring\n"); 608 goto fail; 609 } 610 611 /* receive data queue */ 612 error = wpi_alloc_rx_ring(sc, &sc->rxq); 613 if (error != 0) { 614 device_printf(dev, "could not allocate Rx ring\n"); 615 goto fail; 616 } 617 618 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 619 if (ifp == NULL) { 620 device_printf(dev, "can not if_alloc()\n"); 621 error = ENOMEM; 622 goto fail; 623 } 624 ic = ifp->if_l2com; 625 626 ic->ic_ifp = ifp; 627 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 628 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 629 630 /* set device capabilities */ 631 ic->ic_caps = 632 IEEE80211_C_STA /* station mode supported */ 633 | IEEE80211_C_MONITOR /* monitor mode supported */ 634 | IEEE80211_C_TXPMGT /* tx power management */ 635 | IEEE80211_C_SHSLOT /* short slot time supported */ 636 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 637 | IEEE80211_C_WPA /* 802.11i */ 638 /* XXX looks like WME is partly supported? */ 639 #if 0 640 | IEEE80211_C_IBSS /* IBSS mode support */ 641 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 642 | IEEE80211_C_WME /* 802.11e */ 643 | IEEE80211_C_HOSTAP /* Host access point mode */ 644 #endif 645 ; 646 647 /* 648 * Read in the eeprom and also setup the channels for 649 * net80211. We don't set the rates as net80211 does this for us 650 */ 651 wpi_read_eeprom(sc, macaddr); 652 653 if (bootverbose || WPI_DEBUG_SET) { 654 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 655 device_printf(sc->sc_dev, "Hardware Type: %c\n", 656 sc->type > 1 ? 'B': '?'); 657 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 658 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 659 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 660 supportsa ? "does" : "does not"); 661 662 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 663 what sc->rev really represents - benjsc 20070615 */ 664 } 665 666 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 667 ifp->if_softc = sc; 668 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 669 ifp->if_init = wpi_init; 670 ifp->if_ioctl = wpi_ioctl; 671 ifp->if_start = wpi_start; 672 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN); 673 #ifdef notyet 674 ifq_set_ready(&ifp->if_snd); 675 #endif 676 677 ieee80211_ifattach(ic, macaddr); 678 /* override default methods */ 679 ic->ic_node_alloc = wpi_node_alloc; 680 ic->ic_newassoc = wpi_newassoc; 681 ic->ic_raw_xmit = wpi_raw_xmit; 682 ic->ic_wme.wme_update = wpi_wme_update; 683 ic->ic_scan_start = wpi_scan_start; 684 ic->ic_scan_end = wpi_scan_end; 685 ic->ic_set_channel = wpi_set_channel; 686 ic->ic_scan_curchan = wpi_scan_curchan; 687 ic->ic_scan_mindwell = wpi_scan_mindwell; 688 689 ic->ic_vap_create = wpi_vap_create; 690 ic->ic_vap_delete = wpi_vap_delete; 691 692 ieee80211_radiotap_attach(ic, 693 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 694 WPI_TX_RADIOTAP_PRESENT, 695 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 696 WPI_RX_RADIOTAP_PRESENT); 697 698 /* 699 * Hook our interrupt after all initialization is complete. 700 */ 701 error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE, 702 wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer); 703 if (error != 0) { 704 device_printf(dev, "could not set up interrupt\n"); 705 goto fail; 706 } 707 708 if (bootverbose) 709 ieee80211_announce(ic); 710 #ifdef XXX_DEBUG 711 ieee80211_announce_channels(ic); 712 #endif 713 wlan_serialize_exit(); 714 return 0; 715 716 fail: 717 wlan_serialize_exit(); 718 wpi_detach(dev); 719 return ENXIO; 720 } 721 722 static int 723 wpi_detach(device_t dev) 724 { 725 struct wpi_softc *sc; 726 struct ifnet *ifp; 727 struct ieee80211com *ic; 728 int ac; 729 730 wlan_serialize_enter(); 731 sc = device_get_softc(dev); 732 ifp = sc->sc_ifp; 733 if (ifp != NULL) { 734 ic = ifp->if_l2com; 735 736 ieee80211_draintask(ic, &sc->sc_restarttask); 737 ieee80211_draintask(ic, &sc->sc_radiotask); 738 wpi_stop(sc); 739 callout_stop(&sc->watchdog_to_callout); 740 callout_stop(&sc->calib_to_callout); 741 ieee80211_ifdetach(ic); 742 } 743 744 if (sc->txq[0].data_dmat) { 745 for (ac = 0; ac < WME_NUM_AC; ac++) 746 wpi_free_tx_ring(sc, &sc->txq[ac]); 747 748 wpi_free_tx_ring(sc, &sc->cmdq); 749 wpi_free_rx_ring(sc, &sc->rxq); 750 wpi_free_shared(sc); 751 } 752 753 if (sc->fw_fp != NULL) { 754 wpi_unload_firmware(sc); 755 } 756 757 if (sc->fw_dma.tag) 758 wpi_free_fwmem(sc); 759 760 if (sc->irq != NULL) { 761 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 762 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 763 } 764 765 if (sc->mem != NULL) 766 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 767 768 if (ifp != NULL) 769 if_free(ifp); 770 771 wlan_serialize_exit(); 772 return 0; 773 } 774 775 static struct ieee80211vap * 776 wpi_vap_create(struct ieee80211com *ic, 777 const char name[IFNAMSIZ], int unit, 778 enum ieee80211_opmode opmode, int flags, 779 const uint8_t bssid[IEEE80211_ADDR_LEN], 780 const uint8_t mac[IEEE80211_ADDR_LEN]) 781 { 782 struct wpi_vap *wvp; 783 struct ieee80211vap *vap; 784 785 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 786 return NULL; 787 wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap), 788 M_80211_VAP, M_INTWAIT | M_ZERO); 789 if (wvp == NULL) 790 return NULL; 791 vap = &wvp->vap; 792 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 793 /* override with driver methods */ 794 wvp->newstate = vap->iv_newstate; 795 vap->iv_newstate = wpi_newstate; 796 797 ieee80211_ratectl_init(vap); 798 799 /* complete setup */ 800 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 801 ic->ic_opmode = opmode; 802 return vap; 803 } 804 805 static void 806 wpi_vap_delete(struct ieee80211vap *vap) 807 { 808 struct wpi_vap *wvp = WPI_VAP(vap); 809 810 ieee80211_ratectl_deinit(vap); 811 ieee80211_vap_detach(vap); 812 kfree(wvp, M_80211_VAP); 813 } 814 815 static void 816 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 817 { 818 if (error != 0) 819 return; 820 821 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 822 823 *(bus_addr_t *)arg = segs[0].ds_addr; 824 } 825 826 /* 827 * Allocates a contiguous block of dma memory of the requested size and 828 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 829 * allocations greater than 4096 may fail. Hence if the requested alignment is 830 * greater we allocate 'alignment' size extra memory and shift the vaddr and 831 * paddr after the dma load. This bypasses the problem at the cost of a little 832 * more memory. 833 */ 834 static int 835 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 836 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 837 { 838 int error; 839 bus_size_t align; 840 bus_size_t reqsize; 841 842 DPRINTFN(WPI_DEBUG_DMA, 843 ("Size: %zd - alignment %zd\n", size, alignment)); 844 845 dma->size = size; 846 dma->tag = NULL; 847 848 if (alignment > 4096) { 849 align = PAGE_SIZE; 850 reqsize = size + alignment; 851 } else { 852 align = alignment; 853 reqsize = size; 854 } 855 error = bus_dma_tag_create(dma->tag, align, 856 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 857 NULL, NULL, reqsize, 858 1, reqsize, flags, 859 &dma->tag); 860 if (error != 0) { 861 device_printf(sc->sc_dev, 862 "could not create shared page DMA tag\n"); 863 goto fail; 864 } 865 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 866 flags | BUS_DMA_ZERO, &dma->map); 867 if (error != 0) { 868 device_printf(sc->sc_dev, 869 "could not allocate shared page DMA memory\n"); 870 goto fail; 871 } 872 873 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 874 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 875 876 /* Save the original pointers so we can free all the memory */ 877 dma->paddr = dma->paddr_start; 878 dma->vaddr = dma->vaddr_start; 879 880 /* 881 * Check the alignment and increment by 4096 until we get the 882 * requested alignment. Fail if can't obtain the alignment 883 * we requested. 884 */ 885 if ((dma->paddr & (alignment -1 )) != 0) { 886 int i; 887 888 for (i = 0; i < alignment / 4096; i++) { 889 if ((dma->paddr & (alignment - 1 )) == 0) 890 break; 891 dma->paddr += 4096; 892 dma->vaddr += 4096; 893 } 894 if (i == alignment / 4096) { 895 device_printf(sc->sc_dev, 896 "alignment requirement was not satisfied\n"); 897 goto fail; 898 } 899 } 900 901 if (error != 0) { 902 device_printf(sc->sc_dev, 903 "could not load shared page DMA map\n"); 904 goto fail; 905 } 906 907 if (kvap != NULL) 908 *kvap = dma->vaddr; 909 910 return 0; 911 912 fail: 913 wpi_dma_contig_free(dma); 914 return error; 915 } 916 917 static void 918 wpi_dma_contig_free(struct wpi_dma_info *dma) 919 { 920 if (dma->tag) { 921 if (dma->map != NULL) { 922 if (dma->paddr_start != 0) { 923 bus_dmamap_sync(dma->tag, dma->map, 924 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 925 bus_dmamap_unload(dma->tag, dma->map); 926 } 927 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 928 } 929 bus_dma_tag_destroy(dma->tag); 930 } 931 } 932 933 /* 934 * Allocate a shared page between host and NIC. 935 */ 936 static int 937 wpi_alloc_shared(struct wpi_softc *sc) 938 { 939 int error; 940 941 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 942 (void **)&sc->shared, sizeof (struct wpi_shared), 943 PAGE_SIZE, 944 BUS_DMA_NOWAIT); 945 946 if (error != 0) { 947 device_printf(sc->sc_dev, 948 "could not allocate shared area DMA memory\n"); 949 } 950 951 return error; 952 } 953 954 static void 955 wpi_free_shared(struct wpi_softc *sc) 956 { 957 wpi_dma_contig_free(&sc->shared_dma); 958 } 959 960 static int 961 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 962 { 963 964 int i, error; 965 966 ring->cur = 0; 967 968 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 969 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 970 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 971 972 if (error != 0) { 973 device_printf(sc->sc_dev, 974 "%s: could not allocate rx ring DMA memory, error %d\n", 975 __func__, error); 976 goto fail; 977 } 978 979 error = bus_dma_tag_create(ring->data_dmat, 1, 0, 980 BUS_SPACE_MAXADDR_32BIT, 981 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 982 MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat); 983 if (error != 0) { 984 device_printf(sc->sc_dev, 985 "%s: bus_dma_tag_create_failed, error %d\n", 986 __func__, error); 987 goto fail; 988 } 989 990 /* 991 * Setup Rx buffers. 