xref: /dflybsd-src/sys/dev/netif/wpi/if_wpi.c (revision d11357e8967dc58aed397a5736f6689ecd1b88ca)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $
19  */
20 
21 #define VERSION "20071127"
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_intr) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60 
61 #include <sys/param.h>
62 #include <sys/sysctl.h>
63 #include <sys/sockio.h>
64 #include <sys/mbuf.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/systm.h>
68 #include <sys/malloc.h>
69 #include <sys/queue.h>
70 #include <sys/taskqueue.h>
71 #include <sys/module.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/linker.h>
75 #include <sys/firmware.h>
76 
77 #include <sys/bus.h>
78 #include <sys/resource.h>
79 #include <sys/rman.h>
80 
81 #include <bus/pci/pcireg.h>
82 #include <bus/pci/pcivar.h>
83 
84 #include <net/bpf.h>
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ifq_var.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <netproto/802_11/ieee80211_var.h>
94 #include <netproto/802_11/ieee80211_radiotap.h>
95 #include <netproto/802_11/ieee80211_regdomain.h>
96 #include <netproto/802_11/ieee80211_ratectl.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103 
104 /* XXX: move elsewhere */
105 #define abs(x) (((x) < 0) ? -(x) : (x))
106 
107 #include "if_wpireg.h"
108 #include "if_wpivar.h"
109 
110 #define WPI_DEBUG
111 
112 #ifdef WPI_DEBUG
113 #define DPRINTF(x)	do { if (wpi_debug != 0) kprintf x; } while (0)
114 #define DPRINTFN(n, x)	do { if (wpi_debug & n) kprintf x; } while (0)
115 #define	WPI_DEBUG_SET	(wpi_debug != 0)
116 
117 enum {
118 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
119 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
120 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
121 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
122 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
123 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
124 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
125 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
126 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
127 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
128 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
129 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
130 	WPI_DEBUG_ANY		= 0xffffffff
131 };
132 
133 static int wpi_debug = 1;
134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135 TUNABLE_INT("debug.wpi", &wpi_debug);
136 
137 #else
138 #define DPRINTF(x)
139 #define DPRINTFN(n, x)
140 #define WPI_DEBUG_SET	0
141 #endif
142 
143 struct wpi_ident {
144 	uint16_t	vendor;
145 	uint16_t	device;
146 	uint16_t	subdevice;
147 	const char	*name;
148 };
149 
150 static const struct wpi_ident wpi_ident_table[] = {
151 	/* The below entries support ABG regardless of the subid */
152 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154 	/* The below entries only support BG */
155 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159 	{ 0, 0, 0, NULL }
160 };
161 
162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163 		    const char name[IFNAMSIZ], int unit,
164 		    enum ieee80211_opmode opmode,
165 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
166 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
167 static void	wpi_vap_delete(struct ieee80211vap *);
168 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
169 		    void **, bus_size_t, bus_size_t, int);
170 static void	wpi_dma_contig_free(struct wpi_dma_info *);
171 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
172 static int	wpi_alloc_shared(struct wpi_softc *);
173 static void	wpi_free_shared(struct wpi_softc *);
174 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
177 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
178 		    int, int);
179 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
181 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
182 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
183 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
184 static void	wpi_mem_lock(struct wpi_softc *);
185 static void	wpi_mem_unlock(struct wpi_softc *);
186 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
187 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
188 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
189 		    const uint32_t *, int);
190 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
191 static int	wpi_alloc_fwmem(struct wpi_softc *);
192 static void	wpi_free_fwmem(struct wpi_softc *);
193 static int	wpi_load_firmware(struct wpi_softc *);
194 static void	wpi_unload_firmware(struct wpi_softc *);
195 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
196 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
197 		    struct wpi_rx_data *);
198 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
199 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
200 static void	wpi_notif_intr(struct wpi_softc *);
201 static void	wpi_intr(void *);
202 static uint8_t	wpi_plcp_signal(int);
203 static void	wpi_watchdog_callout(void *);
204 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
205 		    struct ieee80211_node *, int);
206 static void	wpi_start(struct ifnet *, struct ifaltq_subque *);
207 static void	wpi_start_locked(struct ifnet *);
208 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
209 		    const struct ieee80211_bpf_params *);
210 static void	wpi_scan_start(struct ieee80211com *);
211 static void	wpi_scan_end(struct ieee80211com *);
212 static void	wpi_set_channel(struct ieee80211com *);
213 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
214 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
215 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
216 static void	wpi_read_eeprom(struct wpi_softc *,
217 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
218 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
219 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
220 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
221 static int	wpi_wme_update(struct ieee80211com *);
222 static int	wpi_mrr_setup(struct wpi_softc *);
223 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
224 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
225 #if 0
226 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
227 #endif
228 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
229 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
230 static int	wpi_scan(struct wpi_softc *);
231 static int	wpi_config(struct wpi_softc *);
232 static void	wpi_stop_master(struct wpi_softc *);
233 static int	wpi_power_up(struct wpi_softc *);
234 static int	wpi_reset(struct wpi_softc *);
235 static void	wpi_hwreset_task(void *, int);
236 static void	wpi_rfreset_task(void *, int);
237 static void	wpi_hw_config(struct wpi_softc *);
238 static void	wpi_init(void *);
239 static void	wpi_init_locked(struct wpi_softc *, int);
240 static void	wpi_stop(struct wpi_softc *);
241 static void	wpi_stop_locked(struct wpi_softc *);
242 
243 static void	wpi_newassoc(struct ieee80211_node *, int);
244 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
245 		    int);
246 static void	wpi_calib_timeout_callout(void *);
247 static void	wpi_power_calibration(struct wpi_softc *, int);
248 static int	wpi_get_power_index(struct wpi_softc *,
249 		    struct wpi_power_group *, struct ieee80211_channel *, int);
250 #ifdef WPI_DEBUG
251 static const char *wpi_cmd_str(int);
252 #endif
253 static int wpi_probe(device_t);
254 static int wpi_attach(device_t);
255 static int wpi_detach(device_t);
256 static int wpi_shutdown(device_t);
257 static int wpi_suspend(device_t);
258 static int wpi_resume(device_t);
259 
260 
261 static device_method_t wpi_methods[] = {
262 	/* Device interface */
263 	DEVMETHOD(device_probe,		wpi_probe),
264 	DEVMETHOD(device_attach,	wpi_attach),
265 	DEVMETHOD(device_detach,	wpi_detach),
266 	DEVMETHOD(device_shutdown,	wpi_shutdown),
267 	DEVMETHOD(device_suspend,	wpi_suspend),
268 	DEVMETHOD(device_resume,	wpi_resume),
269 
270 	DEVMETHOD_END
271 };
272 
273 static driver_t wpi_driver = {
274 	"wpi",
275 	wpi_methods,
276 	sizeof (struct wpi_softc)
277 };
278 
279 static devclass_t wpi_devclass;
280 
281 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
282 
283 static const uint8_t wpi_ridx_to_plcp[] = {
284 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
285 	/* R1-R4 (ral/ural is R4-R1) */
286 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
287 	/* CCK: device-dependent */
288 	10, 20, 55, 110
289 };
290 static const uint8_t wpi_ridx_to_rate[] = {
291 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
292 	2, 4, 11, 22 /*CCK */
293 };
294 
295 
296 static int
297 wpi_probe(device_t dev)
298 {
299 	const struct wpi_ident *ident;
300 
301 	wlan_serialize_enter();
302 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
303 		if (pci_get_vendor(dev) == ident->vendor &&
304 		    pci_get_device(dev) == ident->device) {
305 			device_set_desc(dev, ident->name);
306 			wlan_serialize_exit();
307 			return 0;
308 		}
309 	}
310 	wlan_serialize_exit();
311 	return ENXIO;
312 }
313 
314 /**
315  * Load the firmare image from disk to the allocated dma buffer.
316  * we also maintain the reference to the firmware pointer as there
317  * is times where we may need to reload the firmware but we are not
318  * in a context that can access the filesystem (ie taskq cause by restart)
319  *
320  * @return 0 on success, an errno on failure
321  */
322 static int
323 wpi_load_firmware(struct wpi_softc *sc)
324 {
325 	const struct firmware *fp;
326 	struct wpi_dma_info *dma = &sc->fw_dma;
327 	const struct wpi_firmware_hdr *hdr;
328 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
329 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
330 	int error;
331 
332 	DPRINTFN(WPI_DEBUG_FIRMWARE,
333 	    ("Attempting Loading Firmware from wpi_fw module\n"));
334 
335 	wlan_assert_serialized();
336 	wlan_serialize_exit();
337 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
338 		device_printf(sc->sc_dev,
339 		    "could not load firmware image 'wpifw_fw'\n");
340 		error = ENOENT;
341 		wlan_serialize_enter();
342 		goto fail;
343 	}
344 	wlan_serialize_enter();
345 
346 	fp = sc->fw_fp;
347 
348 	/* Validate the firmware is minimum a particular version */
349 	if (fp->version < WPI_FW_MINVERSION) {
350 	    device_printf(sc->sc_dev,
351 			   "firmware version is too old. Need %d, got %d\n",
352 			   WPI_FW_MINVERSION,
353 			   fp->version);
354 	    error = ENXIO;
355 	    goto fail;
356 	}
357 
358 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
359 		device_printf(sc->sc_dev,
360 		    "firmware file too short: %zu bytes\n", fp->datasize);
361 		error = ENXIO;
362 		goto fail;
363 	}
364 
365 	hdr = (const struct wpi_firmware_hdr *)fp->data;
366 
367 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
368 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
369 
370 	rtextsz = le32toh(hdr->rtextsz);
371 	rdatasz = le32toh(hdr->rdatasz);
372 	itextsz = le32toh(hdr->itextsz);
373 	idatasz = le32toh(hdr->idatasz);
374 	btextsz = le32toh(hdr->btextsz);
375 
376 	/* check that all firmware segments are present */
377 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
378 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
379 		device_printf(sc->sc_dev,
380 		    "firmware file too short: %zu bytes\n", fp->datasize);
381 		error = ENXIO; /* XXX appropriate error code? */
382 		goto fail;
383 	}
384 
385 	/* get pointers to firmware segments */
386 	rtext = (const uint8_t *)(hdr + 1);
387 	rdata = rtext + rtextsz;
388 	itext = rdata + rdatasz;
389 	idata = itext + itextsz;
390 	btext = idata + idatasz;
391 
392 	DPRINTFN(WPI_DEBUG_FIRMWARE,
393 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
394 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
395 	     (le32toh(hdr->version) & 0xff000000) >> 24,
396 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
397 	     (le32toh(hdr->version) & 0x0000ffff),
398 	     rtextsz, rdatasz,
399 	     itextsz, idatasz, btextsz));
400 
401 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
402 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
403 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
404 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
405 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
406 
407 	/* sanity checks */
408 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
409 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
410 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
411 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
412 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
413 	    (btextsz & 3) != 0) {
414 		device_printf(sc->sc_dev, "firmware invalid\n");
415 		error = EINVAL;
416 		goto fail;
417 	}
418 
419 	/* copy initialization images into pre-allocated DMA-safe memory */
420 	memcpy(dma->vaddr, idata, idatasz);
421 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
422 
423 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
424 
425 	/* tell adapter where to find initialization images */
426 	wpi_mem_lock(sc);
427 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
428 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
429 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
430 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
431 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
432 	wpi_mem_unlock(sc);
433 
434 	/* load firmware boot code */
435 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
436 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
437 	    goto fail;
438 	}
439 
440 	/* now press "execute" */
441 	WPI_WRITE(sc, WPI_RESET, 0);
442 
443 	/* wait at most one second for the first alive notification */
444 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
445 		device_printf(sc->sc_dev,
446 		    "timeout waiting for adapter to initialize\n");
447 		goto fail;
448 	}
449 
450 	/* copy runtime images into pre-allocated DMA-sage memory */
451 	memcpy(dma->vaddr, rdata, rdatasz);
452 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
453 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
454 
455 	/* tell adapter where to find runtime images */
456 	wpi_mem_lock(sc);
457 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
458 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
459 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
460 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
461 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
462 	wpi_mem_unlock(sc);
463 
464 	/* wait at most one second for the first alive notification */
465 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) {
466 		device_printf(sc->sc_dev,
467 		    "timeout waiting for adapter to initialize2\n");
468 		goto fail;
469 	}
470 
471 	DPRINTFN(WPI_DEBUG_FIRMWARE,
472 	    ("Firmware loaded to driver successfully\n"));
473 	return error;
474 fail:
475 	wpi_unload_firmware(sc);
476 	return error;
477 }
478 
479 /**
480  * Free the referenced firmware image
481  */
482 static void
483 wpi_unload_firmware(struct wpi_softc *sc)
484 {
485 	if (sc->fw_fp) {
486 		wlan_assert_serialized();
487 		wlan_serialize_exit();
488 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
489 		wlan_serialize_enter();
490 		sc->fw_fp = NULL;
491 	}
492 }
493 
494 static int
495 wpi_attach(device_t dev)
496 {
497 	struct wpi_softc *sc;
498 	struct ifnet *ifp;
499 	struct ieee80211com *ic;
500 	int ac, error, supportsa = 1;
501 	uint32_t tmp;
502 	const struct wpi_ident *ident;
503 	uint8_t macaddr[IEEE80211_ADDR_LEN];
504 
505 	wlan_serialize_enter();
506 	sc = device_get_softc(dev);
507 	sc->sc_dev = dev;
508 
509 	if (bootverbose || WPI_DEBUG_SET)
510 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
511 
512 	/*
513 	 * Some card's only support 802.11b/g not a, check to see if
514 	 * this is one such card. A 0x0 in the subdevice table indicates
515 	 * the entire subdevice range is to be ignored.
516 	 */
517 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
518 		if (ident->subdevice &&
519 		    pci_get_subdevice(dev) == ident->subdevice) {
520 		    supportsa = 0;
521 		    break;
522 		}
523 	}
524 
525 	/* Create the tasks that can be queued */
526 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset_task, sc);
527 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset_task, sc);
528 
529 	callout_init(&sc->calib_to_callout);
530 	callout_init(&sc->watchdog_to_callout);
531 
532 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
533 		device_printf(dev, "chip is in D%d power mode "
534 		    "-- setting to D0\n", pci_get_powerstate(dev));
535 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
536 	}
537 
538 	/* disable the retry timeout register */
539 	pci_write_config(dev, 0x41, 0, 1);
540 
541 	/* enable bus-mastering */
542 	pci_enable_busmaster(dev);
543 
544 	sc->mem_rid = PCIR_BAR(0);
545 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
546 	    RF_ACTIVE);
547 	if (sc->mem == NULL) {
548 		device_printf(dev, "could not allocate memory resource\n");
549 		error = ENOMEM;
550 		goto fail;
551 	}
552 
553 	sc->sc_st = rman_get_bustag(sc->mem);
554 	sc->sc_sh = rman_get_bushandle(sc->mem);
555 
556 	sc->irq_rid = 0;
557 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
558 	    RF_ACTIVE | RF_SHAREABLE);
559 	if (sc->irq == NULL) {
560 		device_printf(dev, "could not allocate interrupt resource\n");
561 		error = ENOMEM;
562 		goto fail;
563 	}
564 
565 	/*
566 	 * Allocate DMA memory for firmware transfers.
567 	 */
568 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
569 		kprintf(": could not allocate firmware memory\n");
570 		error = ENOMEM;
571 		goto fail;
572 	}
573 
574 	/*
575 	 * Put adapter into a known state.
576 	 */
577 	if ((error = wpi_reset(sc)) != 0) {
578 		device_printf(dev, "could not reset adapter\n");
579 		goto fail;
580 	}
581 
582 	wpi_mem_lock(sc);
583 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
584 	if (bootverbose || WPI_DEBUG_SET)
585 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
586 
587 	wpi_mem_unlock(sc);
588 
589 	/* Allocate shared page */
590 	if ((error = wpi_alloc_shared(sc)) != 0) {
591 		device_printf(dev, "could not allocate shared page\n");
592 		goto fail;
593 	}
594 
595 	/* tx data queues  - 4 for QoS purposes */
596 	for (ac = 0; ac < WME_NUM_AC; ac++) {
597 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
598 		if (error != 0) {
599 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
600 		    goto fail;
601 		}
602 	}
603 
604 	/* command queue to talk to the card's firmware */
605 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
606 	if (error != 0) {
607 		device_printf(dev, "could not allocate command ring\n");
608 		goto fail;
609 	}
610 
611 	/* receive data queue */
612 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
613 	if (error != 0) {
614 		device_printf(dev, "could not allocate Rx ring\n");
615 		goto fail;
616 	}
617 
618 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
619 	if (ifp == NULL) {
620 		device_printf(dev, "can not if_alloc()\n");
621 		error = ENOMEM;
622 		goto fail;
623 	}
624 	ic = ifp->if_l2com;
625 
626 	ic->ic_ifp = ifp;
627 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
628 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
629 
630 	/* set device capabilities */
631 	ic->ic_caps =
632 		  IEEE80211_C_STA		/* station mode supported */
633 		| IEEE80211_C_MONITOR		/* monitor mode supported */
634 		| IEEE80211_C_TXPMGT		/* tx power management */
635 		| IEEE80211_C_SHSLOT		/* short slot time supported */
636 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
637 		| IEEE80211_C_WPA		/* 802.11i */
638 /* XXX looks like WME is partly supported? */
639 #if 0
640 		| IEEE80211_C_IBSS		/* IBSS mode support */
641 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
642 		| IEEE80211_C_WME		/* 802.11e */
643 		| IEEE80211_C_HOSTAP		/* Host access point mode */
644 #endif
645 		;
646 
647 	/*
648 	 * Read in the eeprom and also setup the channels for
649 	 * net80211. We don't set the rates as net80211 does this for us
650 	 */
651 	wpi_read_eeprom(sc, macaddr);
652 
653 	if (bootverbose || WPI_DEBUG_SET) {
654 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
655 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
656 			  sc->type > 1 ? 'B': '?');
657 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
658 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
659 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
660 			  supportsa ? "does" : "does not");
661 
662 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
663 	       what sc->rev really represents - benjsc 20070615 */
664 	}
665 
666 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
667 	ifp->if_softc = sc;
668 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
669 	ifp->if_init = wpi_init;
670 	ifp->if_ioctl = wpi_ioctl;
671 	ifp->if_start = wpi_start;
672 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
673 #ifdef notyet
674 	ifq_set_ready(&ifp->if_snd);
675 #endif
676 
677 	ieee80211_ifattach(ic, macaddr);
678 	/* override default methods */
679 	ic->ic_node_alloc = wpi_node_alloc;
680 	ic->ic_newassoc = wpi_newassoc;
681 	ic->ic_raw_xmit = wpi_raw_xmit;
682 	ic->ic_wme.wme_update = wpi_wme_update;
683 	ic->ic_scan_start = wpi_scan_start;
684 	ic->ic_scan_end = wpi_scan_end;
685 	ic->ic_set_channel = wpi_set_channel;
686 	ic->ic_scan_curchan = wpi_scan_curchan;
687 	ic->ic_scan_mindwell = wpi_scan_mindwell;
688 
689 	ic->ic_vap_create = wpi_vap_create;
690 	ic->ic_vap_delete = wpi_vap_delete;
691 
692 	ieee80211_radiotap_attach(ic,
693 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
694 		WPI_TX_RADIOTAP_PRESENT,
695 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
696 		WPI_RX_RADIOTAP_PRESENT);
697 
698 	/*
699 	 * Hook our interrupt after all initialization is complete.
700 	 */
701 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
702 	    wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
703 	if (error != 0) {
704 		device_printf(dev, "could not set up interrupt\n");
705 		goto fail;
706 	}
707 
708 	if (bootverbose)
709 		ieee80211_announce(ic);
710 #ifdef XXX_DEBUG
711 	ieee80211_announce_channels(ic);
712 #endif
713 	wlan_serialize_exit();
714 	return 0;
715 
716 fail:
717 	wlan_serialize_exit();
718 	wpi_detach(dev);
719 	return ENXIO;
720 }
721 
722 static int
723 wpi_detach(device_t dev)
724 {
725 	struct wpi_softc *sc;
726 	struct ifnet *ifp;
727 	struct ieee80211com *ic;
728 	int ac;
729 
730 	wlan_serialize_enter();
731 	sc = device_get_softc(dev);
732 	ifp = sc->sc_ifp;
733 	if (ifp != NULL) {
734 		ic = ifp->if_l2com;
735 
736 		ieee80211_draintask(ic, &sc->sc_restarttask);
737 		ieee80211_draintask(ic, &sc->sc_radiotask);
738 		wpi_stop(sc);
739 		callout_stop(&sc->watchdog_to_callout);
740 		callout_stop(&sc->calib_to_callout);
741 		ieee80211_ifdetach(ic);
742 	}
743 
744 	if (sc->txq[0].data_dmat) {
745 		for (ac = 0; ac < WME_NUM_AC; ac++)
746 			wpi_free_tx_ring(sc, &sc->txq[ac]);
747 
748 		wpi_free_tx_ring(sc, &sc->cmdq);
749 		wpi_free_rx_ring(sc, &sc->rxq);
750 		wpi_free_shared(sc);
751 	}
752 
753 	if (sc->fw_fp != NULL) {
754 		wpi_unload_firmware(sc);
755 	}
756 
757 	if (sc->fw_dma.tag)
758 		wpi_free_fwmem(sc);
759 
760 	if (sc->irq != NULL) {
761 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
762 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
763 	}
764 
765 	if (sc->mem != NULL)
766 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
767 
768 	if (ifp != NULL)
769 		if_free(ifp);
770 
771 	wlan_serialize_exit();
772 	return 0;
773 }
774 
775 static struct ieee80211vap *
776 wpi_vap_create(struct ieee80211com *ic,
777 	const char name[IFNAMSIZ], int unit,
778 	enum ieee80211_opmode opmode, int flags,
779 	const uint8_t bssid[IEEE80211_ADDR_LEN],
780 	const uint8_t mac[IEEE80211_ADDR_LEN])
781 {
782 	struct wpi_vap *wvp;
783 	struct ieee80211vap *vap;
784 
785 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
786 		return NULL;
787 	wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
788 	    M_80211_VAP, M_INTWAIT | M_ZERO);
789 	if (wvp == NULL)
790 		return NULL;
791 	vap = &wvp->vap;
792 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
793 	/* override with driver methods */
794 	wvp->newstate = vap->iv_newstate;
795 	vap->iv_newstate = wpi_newstate;
796 
797 	ieee80211_ratectl_init(vap);
798 
799 	/* complete setup */
800 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
801 	ic->ic_opmode = opmode;
802 	return vap;
803 }
804 
805 static void
806 wpi_vap_delete(struct ieee80211vap *vap)
807 {
808 	struct wpi_vap *wvp = WPI_VAP(vap);
809 
810 	ieee80211_ratectl_deinit(vap);
811 	ieee80211_vap_detach(vap);
812 	kfree(wvp, M_80211_VAP);
813 }
814 
815 static void
816 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
817 {
818 	if (error != 0)
819 		return;
820 
821 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
822 
823 	*(bus_addr_t *)arg = segs[0].ds_addr;
824 }
825 
826 /*
827  * Allocates a contiguous block of dma memory of the requested size and
828  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
829  * allocations greater than 4096 may fail. Hence if the requested alignment is
830  * greater we allocate 'alignment' size extra memory and shift the vaddr and
831  * paddr after the dma load. This bypasses the problem at the cost of a little
832  * more memory.
833  */
834 static int
835 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
836     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
837 {
838 	int error;
839 	bus_size_t align;
840 	bus_size_t reqsize;
841 
842 	DPRINTFN(WPI_DEBUG_DMA,
843 	    ("Size: %zd - alignment %zd\n", size, alignment));
844 
845 	dma->size = size;
846 	dma->tag = NULL;
847 
848 	if (alignment > 4096) {
849 		align = PAGE_SIZE;
850 		reqsize = size + alignment;
851 	} else {
852 		align = alignment;
853 		reqsize = size;
854 	}
855 	error = bus_dma_tag_create(dma->tag, align,
856 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
857 	    NULL, NULL, reqsize,
858 	    1, reqsize, flags,
859 	    &dma->tag);
860 	if (error != 0) {
861 		device_printf(sc->sc_dev,
862 		    "could not create shared page DMA tag\n");
863 		goto fail;
864 	}
865 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
866 	    flags | BUS_DMA_ZERO, &dma->map);
867 	if (error != 0) {
868 		device_printf(sc->sc_dev,
869 		    "could not allocate shared page DMA memory\n");
870 		goto fail;
871 	}
872 
873 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
874 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
875 
876 	/* Save the original pointers so we can free all the memory */
877 	dma->paddr = dma->paddr_start;
878 	dma->vaddr = dma->vaddr_start;
879 
880 	/*
881 	 * Check the alignment and increment by 4096 until we get the
882 	 * requested alignment. Fail if can't obtain the alignment
883 	 * we requested.
884 	 */
885 	if ((dma->paddr & (alignment -1 )) != 0) {
886 		int i;
887 
888 		for (i = 0; i < alignment / 4096; i++) {
889 			if ((dma->paddr & (alignment - 1 )) == 0)
890 				break;
891 			dma->paddr += 4096;
892 			dma->vaddr += 4096;
893 		}
894 		if (i == alignment / 4096) {
895 			device_printf(sc->sc_dev,
896 			    "alignment requirement was not satisfied\n");
897 			goto fail;
898 		}
899 	}
900 
901 	if (error != 0) {
902 		device_printf(sc->sc_dev,
903 		    "could not load shared page DMA map\n");
904 		goto fail;
905 	}
906 
907 	if (kvap != NULL)
908 		*kvap = dma->vaddr;
909 
910 	return 0;
911 
912 fail:
913 	wpi_dma_contig_free(dma);
914 	return error;
915 }
916 
917 static void
918 wpi_dma_contig_free(struct wpi_dma_info *dma)
919 {
920 	if (dma->tag) {
921 		if (dma->map != NULL) {
922 			if (dma->paddr_start != 0) {
923 				bus_dmamap_sync(dma->tag, dma->map,
924 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
925 				bus_dmamap_unload(dma->tag, dma->map);
926 			}
927 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
928 		}
929 		bus_dma_tag_destroy(dma->tag);
930 	}
931 }
932 
933 /*
934  * Allocate a shared page between host and NIC.
935  */
936 static int
937 wpi_alloc_shared(struct wpi_softc *sc)
938 {
939 	int error;
940 
941 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
942 	    (void **)&sc->shared, sizeof (struct wpi_shared),
943 	    PAGE_SIZE,
944 	    BUS_DMA_NOWAIT);
945 
946 	if (error != 0) {
947 		device_printf(sc->sc_dev,
948 		    "could not allocate shared area DMA memory\n");
949 	}
950 
951 	return error;
952 }
953 
954 static void
955 wpi_free_shared(struct wpi_softc *sc)
956 {
957 	wpi_dma_contig_free(&sc->shared_dma);
958 }
959 
960 static int
961 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
962 {
963 
964 	int i, error;
965 
966 	ring->cur = 0;
967 
968 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
969 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
970 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
971 
972 	if (error != 0) {
973 		device_printf(sc->sc_dev,
974 		    "%s: could not allocate rx ring DMA memory, error %d\n",
975 		    __func__, error);
976 		goto fail;
977 	}
978 
979         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
980 	    BUS_SPACE_MAXADDR_32BIT,
981             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
982             MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
983         if (error != 0) {
984                 device_printf(sc->sc_dev,
985 		    "%s: bus_dma_tag_create_failed, error %d\n",
986 		    __func__, error);
987                 goto fail;
988         }
989 
990 	/*
991 	 * Setup Rx buffers.