992 */ 993 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 994 struct wpi_rx_data *data = &ring->data[i]; 995 struct mbuf *m; 996 bus_addr_t paddr; 997 998 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 999 if (error != 0) { 1000 device_printf(sc->sc_dev, 1001 "%s: bus_dmamap_create failed, error %d\n", 1002 __func__, error); 1003 goto fail; 1004 } 1005 m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1006 if (m == NULL) { 1007 device_printf(sc->sc_dev, 1008 "%s: could not allocate rx mbuf\n", __func__); 1009 error = ENOMEM; 1010 goto fail; 1011 } 1012 /* map page */ 1013 error = bus_dmamap_load(ring->data_dmat, data->map, 1014 mtod(m, caddr_t), MJUMPAGESIZE, 1015 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1016 if (error != 0 && error != EFBIG) { 1017 device_printf(sc->sc_dev, 1018 "%s: bus_dmamap_load failed, error %d\n", 1019 __func__, error); 1020 m_freem(m); 1021 error = ENOMEM; /* XXX unique code */ 1022 goto fail; 1023 } 1024 bus_dmamap_sync(ring->data_dmat, data->map, 1025 BUS_DMASYNC_PREWRITE); 1026 1027 data->m = m; 1028 ring->desc[i] = htole32(paddr); 1029 } 1030 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1031 BUS_DMASYNC_PREWRITE); 1032 return 0; 1033 fail: 1034 wpi_free_rx_ring(sc, ring); 1035 return error; 1036 } 1037 1038 static void 1039 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1040 { 1041 int ntries; 1042 1043 wpi_mem_lock(sc); 1044 1045 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1046 1047 for (ntries = 0; ntries < 100; ntries++) { 1048 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1049 break; 1050 DELAY(10); 1051 } 1052 1053 wpi_mem_unlock(sc); 1054 1055 #ifdef WPI_DEBUG 1056 if (ntries == 100 && wpi_debug > 0) 1057 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1058 #endif 1059 1060 ring->cur = 0; 1061 } 1062 1063 static void 1064 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1065 { 1066 int i; 1067 1068 wpi_dma_contig_free(&ring->desc_dma); 1069 1070 for (i = 0; i < WPI_RX_RING_COUNT; i++) 1071 if (ring->data[i].m != NULL) 1072 m_freem(ring->data[i].m); 1073 } 1074 1075 static int 1076 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1077 int qid) 1078 { 1079 struct wpi_tx_data *data; 1080 int i, error; 1081 1082 ring->qid = qid; 1083 ring->count = count; 1084 ring->queued = 0; 1085 ring->cur = 0; 1086 ring->data = NULL; 1087 1088 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1089 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1090 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1091 1092 if (error != 0) { 1093 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1094 goto fail; 1095 } 1096 1097 /* update shared page with ring's base address */ 1098 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1099 1100 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1101 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1102 BUS_DMA_NOWAIT); 1103 1104 if (error != 0) { 1105 device_printf(sc->sc_dev, 1106 "could not allocate tx command DMA memory\n"); 1107 goto fail; 1108 } 1109 1110 ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1111 M_INTWAIT | M_ZERO); 1112 if (ring->data == NULL) { 1113 device_printf(sc->sc_dev, 1114 "could not allocate tx data slots\n"); 1115 goto fail; 1116 } 1117 1118 error = bus_dma_tag_create(ring->data_dmat, 1, 0, 1119 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1120 WPI_MAX_SCATTER - 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, 1121 &ring->data_dmat); 1122 if (error != 0) { 1123 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1124 goto fail; 1125 } 1126 1127 for (i = 0; i < count; i++) { 1128 data = &ring->data[i]; 1129 1130 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1131 if (error != 0) { 1132 device_printf(sc->sc_dev, 1133 "could not create tx buf DMA map\n"); 1134 goto fail; 1135 } 1136 bus_dmamap_sync(ring->data_dmat, data->map, 1137 BUS_DMASYNC_PREWRITE); 1138 } 1139 1140 return 0; 1141 1142 fail: 1143 wpi_free_tx_ring(sc, ring); 1144 return error; 1145 } 1146 1147 static void 1148 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1149 { 1150 struct wpi_tx_data *data; 1151 int i, ntries; 1152 1153 wpi_mem_lock(sc); 1154 1155 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1156 for (ntries = 0; ntries < 100; ntries++) { 1157 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1158 break; 1159 DELAY(10); 1160 } 1161 #ifdef WPI_DEBUG 1162 if (ntries == 100 && wpi_debug > 0) 1163 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1164 ring->qid); 1165 #endif 1166 wpi_mem_unlock(sc); 1167 1168 for (i = 0; i < ring->count; i++) { 1169 data = &ring->data[i]; 1170 1171 if (data->m != NULL) { 1172 bus_dmamap_unload(ring->data_dmat, data->map); 1173 m_freem(data->m); 1174 data->m = NULL; 1175 } 1176 } 1177 1178 ring->queued = 0; 1179 ring->cur = 0; 1180 } 1181 1182 static void 1183 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1184 { 1185 struct wpi_tx_data *data; 1186 int i; 1187 1188 wpi_dma_contig_free(&ring->desc_dma); 1189 wpi_dma_contig_free(&ring->cmd_dma); 1190 1191 if (ring->data != NULL) { 1192 for (i = 0; i < ring->count; i++) { 1193 data = &ring->data[i]; 1194 1195 if (data->m != NULL) { 1196 bus_dmamap_sync(ring->data_dmat, data->map, 1197 BUS_DMASYNC_POSTWRITE); 1198 bus_dmamap_unload(ring->data_dmat, data->map); 1199 m_freem(data->m); 1200 data->m = NULL; 1201 } 1202 } 1203 kfree(ring->data, M_DEVBUF); 1204 } 1205 1206 if (ring->data_dmat != NULL) 1207 bus_dma_tag_destroy(ring->data_dmat); 1208 } 1209 1210 static int 1211 wpi_shutdown(device_t dev) 1212 { 1213 struct wpi_softc *sc; 1214 1215 wlan_serialize_enter(); 1216 sc = device_get_softc(dev); 1217 wpi_stop_locked(sc); 1218 wpi_unload_firmware(sc); 1219 wlan_serialize_exit(); 1220 1221 return 0; 1222 } 1223 1224 static int 1225 wpi_suspend(device_t dev) 1226 { 1227 struct wpi_softc *sc; 1228 1229 wlan_serialize_enter(); 1230 sc = device_get_softc(dev); 1231 wpi_stop(sc); 1232 wlan_serialize_exit(); 1233 return 0; 1234 } 1235 1236 static int 1237 wpi_resume(device_t dev) 1238 { 1239 struct wpi_softc *sc; 1240 struct ifnet *ifp; 1241 1242 wlan_serialize_enter(); 1243 sc = device_get_softc(dev); 1244 ifp = sc->sc_ifp; 1245 pci_write_config(dev, 0x41, 0, 1); 1246 1247 if (ifp->if_flags & IFF_UP) { 1248 wpi_init(ifp->if_softc); 1249 if (ifp->if_flags & IFF_RUNNING) 1250 if_devstart(ifp); 1251 } 1252 wlan_serialize_exit(); 1253 return 0; 1254 } 1255 1256 /* ARGSUSED */ 1257 static struct ieee80211_node * 1258 wpi_node_alloc(struct ieee80211vap *vap __unused, 1259 const uint8_t mac[IEEE80211_ADDR_LEN] __unused) 1260 { 1261 struct wpi_node *wn; 1262 1263 wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO); 1264 1265 return &wn->ni; 1266 } 1267 1268 /** 1269 * Called by net80211 when ever there is a change to 80211 state machine 1270 */ 1271 static int 1272 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1273 { 1274 struct wpi_vap *wvp = WPI_VAP(vap); 1275 struct ieee80211com *ic = vap->iv_ic; 1276 struct ifnet *ifp = ic->ic_ifp; 1277 struct wpi_softc *sc = ifp->if_softc; 1278 int error; 1279 1280 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1281 ieee80211_state_name[vap->iv_state], 1282 ieee80211_state_name[nstate], sc->flags)); 1283 1284 if (nstate == IEEE80211_S_AUTH) { 1285 /* The node must be registered in the firmware before auth */ 1286 error = wpi_auth(sc, vap); 1287 if (error != 0) { 1288 device_printf(sc->sc_dev, 1289 "%s: could not move to auth state, error %d\n", 1290 __func__, error); 1291 } 1292 } 1293 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1294 error = wpi_run(sc, vap); 1295 if (error != 0) { 1296 device_printf(sc->sc_dev, 1297 "%s: could not move to run state, error %d\n", 1298 __func__, error); 1299 } 1300 } 1301 if (nstate == IEEE80211_S_RUN) { 1302 /* RUN -> RUN transition; just restart the timers */ 1303 wpi_calib_timeout_callout(sc); 1304 /* XXX split out rate control timer */ 1305 } 1306 return wvp->newstate(vap, nstate, arg); 1307 } 1308 1309 /* 1310 * Grab exclusive access to NIC memory. 1311 */ 1312 static void 1313 wpi_mem_lock(struct wpi_softc *sc) 1314 { 1315 int ntries; 1316 uint32_t tmp; 1317 1318 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1319 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1320 1321 /* spin until we actually get the lock */ 1322 for (ntries = 0; ntries < 100; ntries++) { 1323 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1324 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1325 break; 1326 DELAY(10); 1327 } 1328 if (ntries == 100) 1329 device_printf(sc->sc_dev, "could not lock memory\n"); 1330 } 1331 1332 /* 1333 * Release lock on NIC memory. 1334 */ 1335 static void 1336 wpi_mem_unlock(struct wpi_softc *sc) 1337 { 1338 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1339 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1340 } 1341 1342 static uint32_t 1343 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1344 { 1345 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1346 return WPI_READ(sc, WPI_READ_MEM_DATA); 1347 } 1348 1349 static void 1350 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1351 { 1352 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1353 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1354 } 1355 1356 static void 1357 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1358 const uint32_t *data, int wlen) 1359 { 1360 for (; wlen > 0; wlen--, data++, addr+=4) 1361 wpi_mem_write(sc, addr, *data); 1362 } 1363 1364 /* 1365 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1366 * using the traditional bit-bang method. Data is read up until len bytes have 1367 * been obtained. 1368 */ 1369 static uint16_t 1370 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1371 { 1372 int ntries; 1373 uint32_t val; 1374 uint8_t *out = data; 1375 1376 wpi_mem_lock(sc); 1377 1378 for (; len > 0; len -= 2, addr++) { 1379 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1380 1381 for (ntries = 0; ntries < 10; ntries++) { 1382 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1383 break; 1384 DELAY(5); 1385 } 1386 1387 if (ntries == 10) { 1388 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1389 return ETIMEDOUT; 1390 } 1391 1392 *out++= val >> 16; 1393 if (len > 1) 1394 *out ++= val >> 24; 1395 } 1396 1397 wpi_mem_unlock(sc); 1398 1399 return 0; 1400 } 1401 1402 /* 1403 * The firmware text and data segments are transferred to the NIC using DMA. 1404 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1405 * where to find it. Once the NIC has copied the firmware into its internal 1406 * memory, we can free our local copy in the driver. 1407 */ 1408 static int 1409 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1410 { 1411 int error, ntries; 1412 1413 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1414 1415 size /= sizeof(uint32_t); 1416 1417 wpi_mem_lock(sc); 1418 1419 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1420 (const uint32_t *)fw, size); 1421 1422 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1423 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1424 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1425 1426 /* run microcode */ 1427 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1428 1429 /* wait while the adapter is busy copying the firmware */ 1430 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1431 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1432 DPRINTFN(WPI_DEBUG_HW, 1433 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1434 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1435 if (status & WPI_TX_IDLE(6)) { 1436 DPRINTFN(WPI_DEBUG_HW, 1437 ("Status Match! - ntries = %d\n", ntries)); 1438 break; 1439 } 1440 DELAY(10); 1441 } 1442 if (ntries == 1000) { 1443 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1444 error = ETIMEDOUT; 1445 } 1446 1447 /* start the microcode executing */ 1448 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1449 1450 wpi_mem_unlock(sc); 1451 1452 return (error); 1453 } 1454 1455 static void 1456 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1457 struct wpi_rx_data *data) 1458 { 1459 struct ifnet *ifp = sc->sc_ifp; 1460 struct ieee80211com *ic = ifp->if_l2com; 1461 struct wpi_rx_ring *ring = &sc->rxq; 1462 struct wpi_rx_stat *stat; 1463 struct wpi_rx_head *head; 1464 struct wpi_rx_tail *tail; 1465 struct ieee80211_node *ni; 1466 struct mbuf *m, *mnew; 1467 bus_addr_t paddr; 1468 int error; 1469 1470 stat = (struct wpi_rx_stat *)(desc + 1); 1471 1472 if (stat->len > WPI_STAT_MAXLEN) { 1473 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1474 