992 	 */
993 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
994 		struct wpi_rx_data *data = &ring->data[i];
995 		struct mbuf *m;
996 		bus_addr_t paddr;
997 
998 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
999 		if (error != 0) {
1000 			device_printf(sc->sc_dev,
1001 			    "%s: bus_dmamap_create failed, error %d\n",
1002 			    __func__, error);
1003 			goto fail;
1004 		}
1005 		m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1006 		if (m == NULL) {
1007 			device_printf(sc->sc_dev,
1008 			   "%s: could not allocate rx mbuf\n", __func__);
1009 			error = ENOMEM;
1010 			goto fail;
1011 		}
1012 		/* map page */
1013 		error = bus_dmamap_load(ring->data_dmat, data->map,
1014 		    mtod(m, caddr_t), MJUMPAGESIZE,
1015 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1016 		if (error != 0 && error != EFBIG) {
1017 			device_printf(sc->sc_dev,
1018 			    "%s: bus_dmamap_load failed, error %d\n",
1019 			    __func__, error);
1020 			m_freem(m);
1021 			error = ENOMEM;	/* XXX unique code */
1022 			goto fail;
1023 		}
1024 		bus_dmamap_sync(ring->data_dmat, data->map,
1025 		    BUS_DMASYNC_PREWRITE);
1026 
1027 		data->m = m;
1028 		ring->desc[i] = htole32(paddr);
1029 	}
1030 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1031 	    BUS_DMASYNC_PREWRITE);
1032 	return 0;
1033 fail:
1034 	wpi_free_rx_ring(sc, ring);
1035 	return error;
1036 }
1037 
1038 static void
1039 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1040 {
1041 	int ntries;
1042 
1043 	wpi_mem_lock(sc);
1044 
1045 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1046 
1047 	for (ntries = 0; ntries < 100; ntries++) {
1048 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1049 			break;
1050 		DELAY(10);
1051 	}
1052 
1053 	wpi_mem_unlock(sc);
1054 
1055 #ifdef WPI_DEBUG
1056 	if (ntries == 100 && wpi_debug > 0)
1057 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1058 #endif
1059 
1060 	ring->cur = 0;
1061 }
1062 
1063 static void
1064 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1065 {
1066 	int i;
1067 
1068 	wpi_dma_contig_free(&ring->desc_dma);
1069 
1070 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1071 		if (ring->data[i].m != NULL)
1072 			m_freem(ring->data[i].m);
1073 }
1074 
1075 static int
1076 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1077 	int qid)
1078 {
1079 	struct wpi_tx_data *data;
1080 	int i, error;
1081 
1082 	ring->qid = qid;
1083 	ring->count = count;
1084 	ring->queued = 0;
1085 	ring->cur = 0;
1086 	ring->data = NULL;
1087 
1088 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1089 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1090 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1091 
1092 	if (error != 0) {
1093 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1094 	    goto fail;
1095 	}
1096 
1097 	/* update shared page with ring's base address */
1098 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1099 
1100 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1101 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1102 		BUS_DMA_NOWAIT);
1103 
1104 	if (error != 0) {
1105 		device_printf(sc->sc_dev,
1106 		    "could not allocate tx command DMA memory\n");
1107 		goto fail;
1108 	}
1109 
1110 	ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1111 	    M_INTWAIT | M_ZERO);
1112 	if (ring->data == NULL) {
1113 		device_printf(sc->sc_dev,
1114 		    "could not allocate tx data slots\n");
1115 		goto fail;
1116 	}
1117 
1118 	error = bus_dma_tag_create(ring->data_dmat, 1, 0,
1119 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE,
1120 	    WPI_MAX_SCATTER - 1, MJUMPAGESIZE, BUS_DMA_NOWAIT,
1121 	    &ring->data_dmat);
1122 	if (error != 0) {
1123 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1124 		goto fail;
1125 	}
1126 
1127 	for (i = 0; i < count; i++) {
1128 		data = &ring->data[i];
1129 
1130 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1131 		if (error != 0) {
1132 			device_printf(sc->sc_dev,
1133 			    "could not create tx buf DMA map\n");
1134 			goto fail;
1135 		}
1136 		bus_dmamap_sync(ring->data_dmat, data->map,
1137 		    BUS_DMASYNC_PREWRITE);
1138 	}
1139 
1140 	return 0;
1141 
1142 fail:
1143 	wpi_free_tx_ring(sc, ring);
1144 	return error;
1145 }
1146 
1147 static void
1148 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1149 {
1150 	struct wpi_tx_data *data;
1151 	int i, ntries;
1152 
1153 	wpi_mem_lock(sc);
1154 
1155 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1156 	for (ntries = 0; ntries < 100; ntries++) {
1157 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1158 			break;
1159 		DELAY(10);
1160 	}
1161 #ifdef WPI_DEBUG
1162 	if (ntries == 100 && wpi_debug > 0)
1163 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1164 		    ring->qid);
1165 #endif
1166 	wpi_mem_unlock(sc);
1167 
1168 	for (i = 0; i < ring->count; i++) {
1169 		data = &ring->data[i];
1170 
1171 		if (data->m != NULL) {
1172 			bus_dmamap_unload(ring->data_dmat, data->map);
1173 			m_freem(data->m);
1174 			data->m = NULL;
1175 		}
1176 	}
1177 
1178 	ring->queued = 0;
1179 	ring->cur = 0;
1180 }
1181 
1182 static void
1183 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1184 {
1185 	struct wpi_tx_data *data;
1186 	int i;
1187 
1188 	wpi_dma_contig_free(&ring->desc_dma);
1189 	wpi_dma_contig_free(&ring->cmd_dma);
1190 
1191 	if (ring->data != NULL) {
1192 		for (i = 0; i < ring->count; i++) {
1193 			data = &ring->data[i];
1194 
1195 			if (data->m != NULL) {
1196 				bus_dmamap_sync(ring->data_dmat, data->map,
1197 				    BUS_DMASYNC_POSTWRITE);
1198 				bus_dmamap_unload(ring->data_dmat, data->map);
1199 				m_freem(data->m);
1200 				data->m = NULL;
1201 			}
1202 		}
1203 		kfree(ring->data, M_DEVBUF);
1204 	}
1205 
1206 	if (ring->data_dmat != NULL)
1207 		bus_dma_tag_destroy(ring->data_dmat);
1208 }
1209 
1210 static int
1211 wpi_shutdown(device_t dev)
1212 {
1213 	struct wpi_softc *sc;
1214 
1215 	wlan_serialize_enter();
1216 	sc = device_get_softc(dev);
1217 	wpi_stop_locked(sc);
1218 	wpi_unload_firmware(sc);
1219 	wlan_serialize_exit();
1220 
1221 	return 0;
1222 }
1223 
1224 static int
1225 wpi_suspend(device_t dev)
1226 {
1227 	struct wpi_softc *sc;
1228 
1229 	wlan_serialize_enter();
1230 	sc = device_get_softc(dev);
1231 	wpi_stop(sc);
1232 	wlan_serialize_exit();
1233 	return 0;
1234 }
1235 
1236 static int
1237 wpi_resume(device_t dev)
1238 {
1239 	struct wpi_softc *sc;
1240 	struct ifnet *ifp;
1241 
1242 	wlan_serialize_enter();
1243 	sc = device_get_softc(dev);
1244 	ifp = sc->sc_ifp;
1245 	pci_write_config(dev, 0x41, 0, 1);
1246 
1247 	if (ifp->if_flags & IFF_UP) {
1248 		wpi_init(ifp->if_softc);
1249 		if (ifp->if_flags & IFF_RUNNING)
1250 			if_devstart(ifp);
1251 	}
1252 	wlan_serialize_exit();
1253 	return 0;
1254 }
1255 
1256 /* ARGSUSED */
1257 static struct ieee80211_node *
1258 wpi_node_alloc(struct ieee80211vap *vap __unused,
1259 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1260 {
1261 	struct wpi_node *wn;
1262 
1263 	wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO);
1264 
1265 	return &wn->ni;
1266 }
1267 
1268 /**
1269  * Called by net80211 when ever there is a change to 80211 state machine
1270  */
1271 static int
1272 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1273 {
1274 	struct wpi_vap *wvp = WPI_VAP(vap);
1275 	struct ieee80211com *ic = vap->iv_ic;
1276 	struct ifnet *ifp = ic->ic_ifp;
1277 	struct wpi_softc *sc = ifp->if_softc;
1278 	int error;
1279 
1280 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1281 		ieee80211_state_name[vap->iv_state],
1282 		ieee80211_state_name[nstate], sc->flags));
1283 
1284 	if (nstate == IEEE80211_S_AUTH) {
1285 		/* The node must be registered in the firmware before auth */
1286 		error = wpi_auth(sc, vap);
1287 		if (error != 0) {
1288 			device_printf(sc->sc_dev,
1289 			    "%s: could not move to auth state, error %d\n",
1290 			    __func__, error);
1291 		}
1292 	}
1293 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1294 		error = wpi_run(sc, vap);
1295 		if (error != 0) {
1296 			device_printf(sc->sc_dev,
1297 			    "%s: could not move to run state, error %d\n",
1298 			    __func__, error);
1299 		}
1300 	}
1301 	if (nstate == IEEE80211_S_RUN) {
1302 		/* RUN -> RUN transition; just restart the timers */
1303 		wpi_calib_timeout_callout(sc);
1304 		/* XXX split out rate control timer */
1305 	}
1306 	return wvp->newstate(vap, nstate, arg);
1307 }
1308 
1309 /*
1310  * Grab exclusive access to NIC memory.
1311  */
1312 static void
1313 wpi_mem_lock(struct wpi_softc *sc)
1314 {
1315 	int ntries;
1316 	uint32_t tmp;
1317 
1318 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1319 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1320 
1321 	/* spin until we actually get the lock */
1322 	for (ntries = 0; ntries < 100; ntries++) {
1323 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1324 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1325 			break;
1326 		DELAY(10);
1327 	}
1328 	if (ntries == 100)
1329 		device_printf(sc->sc_dev, "could not lock memory\n");
1330 }
1331 
1332 /*
1333  * Release lock on NIC memory.
1334  */
1335 static void
1336 wpi_mem_unlock(struct wpi_softc *sc)
1337 {
1338 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1339 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1340 }
1341 
1342 static uint32_t
1343 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1344 {
1345 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1346 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1347 }
1348 
1349 static void
1350 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1351 {
1352 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1353 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1354 }
1355 
1356 static void
1357 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1358     const uint32_t *data, int wlen)
1359 {
1360 	for (; wlen > 0; wlen--, data++, addr+=4)
1361 		wpi_mem_write(sc, addr, *data);
1362 }
1363 
1364 /*
1365  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1366  * using the traditional bit-bang method. Data is read up until len bytes have
1367  * been obtained.
1368  */
1369 static uint16_t
1370 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1371 {
1372 	int ntries;
1373 	uint32_t val;
1374 	uint8_t *out = data;
1375 
1376 	wpi_mem_lock(sc);
1377 
1378 	for (; len > 0; len -= 2, addr++) {
1379 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1380 
1381 		for (ntries = 0; ntries < 10; ntries++) {
1382 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1383 				break;
1384 			DELAY(5);
1385 		}
1386 
1387 		if (ntries == 10) {
1388 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1389 			return ETIMEDOUT;
1390 		}
1391 
1392 		*out++= val >> 16;
1393 		if (len > 1)
1394 			*out ++= val >> 24;
1395 	}
1396 
1397 	wpi_mem_unlock(sc);
1398 
1399 	return 0;
1400 }
1401 
1402 /*
1403  * The firmware text and data segments are transferred to the NIC using DMA.
1404  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1405  * where to find it.  Once the NIC has copied the firmware into its internal
1406  * memory, we can free our local copy in the driver.