IFNET_STAT_INC(ifp, ierrors, 1); 1475 return; 1476 } 1477 1478 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1479 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1480 1481 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1482 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1483 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1484 (uintmax_t)le64toh(tail->tstamp))); 1485 1486 /* discard Rx frames with bad CRC early */ 1487 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1488 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1489 le32toh(tail->flags))); 1490 IFNET_STAT_INC(ifp, ierrors, 1); 1491 return; 1492 } 1493 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1494 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1495 le16toh(head->len))); 1496 IFNET_STAT_INC(ifp, ierrors, 1); 1497 return; 1498 } 1499 1500 /* XXX don't need mbuf, just dma buffer */ 1501 mnew = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1502 if (mnew == NULL) { 1503 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1504 __func__)); 1505 IFNET_STAT_INC(ifp, ierrors, 1); 1506 return; 1507 } 1508 error = bus_dmamap_load(ring->data_dmat, data->map, 1509 mtod(mnew, caddr_t), MJUMPAGESIZE, 1510 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1511 if (error != 0 && error != EFBIG) { 1512 device_printf(sc->sc_dev, 1513 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1514 m_freem(mnew); 1515 IFNET_STAT_INC(ifp, ierrors, 1); 1516 return; 1517 } 1518 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1519 1520 /* finalize mbuf and swap in new one */ 1521 m = data->m; 1522 m->m_pkthdr.rcvif = ifp; 1523 m->m_data = (caddr_t)(head + 1); 1524 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1525 1526 data->m = mnew; 1527 /* update Rx descriptor */ 1528 ring->desc[ring->cur] = htole32(paddr); 1529 1530 if (ieee80211_radiotap_active(ic)) { 1531 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1532 1533 tap->wr_flags = 0; 1534 tap->wr_chan_freq = 1535 htole16(ic->ic_channels[head->chan].ic_freq); 1536 tap->wr_chan_flags = 1537 htole16(ic->ic_channels[head->chan].ic_flags); 1538 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1539 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1540 tap->wr_tsft = tail->tstamp; 1541 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1542 switch (head->rate) { 1543 /* CCK rates */ 1544 case 10: tap->wr_rate = 2; break; 1545 case 20: tap->wr_rate = 4; break; 1546 case 55: tap->wr_rate = 11; break; 1547 case 110: tap->wr_rate = 22; break; 1548 /* OFDM rates */ 1549 case 0xd: tap->wr_rate = 12; break; 1550 case 0xf: tap->wr_rate = 18; break; 1551 case 0x5: tap->wr_rate = 24; break; 1552 case 0x7: tap->wr_rate = 36; break; 1553 case 0x9: tap->wr_rate = 48; break; 1554 case 0xb: tap->wr_rate = 72; break; 1555 case 0x1: tap->wr_rate = 96; break; 1556 case 0x3: tap->wr_rate = 108; break; 1557 /* unknown rate: should not happen */ 1558 default: tap->wr_rate = 0; 1559 } 1560 if (le16toh(head->flags) & 0x4) 1561 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1562 } 1563 1564 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1565 if (ni != NULL) { 1566 (void) ieee80211_input(ni, m, stat->rssi, 0); 1567 ieee80211_free_node(ni); 1568 } else 1569 (void) ieee80211_input_all(ic, m, stat->rssi, 0); 1570 } 1571 1572 static void 1573 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1574 { 1575 struct ifnet *ifp = sc->sc_ifp; 1576 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1577 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1578 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1579 struct ieee80211_node *ni = txdata->ni; 1580 struct ieee80211vap *vap = ni->ni_vap; 1581 int retrycnt = 0; 1582 1583 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1584 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1585 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1586 le32toh(stat->status))); 1587 1588 /* 1589 * Update rate control statistics for the node. 1590 * XXX we should not count mgmt frames since they're always sent at 1591 * the lowest available bit-rate. 1592 * XXX frames w/o ACK shouldn't be used either 1593 */ 1594 if (stat->ntries > 0) { 1595 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1596 retrycnt = 1; 1597 } 1598 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, 1599 &retrycnt, NULL); 1600 1601 /* XXX oerrors should only count errors !maxtries */ 1602 if ((le32toh(stat->status) & 0xff) != 1) 1603 IFNET_STAT_INC(ifp, oerrors, 1); 1604 else 1605 IFNET_STAT_INC(ifp, opackets, 1); 1606 1607 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1608 bus_dmamap_unload(ring->data_dmat, txdata->map); 1609 /* XXX handle M_TXCB? */ 1610 m_freem(txdata->m); 1611 txdata->m = NULL; 1612 ieee80211_free_node(txdata->ni); 1613 txdata->ni = NULL; 1614 1615 ring->queued--; 1616 1617 sc->sc_tx_timer = 0; 1618 ifq_clr_oactive(&ifp->if_snd); 1619 wpi_start_locked(ifp); 1620 } 1621 1622 static void 1623 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1624 { 1625 struct wpi_tx_ring *ring = &sc->cmdq; 1626 struct wpi_tx_data *data; 1627 1628 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1629 "type=%s len=%d\n", desc->qid, desc->idx, 1630 desc->flags, wpi_cmd_str(desc->type), 1631 le32toh(desc->len))); 1632 1633 if ((desc->qid & 7) != 4) 1634 return; /* not a command ack */ 1635 1636 data = &ring->data[desc->idx]; 1637 1638 /* if the command was mapped in a mbuf, free it */ 1639 if (data->m != NULL) { 1640 bus_dmamap_unload(ring->data_dmat, data->map); 1641 m_freem(data->m); 1642 data->m = NULL; 1643 } 1644 1645 sc->flags &= ~WPI_FLAG_BUSY; 1646 wakeup(&ring->cmd[desc->idx]); 1647 } 1648 1649 static void 1650 wpi_notif_intr(struct wpi_softc *sc) 1651 { 1652 struct ifnet *ifp = sc->sc_ifp; 1653 struct ieee80211com *ic = ifp->if_l2com; 1654 struct wpi_rx_desc *desc; 1655 struct wpi_rx_data *data; 1656 uint32_t hw; 1657 1658 hw = le32toh(sc->shared->next); 1659 while (sc->rxq.cur != hw) { 1660 data = &sc->rxq.data[sc->rxq.cur]; 1661 desc = (void *)data->m->m_ext.ext_buf; 1662 1663 DPRINTFN(WPI_DEBUG_NOTIFY, 1664 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1665 desc->qid, 1666 desc->idx, 1667 desc->flags, 1668 desc->type, 1669 le32toh(desc->len))); 1670 1671 if (!(desc->qid & 0x80)) /* reply to a command */ 1672 wpi_cmd_intr(sc, desc); 1673 1674 switch (desc->type) { 1675 case WPI_RX_DONE: 1676 /* a 802.11 frame was received */ 1677 wpi_rx_intr(sc, desc, data); 1678 break; 1679 1680 case WPI_TX_DONE: 1681 /* a 802.11 frame has been transmitted */ 1682 wpi_tx_intr(sc, desc); 1683 break; 1684 1685 case WPI_UC_READY: 1686 { 1687 struct wpi_ucode_info *uc = 1688 (struct wpi_ucode_info *)(desc + 1); 1689 1690 /* the microcontroller is ready */ 1691 DPRINTF(("microcode alive notification version %x " 1692 "alive %x\n", le32toh(uc->version), 1693 le32toh(uc->valid))); 1694 1695 if (le32toh(uc->valid) != 1) { 1696 device_printf(sc->sc_dev, 1697 "microcontroller initialization failed\n"); 1698 wpi_stop_locked(sc); 1699 } 1700 break; 1701 } 1702 case WPI_STATE_CHANGED: 1703 { 1704 uint32_t *status = (uint32_t *)(desc + 1); 1705 1706 /* enabled/disabled notification */ 1707 DPRINTF(("state changed to %x\n", le32toh(*status))); 1708 1709 if (le32toh(*status) & 1) { 1710 device_printf(sc->sc_dev, 1711 "Radio transmitter is switched off\n"); 1712 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1713 ifp->if_flags &= ~IFF_RUNNING; 1714 /* Disable firmware commands */ 1715 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1716 } 1717 break; 1718 } 1719 case WPI_START_SCAN: 1720 { 1721 #ifdef WPI_DEBUG 1722 struct wpi_start_scan *scan = 1723 (struct wpi_start_scan *)(desc + 1); 1724 #endif 1725 1726 DPRINTFN(WPI_DEBUG_SCANNING, 1727 ("scanning channel %d status %x\n", 1728 scan->chan, le32toh(scan->status))); 1729 break; 1730 } 1731 case WPI_STOP_SCAN: 1732 { 1733 #ifdef WPI_DEBUG 1734 struct wpi_stop_scan *scan = 1735 (struct wpi_stop_scan *)(desc + 1); 1736 #endif 1737 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1738 1739 DPRINTFN(WPI_DEBUG_SCANNING, 1740 ("scan finished nchan=%d status=%d chan=%d\n", 1741 scan->nchan, scan->status, scan->chan)); 1742 1743 sc->sc_scan_timer = 0; 1744 ieee80211_scan_next(vap); 1745 break; 1746 } 1747 case WPI_MISSED_BEACON: 1748 { 1749 struct wpi_missed_beacon *beacon = 1750 (struct wpi_missed_beacon *)(desc + 1); 1751 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1752 1753 if (le32toh(beacon->consecutive) >= 1754 vap->iv_bmissthreshold) { 1755 DPRINTF(("Beacon miss: %u >= %u\n", 1756 le32toh(beacon->consecutive), 1757 vap->iv_bmissthreshold)); 1758 ieee80211_beacon_miss(ic); 1759 } 1760 break; 1761 } 1762 } 1763 1764 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1765 } 1766 1767 /* tell the firmware what we have processed */ 1768 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1769 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1770 } 1771 1772 static void 1773 wpi_intr(void *arg) 1774 { 1775 struct wpi_softc *sc = arg; 1776 uint32_t r; 1777 1778 r = WPI_READ(sc, WPI_INTR); 1779 if (r == 0 || r == 0xffffffff) { 1780 return; 1781 } 1782 1783 /* disable interrupts */ 1784 WPI_WRITE(sc, WPI_MASK, 0); 1785 /* ack interrupts */ 1786 WPI_WRITE(sc, WPI_INTR, r); 1787 1788 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1789 struct ifnet *ifp = sc->sc_ifp; 1790 struct ieee80211com *ic = ifp->if_l2com; 1791 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1792 1793 device_printf(sc->sc_dev, "fatal firmware error\n"); 1794 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1795 "(Hardware Error)")); 1796 if (vap != NULL) 1797 ieee80211_cancel_scan(vap); 1798 ieee80211_runtask(ic, &sc->sc_restarttask); 1799 sc->flags &= ~WPI_FLAG_BUSY; 1800 return; 1801 } 1802 1803 if (r & WPI_RX_INTR) 1804 wpi_notif_intr(sc); 1805 1806 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1807 wakeup(sc); 1808 1809 /* re-enable interrupts */ 1810 if (sc->sc_ifp->if_flags & IFF_UP) 1811 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1812 1813 } 1814 1815 static uint8_t 1816 wpi_plcp_signal(int rate) 1817 { 1818 switch (rate) { 1819 /* CCK rates (returned values are device-dependent) */ 1820 case 2: return 10; 1821 case 4: return 20; 1822 case 11: return 55; 1823 case 22: return 110; 1824 1825 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1826 /* R1-R4 (ral/ural is R4-R1) */ 1827 case 12: return 0xd; 1828 case 18: return 0xf; 1829 case 24: return 0x5; 1830 case 36: return 0x7; 1831 case 48: return 0x9; 1832 case 72: return 0xb; 1833 case 96: return 0x1; 1834 case 108: return 0x3; 1835 1836 /* unsupported rates (should not get there) */ 1837 default: return 0; 1838 } 1839 } 1840 1841 /* quickly determine if a given rate is CCK or OFDM */ 1842 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1843 1844 /* 1845 * Construct the data packet for a transmit buffer and acutally put 1846 * the buffer onto the transmit ring, kicking the card to process the 1847 * the buffer. 