1407  */
1408 static int
1409 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1410 {
1411 	int error, ntries;
1412 
1413 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1414 
1415 	size /= sizeof(uint32_t);
1416 
1417 	wpi_mem_lock(sc);
1418 
1419 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1420 	    (const uint32_t *)fw, size);
1421 
1422 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1423 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1424 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1425 
1426 	/* run microcode */
1427 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1428 
1429 	/* wait while the adapter is busy copying the firmware */
1430 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1431 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1432 		DPRINTFN(WPI_DEBUG_HW,
1433 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1434 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1435 		if (status & WPI_TX_IDLE(6)) {
1436 			DPRINTFN(WPI_DEBUG_HW,
1437 			    ("Status Match! - ntries = %d\n", ntries));
1438 			break;
1439 		}
1440 		DELAY(10);
1441 	}
1442 	if (ntries == 1000) {
1443 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1444 		error = ETIMEDOUT;
1445 	}
1446 
1447 	/* start the microcode executing */
1448 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1449 
1450 	wpi_mem_unlock(sc);
1451 
1452 	return (error);
1453 }
1454 
1455 static void
1456 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1457 	struct wpi_rx_data *data)
1458 {
1459 	struct ifnet *ifp = sc->sc_ifp;
1460 	struct ieee80211com *ic = ifp->if_l2com;
1461 	struct wpi_rx_ring *ring = &sc->rxq;
1462 	struct wpi_rx_stat *stat;
1463 	struct wpi_rx_head *head;
1464 	struct wpi_rx_tail *tail;
1465 	struct ieee80211_node *ni;
1466 	struct mbuf *m, *mnew;
1467 	bus_addr_t paddr;
1468 	int error;
1469 
1470 	stat = (struct wpi_rx_stat *)(desc + 1);
1471 
1472 	if (stat->len > WPI_STAT_MAXLEN) {
1473 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1474 		IFNET_STAT_INC(ifp, ierrors, 1);
1475 		return;
1476 	}
1477 
1478 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1479 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1480 
1481 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1482 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1483 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1484 	    (uintmax_t)le64toh(tail->tstamp)));
1485 
1486 	/* discard Rx frames with bad CRC early */
1487 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1488 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1489 		    le32toh(tail->flags)));
1490 		IFNET_STAT_INC(ifp, ierrors, 1);
1491 		return;
1492 	}
1493 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1494 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1495 		    le16toh(head->len)));
1496 		IFNET_STAT_INC(ifp, ierrors, 1);
1497 		return;
1498 	}
1499 
1500 	/* XXX don't need mbuf, just dma buffer */
1501 	mnew = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1502 	if (mnew == NULL) {
1503 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1504 		    __func__));
1505 		IFNET_STAT_INC(ifp, ierrors, 1);
1506 		return;
1507 	}
1508 	error = bus_dmamap_load(ring->data_dmat, data->map,
1509 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1510 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1511 	if (error != 0 && error != EFBIG) {
1512 		device_printf(sc->sc_dev,
1513 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1514 		m_freem(mnew);
1515 		IFNET_STAT_INC(ifp, ierrors, 1);
1516 		return;
1517 	}
1518 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1519 
1520 	/* finalize mbuf and swap in new one */
1521 	m = data->m;
1522 	m->m_pkthdr.rcvif = ifp;
1523 	m->m_data = (caddr_t)(head + 1);
1524 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1525 
1526 	data->m = mnew;
1527 	/* update Rx descriptor */
1528 	ring->desc[ring->cur] = htole32(paddr);
1529 
1530 	if (ieee80211_radiotap_active(ic)) {
1531 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1532 
1533 		tap->wr_flags = 0;
1534 		tap->wr_chan_freq =
1535 			htole16(ic->ic_channels[head->chan].ic_freq);
1536 		tap->wr_chan_flags =
1537 			htole16(ic->ic_channels[head->chan].ic_flags);
1538 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1539 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1540 		tap->wr_tsft = tail->tstamp;
1541 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1542 		switch (head->rate) {
1543 		/* CCK rates */
1544 		case  10: tap->wr_rate =   2; break;
1545 		case  20: tap->wr_rate =   4; break;
1546 		case  55: tap->wr_rate =  11; break;
1547 		case 110: tap->wr_rate =  22; break;
1548 		/* OFDM rates */
1549 		case 0xd: tap->wr_rate =  12; break;
1550 		case 0xf: tap->wr_rate =  18; break;
1551 		case 0x5: tap->wr_rate =  24; break;
1552 		case 0x7: tap->wr_rate =  36; break;
1553 		case 0x9: tap->wr_rate =  48; break;
1554 		case 0xb: tap->wr_rate =  72; break;
1555 		case 0x1: tap->wr_rate =  96; break;
1556 		case 0x3: tap->wr_rate = 108; break;
1557 		/* unknown rate: should not happen */
1558 		default:  tap->wr_rate =   0;
1559 		}
1560 		if (le16toh(head->flags) & 0x4)
1561 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1562 	}
1563 
1564 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1565 	if (ni != NULL) {
1566 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1567 		ieee80211_free_node(ni);
1568 	} else
1569 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1570 }
1571 
1572 static void
1573 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1574 {
1575 	struct ifnet *ifp = sc->sc_ifp;
1576 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1577 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1578 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1579 	struct ieee80211_node *ni = txdata->ni;
1580 	struct ieee80211vap *vap = ni->ni_vap;
1581 	int retrycnt = 0;
1582 
1583 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1584 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1585 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1586 	    le32toh(stat->status)));
1587 
1588 	/*
1589 	 * Update rate control statistics for the node.
1590 	 * XXX we should not count mgmt frames since they're always sent at
1591 	 * the lowest available bit-rate.
1592 	 * XXX frames w/o ACK shouldn't be used either
1593 	 */
1594 	if (stat->ntries > 0) {
1595 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1596 		retrycnt = 1;
1597 	}
1598 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1599 		&retrycnt, NULL);
1600 
1601 	/* XXX oerrors should only count errors !maxtries */
1602 	if ((le32toh(stat->status) & 0xff) != 1)
1603 		IFNET_STAT_INC(ifp, oerrors, 1);
1604 	else
1605 		IFNET_STAT_INC(ifp, opackets, 1);
1606 
1607 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1608 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1609 	/* XXX handle M_TXCB? */
1610 	m_freem(txdata->m);
1611 	txdata->m = NULL;
1612 	ieee80211_free_node(txdata->ni);
1613 	txdata->ni = NULL;
1614 
1615 	ring->queued--;
1616 
1617 	sc->sc_tx_timer = 0;
1618 	ifq_clr_oactive(&ifp->if_snd);
1619 	wpi_start_locked(ifp);
1620 }
1621 
1622 static void
1623 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1624 {
1625 	struct wpi_tx_ring *ring = &sc->cmdq;
1626 	struct wpi_tx_data *data;
1627 
1628 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1629 				 "type=%s len=%d\n", desc->qid, desc->idx,
1630 				 desc->flags, wpi_cmd_str(desc->type),
1631 				 le32toh(desc->len)));
1632 
1633 	if ((desc->qid & 7) != 4)
1634 		return;	/* not a command ack */
1635 
1636 	data = &ring->data[desc->idx];
1637 
1638 	/* if the command was mapped in a mbuf, free it */
1639 	if (data->m != NULL) {
1640 		bus_dmamap_unload(ring->data_dmat, data->map);
1641 		m_freem(data->m);
1642 		data->m = NULL;
1643 	}
1644 
1645 	sc->flags &= ~WPI_FLAG_BUSY;
1646 	wakeup(&ring->cmd[desc->idx]);
1647 }
1648 
1649 static void
1650 wpi_notif_intr(struct wpi_softc *sc)
1651 {
1652 	struct ifnet *ifp = sc->sc_ifp;
1653 	struct ieee80211com *ic = ifp->if_l2com;
1654 	struct wpi_rx_desc *desc;
1655 	struct wpi_rx_data *data;
1656 	uint32_t hw;
1657 
1658 	hw = le32toh(sc->shared->next);
1659 	while (sc->rxq.cur != hw) {
1660 		data = &sc->rxq.data[sc->rxq.cur];
1661 		desc = (void *)data->m->m_ext.ext_buf;
1662 
1663 		DPRINTFN(WPI_DEBUG_NOTIFY,
1664 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1665 			  desc->qid,
1666 			  desc->idx,
1667 			  desc->flags,
1668 			  desc->type,
1669 			  le32toh(desc->len)));
1670 
1671 		if (!(desc->qid & 0x80))	/* reply to a command */
1672 			wpi_cmd_intr(sc, desc);
1673 
1674 		switch (desc->type) {
1675 		case WPI_RX_DONE:
1676 			/* a 802.11 frame was received */
1677 			wpi_rx_intr(sc, desc, data);
1678 			break;
1679 
1680 		case WPI_TX_DONE:
1681 			/* a 802.11 frame has been transmitted */
1682 			wpi_tx_intr(sc, desc);
1683 			break;
1684 
1685 		case WPI_UC_READY:
1686 		{
1687 			struct wpi_ucode_info *uc =
1688 				(struct wpi_ucode_info *)(desc + 1);
1689 
1690 			/* the microcontroller is ready */
1691 			DPRINTF(("microcode alive notification version %x "
1692 				"alive %x\n", le32toh(uc->version),
1693 				le32toh(uc->valid)));
1694 
1695 			if (le32toh(uc->valid) != 1) {
1696 				device_printf(sc->sc_dev,
1697 				    "microcontroller initialization failed\n");
1698 				wpi_stop_locked(sc);
1699 			}
1700 			break;
1701 		}
1702 		case WPI_STATE_CHANGED:
1703 		{
1704 			uint32_t *status = (uint32_t *)(desc + 1);
1705 
1706 			/* enabled/disabled notification */
1707 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1708 
1709 			if (le32toh(*status) & 1) {
1710 				device_printf(sc->sc_dev,
1711 				    "Radio transmitter is switched off\n");
1712 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1713 				ifp->if_flags &= ~IFF_RUNNING;
1714 				/* Disable firmware commands */
1715 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1716 			}
1717 			break;
1718 		}
1719 		case WPI_START_SCAN:
1720 		{
1721 #ifdef WPI_DEBUG
1722 			struct wpi_start_scan *scan =
1723 				(struct wpi_start_scan *)(desc + 1);
1724 #endif
1725 
1726 			DPRINTFN(WPI_DEBUG_SCANNING,
1727 				 ("scanning channel %d status %x\n",
1728 			    scan->chan, le32toh(scan->status)));
1729 			break;
1730 		}
1731 		case WPI_STOP_SCAN:
1732 		{
1733 #ifdef WPI_DEBUG
1734 			struct wpi_stop_scan *scan =
1735 				(struct wpi_stop_scan *)(desc + 1);
1736 #endif
1737 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1738 
1739 			DPRINTFN(WPI_DEBUG_SCANNING,
1740 			    ("scan finished nchan=%d status=%d chan=%d\n",
1741 			     scan->nchan, scan->status, scan->chan));
1742 
1743 			sc->sc_scan_timer = 0;
1744 			ieee80211_scan_next(vap);
1745 			break;
1746 		}
1747 		case WPI_MISSED_BEACON:
1748 		{
1749 			struct wpi_missed_beacon *beacon =
1750 				(struct wpi_missed_beacon *)(desc + 1);
1751 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1752 
1753 			if (le32toh(beacon->consecutive) >=
1754 			    vap->iv_bmissthreshold) {
1755 				DPRINTF(("Beacon miss: %u >= %u\n",
1756 					 le32toh(beacon->consecutive),
1757 					 vap->iv_bmissthreshold));
1758 				ieee80211_beacon_miss(ic);
1759 			}
1760 			break;
1761 		}
1762 		}
1763 
1764 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1765 	}
1766 
1767 	/* tell the firmware what we have processed */
1768 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1769 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1770 }
1771 
1772 static void
1773 wpi_intr(void *arg)
1774 {
1775 	struct wpi_softc *sc = arg;
1776 	uint32_t r;
1777 
1778 	r = WPI_READ(sc, WPI_INTR);
1779 	if (r == 0 || r == 0xffffffff) {
1780 		return;
1781 	}
1782 
1783 	/* disable interrupts */
1784 	WPI_WRITE(sc, WPI_MASK, 0);
1785 	/* ack interrupts */
1786 	WPI_WRITE(sc, WPI_INTR, r);
1787 
1788 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1789 		struct ifnet *ifp = sc->sc_ifp;
1790 		struct ieee80211com *ic = ifp->if_l2com;
1791 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1792 
1793 		device_printf(sc->sc_dev, "fatal firmware error\n");
1794 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1795 				"(Hardware Error)"));
1796 		if (vap != NULL)
1797 			ieee80211_cancel_scan(vap);
1798 		ieee80211_runtask(ic, &sc->sc_restarttask);
1799 		sc->flags &= ~WPI_FLAG_BUSY;
1800 		return;
1801 	}
1802 
1803 	if (r & WPI_RX_INTR)
1804 		wpi_notif_intr(sc);
1805 
1806 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1807 		wakeup(sc);
1808 
1809 	/* re-enable interrupts */
1810 	if (sc->sc_ifp->if_flags & IFF_UP)
1811 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1812 
1813 }
1814 
1815 static uint8_t
1816 wpi_plcp_signal(int rate)
1817 {
1818 	switch (rate) {
1819 	/* CCK rates (returned values are device-dependent) */
1820 	case 2:		return 10;
1821 	case 4:		return 20;
1822 	case 11:	return 55;
1823 	case 22:	return 110;
1824 
1825 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1826 	/* R1-R4 (ral/ural is R4-R1) */
1827 	case 12:	return 0xd;
1828 	case 18:	return 0xf;
1829 	case 24:	return 0x5;
1830 	case 36:	return 0x7;
1831 	case 48:	return 0x9;
1832 	case 72:	return 0xb;
1833 	case 96:	return 0x1;
1834 	case 108:	return 0x3;
1835 
1836 	/* unsupported rates (should not get there) */
1837 	default:	return 0;
1838 	}
1839 }
1840 
1841 /* quickly determine if a given rate is CCK or OFDM */
1842 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1843 
1844 /*
1845  * Construct the data packet for a transmit buffer and acutally put
1846  * the buffer onto the transmit ring, kicking the card to process the
1847  * the buffer.
1848  */
1849 static int
1850 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1851 	int ac)
1852 {
1853 	struct ieee80211vap *vap = ni->ni_vap;
1854 	struct ifnet *ifp = sc->sc_ifp;
1855 	struct ieee80211com *ic = ifp->if_l2com;
1856 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1857 	struct wpi_tx_ring *ring = &sc->txq[ac];
1858 	struct wpi_tx_desc *desc;
1859 	struct wpi_tx_data *data;
1860 	struct wpi_tx_cmd *cmd;
1861 	struct wpi_cmd_data *tx;
1862 	struct ieee80211_frame *wh;
1863 	const struct ieee80211_txparam *tp;
1864 	struct ieee80211_key *k;
1865 	struct mbuf *mnew;
1866 	int i, error, nsegs, rate, hdrlen, ismcast;
1867 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1868 
1869 	desc = &ring->desc[ring->cur];
1870 	data = &ring->data[ring->cur];
1871 
1872 	wh = mtod(m0, struct ieee80211_frame *);
1873 
1874 	hdrlen = ieee80211_hdrsize(wh);
1875 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1876 
1877 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1878 		k = ieee80211_crypto_encap(ni, m0);
1879 		if (k == NULL) {
1880 			m_freem(m0);
1881 			return ENOBUFS;
1882 		}
1883 		/* packet header may have moved, reset our local pointer */
1884 		wh = mtod(m0, struct ieee80211_frame *);
1885 	}
1886 
1887 	cmd = &ring->cmd[ring->cur];
1888 	cmd->code = WPI_CMD_TX_DATA;
1889 	cmd->flags = 0;
1890 	cmd->qid = ring->qid;
1891 	cmd->idx = ring->cur;
1892 
1893 	tx = (struct wpi_cmd_data *)cmd->data;
1894 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1895 	tx->timeout = htole16(0);
1896 	tx->ofdm_mask = 0xff;
1897 	tx->cck_mask = 0x0f;
1898 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1899 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1900 	tx->len = htole16(m0->m_pkthdr.len);
1901 
1902 	if (!ismcast) {
1903 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1904 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1905 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1906 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1907 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1908 			tx->rts_ntries = 7;
1909 		}
1910 	}
1911 	/* pick a rate */
1912 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1913 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1914 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1915 		/* tell h/w to set timestamp in probe responses */
1916 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1917 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1918 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1919 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1920 			tx->timeout = htole16(3);
1921 		else
1922 			tx->timeout = htole16(2);
1923 		rate = tp->mgmtrate;
1924 	} else if (ismcast) {
1925 		rate = tp->mcastrate;
1926 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1927 		rate = tp->ucastrate;
1928 	} else {
1929 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1930 		rate = ni->ni_txrate;
1931 	}
1932 	tx->rate = wpi_plcp_signal(rate);
1933 
1934 	/* be very persistant at sending frames out */
1935 #if 0
1936 	tx->data_ntries = tp->maxretry;
1937 #else
1938 	tx->data_ntries = 30;		/* XXX way too high */
1939 #endif
1940 
1941 	if (ieee80211_radiotap_active_vap(vap)) {
1942 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1943 		tap->wt_flags = 0;
1944 		tap->wt_rate = rate;
1945 		tap->wt_hwqueue = ac;
1946 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1947 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1948 
1949 		ieee80211_radiotap_tx(vap, m0);
1950 	}
1951 
1952 	/* save and trim IEEE802.11 header */
1953 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1954 	m_adj(m0, hdrlen);
1955 
1956 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs,
1957 	    1, &nsegs, BUS_DMA_NOWAIT);
1958 	if (error != 0 && error != EFBIG) {
1959 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1960 		    error);
1961 		m_freem(m0);
1962 		return error;
1963 	}
1964 	if (error != 0) {
1965 		/* XXX use m_collapse */
1966 		mnew = m_defrag(m0, MB_DONTWAIT);
1967 		if (mnew == NULL) {
1968 			device_printf(sc->sc_dev,
1969 			    "could not defragment mbuf\n");
1970 			m_freem(m0);
1971 			return ENOBUFS;
1972 		}
1973 		m0 = mnew;
1974 
1975 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
1976 		    m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1977 		if (error != 0) {
1978 			device_printf(sc->sc_dev,
1979 			    "could not map mbuf (error %d)\n", error);
1980 			m_freem(m0);
1981 			return error;
1982 		}
1983 	}
1984 
1985 	data->m = m0;
1986 	data->ni = ni;
1987 
1988 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1989 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1990 
1991 	/* first scatter/gather segment is used by the tx data command */
1992 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1993 	    (1 + nsegs) << 24);
1994 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1995 	    ring->cur * sizeof (struct wpi_tx_cmd));
1996 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1997 	for (i = 1; i <= nsegs; i++) {
1998 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1999 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2000 	}
2001 
2002 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2003 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2004 	    BUS_DMASYNC_PREWRITE);
2005 
2006 	ring->queued++;
2007 
2008 	/* kick ring */
2009 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2010 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2011 
2012 	return 0;
2013 }
2014 
2015 /**
2016  * Process data waiting to be sent on the IFNET output queue
2017  */
2018 static void
2019 wpi_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2020 {
2021 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2022 	wpi_start_locked(ifp);
2023 }
2024 
2025 static void
2026 wpi_start_locked(struct ifnet *ifp)
2027 {
2028 	struct wpi_softc *sc = ifp->if_softc;
2029 	struct ieee80211_node *ni;
2030 	struct mbuf *m;
2031 	int ac;
2032 
2033 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2034 		ifq_purge(&ifp->if_snd);
2035 		return;
2036 	}
2037 
2038 	for (;;) {
2039 		m = ifq_dequeue(&ifp->if_snd);
2040 		if (m == NULL)
2041 			break;
2042 		ac = M_WME_GETAC(m);
2043 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2044 			/* there is no place left in this ring */
2045 			/*
2046 			 * XXX: we CANNOT do it this way. If something
2047 			 * is prepended already, this is going to blow.
2048 			 */
2049 			ifq_set_oactive(&ifp->if_snd);
2050 			ifq_prepend(&ifp->if_snd, m);
2051 			break;
2052 		}
2053 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2054 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2055 			ieee80211_free_node(ni);
2056 			IFNET_STAT_INC(ifp, oerrors, 1);
2057 			break;
2058 		}
2059 		sc->sc_tx_timer = 5;
2060 	}
2061 }
2062 
2063 static int
2064 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2065 	const struct ieee80211_bpf_params *params)
2066 {
2067 	struct ieee80211com *ic = ni->ni_ic;
2068 	struct ifnet *ifp = ic->ic_ifp;
2069 	struct wpi_softc *sc = ifp->if_softc;
2070 
2071 	/* prevent management frames from being sent if we're not ready */
2072 	if (!(ifp->if_flags & IFF_RUNNING)) {
2073 		m_freem(m);
2074 		ieee80211_free_node(ni);
2075 		return ENETDOWN;
2076 	}
2077 
2078 	/* management frames go into ring 0 */
2079 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2080 		ifq_set_oactive(&ifp->if_snd);
2081 		m_freem(m);
2082 		ieee80211_free_node(ni);
2083 		return ENOBUFS;		/* XXX */
2084 	}
2085 
2086 	IFNET_STAT_INC(ifp, opackets, 1);
2087 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2088 		goto bad;
2089 	sc->sc_tx_timer = 5;
2090 	callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
2091 
2092 	return 0;
2093 bad:
2094 	IFNET_STAT_INC(ifp, oerrors, 1);
2095 	ieee80211_free_node(ni);
2096 	return EIO;		/* XXX */
2097 }
2098 
2099 static int
2100 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred)
2101 {
2102 	struct wpi_softc *sc = ifp->if_softc;
2103 	struct ieee80211com *ic = ifp->if_l2com;
2104 	struct ifreq *ifr = (struct ifreq *) data;
2105 	int error = 0, startall = 0;
2106 
2107 	switch (cmd) {
2108 	case SIOCSIFFLAGS:
2109 		if ((ifp->if_flags & IFF_UP)) {
2110 			if (!(ifp->if_flags & IFF_RUNNING)) {
2111 				wpi_init_locked(sc, 0);
2112 				startall = 1;
2113 			}
2114 		} else if ((ifp->if_flags & IFF_RUNNING) ||
2115 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2116 			wpi_stop_locked(sc);
2117 		if (startall)
2118 			ieee80211_start_all(ic);
2119 		break;
2120 	case SIOCGIFMEDIA:
2121 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2122 		break;
2123 	case SIOCGIFADDR:
2124 		error = ether_ioctl(ifp, cmd, data);
2125 		break;
2126 	default:
2127 		error = EINVAL;
2128 		break;
2129 	}
2130 	return error;
2131 }
2132 
2133 /*
2134  * Extract various information from EEPROM.
2135  */
2136 static void
2137 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2138 {
2139 	int i;
2140 
2141 	/* read the hardware capabilities, revision and SKU type */
2142 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2143 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2144 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2145 
2146 	/* read the regulatory domain */
2147 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2148 
2149 	/* read in the hw MAC address */
2150 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2151 
2152 	/* read the list of authorized channels */
2153 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2154 		wpi_read_eeprom_channels(sc,i);
2155 
2156 	/* read the power level calibration info for each group */
2157 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2158 		wpi_read_eeprom_group(sc,i);
2159 }
2160 
2161 /*
2162  * Send a command to the firmware.
2163  */
2164 static int
2165 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2166 {
2167 	struct wpi_tx_ring *ring = &sc->cmdq;
2168 	struct wpi_tx_desc *desc;
2169 	struct wpi_tx_cmd *cmd;
2170 
2171 #ifdef WPI_DEBUG
2172 	if (!async) {
2173 		wlan_assert_serialized();
2174 	}
2175 #endif
2176 
2177 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2178 		    async));
2179 
2180 	if (sc->flags & WPI_FLAG_BUSY) {
2181 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2182 		    __func__, code);
2183 		return EAGAIN;
2184 	}
2185 	sc->flags|= WPI_FLAG_BUSY;
2186 
2187 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2188 	    code, size));
2189 
2190 	desc = &ring->desc[ring->cur];
2191 	cmd = &ring->cmd[ring->cur];
2192 
2193 	cmd->code = code;
2194 	cmd->flags = 0;
2195 	cmd->qid = ring->qid;
2196 	cmd->idx = ring->cur;
2197 	memcpy(cmd->data, buf, size);
2198 
2199 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2200 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2201 		ring->cur * sizeof (struct wpi_tx_cmd));
2202 	desc->segs[0].len  = htole32(4 + size);
2203 
2204 	/* kick cmd ring */
2205 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2206 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2207 
2208 	if (async) {
2209 		sc->flags &= ~ WPI_FLAG_BUSY;
2210 		return 0;
2211 	}
2212 
2213 	return zsleep(cmd, &wlan_global_serializer, 0, "wpicmd", hz);
2214 }
2215 
2216 static int
2217 wpi_wme_update(struct ieee80211com *ic)
2218 {
2219 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2220 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2221 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2222 	const struct wmeParams *wmep;
2223 	struct wpi_wme_setup wme;
2224 	int ac;
2225 
2226 	/* don't override default WME values if WME is not actually enabled */
2227 	if (!(ic->ic_flags & IEEE80211_F_WME))
2228 		return 0;
2229 
2230 	wme.flags = 0;
2231 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2232 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2233 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2234 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2235 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2236 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2237 
2238 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2239 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2240 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2241 	}
2242 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2243 #undef WPI_USEC
2244 #undef WPI_EXP2
2245 }
2246 
2247 /*
2248  * Configure h/w multi-rate retries.
2249  */
2250 static int
2251 wpi_mrr_setup(struct wpi_softc *sc)
2252 {
2253 	struct ifnet *ifp = sc->sc_ifp;
2254 	struct ieee80211com *ic = ifp->if_l2com;
2255 	struct wpi_mrr_setup mrr;
2256 	int i, error;
2257 
2258 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2259 
2260 	/* CCK rates (not used with 802.11a) */
2261 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2262 		mrr.rates[i].flags = 0;
2263 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2264 		/* fallback to the immediate lower CCK rate (if any) */
2265 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2266 		/* try one time at this rate before falling back to "next" */
2267 		mrr.rates[i].ntries = 1;
2268 	}
2269 
2270 	/* OFDM rates (not used with 802.11b) */
2271 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2272 		mrr.rates[i].flags = 0;
2273 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2274 		/* fallback to the immediate lower OFDM rate (if any) */
2275 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2276 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2277 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2278 			WPI_OFDM6 : WPI_CCK2) :
2279 		    i - 1;
2280 		/* try one time at this rate before falling back to "next" */
2281 		mrr.rates[i].ntries = 1;
2282 	}
2283 
2284 	/* setup MRR for control frames */
2285 	mrr.which = htole32(WPI_MRR_CTL);
2286 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2287 	if (error != 0) {
2288 		device_printf(sc->sc_dev,
2289 		    "could not setup MRR for control frames\n");
2290 		return error;
2291 	}
2292 
2293 	/* setup MRR for data frames */
2294 	mrr.which = htole32(WPI_MRR_DATA);
2295 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2296 	if (error != 0) {
2297 		device_printf(sc->sc_dev,
2298 		    "could not setup MRR for data frames\n");
2299 		return error;
2300 	}
2301 
2302 	return 0;
2303 }
2304 
2305 static void
2306 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2307 {
2308 	struct wpi_cmd_led led;
2309 
2310 	led.which = which;
2311 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2312 	led.off = off;
2313 	led.on = on;
2314 
2315 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2316 }
2317 
2318 static void
2319 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2320 {
2321 	struct wpi_cmd_tsf tsf;
2322 	uint64_t val, mod;
2323 
2324 	memset(&tsf, 0, sizeof tsf);
2325 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2326 	tsf.bintval = htole16(ni->ni_intval);
2327 	tsf.lintval = htole16(10);
2328 
2329 	/* compute remaining time until next beacon */
2330 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2331 	mod = le64toh(tsf.tstamp) % val;
2332 	tsf.binitval = htole32((uint32_t)(val - mod));
2333 
2334 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2335 		device_printf(sc->sc_dev, "could not enable TSF\n");
2336 }
2337 
2338 #if 0
2339 /*
2340  * Build a beacon frame that the firmware will broadcast periodically in
2341  * IBSS or HostAP modes.