1848 */ 1849 static int 1850 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1851 int ac) 1852 { 1853 struct ieee80211vap *vap = ni->ni_vap; 1854 struct ifnet *ifp = sc->sc_ifp; 1855 struct ieee80211com *ic = ifp->if_l2com; 1856 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1857 struct wpi_tx_ring *ring = &sc->txq[ac]; 1858 struct wpi_tx_desc *desc; 1859 struct wpi_tx_data *data; 1860 struct wpi_tx_cmd *cmd; 1861 struct wpi_cmd_data *tx; 1862 struct ieee80211_frame *wh; 1863 const struct ieee80211_txparam *tp; 1864 struct ieee80211_key *k; 1865 struct mbuf *mnew; 1866 int i, error, nsegs, rate, hdrlen, ismcast; 1867 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1868 1869 desc = &ring->desc[ring->cur]; 1870 data = &ring->data[ring->cur]; 1871 1872 wh = mtod(m0, struct ieee80211_frame *); 1873 1874 hdrlen = ieee80211_hdrsize(wh); 1875 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1876 1877 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1878 k = ieee80211_crypto_encap(ni, m0); 1879 if (k == NULL) { 1880 m_freem(m0); 1881 return ENOBUFS; 1882 } 1883 /* packet header may have moved, reset our local pointer */ 1884 wh = mtod(m0, struct ieee80211_frame *); 1885 } 1886 1887 cmd = &ring->cmd[ring->cur]; 1888 cmd->code = WPI_CMD_TX_DATA; 1889 cmd->flags = 0; 1890 cmd->qid = ring->qid; 1891 cmd->idx = ring->cur; 1892 1893 tx = (struct wpi_cmd_data *)cmd->data; 1894 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1895 tx->timeout = htole16(0); 1896 tx->ofdm_mask = 0xff; 1897 tx->cck_mask = 0x0f; 1898 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1899 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1900 tx->len = htole16(m0->m_pkthdr.len); 1901 1902 if (!ismcast) { 1903 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1904 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1905 tx->flags |= htole32(WPI_TX_NEED_ACK); 1906 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1907 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1908 tx->rts_ntries = 7; 1909 } 1910 } 1911 /* pick a rate */ 1912 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1913 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1914 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1915 /* tell h/w to set timestamp in probe responses */ 1916 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1917 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1918 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1919 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1920 tx->timeout = htole16(3); 1921 else 1922 tx->timeout = htole16(2); 1923 rate = tp->mgmtrate; 1924 } else if (ismcast) { 1925 rate = tp->mcastrate; 1926 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1927 rate = tp->ucastrate; 1928 } else { 1929 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1930 rate = ni->ni_txrate; 1931 } 1932 tx->rate = wpi_plcp_signal(rate); 1933 1934 /* be very persistant at sending frames out */ 1935 #if 0 1936 tx->data_ntries = tp->maxretry; 1937 #else 1938 tx->data_ntries = 30; /* XXX way too high */ 1939 #endif 1940 1941 if (ieee80211_radiotap_active_vap(vap)) { 1942 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1943 tap->wt_flags = 0; 1944 tap->wt_rate = rate; 1945 tap->wt_hwqueue = ac; 1946 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1947 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1948 1949 ieee80211_radiotap_tx(vap, m0); 1950 } 1951 1952 /* save and trim IEEE802.11 header */ 1953 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1954 m_adj(m0, hdrlen); 1955 1956 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs, 1957 1, &nsegs, BUS_DMA_NOWAIT); 1958 if (error != 0 && error != EFBIG) { 1959 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1960 error); 1961 m_freem(m0); 1962 return error; 1963 } 1964 if (error != 0) { 1965 /* XXX use m_collapse */ 1966 mnew = m_defrag(m0, MB_DONTWAIT); 1967 if (mnew == NULL) { 1968 device_printf(sc->sc_dev, 1969 "could not defragment mbuf\n"); 1970 m_freem(m0); 1971 return ENOBUFS; 1972 } 1973 m0 = mnew; 1974 1975 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, 1976 m0, segs, 1, &nsegs, BUS_DMA_NOWAIT); 1977 if (error != 0) { 1978 device_printf(sc->sc_dev, 1979 "could not map mbuf (error %d)\n", error); 1980 m_freem(m0); 1981 return error; 1982 } 1983 } 1984 1985 data->m = m0; 1986 data->ni = ni; 1987 1988 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1989 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 1990 1991 /* first scatter/gather segment is used by the tx data command */ 1992 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1993 (1 + nsegs) << 24); 1994 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1995 ring->cur * sizeof (struct wpi_tx_cmd)); 1996 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 1997 for (i = 1; i <= nsegs; i++) { 1998 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 1999 desc->segs[i].len = htole32(segs[i - 1].ds_len); 2000 } 2001 2002 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2003 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2004 BUS_DMASYNC_PREWRITE); 2005 2006 ring->queued++; 2007 2008 /* kick ring */ 2009 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2010 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2011 2012 return 0; 2013 } 2014 2015 /** 2016 * Process data waiting to be sent on the IFNET output queue 2017 */ 2018 static void 2019 wpi_start(struct ifnet *ifp, struct ifaltq_subque *ifsq) 2020 { 2021 ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq); 2022 wpi_start_locked(ifp); 2023 } 2024 2025 static void 2026 wpi_start_locked(struct ifnet *ifp) 2027 { 2028 struct wpi_softc *sc = ifp->if_softc; 2029 struct ieee80211_node *ni; 2030 struct mbuf *m; 2031 int ac; 2032 2033 if ((ifp->if_flags & IFF_RUNNING) == 0) { 2034 ifq_purge(&ifp->if_snd); 2035 return; 2036 } 2037 2038 for (;;) { 2039 m = ifq_dequeue(&ifp->if_snd); 2040 if (m == NULL) 2041 break; 2042 ac = M_WME_GETAC(m); 2043 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2044 /* there is no place left in this ring */ 2045 /* 2046 * XXX: we CANNOT do it this way. If something 2047 * is prepended already, this is going to blow. 2048 */ 2049 ifq_set_oactive(&ifp->if_snd); 2050 ifq_prepend(&ifp->if_snd, m); 2051 break; 2052 } 2053 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2054 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2055 ieee80211_free_node(ni); 2056 IFNET_STAT_INC(ifp, oerrors, 1); 2057 break; 2058 } 2059 sc->sc_tx_timer = 5; 2060 } 2061 } 2062 2063 static int 2064 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2065 const struct ieee80211_bpf_params *params) 2066 { 2067 struct ieee80211com *ic = ni->ni_ic; 2068 struct ifnet *ifp = ic->ic_ifp; 2069 struct wpi_softc *sc = ifp->if_softc; 2070 2071 /* prevent management frames from being sent if we're not ready */ 2072 if (!(ifp->if_flags & IFF_RUNNING)) { 2073 m_freem(m); 2074 ieee80211_free_node(ni); 2075 return ENETDOWN; 2076 } 2077 2078 /* management frames go into ring 0 */ 2079 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2080 ifq_set_oactive(&ifp->if_snd); 2081 m_freem(m); 2082 ieee80211_free_node(ni); 2083 return ENOBUFS; /* XXX */ 2084 } 2085 2086 IFNET_STAT_INC(ifp, opackets, 1); 2087 if (wpi_tx_data(sc, m, ni, 0) != 0) 2088 goto bad; 2089 sc->sc_tx_timer = 5; 2090 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc); 2091 2092 return 0; 2093 bad: 2094 IFNET_STAT_INC(ifp, oerrors, 1); 2095 ieee80211_free_node(ni); 2096 return EIO; /* XXX */ 2097 } 2098 2099 static int 2100 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred) 2101 { 2102 struct wpi_softc *sc = ifp->if_softc; 2103 struct ieee80211com *ic = ifp->if_l2com; 2104 struct ifreq *ifr = (struct ifreq *) data; 2105 int error = 0, startall = 0; 2106 2107 switch (cmd) { 2108 case SIOCSIFFLAGS: 2109 if ((ifp->if_flags & IFF_UP)) { 2110 if (!(ifp->if_flags & IFF_RUNNING)) { 2111 wpi_init_locked(sc, 0); 2112 startall = 1; 2113 } 2114 } else if ((ifp->if_flags & IFF_RUNNING) || 2115 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2116 wpi_stop_locked(sc); 2117 if (startall) 2118 ieee80211_start_all(ic); 2119 break; 2120 case SIOCGIFMEDIA: 2121 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2122 break; 2123 case SIOCGIFADDR: 2124 error = ether_ioctl(ifp, cmd, data); 2125 break; 2126 default: 2127 error = EINVAL; 2128 break; 2129 } 2130 return error; 2131 } 2132 2133 /* 2134 * Extract various information from EEPROM. 2135 */ 2136 static void 2137 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2138 { 2139 int i; 2140 2141 /* read the hardware capabilities, revision and SKU type */ 2142 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2143 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2144 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2145 2146 /* read the regulatory domain */ 2147 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2148 2149 /* read in the hw MAC address */ 2150 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2151 2152 /* read the list of authorized channels */ 2153 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2154 wpi_read_eeprom_channels(sc,i); 2155 2156 /* read the power level calibration info for each group */ 2157 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2158 wpi_read_eeprom_group(sc,i); 2159 } 2160 2161 /* 2162 * Send a command to the firmware. 2163 */ 2164 static int 2165 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2166 { 2167 struct wpi_tx_ring *ring = &sc->cmdq; 2168 struct wpi_tx_desc *desc; 2169 struct wpi_tx_cmd *cmd; 2170 2171 #ifdef WPI_DEBUG 2172 if (!async) { 2173 wlan_assert_serialized(); 2174 } 2175 #endif 2176 2177 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2178 async)); 2179 2180 if (sc->flags & WPI_FLAG_BUSY) { 2181 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2182 __func__, code); 2183 return EAGAIN; 2184 } 2185 sc->flags|= WPI_FLAG_BUSY; 2186 2187 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2188 code, size)); 2189 2190 desc = &ring->desc[ring->cur]; 2191 cmd = &ring->cmd[ring->cur]; 2192 2193 cmd->code = code; 2194 cmd->flags = 0; 2195 cmd->qid = ring->qid; 2196 cmd->idx = ring->cur; 2197 memcpy(cmd->data, buf, size); 2198 2199 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2200 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2201 ring->cur * sizeof (struct wpi_tx_cmd)); 2202 desc->segs[0].len = htole32(4 + size); 2203 2204 /* kick cmd ring */ 2205 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2206 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2207 2208 if (async) { 2209 sc->flags &= ~ WPI_FLAG_BUSY; 2210 return 0; 2211 } 2212 2213 return zsleep(cmd, &wlan_global_serializer, 0, "wpicmd", hz); 2214 } 2215 2216 static int 2217 wpi_wme_update(struct ieee80211com *ic) 2218 { 2219 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2220 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2221 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2222 const struct wmeParams *wmep; 2223 struct wpi_wme_setup wme; 2224 int ac; 2225 2226 /* don't override default WME values if WME is not actually enabled */ 2227 if (!(ic->ic_flags & IEEE80211_F_WME)) 2228 return 0; 2229 2230 wme.flags = 0; 2231 for (ac = 0; ac < WME_NUM_AC; ac++) { 2232 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2233 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2234 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2235 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2236 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2237 2238 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2239 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2240 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2241 } 2242 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2243 #undef WPI_USEC 2244 #undef WPI_EXP2 2245 } 2246 2247 /* 2248 * Configure h/w multi-rate retries. 