2342  */
2343 static int
2344 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2345 {
2346 	struct ifnet *ifp = sc->sc_ifp;
2347 	struct ieee80211com *ic = ifp->if_l2com;
2348 	struct wpi_tx_ring *ring = &sc->cmdq;
2349 	struct wpi_tx_desc *desc;
2350 	struct wpi_tx_data *data;
2351 	struct wpi_tx_cmd *cmd;
2352 	struct wpi_cmd_beacon *bcn;
2353 	struct ieee80211_beacon_offsets bo;
2354 	struct mbuf *m0;
2355 	bus_addr_t physaddr;
2356 	int error;
2357 
2358 	desc = &ring->desc[ring->cur];
2359 	data = &ring->data[ring->cur];
2360 
2361 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2362 	if (m0 == NULL) {
2363 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2364 		return ENOMEM;
2365 	}
2366 
2367 	cmd = &ring->cmd[ring->cur];
2368 	cmd->code = WPI_CMD_SET_BEACON;
2369 	cmd->flags = 0;
2370 	cmd->qid = ring->qid;
2371 	cmd->idx = ring->cur;
2372 
2373 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2374 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2375 	bcn->id = WPI_ID_BROADCAST;
2376 	bcn->ofdm_mask = 0xff;
2377 	bcn->cck_mask = 0x0f;
2378 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2379 	bcn->len = htole16(m0->m_pkthdr.len);
2380 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2381 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2382 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2383 
2384 	/* save and trim IEEE802.11 header */
2385 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2386 	m_adj(m0, sizeof (struct ieee80211_frame));
2387 
2388 	/* assume beacon frame is contiguous */
2389 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2390 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2391 	if (error != 0) {
2392 		device_printf(sc->sc_dev, "could not map beacon\n");
2393 		m_freem(m0);
2394 		return error;
2395 	}
2396 
2397 	data->m = m0;
2398 
2399 	/* first scatter/gather segment is used by the beacon command */
2400 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2401 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2402 		ring->cur * sizeof (struct wpi_tx_cmd));
2403 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2404 	desc->segs[1].addr = htole32(physaddr);
2405 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2406 
2407 	/* kick cmd ring */
2408 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2409 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2410 
2411 	return 0;
2412 }
2413 #endif
2414 
2415 static int
2416 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2417 {
2418 	struct ieee80211com *ic = vap->iv_ic;
2419 	struct ieee80211_node *ni;
2420 	struct wpi_node_info node;
2421 	int error;
2422 
2423 
2424 	/* update adapter's configuration */
2425 	sc->config.associd = 0;
2426 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2427 	ni = ieee80211_ref_node(vap->iv_bss);
2428 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2429 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2430 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2431 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2432 		    WPI_CONFIG_24GHZ);
2433 	}
2434 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2435 		sc->config.cck_mask  = 0;
2436 		sc->config.ofdm_mask = 0x15;
2437 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2438 		sc->config.cck_mask  = 0x03;
2439 		sc->config.ofdm_mask = 0;
2440 	} else {
2441 		/* XXX assume 802.11b/g */
2442 		sc->config.cck_mask  = 0x0f;
2443 		sc->config.ofdm_mask = 0x15;
2444 	}
2445 
2446 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2447 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2448 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2449 		sizeof (struct wpi_config), 1);
2450 	if (error != 0) {
2451 		device_printf(sc->sc_dev, "could not configure\n");
2452 		ieee80211_free_node(ni);
2453 		return error;
2454 	}
2455 
2456 	/* configuration has changed, set Tx power accordingly */
2457 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2458 		device_printf(sc->sc_dev, "could not set Tx power\n");
2459 		ieee80211_free_node(ni);
2460 		return error;
2461 	}
2462 
2463 	/* add default node */
2464 	memset(&node, 0, sizeof node);
2465 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2466 	ieee80211_free_node(ni);
2467 	node.id = WPI_ID_BSS;
2468 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2469 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2470 	node.action = htole32(WPI_ACTION_SET_RATE);
2471 	node.antenna = WPI_ANTENNA_BOTH;
2472 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2473 	if (error != 0)
2474 		device_printf(sc->sc_dev, "could not add BSS node\n");
2475 
2476 	return (error);
2477 }
2478 
2479 static int
2480 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2481 {
2482 	struct ieee80211com *ic = vap->iv_ic;
2483 	struct ieee80211_node *ni;
2484 	int error;
2485 
2486 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2487 		/* link LED blinks while monitoring */
2488 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2489 		return 0;
2490 	}
2491 
2492 	ni = ieee80211_ref_node(vap->iv_bss);
2493 	wpi_enable_tsf(sc, ni);
2494 
2495 	/* update adapter's configuration */
2496 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2497 	/* short preamble/slot time are negotiated when associating */
2498 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2499 	    WPI_CONFIG_SHSLOT);
2500 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2501 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2502 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2503 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2504 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2505 
2506 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2507 
2508 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2509 		    sc->config.flags));
2510 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2511 		    wpi_config), 1);
2512 	if (error != 0) {
2513 		device_printf(sc->sc_dev, "could not update configuration\n");
2514 		ieee80211_free_node(ni);
2515 		return error;
2516 	}
2517 
2518 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2519 	ieee80211_free_node(ni);
2520 	if (error != 0) {
2521 		device_printf(sc->sc_dev, "could set txpower\n");
2522 		return error;
2523 	}
2524 
2525 	/* link LED always on while associated */
2526 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2527 
2528 	/* start automatic rate control timer */
2529 	callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
2530 
2531 	return (error);
2532 }
2533 
2534 /*
2535  * Send a scan request to the firmware.  Since this command is huge, we map it
2536  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2537  * much of this code is similar to that in wpi_cmd but because we must manually
2538  * construct the probe & channels, we duplicate what's needed here. XXX In the
2539  * future, this function should be modified to use wpi_cmd to help cleanup the
2540  * code base.
2541  */
2542 static int
2543 wpi_scan(struct wpi_softc *sc)
2544 {
2545 	struct ifnet *ifp = sc->sc_ifp;
2546 	struct ieee80211com *ic = ifp->if_l2com;
2547 	struct ieee80211_scan_state *ss = ic->ic_scan;
2548 	struct wpi_tx_ring *ring = &sc->cmdq;
2549 	struct wpi_tx_desc *desc;
2550 	struct wpi_tx_data *data;
2551 	struct wpi_tx_cmd *cmd;
2552 	struct wpi_scan_hdr *hdr;
2553 	struct wpi_scan_chan *chan;
2554 	struct ieee80211_frame *wh;
2555 	struct ieee80211_rateset *rs;
2556 	struct ieee80211_channel *c;
2557 	enum ieee80211_phymode mode;
2558 	uint8_t *frm;
2559 	int nrates, pktlen, error, i, nssid;
2560 	bus_addr_t physaddr;
2561 
2562 	desc = &ring->desc[ring->cur];
2563 	data = &ring->data[ring->cur];
2564 
2565 	data->m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2566 	if (data->m == NULL) {
2567 		device_printf(sc->sc_dev,
2568 		    "could not allocate mbuf for scan command\n");
2569 		return ENOMEM;
2570 	}
2571 
2572 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2573 	cmd->code = WPI_CMD_SCAN;
2574 	cmd->flags = 0;
2575 	cmd->qid = ring->qid;
2576 	cmd->idx = ring->cur;
2577 
2578 	hdr = (struct wpi_scan_hdr *)cmd->data;
2579 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2580 
2581 	/*
2582 	 * Move to the next channel if no packets are received within 5 msecs
2583 	 * after sending the probe request (this helps to reduce the duration
2584 	 * of active scans).
2585 	 */
2586 	hdr->quiet = htole16(5);
2587 	hdr->threshold = htole16(1);
2588 
2589 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2590 		/* send probe requests at 6Mbps */
2591 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2592 
2593 		/* Enable crc checking */
2594 		hdr->promotion = htole16(1);
2595 	} else {
2596 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2597 		/* send probe requests at 1Mbps */
2598 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2599 	}
2600 	hdr->tx.id = WPI_ID_BROADCAST;
2601 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2602 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2603 
2604 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2605 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2606 	for (i = 0; i < nssid; i++) {
2607 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2608 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2609 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2610 		    hdr->scan_essids[i].esslen);
2611 #ifdef WPI_DEBUG
2612 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2613 			kprintf("Scanning Essid: ");
2614 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2615 			    hdr->scan_essids[i].esslen);
2616 			kprintf("\n");
2617 		}
2618 #endif
2619 	}
2620 
2621 	/*
2622 	 * Build a probe request frame.  Most of the following code is a
2623 	 * copy & paste of what is done in net80211.
2624 	 */
2625 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2626 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2627 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2628 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2629 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2630 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2631 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2632 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2633 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2634 
2635 	frm = (uint8_t *)(wh + 1);
2636 
2637 	/* add essid IE, the hardware will fill this in for us */
2638 	*frm++ = IEEE80211_ELEMID_SSID;
2639 	*frm++ = 0;
2640 
2641 	mode = ieee80211_chan2mode(ic->ic_curchan);
2642 	rs = &ic->ic_sup_rates[mode];
2643 
2644 	/* add supported rates IE */
2645 	*frm++ = IEEE80211_ELEMID_RATES;
2646 	nrates = rs->rs_nrates;
2647 	if (nrates > IEEE80211_RATE_SIZE)
2648 		nrates = IEEE80211_RATE_SIZE;
2649 	*frm++ = nrates;
2650 	memcpy(frm, rs->rs_rates, nrates);
2651 	frm += nrates;
2652 
2653 	/* add supported xrates IE */
2654 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2655 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2656 		*frm++ = IEEE80211_ELEMID_XRATES;
2657 		*frm++ = nrates;
2658 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2659 		frm += nrates;
2660 	}
2661 
2662 	/* setup length of probe request */
2663 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2664 
2665 	/*
2666 	 * Construct information about the channel that we
2667 	 * want to scan. The firmware expects this to be directly
2668 	 * after the scan probe request
2669 	 */
2670 	c = ic->ic_curchan;
2671 	chan = (struct wpi_scan_chan *)frm;
2672 	chan->chan = ieee80211_chan2ieee(ic, c);
2673 	chan->flags = 0;
2674 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2675 		chan->flags |= WPI_CHAN_ACTIVE;
2676 		if (nssid != 0)
2677 			chan->flags |= WPI_CHAN_DIRECT;
2678 	}
2679 	chan->gain_dsp = 0x6e; /* Default level */
2680 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2681 		chan->active = htole16(10);
2682 		chan->passive = htole16(ss->ss_maxdwell);
2683 		chan->gain_radio = 0x3b;
2684 	} else {
2685 		chan->active = htole16(20);
2686 		chan->passive = htole16(ss->ss_maxdwell);
2687 		chan->gain_radio = 0x28;
2688 	}
2689 
2690 	DPRINTFN(WPI_DEBUG_SCANNING,
2691 	    ("Scanning %u Passive: %d\n",
2692 	     chan->chan,
2693 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2694 
2695 	hdr->nchan++;
2696 	chan++;
2697 
2698 	frm += sizeof (struct wpi_scan_chan);
2699 #if 0
2700 	// XXX All Channels....
2701 	for (c  = &ic->ic_channels[1];
2702 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2703 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2704 			continue;
2705 
2706 		chan->chan = ieee80211_chan2ieee(ic, c);
2707 		chan->flags = 0;
2708 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2709 		    chan->flags |= WPI_CHAN_ACTIVE;
2710 		    if (ic->ic_des_ssid[0].len != 0)
2711 			chan->flags |= WPI_CHAN_DIRECT;
2712 		}
2713 		chan->gain_dsp = 0x6e; /* Default level */
2714 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2715 			chan->active = htole16(10);
2716 			chan->passive = htole16(110);
2717 			chan->gain_radio = 0x3b;
2718 		} else {
2719 			chan->active = htole16(20);
2720 			chan->passive = htole16(120);
2721 			chan->gain_radio = 0x28;
2722 		}
2723 
2724 		DPRINTFN(WPI_DEBUG_SCANNING,
2725 			 ("Scanning %u Passive: %d\n",
2726 			  chan->chan,
2727 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2728 
2729 		hdr->nchan++;
2730 		chan++;
2731 
2732 		frm += sizeof (struct wpi_scan_chan);
2733 	}
2734 #endif
2735 
2736 	hdr->len = htole16(frm - (uint8_t *)hdr);
2737 	pktlen = frm - (uint8_t *)cmd;
2738 
2739 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2740 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2741 	if (error != 0) {
2742 		device_printf(sc->sc_dev, "could not map scan command\n");
2743 		m_freem(data->m);
2744 		data->m = NULL;
2745 		return error;
2746 	}
2747 
2748 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2749 	desc->segs[0].addr = htole32(physaddr);
2750 	desc->segs[0].len  = htole32(pktlen);
2751 
2752 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2753 	    BUS_DMASYNC_PREWRITE);
2754 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2755 
2756 	/* kick cmd ring */
2757 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2758 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2759 
2760 	sc->sc_scan_timer = 5;
2761 	return 0;	/* will be notified async. of failure/success */
2762 }
2763 
2764 /**
2765  * Configure the card to listen to a particular channel, this transisions the
2766  * card in to being able to receive frames from remote devices.