2249 */ 2250 static int 2251 wpi_mrr_setup(struct wpi_softc *sc) 2252 { 2253 struct ifnet *ifp = sc->sc_ifp; 2254 struct ieee80211com *ic = ifp->if_l2com; 2255 struct wpi_mrr_setup mrr; 2256 int i, error; 2257 2258 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2259 2260 /* CCK rates (not used with 802.11a) */ 2261 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2262 mrr.rates[i].flags = 0; 2263 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2264 /* fallback to the immediate lower CCK rate (if any) */ 2265 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2266 /* try one time at this rate before falling back to "next" */ 2267 mrr.rates[i].ntries = 1; 2268 } 2269 2270 /* OFDM rates (not used with 802.11b) */ 2271 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2272 mrr.rates[i].flags = 0; 2273 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2274 /* fallback to the immediate lower OFDM rate (if any) */ 2275 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2276 mrr.rates[i].next = (i == WPI_OFDM6) ? 2277 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2278 WPI_OFDM6 : WPI_CCK2) : 2279 i - 1; 2280 /* try one time at this rate before falling back to "next" */ 2281 mrr.rates[i].ntries = 1; 2282 } 2283 2284 /* setup MRR for control frames */ 2285 mrr.which = htole32(WPI_MRR_CTL); 2286 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2287 if (error != 0) { 2288 device_printf(sc->sc_dev, 2289 "could not setup MRR for control frames\n"); 2290 return error; 2291 } 2292 2293 /* setup MRR for data frames */ 2294 mrr.which = htole32(WPI_MRR_DATA); 2295 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2296 if (error != 0) { 2297 device_printf(sc->sc_dev, 2298 "could not setup MRR for data frames\n"); 2299 return error; 2300 } 2301 2302 return 0; 2303 } 2304 2305 static void 2306 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2307 { 2308 struct wpi_cmd_led led; 2309 2310 led.which = which; 2311 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2312 led.off = off; 2313 led.on = on; 2314 2315 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2316 } 2317 2318 static void 2319 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2320 { 2321 struct wpi_cmd_tsf tsf; 2322 uint64_t val, mod; 2323 2324 memset(&tsf, 0, sizeof tsf); 2325 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2326 tsf.bintval = htole16(ni->ni_intval); 2327 tsf.lintval = htole16(10); 2328 2329 /* compute remaining time until next beacon */ 2330 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2331 mod = le64toh(tsf.tstamp) % val; 2332 tsf.binitval = htole32((uint32_t)(val - mod)); 2333 2334 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2335 device_printf(sc->sc_dev, "could not enable TSF\n"); 2336 } 2337 2338 #if 0 2339 /* 2340 * Build a beacon frame that the firmware will broadcast periodically in 2341 * IBSS or HostAP modes. 2342 */ 2343 static int 2344 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2345 { 2346 struct ifnet *ifp = sc->sc_ifp; 2347 struct ieee80211com *ic = ifp->if_l2com; 2348 struct wpi_tx_ring *ring = &sc->cmdq; 2349 struct wpi_tx_desc *desc; 2350 struct wpi_tx_data *data; 2351 struct wpi_tx_cmd *cmd; 2352 struct wpi_cmd_beacon *bcn; 2353 struct ieee80211_beacon_offsets bo; 2354 struct mbuf *m0; 2355 bus_addr_t physaddr; 2356 int error; 2357 2358 desc = &ring->desc[ring->cur]; 2359 data = &ring->data[ring->cur]; 2360 2361 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2362 if (m0 == NULL) { 2363 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2364 return ENOMEM; 2365 } 2366 2367 cmd = &ring->cmd[ring->cur]; 2368 cmd->code = WPI_CMD_SET_BEACON; 2369 cmd->flags = 0; 2370 cmd->qid = ring->qid; 2371 cmd->idx = ring->cur; 2372 2373 bcn = (struct wpi_cmd_beacon *)cmd->data; 2374 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2375 bcn->id = WPI_ID_BROADCAST; 2376 bcn->ofdm_mask = 0xff; 2377 bcn->cck_mask = 0x0f; 2378 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2379 bcn->len = htole16(m0->m_pkthdr.len); 2380 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2381 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2382 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2383 2384 /* save and trim IEEE802.11 header */ 2385 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2386 m_adj(m0, sizeof (struct ieee80211_frame)); 2387 2388 /* assume beacon frame is contiguous */ 2389 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2390 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2391 if (error != 0) { 2392 device_printf(sc->sc_dev, "could not map beacon\n"); 2393 m_freem(m0); 2394 return error; 2395 } 2396 2397 data->m = m0; 2398 2399 /* first scatter/gather segment is used by the beacon command */ 2400 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2401 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2402 ring->cur * sizeof (struct wpi_tx_cmd)); 2403 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2404 desc->segs[1].addr = htole32(physaddr); 2405 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2406 2407 /* kick cmd ring */ 2408 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2409 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2410 2411 return 0; 2412 } 2413 #endif 2414 2415 static int 2416 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2417 { 2418 struct ieee80211com *ic = vap->iv_ic; 2419 struct ieee80211_node *ni; 2420 struct wpi_node_info node; 2421 int error; 2422 2423 2424 /* update adapter's configuration */ 2425 sc->config.associd = 0; 2426 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2427 ni = ieee80211_ref_node(vap->iv_bss); 2428 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2429 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2430 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2431 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2432 WPI_CONFIG_24GHZ); 2433 } 2434 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2435 sc->config.cck_mask = 0; 2436 sc->config.ofdm_mask = 0x15; 2437 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2438 sc->config.cck_mask = 0x03; 2439 sc->config.ofdm_mask = 0; 2440 } else { 2441 /* XXX assume 802.11b/g */ 2442 sc->config.cck_mask = 0x0f; 2443 sc->config.ofdm_mask = 0x15; 2444 } 2445 2446 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2447 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2448 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2449 sizeof (struct wpi_config), 1); 2450 if (error != 0) { 2451 device_printf(sc->sc_dev, "could not configure\n"); 2452 ieee80211_free_node(ni); 2453 return error; 2454 } 2455 2456 /* configuration has changed, set Tx power accordingly */ 2457 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2458 device_printf(sc->sc_dev, "could not set Tx power\n"); 2459 ieee80211_free_node(ni); 2460 return error; 2461 } 2462 2463 /* add default node */ 2464 memset(&node, 0, sizeof node); 2465 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2466 ieee80211_free_node(ni); 2467 node.id = WPI_ID_BSS; 2468 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2469 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2470 node.action = htole32(WPI_ACTION_SET_RATE); 2471 node.antenna = WPI_ANTENNA_BOTH; 2472 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2473 if (error != 0) 2474 device_printf(sc->sc_dev, "could not add BSS node\n"); 2475 2476 return (error); 2477 } 2478 2479 static int 2480 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2481 { 2482 struct ieee80211com *ic = vap->iv_ic; 2483 struct ieee80211_node *ni; 2484 int error; 2485 2486 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2487 /* link LED blinks while monitoring */ 2488 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2489 return 0; 2490 } 2491 2492 ni = ieee80211_ref_node(vap->iv_bss); 2493 wpi_enable_tsf(sc, ni); 2494 2495 /* update adapter's configuration */ 2496 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2497 /* short preamble/slot time are negotiated when associating */ 2498 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2499 WPI_CONFIG_SHSLOT); 2500 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2501 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2502 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2503 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2504 sc->config.filter |= htole32(WPI_FILTER_BSS); 2505 2506 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2507 2508 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2509 sc->config.flags)); 2510 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2511 wpi_config), 1); 2512 if (error != 0) { 2513 device_printf(sc->sc_dev, "could not update configuration\n"); 2514 ieee80211_free_node(ni); 2515 return error; 2516 } 2517 2518 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2519 ieee80211_free_node(ni); 2520 if (error != 0) { 2521 device_printf(sc->sc_dev, "could set txpower\n"); 2522 return error; 2523 } 2524 2525 /* link LED always on while associated */ 2526 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2527 2528 /* start automatic rate control timer */ 2529 callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc); 2530 2531 return (error); 2532 } 2533 2534 /* 2535 * Send a scan request to the firmware. Since this command is huge, we map it 2536 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2537 * much of this code is similar to that in wpi_cmd but because we must manually 2538 * construct the probe & channels, we duplicate what's needed here. XXX In the 2539 * future, this function should be modified to use wpi_cmd to help cleanup the 2540 * code base. 2541 */ 2542 static int 2543 wpi_scan(struct wpi_softc *sc) 2544 { 2545 struct ifnet *ifp = sc->sc_ifp; 2546 struct ieee80211com *ic = ifp->if_l2com; 2547 struct ieee80211_scan_state *ss = ic->ic_scan; 2548 struct wpi_tx_ring *ring = &sc->cmdq; 2549 struct wpi_tx_desc *desc; 2550 struct wpi_tx_data *data; 2551 struct wpi_tx_cmd *cmd; 2552 struct wpi_scan_hdr *hdr; 2553 struct wpi_scan_chan *chan; 2554 struct ieee80211_frame *wh; 2555 struct ieee80211_rateset *rs; 2556 struct ieee80211_channel *c; 2557 enum ieee80211_phymode mode; 2558 uint8_t *frm; 2559 int nrates, pktlen, error, i, nssid; 2560 bus_addr_t physaddr; 2561 2562 desc = &ring->desc[ring->cur]; 2563 data = &ring->data[ring->cur]; 2564 2565 data->m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 2566 if (data->m == NULL) { 2567 device_printf(sc->sc_dev, 2568 "could not allocate mbuf for scan command\n"); 2569 return ENOMEM; 2570 } 2571 2572 cmd = mtod(data->m, struct wpi_tx_cmd *); 2573 cmd->code = WPI_CMD_SCAN; 2574 cmd->flags = 0; 2575 cmd->qid = ring->qid; 2576 cmd->idx = ring->cur; 2577 2578 hdr = (struct wpi_scan_hdr *)cmd->data; 2579 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2580 2581 /* 2582 * Move to the next channel if no packets are received within 5 msecs 2583 * after sending the probe request (this helps to reduce the duration 2584 * of active scans). 2585 */ 2586 hdr->quiet = htole16(5); 2587 hdr->threshold = htole16(1); 2588 2589 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2590 /* send probe requests at 6Mbps */ 2591 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2592 2593 /* Enable crc checking */ 2594 hdr->promotion = htole16(1); 2595 } else { 2596 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2597 /* send probe requests at 1Mbps */ 2598 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2599 } 2600 hdr->tx.id = WPI_ID_BROADCAST; 2601 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2602 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2603 2604 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2605 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2606 for (i = 0; i < nssid; i++) { 2607 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2608 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2609 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2610 hdr->scan_essids[i].esslen); 2611 #ifdef WPI_DEBUG 2612 if (wpi_debug & WPI_DEBUG_SCANNING) { 2613 kprintf("Scanning Essid: "); 2614 ieee80211_print_essid(hdr->scan_essids[i].essid, 2615 hdr->scan_essids[i].esslen); 2616 kprintf("\n"); 2617 } 2618 #endif 2619 } 2620 2621 /* 2622 * Build a probe request frame. Most of the following code is a 2623 * copy & paste of what is done in net80211. 2624 */ 2625 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2626 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2627 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2628 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2629 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2630 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2631 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2632 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2633 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2634 2635 frm = (uint8_t *)(wh + 1); 2636 2637 /* add essid IE, the hardware will fill this in for us */ 2638 *frm++ = IEEE80211_ELEMID_SSID; 2639 *frm++ = 0; 2640 2641 mode = ieee80211_chan2mode(ic->ic_curchan); 2642 rs = &ic->ic_sup_rates[mode]; 2643 2644 /* add supported rates IE */ 2645 *frm++ = IEEE80211_ELEMID_RATES; 2646 nrates = rs->rs_nrates; 2647 if (nrates > IEEE80211_RATE_SIZE) 2648 nrates = IEEE80211_RATE_SIZE; 2649 *frm++ = nrates; 2650 memcpy(frm, rs->rs_rates, nrates); 2651 frm += nrates; 2652 2653 /* add supported xrates IE */ 2654 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2655 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2656 *frm++ = IEEE80211_ELEMID_XRATES; 2657 *frm++ = nrates; 2658 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2659 frm += nrates; 2660 } 2661 2662 /* setup length of probe request */ 2663 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2664 2665 /* 2666 * Construct information about the channel that we 2667 * want to scan. The firmware expects this to be directly 2668 * after the scan probe request 2669 */ 2670 c = ic->ic_curchan; 2671 chan = (struct wpi_scan_chan *)frm; 2672 chan->chan = ieee80211_chan2ieee(ic, c); 2673 chan->flags = 0; 2674 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2675 chan->flags |= WPI_CHAN_ACTIVE; 2676 if (nssid != 0) 2677 chan->flags |= WPI_CHAN_DIRECT; 2678 } 2679 chan->gain_dsp = 0x6e; /* Default level */ 2680 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2681 chan->active = htole16(10); 2682 chan->passive = htole16(ss->ss_maxdwell); 2683 chan->gain_radio = 0x3b; 2684 } else { 2685 chan->active = htole16(20); 2686 chan->passive = htole16(ss->ss_maxdwell); 2687 chan->gain_radio = 0x28; 2688 } 2689 2690 DPRINTFN(WPI_DEBUG_SCANNING, 2691 ("Scanning %u Passive: %d\n", 2692 chan->chan, 2693 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2694 2695 hdr->nchan++; 2696 chan++; 2697 2698 frm += sizeof (struct wpi_scan_chan); 2699 #if 0 2700 // XXX All Channels.... 2701 for (c = &ic->ic_channels[1]; 2702 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2703 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2704 continue; 2705 2706 chan->chan = ieee80211_chan2ieee(ic, c); 2707 chan->flags = 0; 2708 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2709 chan->flags |= WPI_CHAN_ACTIVE; 2710 if (ic->ic_des_ssid[0].len != 0) 2711 chan->flags |= WPI_CHAN_DIRECT; 2712 } 2713 chan->gain_dsp = 0x6e; /* Default level */ 2714 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2715 chan->active = htole16(10); 2716 chan->passive = htole16(110); 2717 chan->gain_radio = 0x3b; 2718 } else { 2719 chan->active = htole16(20); 2720 chan->passive = htole16(120); 2721 chan->gain_radio = 0x28; 2722 } 2723 2724 DPRINTFN(WPI_DEBUG_SCANNING, 2725 ("Scanning %u Passive: %d\n", 2726 chan->chan, 2727 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2728 2729 hdr->nchan++; 2730 chan++; 2731 2732 frm += sizeof (struct wpi_scan_chan); 2733 } 2734 #endif 2735 2736 hdr->len = htole16(frm - (uint8_t *)hdr); 2737 pktlen = frm - (uint8_t *)cmd; 2738 2739 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2740 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2741 if (error != 0) { 2742 device_printf(sc->sc_dev, "could not map scan command\n"); 2743 m_freem(data->m); 2744 data->m = NULL; 2745 return error; 2746 } 2747 2748 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2749 desc->segs[0].addr = htole32(physaddr); 2750 desc->segs[0].len = htole32(pktlen); 2751 2752 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2753 BUS_DMASYNC_PREWRITE); 2754 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2755 2756 /* kick cmd ring */ 2757 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2758 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2759 2760 sc->sc_scan_timer = 5; 2761 return 0; /* will be notified async. of failure/success */ 2762 } 2763 2764 /** 2765 * Configure the card to listen to a particular channel, this transisions the 2766 * card in to being able to receive frames from remote devices. 2767 */ 2768 static int 2769 wpi_config(struct wpi_softc *sc) 2770 { 2771 struct ifnet *ifp = sc->sc_ifp; 2772 struct ieee80211com *ic = ifp->if_l2com; 2773 struct wpi_power power; 2774 struct wpi_bluetooth bluetooth; 2775 struct wpi_node_info node; 2776 int error; 2777 2778 /* set power mode */ 2779 memset(&power, 0, sizeof power); 2780 power.flags = htole32(WPI_POWER_CAM|0x8); 2781 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2782 if (error != 0) { 2783 device_printf(sc->sc_dev, "could not set power mode\n"); 2784 return error; 2785 } 2786 2787 /* configure bluetooth coexistence */ 2788 memset(&bluetooth, 0, sizeof bluetooth); 2789 bluetooth.flags = 3; 2790 bluetooth.lead = 0xaa; 2791 bluetooth.kill = 1; 2792 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2793 0); 2794 if (error != 0) { 2795 device_printf(sc->sc_dev, 2796 "could not configure bluetooth coexistence\n"); 2797 return error; 2798 } 2799 2800 /* configure adapter */ 2801 memset(&sc->config, 0, sizeof (struct wpi_config)); 2802 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2803 /*set default channel*/ 2804 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2805 sc->config.flags = htole32(WPI_CONFIG_TSF); 2806 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2807 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2808 WPI_CONFIG_24GHZ); 2809 } 2810 sc->config.filter = 0; 2811 switch (ic->ic_opmode) { 2812 case IEEE80211_M_STA: 2813 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2814 sc->config.mode = WPI_MODE_STA; 2815 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2816 break; 2817 case IEEE80211_M_IBSS: 2818 case IEEE80211_M_AHDEMO: 2819 sc->config.mode = WPI_MODE_IBSS; 2820 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2821 WPI_FILTER_MULTICAST); 2822 break; 2823 case IEEE80211_M_HOSTAP: 2824 sc->config.mode = WPI_MODE_HOSTAP; 2825 break; 2826 case IEEE80211_M_MONITOR: 2827 sc->config.mode = WPI_MODE_MONITOR; 2828 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2829 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2830 break; 2831 default: 2832 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2833 return EINVAL; 2834 } 2835 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2836 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2837 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2838 sizeof (struct wpi_config), 0); 2839 if (error != 0) { 2840 device_printf(sc->sc_dev, "configure command failed\n"); 2841 return error; 2842 } 2843 2844 /* configuration has changed, set Tx power accordingly */ 2845 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2846 device_printf(sc->sc_dev, "could not set Tx power\n"); 2847 return error; 2848 } 2849 2850 /* add broadcast node */ 2851 memset(&node, 0, sizeof node); 2852 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2853 node.id = WPI_ID_BROADCAST; 2854 node.rate = wpi_plcp_signal(2); 2855 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2856 if (error != 0) { 2857 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2858 return error; 2859 } 2860 2861 /* Setup rate scalling */ 2862 error = wpi_mrr_setup(sc); 2863 if (error != 0) { 2864 device_printf(sc->sc_dev, "could not setup MRR\n"); 2865 return error; 2866 } 2867 2868 return 0; 2869 } 2870 2871 static void 2872 wpi_stop_master(struct wpi_softc *sc) 2873 { 2874 uint32_t tmp; 2875 int ntries; 2876 2877 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2878 2879 tmp = WPI_READ(sc, WPI_RESET); 2880 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2881 2882 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2883 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2884 return; /* already asleep */ 2885 2886 for (ntries = 0; ntries < 100; ntries++) { 2887 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2888 break; 2889 DELAY(10); 2890 } 2891 if (ntries == 100) { 2892 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2893 } 2894 } 2895 2896 static int 2897 wpi_power_up(struct wpi_softc *sc) 2898 { 2899 uint32_t tmp; 2900 int ntries; 2901 2902 wpi_mem_lock(sc); 2903 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2904 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2905 wpi_mem_unlock(sc); 2906 2907 for (ntries = 0; ntries < 5000; ntries++) { 2908 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2909 break; 2910 DELAY(10); 2911 } 2912 if (ntries == 5000) { 2913 device_printf(sc->sc_dev, 2914 "timeout waiting for NIC to power up\n"); 2915 return ETIMEDOUT; 2916 } 2917 return 0; 2918 } 2919 2920 static int 2921 wpi_reset(struct wpi_softc *sc) 2922 { 2923 uint32_t tmp; 2924 int ntries; 2925 2926 DPRINTFN(WPI_DEBUG_HW, 2927 ("Resetting the card - clearing any uploaded firmware\n")); 2928 2929 /* clear any pending interrupts */ 2930 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2931 2932 tmp = WPI_READ(sc, WPI_PLL_CTL); 2933 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2934 2935 tmp = WPI_READ(sc, WPI_CHICKEN); 2936 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2937 2938 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2939 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2940 2941 /* wait for clock stabilization */ 2942 for (ntries = 0; ntries < 25000; ntries++) { 2943 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2944 break; 2945 DELAY(10); 2946 } 2947 if (ntries == 25000) { 2948 device_printf(sc->sc_dev, 2949 "timeout waiting for clock stabilization\n"); 2950 return ETIMEDOUT; 2951 } 2952 2953 /* initialize EEPROM */ 2954 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2955 2956 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2957 device_printf(sc->sc_dev, "EEPROM not found\n"); 2958 return EIO; 2959 } 2960 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2961 2962 return 0; 2963 } 2964 2965 static void 2966 wpi_hw_config(struct wpi_softc *sc) 2967 { 2968 uint32_t rev, hw; 2969 2970 /* voodoo from the Linux "driver".. */ 2971 hw = WPI_READ(sc, WPI_HWCONFIG); 2972 2973 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2974 if ((rev & 0xc0) == 0x40) 2975 hw |= WPI_HW_ALM_MB; 2976 else if (!