2767  */
2768 static int
2769 wpi_config(struct wpi_softc *sc)
2770 {
2771 	struct ifnet *ifp = sc->sc_ifp;
2772 	struct ieee80211com *ic = ifp->if_l2com;
2773 	struct wpi_power power;
2774 	struct wpi_bluetooth bluetooth;
2775 	struct wpi_node_info node;
2776 	int error;
2777 
2778 	/* set power mode */
2779 	memset(&power, 0, sizeof power);
2780 	power.flags = htole32(WPI_POWER_CAM|0x8);
2781 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2782 	if (error != 0) {
2783 		device_printf(sc->sc_dev, "could not set power mode\n");
2784 		return error;
2785 	}
2786 
2787 	/* configure bluetooth coexistence */
2788 	memset(&bluetooth, 0, sizeof bluetooth);
2789 	bluetooth.flags = 3;
2790 	bluetooth.lead = 0xaa;
2791 	bluetooth.kill = 1;
2792 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2793 	    0);
2794 	if (error != 0) {
2795 		device_printf(sc->sc_dev,
2796 		    "could not configure bluetooth coexistence\n");
2797 		return error;
2798 	}
2799 
2800 	/* configure adapter */
2801 	memset(&sc->config, 0, sizeof (struct wpi_config));
2802 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2803 	/*set default channel*/
2804 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2805 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2806 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2807 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2808 		    WPI_CONFIG_24GHZ);
2809 	}
2810 	sc->config.filter = 0;
2811 	switch (ic->ic_opmode) {
2812 	case IEEE80211_M_STA:
2813 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2814 		sc->config.mode = WPI_MODE_STA;
2815 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2816 		break;
2817 	case IEEE80211_M_IBSS:
2818 	case IEEE80211_M_AHDEMO:
2819 		sc->config.mode = WPI_MODE_IBSS;
2820 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2821 					     WPI_FILTER_MULTICAST);
2822 		break;
2823 	case IEEE80211_M_HOSTAP:
2824 		sc->config.mode = WPI_MODE_HOSTAP;
2825 		break;
2826 	case IEEE80211_M_MONITOR:
2827 		sc->config.mode = WPI_MODE_MONITOR;
2828 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2829 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2830 		break;
2831 	default:
2832 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2833 		return EINVAL;
2834 	}
2835 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2836 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2837 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2838 		sizeof (struct wpi_config), 0);
2839 	if (error != 0) {
2840 		device_printf(sc->sc_dev, "configure command failed\n");
2841 		return error;
2842 	}
2843 
2844 	/* configuration has changed, set Tx power accordingly */
2845 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2846 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2847 	    return error;
2848 	}
2849 
2850 	/* add broadcast node */
2851 	memset(&node, 0, sizeof node);
2852 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2853 	node.id = WPI_ID_BROADCAST;
2854 	node.rate = wpi_plcp_signal(2);
2855 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2856 	if (error != 0) {
2857 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2858 		return error;
2859 	}
2860 
2861 	/* Setup rate scalling */
2862 	error = wpi_mrr_setup(sc);
2863 	if (error != 0) {
2864 		device_printf(sc->sc_dev, "could not setup MRR\n");
2865 		return error;
2866 	}
2867 
2868 	return 0;
2869 }
2870 
2871 static void
2872 wpi_stop_master(struct wpi_softc *sc)
2873 {
2874 	uint32_t tmp;
2875 	int ntries;
2876 
2877 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2878 
2879 	tmp = WPI_READ(sc, WPI_RESET);
2880 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2881 
2882 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2883 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2884 		return;	/* already asleep */
2885 
2886 	for (ntries = 0; ntries < 100; ntries++) {
2887 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2888 			break;
2889 		DELAY(10);
2890 	}
2891 	if (ntries == 100) {
2892 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2893 	}
2894 }
2895 
2896 static int
2897 wpi_power_up(struct wpi_softc *sc)
2898 {
2899 	uint32_t tmp;
2900 	int ntries;
2901 
2902 	wpi_mem_lock(sc);
2903 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2904 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2905 	wpi_mem_unlock(sc);
2906 
2907 	for (ntries = 0; ntries < 5000; ntries++) {
2908 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2909 			break;
2910 		DELAY(10);
2911 	}
2912 	if (ntries == 5000) {
2913 		device_printf(sc->sc_dev,
2914 		    "timeout waiting for NIC to power up\n");
2915 		return ETIMEDOUT;
2916 	}
2917 	return 0;
2918 }
2919 
2920 static int
2921 wpi_reset(struct wpi_softc *sc)
2922 {
2923 	uint32_t tmp;
2924 	int ntries;
2925 
2926 	DPRINTFN(WPI_DEBUG_HW,
2927 	    ("Resetting the card - clearing any uploaded firmware\n"));
2928 
2929 	/* clear any pending interrupts */
2930 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2931 
2932 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2933 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2934 
2935 	tmp = WPI_READ(sc, WPI_CHICKEN);
2936 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2937 
2938 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2939 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2940 
2941 	/* wait for clock stabilization */
2942 	for (ntries = 0; ntries < 25000; ntries++) {
2943 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2944 			break;
2945 		DELAY(10);
2946 	}
2947 	if (ntries == 25000) {
2948 		device_printf(sc->sc_dev,
2949 		    "timeout waiting for clock stabilization\n");
2950 		return ETIMEDOUT;
2951 	}
2952 
2953 	/* initialize EEPROM */
2954 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2955 
2956 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2957 		device_printf(sc->sc_dev, "EEPROM not found\n");
2958 		return EIO;
2959 	}
2960 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2961 
2962 	return 0;
2963 }
2964 
2965 static void
2966 wpi_hw_config(struct wpi_softc *sc)
2967 {
2968 	uint32_t rev, hw;
2969 
2970 	/* voodoo from the Linux "driver".. */
2971 	hw = WPI_READ(sc, WPI_HWCONFIG);
2972 
2973 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2974 	if ((rev & 0xc0) == 0x40)
2975 		hw |= WPI_HW_ALM_MB;
2976 	else if (!(rev & 0x80))
2977 		hw |= WPI_HW_ALM_MM;
2978 
2979 	if (sc->cap == 0x80)
2980 		hw |= WPI_HW_SKU_MRC;
2981 
2982 	hw &= ~WPI_HW_REV_D;
2983 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2984 		hw |= WPI_HW_REV_D;
2985 
2986 	if (sc->type > 1)
2987 		hw |= WPI_HW_TYPE_B;
2988 
2989 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2990 }
2991 
2992 static void
2993 wpi_rfkill_resume(struct wpi_softc *sc)
2994 {
2995 	struct ifnet *ifp = sc->sc_ifp;
2996 	struct ieee80211com *ic = ifp->if_l2com;
2997 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2998 	int ntries;
2999 
3000 	/* enable firmware again */
3001 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3002 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3003 
3004 	/* wait for thermal sensors to calibrate */
3005 	for (ntries = 0; ntries < 1000; ntries++) {
3006 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3007 			break;
3008 		DELAY(10);
3009 	}
3010 
3011 	if (ntries == 1000) {
3012 		device_printf(sc->sc_dev,
3013 		    "timeout waiting for thermal calibration\n");
3014 		return;
3015 	}
3016 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3017 
3018 	if (wpi_config(sc) != 0) {
3019 		device_printf(sc->sc_dev, "device config failed\n");
3020 		return;
3021 	}
3022 
3023 	ifq_clr_oactive(&ifp->if_snd);
3024 	ifp->if_flags |= IFF_RUNNING;
3025 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3026 
3027 	if (vap != NULL) {
3028 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3029 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3030 				ieee80211_beacon_miss(ic);
3031 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3032 			} else
3033 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3034 		} else {
3035 			ieee80211_scan_next(vap);
3036 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3037 		}
3038 	}
3039 
3040 	callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3041 }
3042 
3043 static void
3044 wpi_init_locked(struct wpi_softc *sc, int force)
3045 {
3046 	struct ifnet *ifp = sc->sc_ifp;
3047 	uint32_t tmp;
3048 	int ntries, qid;
3049 
3050 	wpi_stop_locked(sc);
3051 	(void)wpi_reset(sc);
3052 
3053 	wpi_mem_lock(sc);
3054 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3055 	DELAY(20);
3056 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3057 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3058 	wpi_mem_unlock(sc);
3059 
3060 	(void)wpi_power_up(sc);
3061 	wpi_hw_config(sc);
3062 
3063 	/* init Rx ring */
3064 	wpi_mem_lock(sc);
3065 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3066 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3067 	    offsetof(struct wpi_shared, next));
3068 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3069 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3070 	wpi_mem_unlock(sc);
3071 
3072 	/* init Tx rings */
3073 	wpi_mem_lock(sc);
3074 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3075 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3076 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3077 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3078 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3079 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3080 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3081 
3082 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3083 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3084 
3085 	for (qid = 0; qid < 6; qid++) {
3086 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3087 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3088 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3089 	}
3090 	wpi_mem_unlock(sc);
3091 
3092 	/* clear "radio off" and "disable command" bits (reversed logic) */
3093 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3094 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3095 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3096 
3097 	/* clear any pending interrupts */
3098 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3099 
3100 	/* enable interrupts */
3101 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3102 
3103 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3104 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3105 
3106 	if ((wpi_load_firmware(sc)) != 0) {
3107 	    device_printf(sc->sc_dev,
3108 		"A problem occurred loading the firmware to the driver\n");
3109 	    return;
3110 	}
3111 
3112 	/* At this point the firmware is up and running. If the hardware
3113 	 * RF switch is turned off thermal calibration will fail, though
3114 	 * the card is still happy to continue to accept commands, catch
3115 	 * this case and schedule a task to watch for it to be turned on.
3116 	 */
3117 	wpi_mem_lock(sc);
3118 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3119 	wpi_mem_unlock(sc);
3120 
3121 	if (!(tmp & 0x1)) {
3122 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3123 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3124 		goto out;
3125 	}
3126 
3127 	/* wait for thermal sensors to calibrate */
3128 	for (ntries = 0; ntries < 1000; ntries++) {
3129 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3130 			break;
3131 		DELAY(10);
3132 	}
3133 
3134 	if (ntries == 1000) {
3135 		device_printf(sc->sc_dev,
3136 		    "timeout waiting for thermal sensors calibration\n");
3137 		return;
3138 	}
3139 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3140 
3141 	if (wpi_config(sc) != 0) {
3142 		device_printf(sc->sc_dev, "device config failed\n");
3143 		return;
3144 	}
3145 
3146 	ifq_clr_oactive(&ifp->if_snd);
3147 	ifp->if_flags |= IFF_RUNNING;
3148 out:
3149 	callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3150 }
3151 
3152 static void
3153 wpi_init(void *arg)
3154 {
3155 	struct wpi_softc *sc = arg;
3156 	struct ifnet *ifp = sc->sc_ifp;
3157 	struct ieee80211com *ic = ifp->if_l2com;
3158 
3159 	wpi_init_locked(sc, 0);
3160 
3161 	if (ifp->if_flags & IFF_RUNNING)
3162 		ieee80211_start_all(ic);		/* start all vaps */
3163 }
3164 
3165 static void
3166 wpi_stop_locked(struct wpi_softc *sc)
3167 {
3168 	struct ifnet *ifp = sc->sc_ifp;
3169 	uint32_t tmp;
3170 	int ac;
3171 
3172 	sc->sc_tx_timer = 0;
3173 	sc->sc_scan_timer = 0;
3174 	ifp->if_flags &= ~IFF_RUNNING;
3175 	ifq_clr_oactive(&ifp->if_snd);
3176 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3177 	callout_stop(&sc->watchdog_to_callout);
3178 	callout_stop(&sc->calib_to_callout);
3179 
3180 
3181 	/* disable interrupts */
3182 	WPI_WRITE(sc, WPI_MASK, 0);
3183 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3184 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3185 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3186 
3187 	wpi_mem_lock(sc);
3188 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3189 	wpi_mem_unlock(sc);
3190 
3191 	/* reset all Tx rings */
3192 	for (ac = 0; ac < 4; ac++)
3193 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3194 	wpi_reset_tx_ring(sc, &sc->cmdq);
3195 
3196 	/* reset Rx ring */
3197 	wpi_reset_rx_ring(sc, &sc->rxq);
3198 
3199 	wpi_mem_lock(sc);
3200 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3201 	wpi_mem_unlock(sc);
3202 
3203 	DELAY(5);
3204 
3205 	wpi_stop_master(sc);
3206 
3207 	tmp = WPI_READ(sc, WPI_RESET);
3208 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3209 	sc->flags &= ~WPI_FLAG_BUSY;
3210 }
3211 
3212 static void
3213 wpi_stop(struct wpi_softc *sc)
3214 {
3215 	wpi_stop_locked(sc);
3216 }
3217 
3218 static void
3219 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3220 {
3221 	/* XXX move */
3222 	ieee80211_ratectl_node_init(ni);
3223 }
3224 
3225 static void
3226 wpi_calib_timeout_callout(void *arg)
3227 {
3228 	struct wpi_softc *sc = arg;
3229 	struct ifnet *ifp = sc->sc_ifp;
3230 	struct ieee80211com *ic = ifp->if_l2com;
3231 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3232 	int temp;
3233 
3234 	if (vap->iv_state != IEEE80211_S_RUN)
3235 		return;
3236 
3237 	/* update sensor data */
3238 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3239 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3240 
3241 	wpi_power_calibration(sc, temp);
3242 
3243 	callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc);
3244 }
3245 
3246 /*
3247  * This function is called periodically (every 60 seconds) to adjust output
3248  * power to temperature changes.
3249  */
3250 static void
3251 wpi_power_calibration(struct wpi_softc *sc, int temp)
3252 {
3253 	struct ifnet *ifp = sc->sc_ifp;
3254 	struct ieee80211com *ic = ifp->if_l2com;
3255 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3256 
3257 	/* sanity-check read value */
3258 	if (temp < -260 || temp > 25) {
3259 		/* this can't be correct, ignore */
3260 		DPRINTFN(WPI_DEBUG_TEMP,
3261 		    ("out-of-range temperature reported: %d\n", temp));
3262 		return;
3263 	}
3264 
3265 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3266 
3267 	/* adjust Tx power if need be */
3268 	if (abs(temp - sc->temp) <= 6)
3269 		return;
3270 
3271 	sc->temp = temp;
3272 
3273 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3274 		/* just warn, too bad for the automatic calibration... */
3275 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3276 	}
3277 }
3278 
3279 /**
3280  * Read the eeprom to find out what channels are valid for the given
3281  * band and update net80211 with what we find.