(rev & 0x80)) 2977 hw |= WPI_HW_ALM_MM; 2978 2979 if (sc->cap == 0x80) 2980 hw |= WPI_HW_SKU_MRC; 2981 2982 hw &= ~WPI_HW_REV_D; 2983 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2984 hw |= WPI_HW_REV_D; 2985 2986 if (sc->type > 1) 2987 hw |= WPI_HW_TYPE_B; 2988 2989 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2990 } 2991 2992 static void 2993 wpi_rfkill_resume(struct wpi_softc *sc) 2994 { 2995 struct ifnet *ifp = sc->sc_ifp; 2996 struct ieee80211com *ic = ifp->if_l2com; 2997 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2998 int ntries; 2999 3000 /* enable firmware again */ 3001 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3002 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3003 3004 /* wait for thermal sensors to calibrate */ 3005 for (ntries = 0; ntries < 1000; ntries++) { 3006 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3007 break; 3008 DELAY(10); 3009 } 3010 3011 if (ntries == 1000) { 3012 device_printf(sc->sc_dev, 3013 "timeout waiting for thermal calibration\n"); 3014 return; 3015 } 3016 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3017 3018 if (wpi_config(sc) != 0) { 3019 device_printf(sc->sc_dev, "device config failed\n"); 3020 return; 3021 } 3022 3023 ifq_clr_oactive(&ifp->if_snd); 3024 ifp->if_flags |= IFF_RUNNING; 3025 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3026 3027 if (vap != NULL) { 3028 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3029 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3030 ieee80211_beacon_miss(ic); 3031 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3032 } else 3033 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3034 } else { 3035 ieee80211_scan_next(vap); 3036 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3037 } 3038 } 3039 3040 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc); 3041 } 3042 3043 static void 3044 wpi_init_locked(struct wpi_softc *sc, int force) 3045 { 3046 struct ifnet *ifp = sc->sc_ifp; 3047 uint32_t tmp; 3048 int ntries, qid; 3049 3050 wpi_stop_locked(sc); 3051 (void)wpi_reset(sc); 3052 3053 wpi_mem_lock(sc); 3054 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3055 DELAY(20); 3056 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3057 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3058 wpi_mem_unlock(sc); 3059 3060 (void)wpi_power_up(sc); 3061 wpi_hw_config(sc); 3062 3063 /* init Rx ring */ 3064 wpi_mem_lock(sc); 3065 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3066 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3067 offsetof(struct wpi_shared, next)); 3068 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3069 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3070 wpi_mem_unlock(sc); 3071 3072 /* init Tx rings */ 3073 wpi_mem_lock(sc); 3074 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3075 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3076 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3077 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3078 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3079 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3080 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3081 3082 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3083 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3084 3085 for (qid = 0; qid < 6; qid++) { 3086 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3087 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3088 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3089 } 3090 wpi_mem_unlock(sc); 3091 3092 /* clear "radio off" and "disable command" bits (reversed logic) */ 3093 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3094 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3095 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3096 3097 /* clear any pending interrupts */ 3098 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3099 3100 /* enable interrupts */ 3101 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3102 3103 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3104 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3105 3106 if ((wpi_load_firmware(sc)) != 0) { 3107 device_printf(sc->sc_dev, 3108 "A problem occurred loading the firmware to the driver\n"); 3109 return; 3110 } 3111 3112 /* At this point the firmware is up and running. If the hardware 3113 * RF switch is turned off thermal calibration will fail, though 3114 * the card is still happy to continue to accept commands, catch 3115 * this case and schedule a task to watch for it to be turned on. 3116 */ 3117 wpi_mem_lock(sc); 3118 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3119 wpi_mem_unlock(sc); 3120 3121 if (!(tmp & 0x1)) { 3122 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3123 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3124 goto out; 3125 } 3126 3127 /* wait for thermal sensors to calibrate */ 3128 for (ntries = 0; ntries < 1000; ntries++) { 3129 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3130 break; 3131 DELAY(10); 3132 } 3133 3134 if (ntries == 1000) { 3135 device_printf(sc->sc_dev, 3136 "timeout waiting for thermal sensors calibration\n"); 3137 return; 3138 } 3139 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3140 3141 if (wpi_config(sc) != 0) { 3142 device_printf(sc->sc_dev, "device config failed\n"); 3143 return; 3144 } 3145 3146 ifq_clr_oactive(&ifp->if_snd); 3147 ifp->if_flags |= IFF_RUNNING; 3148 out: 3149 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc); 3150 } 3151 3152 static void 3153 wpi_init(void *arg) 3154 { 3155 struct wpi_softc *sc = arg; 3156 struct ifnet *ifp = sc->sc_ifp; 3157 struct ieee80211com *ic = ifp->if_l2com; 3158 3159 wpi_init_locked(sc, 0); 3160 3161 if (ifp->if_flags & IFF_RUNNING) 3162 ieee80211_start_all(ic); /* start all vaps */ 3163 } 3164 3165 static void 3166 wpi_stop_locked(struct wpi_softc *sc) 3167 { 3168 struct ifnet *ifp = sc->sc_ifp; 3169 uint32_t tmp; 3170 int ac; 3171 3172 sc->sc_tx_timer = 0; 3173 sc->sc_scan_timer = 0; 3174 ifp->if_flags &= ~IFF_RUNNING; 3175 ifq_clr_oactive(&ifp->if_snd); 3176 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3177 callout_stop(&sc->watchdog_to_callout); 3178 callout_stop(&sc->calib_to_callout); 3179 3180 3181 /* disable interrupts */ 3182 WPI_WRITE(sc, WPI_MASK, 0); 3183 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3184 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3185 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3186 3187 wpi_mem_lock(sc); 3188 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3189 wpi_mem_unlock(sc); 3190 3191 /* reset all Tx rings */ 3192 for (ac = 0; ac < 4; ac++) 3193 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3194 wpi_reset_tx_ring(sc, &sc->cmdq); 3195 3196 /* reset Rx ring */ 3197 wpi_reset_rx_ring(sc, &sc->rxq); 3198 3199 wpi_mem_lock(sc); 3200 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3201 wpi_mem_unlock(sc); 3202 3203 DELAY(5); 3204 3205 wpi_stop_master(sc); 3206 3207 tmp = WPI_READ(sc, WPI_RESET); 3208 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3209 sc->flags &= ~WPI_FLAG_BUSY; 3210 } 3211 3212 static void 3213 wpi_stop(struct wpi_softc *sc) 3214 { 3215 wpi_stop_locked(sc); 3216 } 3217 3218 static void 3219 wpi_newassoc(struct ieee80211_node *ni, int isnew) 3220 { 3221 /* XXX move */ 3222 ieee80211_ratectl_node_init(ni); 3223 } 3224 3225 static void 3226 wpi_calib_timeout_callout(void *arg) 3227 { 3228 struct wpi_softc *sc = arg; 3229 struct ifnet *ifp = sc->sc_ifp; 3230 struct ieee80211com *ic = ifp->if_l2com; 3231 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3232 int temp; 3233 3234 if (vap->iv_state != IEEE80211_S_RUN) 3235 return; 3236 3237 /* update sensor data */ 3238 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3239 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3240 3241 wpi_power_calibration(sc, temp); 3242 3243 callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc); 3244 } 3245 3246 /* 3247 * This function is called periodically (every 60 seconds) to adjust output 3248 * power to temperature changes. 3249 */ 3250 static void 3251 wpi_power_calibration(struct wpi_softc *sc, int temp) 3252 { 3253 struct ifnet *ifp = sc->sc_ifp; 3254 struct ieee80211com *ic = ifp->if_l2com; 3255 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3256 3257 /* sanity-check read value */ 3258 if (temp < -260 || temp > 25) { 3259 /* this can't be correct, ignore */ 3260 DPRINTFN(WPI_DEBUG_TEMP, 3261 ("out-of-range temperature reported: %d\n", temp)); 3262 return; 3263 } 3264 3265 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3266 3267 /* adjust Tx power if need be */ 3268 if (abs(temp - sc->temp) <= 6) 3269 return; 3270 3271 sc->temp = temp; 3272 3273 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3274 /* just warn, too bad for the automatic calibration... */ 3275 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3276 } 3277 } 3278 3279 /** 3280 * Read the eeprom to find out what channels are valid for the given 3281 * band and update net80211 with what we find. 3282 */ 3283 static void 3284 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3285 { 3286 struct ifnet *ifp = sc->sc_ifp; 3287 struct ieee80211com *ic = ifp->if_l2com; 3288 const struct wpi_chan_band *band = &wpi_bands[n]; 3289 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3290 struct ieee80211_channel *c; 3291 int chan, i, passive; 3292 3293 wpi_read_prom_data(sc, band->addr, channels, 3294 band->nchan * sizeof (struct wpi_eeprom_chan)); 3295 3296 for (i = 0; i < band->nchan; i++) { 3297 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3298 DPRINTFN(WPI_DEBUG_HW, 3299 ("Channel Not Valid: %d, band %d\n", 3300 band->chan[i],n)); 3301 continue; 3302 } 3303 3304 passive = 0; 3305 chan = band->chan[i]; 3306 c = &ic->ic_channels[ic->ic_nchans++]; 3307 3308 /* is active scan allowed on this channel? */ 3309 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3310 passive = IEEE80211_CHAN_PASSIVE; 3311 } 3312 3313 if (n == 0) { /* 2GHz band */ 3314 c->ic_ieee = chan; 3315 c->ic_freq = ieee80211_ieee2mhz(chan, 3316 IEEE80211_CHAN_2GHZ); 3317 c->ic_flags = IEEE80211_CHAN_B | passive; 3318 3319 c = &ic->ic_channels[ic->ic_nchans++]; 3320 c->ic_ieee = chan; 3321 c->ic_freq = ieee80211_ieee2mhz(chan, 3322 IEEE80211_CHAN_2GHZ); 3323 c->ic_flags = IEEE80211_CHAN_G | passive; 3324 3325 } else { /* 5GHz band */ 3326 /* 3327 * Some 3945ABG adapters support channels 7, 8, 11 3328 * and 12 in the 2GHz *and* 5GHz bands. 3329 * Because of limitations in our net80211(9) stack, 3330 * we can't support these channels in 5GHz band. 3331 * XXX not true; just need to map to proper frequency 3332 */ 3333 if (chan <= 14) 3334 continue; 3335 3336 c->ic_ieee = chan; 3337 c->ic_freq = ieee80211_ieee2mhz(chan, 3338 IEEE80211_CHAN_5GHZ); 3339 c->ic_flags = IEEE80211_CHAN_A | passive; 3340 } 3341 3342 /* save maximum allowed power for this channel */ 3343 sc->maxpwr[chan] = channels[i].maxpwr; 3344 3345 #if 0 3346 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3347 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3348 //ic->ic_channels[chan].ic_minpower... 3349 //ic->ic_channels[chan].ic_maxregtxpower... 