3282  */
3283 static void
3284 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3285 {
3286 	struct ifnet *ifp = sc->sc_ifp;
3287 	struct ieee80211com *ic = ifp->if_l2com;
3288 	const struct wpi_chan_band *band = &wpi_bands[n];
3289 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3290 	struct ieee80211_channel *c;
3291 	int chan, i, passive;
3292 
3293 	wpi_read_prom_data(sc, band->addr, channels,
3294 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3295 
3296 	for (i = 0; i < band->nchan; i++) {
3297 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3298 			DPRINTFN(WPI_DEBUG_HW,
3299 			    ("Channel Not Valid: %d, band %d\n",
3300 			     band->chan[i],n));
3301 			continue;
3302 		}
3303 
3304 		passive = 0;
3305 		chan = band->chan[i];
3306 		c = &ic->ic_channels[ic->ic_nchans++];
3307 
3308 		/* is active scan allowed on this channel? */
3309 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3310 			passive = IEEE80211_CHAN_PASSIVE;
3311 		}
3312 
3313 		if (n == 0) {	/* 2GHz band */
3314 			c->ic_ieee = chan;
3315 			c->ic_freq = ieee80211_ieee2mhz(chan,
3316 			    IEEE80211_CHAN_2GHZ);
3317 			c->ic_flags = IEEE80211_CHAN_B | passive;
3318 
3319 			c = &ic->ic_channels[ic->ic_nchans++];
3320 			c->ic_ieee = chan;
3321 			c->ic_freq = ieee80211_ieee2mhz(chan,
3322 			    IEEE80211_CHAN_2GHZ);
3323 			c->ic_flags = IEEE80211_CHAN_G | passive;
3324 
3325 		} else {	/* 5GHz band */
3326 			/*
3327 			 * Some 3945ABG adapters support channels 7, 8, 11
3328 			 * and 12 in the 2GHz *and* 5GHz bands.
3329 			 * Because of limitations in our net80211(9) stack,
3330 			 * we can't support these channels in 5GHz band.
3331 			 * XXX not true; just need to map to proper frequency
3332 			 */
3333 			if (chan <= 14)
3334 				continue;
3335 
3336 			c->ic_ieee = chan;
3337 			c->ic_freq = ieee80211_ieee2mhz(chan,
3338 			    IEEE80211_CHAN_5GHZ);
3339 			c->ic_flags = IEEE80211_CHAN_A | passive;
3340 		}
3341 
3342 		/* save maximum allowed power for this channel */
3343 		sc->maxpwr[chan] = channels[i].maxpwr;
3344 
3345 #if 0
3346 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3347 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3348 		//ic->ic_channels[chan].ic_minpower...
3349 		//ic->ic_channels[chan].ic_maxregtxpower...
3350 #endif
3351 
3352 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3353 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3354 		    channels[i].flags, sc->maxpwr[chan],
3355 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3356 		    ic->ic_nchans));
3357 	}
3358 }
3359 
3360 static void
3361 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3362 {
3363 	struct wpi_power_group *group = &sc->groups[n];
3364 	struct wpi_eeprom_group rgroup;
3365 	int i;
3366 
3367 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3368 	    sizeof rgroup);
3369 
3370 	/* save power group information */
3371 	group->chan   = rgroup.chan;
3372 	group->maxpwr = rgroup.maxpwr;
3373 	/* temperature at which the samples were taken */
3374 	group->temp   = (int16_t)le16toh(rgroup.temp);
3375 
3376 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3377 		    group->chan, group->maxpwr, group->temp));
3378 
3379 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3380 		group->samples[i].index = rgroup.samples[i].index;
3381 		group->samples[i].power = rgroup.samples[i].power;
3382 
3383 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3384 			    group->samples[i].index, group->samples[i].power));
3385 	}
3386 }
3387 
3388 /*
3389  * Update Tx power to match what is defined for channel `c'.
3390  */
3391 static int
3392 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3393 {
3394 	struct ifnet *ifp = sc->sc_ifp;
3395 	struct ieee80211com *ic = ifp->if_l2com;
3396 	struct wpi_power_group *group;
3397 	struct wpi_cmd_txpower txpower;
3398 	u_int chan;
3399 	int i;
3400 
3401 	/* get channel number */
3402 	chan = ieee80211_chan2ieee(ic, c);
3403 
3404 	/* find the power group to which this channel belongs */
3405 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3406 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3407 			if (chan <= group->chan)
3408 				break;
3409 	} else
3410 		group = &sc->groups[0];
3411 
3412 	memset(&txpower, 0, sizeof txpower);
3413 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3414 	txpower.channel = htole16(chan);
3415 
3416 	/* set Tx power for all OFDM and CCK rates */
3417 	for (i = 0; i <= 11 ; i++) {
3418 		/* retrieve Tx power for this channel/rate combination */
3419 		int idx = wpi_get_power_index(sc, group, c,
3420 		    wpi_ridx_to_rate[i]);
3421 
3422 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3423 
3424 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3425 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3426 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3427 		} else {
3428 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3429 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3430 		}
3431 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3432 			    chan, wpi_ridx_to_rate[i], idx));
3433 	}
3434 
3435 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3436 }
3437 
3438 /*
3439  * Determine Tx power index for a given channel/rate combination.
3440  * This takes into account the regulatory information from EEPROM and the
3441  * current temperature.
3442  */
3443 static int
3444 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3445     struct ieee80211_channel *c, int rate)
3446 {
3447 /* fixed-point arithmetic division using a n-bit fractional part */
3448 #define fdivround(a, b, n)      \
3449 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3450 
3451 /* linear interpolation */
3452 #define interpolate(x, x1, y1, x2, y2, n)       \
3453 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3454 
3455 	struct ifnet *ifp = sc->sc_ifp;
3456 	struct ieee80211com *ic = ifp->if_l2com;
3457 	struct wpi_power_sample *sample;
3458 	int pwr, idx;
3459 	u_int chan;
3460 
3461 	/* get channel number */
3462 	chan = ieee80211_chan2ieee(ic, c);
3463 
3464 	/* default power is group's maximum power - 3dB */
3465 	pwr = group->maxpwr / 2;
3466 
3467 	/* decrease power for highest OFDM rates to reduce distortion */
3468 	switch (rate) {
3469 		case 72:	/* 36Mb/s */
3470 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3471 			break;
3472 		case 96:	/* 48Mb/s */
3473 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3474 			break;
3475 		case 108:	/* 54Mb/s */
3476 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3477 			break;
3478 	}
3479 
3480 	/* never exceed channel's maximum allowed Tx power */
3481 	pwr = min(pwr, sc->maxpwr[chan]);
3482 
3483 	/* retrieve power index into gain tables from samples */
3484 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3485 		if (pwr > sample[1].power)
3486 			break;
3487 	/* fixed-point linear interpolation using a 19-bit fractional part */
3488 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3489 	    sample[1].power, sample[1].index, 19);
3490 
3491 	/*
3492 	 *  Adjust power index based on current temperature
3493 	 *	- if colder than factory-calibrated: decreate output power
3494 	 *	- if warmer than factory-calibrated: increase output power
3495 	 */
3496 	idx -= (sc->temp - group->temp) * 11 / 100;
3497 
3498 	/* decrease power for CCK rates (-5dB) */
3499 	if (!WPI_RATE_IS_OFDM(rate))
3500 		idx += 10;
3501 
3502 	/* keep power index in a valid range */
3503 	if (idx < 0)
3504 		return 0;
3505 	if (idx > WPI_MAX_PWR_INDEX)
3506 		return WPI_MAX_PWR_INDEX;
3507 	return idx;
3508 
3509 #undef interpolate
3510 #undef fdivround
3511 }
3512 
3513 /**
3514  * Called by net80211 framework to indicate that a scan
3515  * is starting. This function doesn't actually do the scan,
3516  * wpi_scan_curchan starts things off. This function is more
3517  * of an early warning from the framework we should get ready
3518  * for the scan.
3519  */
3520 static void
3521 wpi_scan_start(struct ieee80211com *ic)
3522 {
3523 	struct ifnet *ifp = ic->ic_ifp;
3524 	struct wpi_softc *sc = ifp->if_softc;
3525 
3526 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3527 }
3528 
3529 /**
3530  * Called by the net80211 framework, indicates that the
3531  * scan has ended. If there is a scan in progress on the card
3532  * then it should be aborted.
3533  */
3534 static void
3535 wpi_scan_end(struct ieee80211com *ic)
3536 {
3537 	/* XXX ignore */
3538 }
3539 
3540 /**
3541  * Called by the net80211 framework to indicate to the driver
3542  * that the channel should be changed
3543  */
3544 static void
3545 wpi_set_channel(struct ieee80211com *ic)
3546 {
3547 	struct ifnet *ifp = ic->ic_ifp;
3548 	struct wpi_softc *sc = ifp->if_softc;
3549 	int error;
3550 
3551 	/*
3552 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3553 	 * are already taken care of by their respective firmware commands.
3554 	 */
3555 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3556 		error = wpi_config(sc);
3557 		if (error != 0)
3558 			device_printf(sc->sc_dev,
3559 			    "error %d settting channel\n", error);
3560 	}
3561 }
3562 
3563 /**
3564  * Called by net80211 to indicate that we need to scan the current
3565  * channel. The channel is previously be set via the wpi_set_channel
3566  * callback.
3567  */
3568 static void
3569 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3570 {
3571 	struct ieee80211vap *vap = ss->ss_vap;
3572 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3573 	struct wpi_softc *sc = ifp->if_softc;
3574 
3575 	if (wpi_scan(sc))
3576 		ieee80211_cancel_scan(vap);
3577 }
3578 
3579 /**
3580  * Called by the net80211 framework to indicate
3581  * the minimum dwell time has been met, terminate the scan.
3582  * We don't actually terminate the scan as the firmware will notify
3583  * us when it's finished and we have no way to interrupt it.
3584  */
3585 static void
3586 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3587 {
3588 	/* NB: don't try to abort scan; wait for firmware to finish */
3589 }
3590 
3591 static void
3592 wpi_hwreset_task(void *arg, int pending)
3593 {
3594 	struct wpi_softc *sc;
3595 
3596 	wlan_serialize_enter();
3597 	sc = arg;
3598 	wpi_init_locked(sc, 0);
3599 	wlan_serialize_exit();
3600 }
3601 
3602 static void
3603 wpi_rfreset_task(void *arg, int pending)
3604 {
3605 	struct wpi_softc *sc;
3606 
3607 	wlan_serialize_enter();
3608 	sc = arg;
3609 	wpi_rfkill_resume(sc);
3610 	wlan_serialize_exit();
3611 }
3612 
3613 /*
3614  * Allocate DMA-safe memory for firmware transfer.
3615  */
3616 static int
3617 wpi_alloc_fwmem(struct wpi_softc *sc)
3618 {
3619 	/* allocate enough contiguous space to store text and data */
3620 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3621 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3622 	    BUS_DMA_NOWAIT);
3623 }
3624 
3625 static void
3626 wpi_free_fwmem(struct wpi_softc *sc)
3627 {
3628 	wpi_dma_contig_free(&sc->fw_dma);
3629 }
3630 
3631 /**
3632  * Called every second, wpi_watchdog_callout used by the watch dog timer
3633  * to check that the card is still alive
3634  */
3635 static void
3636 wpi_watchdog_callout(void *arg)
3637 {
3638 	struct wpi_softc *sc;
3639 	struct ifnet *ifp;
3640 	struct ieee80211com *ic;
3641 	uint32_t tmp;
3642 
3643 	wlan_serialize_enter();
3644 	sc = arg;
3645 	ifp = sc->sc_ifp;
3646 	ic = ifp->if_l2com;
3647 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3648 
3649 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3650 		/* No need to lock firmware memory */
3651 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3652 
3653 		if ((tmp & 0x1) == 0) {
3654 			/* Radio kill switch is still off */
3655 			callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3656 			wlan_serialize_exit();
3657 			return;
3658 		}
3659 
3660 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3661 		ieee80211_runtask(ic, &sc->sc_radiotask);
3662 		wlan_serialize_exit();
3663 		return;
3664 	}
3665 
3666 	if (sc->sc_tx_timer > 0) {
3667 		if (--sc->sc_tx_timer == 0) {
3668 			device_printf(sc->sc_dev,"device timeout\n");
3669 			IFNET_STAT_INC(ifp, oerrors, 1);
3670 			wlan_serialize_exit();
3671 			ieee80211_runtask(ic, &sc->sc_restarttask);
3672 			wlan_serialize_enter();
3673 		}
3674 	}
3675 	if (sc->sc_scan_timer > 0) {
3676 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3677 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3678 			device_printf(sc->sc_dev,"scan timeout\n");
3679 			ieee80211_cancel_scan(vap);
3680 			wlan_serialize_exit();
3681 			ieee80211_runtask(ic, &sc->sc_restarttask);
3682 			wlan_serialize_enter();
3683 		}
3684 	}
3685 
3686 	if (ifp->if_flags & IFF_RUNNING)
3687 		callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc);
3688 
3689 	wlan_serialize_exit();
3690 }
3691 
3692 #ifdef WPI_DEBUG
3693 static const char *wpi_cmd_str(int cmd)
3694 {
3695 	switch (cmd) {
3696 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3697 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3698 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3699 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3700 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3701 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3702 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3703 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3704 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3705 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3706 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3707 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3708 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3709 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3710 
3711 	default:
3712 		KASSERT(1, ("Unknown Command: %d", cmd));
3713 		return "UNKNOWN CMD";	/* Make the compiler happy */
3714 	}
3715 }
3716 #endif
3717 
3718 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3719 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3720 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3721 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3722