3350 #endif 3351 3352 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3353 " passive=%d, offset %d\n", chan, c->ic_freq, 3354 channels[i].flags, sc->maxpwr[chan], 3355 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3356 ic->ic_nchans)); 3357 } 3358 } 3359 3360 static void 3361 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3362 { 3363 struct wpi_power_group *group = &sc->groups[n]; 3364 struct wpi_eeprom_group rgroup; 3365 int i; 3366 3367 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3368 sizeof rgroup); 3369 3370 /* save power group information */ 3371 group->chan = rgroup.chan; 3372 group->maxpwr = rgroup.maxpwr; 3373 /* temperature at which the samples were taken */ 3374 group->temp = (int16_t)le16toh(rgroup.temp); 3375 3376 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3377 group->chan, group->maxpwr, group->temp)); 3378 3379 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3380 group->samples[i].index = rgroup.samples[i].index; 3381 group->samples[i].power = rgroup.samples[i].power; 3382 3383 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3384 group->samples[i].index, group->samples[i].power)); 3385 } 3386 } 3387 3388 /* 3389 * Update Tx power to match what is defined for channel `c'. 3390 */ 3391 static int 3392 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3393 { 3394 struct ifnet *ifp = sc->sc_ifp; 3395 struct ieee80211com *ic = ifp->if_l2com; 3396 struct wpi_power_group *group; 3397 struct wpi_cmd_txpower txpower; 3398 u_int chan; 3399 int i; 3400 3401 /* get channel number */ 3402 chan = ieee80211_chan2ieee(ic, c); 3403 3404 /* find the power group to which this channel belongs */ 3405 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3406 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3407 if (chan <= group->chan) 3408 break; 3409 } else 3410 group = &sc->groups[0]; 3411 3412 memset(&txpower, 0, sizeof txpower); 3413 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3414 txpower.channel = htole16(chan); 3415 3416 /* set Tx power for all OFDM and CCK rates */ 3417 for (i = 0; i <= 11 ; i++) { 3418 /* retrieve Tx power for this channel/rate combination */ 3419 int idx = wpi_get_power_index(sc, group, c, 3420 wpi_ridx_to_rate[i]); 3421 3422 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3423 3424 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3425 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3426 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3427 } else { 3428 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3429 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3430 } 3431 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3432 chan, wpi_ridx_to_rate[i], idx)); 3433 } 3434 3435 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3436 } 3437 3438 /* 3439 * Determine Tx power index for a given channel/rate combination. 3440 * This takes into account the regulatory information from EEPROM and the 3441 * current temperature. 3442 */ 3443 static int 3444 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3445 struct ieee80211_channel *c, int rate) 3446 { 3447 /* fixed-point arithmetic division using a n-bit fractional part */ 3448 #define fdivround(a, b, n) \ 3449 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3450 3451 /* linear interpolation */ 3452 #define interpolate(x, x1, y1, x2, y2, n) \ 3453 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3454 3455 struct ifnet *ifp = sc->sc_ifp; 3456 struct ieee80211com *ic = ifp->if_l2com; 3457 struct wpi_power_sample *sample; 3458 int pwr, idx; 3459 u_int chan; 3460 3461 /* get channel number */ 3462 chan = ieee80211_chan2ieee(ic, c); 3463 3464 /* default power is group's maximum power - 3dB */ 3465 pwr = group->maxpwr / 2; 3466 3467 /* decrease power for highest OFDM rates to reduce distortion */ 3468 switch (rate) { 3469 case 72: /* 36Mb/s */ 3470 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3471 break; 3472 case 96: /* 48Mb/s */ 3473 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3474 break; 3475 case 108: /* 54Mb/s */ 3476 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3477 break; 3478 } 3479 3480 /* never exceed channel's maximum allowed Tx power */ 3481 pwr = min(pwr, sc->maxpwr[chan]); 3482 3483 /* retrieve power index into gain tables from samples */ 3484 for (sample = group->samples; sample < &group->samples[3]; sample++) 3485 if (pwr > sample[1].power) 3486 break; 3487 /* fixed-point linear interpolation using a 19-bit fractional part */ 3488 idx = interpolate(pwr, sample[0].power, sample[0].index, 3489 sample[1].power, sample[1].index, 19); 3490 3491 /* 3492 * Adjust power index based on current temperature 3493 * - if colder than factory-calibrated: decreate output power 3494 * - if warmer than factory-calibrated: increase output power 3495 */ 3496 idx -= (sc->temp - group->temp) * 11 / 100; 3497 3498 /* decrease power for CCK rates (-5dB) */ 3499 if (!WPI_RATE_IS_OFDM(rate)) 3500 idx += 10; 3501 3502 /* keep power index in a valid range */ 3503 if (idx < 0) 3504 return 0; 3505 if (idx > WPI_MAX_PWR_INDEX) 3506 return WPI_MAX_PWR_INDEX; 3507 return idx; 3508 3509 #undef interpolate 3510 #undef fdivround 3511 } 3512 3513 /** 3514 * Called by net80211 framework to indicate that a scan 3515 * is starting. This function doesn't actually do the scan, 3516 * wpi_scan_curchan starts things off. This function is more 3517 * of an early warning from the framework we should get ready 3518 * for the scan. 3519 */ 3520 static void 3521 wpi_scan_start(struct ieee80211com *ic) 3522 { 3523 struct ifnet *ifp = ic->ic_ifp; 3524 struct wpi_softc *sc = ifp->if_softc; 3525 3526 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3527 } 3528 3529 /** 3530 * Called by the net80211 framework, indicates that the 3531 * scan has ended. If there is a scan in progress on the card 3532 * then it should be aborted. 3533 */ 3534 static void 3535 wpi_scan_end(struct ieee80211com *ic) 3536 { 3537 /* XXX ignore */ 3538 } 3539 3540 /** 3541 * Called by the net80211 framework to indicate to the driver 3542 * that the channel should be changed 3543 */ 3544 static void 3545 wpi_set_channel(struct ieee80211com *ic) 3546 { 3547 struct ifnet *ifp = ic->ic_ifp; 3548 struct wpi_softc *sc = ifp->if_softc; 3549 int error; 3550 3551 /* 3552 * Only need to set the channel in Monitor mode. AP scanning and auth 3553 * are already taken care of by their respective firmware commands. 3554 */ 3555 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3556 error = wpi_config(sc); 3557 if (error != 0) 3558 device_printf(sc->sc_dev, 3559 "error %d settting channel\n", error); 3560 } 3561 } 3562 3563 /** 3564 * Called by net80211 to indicate that we need to scan the current 3565 * channel. The channel is previously be set via the wpi_set_channel 3566 * callback. 3567 */ 3568 static void 3569 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3570 { 3571 struct ieee80211vap *vap = ss->ss_vap; 3572 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3573 struct wpi_softc *sc = ifp->if_softc; 3574 3575 if (wpi_scan(sc)) 3576 ieee80211_cancel_scan(vap); 3577 } 3578 3579 /** 3580 * Called by the net80211 framework to indicate 3581 * the minimum dwell time has been met, terminate the scan. 3582 * We don't actually terminate the scan as the firmware will notify 3583 * us when it's finished and we have no way to interrupt it. 3584 */ 3585 static void 3586 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3587 { 3588 /* NB: don't try to abort scan; wait for firmware to finish */ 3589 } 3590 3591 static void 3592 wpi_hwreset_task(void *arg, int pending) 3593 { 3594 struct wpi_softc *sc; 3595 3596 wlan_serialize_enter(); 3597 sc = arg; 3598 wpi_init_locked(sc, 0); 3599 wlan_serialize_exit(); 3600 } 3601 3602 static void 3603 wpi_rfreset_task(void *arg, int pending) 3604 { 3605 struct wpi_softc *sc; 3606 3607 wlan_serialize_enter(); 3608 sc = arg; 3609 wpi_rfkill_resume(sc); 3610 wlan_serialize_exit(); 3611 } 3612 3613 /* 3614 * Allocate DMA-safe memory for firmware transfer. 3615 */ 3616 static int 3617 wpi_alloc_fwmem(struct wpi_softc *sc) 3618 { 3619 /* allocate enough contiguous space to store text and data */ 3620 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3621 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3622 BUS_DMA_NOWAIT); 3623 } 3624 3625 static void 3626 wpi_free_fwmem(struct wpi_softc *sc) 3627 { 3628 wpi_dma_contig_free(&sc->fw_dma); 3629 } 3630 3631 /** 3632 * Called every second, wpi_watchdog_callout used by the watch dog timer 3633 * to check that the card is still alive 3634 */ 3635 static void 3636 wpi_watchdog_callout(void *arg) 3637 { 3638 struct wpi_softc *sc; 3639 struct ifnet *ifp; 3640 struct ieee80211com *ic; 3641 uint32_t tmp; 3642 3643 wlan_serialize_enter(); 3644 sc = arg; 3645 ifp = sc->sc_ifp; 3646 ic = ifp->if_l2com; 3647 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3648 3649 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3650 /* No need to lock firmware memory */ 3651 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3652 3653 if ((tmp & 0x1) == 0) { 3654 /* Radio kill switch is still off */ 3655 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc); 3656 wlan_serialize_exit(); 3657 return; 3658 } 3659 3660 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3661 ieee80211_runtask(ic, &sc->sc_radiotask); 3662 wlan_serialize_exit(); 3663 return; 3664 } 3665 3666 if (sc->sc_tx_timer > 0) { 3667 if (--sc->sc_tx_timer == 0) { 3668 device_printf(sc->sc_dev,"device timeout\n"); 3669 IFNET_STAT_INC(ifp, oerrors, 1); 3670 wlan_serialize_exit(); 3671 ieee80211_runtask(ic, &sc->sc_restarttask); 3672 wlan_serialize_enter(); 3673 } 3674 } 3675 if (sc->sc_scan_timer > 0) { 3676 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3677 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3678 device_printf(sc->sc_dev,"scan timeout\n"); 3679 ieee80211_cancel_scan(vap); 3680 wlan_serialize_exit(); 3681 ieee80211_runtask(ic, &sc->sc_restarttask); 3682 wlan_serialize_enter(); 3683 } 3684 } 3685 3686 if (ifp->if_flags & IFF_RUNNING) 3687 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc); 3688 3689 wlan_serialize_exit(); 3690 } 3691 3692 #ifdef WPI_DEBUG 3693 static const char *wpi_cmd_str(int cmd) 3694 { 3695 switch (cmd) { 3696 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3697 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3698 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3699 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3700 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3701 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3702 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3703 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3704 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3705 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3706 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3707 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3708 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3709 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3710 3711 default: 3712 KASSERT(1, ("Unknown Command: %d", cmd)); 3713 return "UNKNOWN CMD"; /* Make the compiler happy */ 3714 } 3715 } 3716 #endif 3717 3718 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3719 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3720 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3721 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1); 3722