xref: /dflybsd-src/sys/dev/netif/wpi/if_wpi.c (revision cf515c3a6f3a8964ad592e524442bc628f8ed63b)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #define VERSION "20071127"
20 
21 #include <sys/cdefs.h>
22 __FBSDID("$FreeBSD$");
23 
24 /*
25  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26  *
27  * The 3945ABG network adapter doesn't use traditional hardware as
28  * many other adaptors do. Instead at run time the eeprom is set into a known
29  * state and told to load boot firmware. The boot firmware loads an init and a
30  * main  binary firmware image into SRAM on the card via DMA.
31  * Once the firmware is loaded, the driver/hw then
32  * communicate by way of circular dma rings via the SRAM to the firmware.
33  *
34  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35  * The 4 tx data rings allow for prioritization QoS.
36  *
37  * The rx data ring consists of 32 dma buffers. Two registers are used to
38  * indicate where in the ring the driver and the firmware are up to. The
39  * driver sets the initial read index (reg1) and the initial write index (reg2),
40  * the firmware updates the read index (reg1) on rx of a packet and fires an
41  * interrupt. The driver then processes the buffers starting at reg1 indicating
42  * to the firmware which buffers have been accessed by updating reg2. At the
43  * same time allocating new memory for the processed buffer.
44  *
45  * A similar thing happens with the tx rings. The difference is the firmware
46  * stop processing buffers once the queue is full and until confirmation
47  * of a successful transmition (tx_intr) has occurred.
48  *
49  * The command ring operates in the same manner as the tx queues.
50  *
51  * All communication direct to the card (ie eeprom) is classed as Stage1
52  * communication
53  *
54  * All communication via the firmware to the card is classed as State2.
55  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56  * firmware. The bootstrap firmware and runtime firmware are loaded
57  * from host memory via dma to the card then told to execute. From this point
58  * on the majority of communications between the driver and the card goes
59  * via the firmware.
60  */
61 
62 #include "opt_wlan.h"
63 
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/sockio.h>
67 #include <sys/mbuf.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/queue.h>
73 #include <sys/taskqueue.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/endian.h>
77 #include <sys/linker.h>
78 #include <sys/firmware.h>
79 
80 #include <sys/stdbool.h>
81 #include <sys/rman.h>
82 
83 #include <bus/pci/pcireg.h>
84 #include <bus/pci/pcivar.h>
85 
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 #include <net/ifq_var.h>
95 
96 #include <netproto/802_11/ieee80211_var.h>
97 #include <netproto/802_11/ieee80211_radiotap.h>
98 #include <netproto/802_11/ieee80211_regdomain.h>
99 #include <netproto/802_11/ieee80211_ratectl.h>
100 
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/in_var.h>
104 #include <netinet/ip.h>
105 #include <netinet/if_ether.h>
106 
107 #include <dev/netif/wpi/if_wpireg.h>
108 #include <dev/netif/wpi/if_wpivar.h>
109 
110 #define WPI_DEBUG
111 
112 #ifdef WPI_DEBUG
113 #define DPRINTF(x)	do { if (wpi_debug != 0) kprintf x; } while (0)
114 #define DPRINTFN(n, x)	do { if (wpi_debug & n) kprintf x; } while (0)
115 #define	WPI_DEBUG_SET	(wpi_debug != 0)
116 
117 enum {
118 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
119 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
120 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
121 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
122 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
123 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
124 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
125 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
126 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
127 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
128 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
129 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
130 	WPI_DEBUG_ANY		= 0xffffffff
131 };
132 
133 static int wpi_debug;
134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135 TUNABLE_INT("debug.wpi", &wpi_debug);
136 
137 #else
138 #define DPRINTF(x)
139 #define DPRINTFN(n, x)
140 #define WPI_DEBUG_SET	0
141 #endif
142 
143 struct wpi_ident {
144 	uint16_t	vendor;
145 	uint16_t	device;
146 	uint16_t	subdevice;
147 	const char	*name;
148 };
149 
150 static const struct wpi_ident wpi_ident_table[] = {
151 	/* The below entries support ABG regardless of the subid */
152 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154 	/* The below entries only support BG */
155 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159 	{ 0, 0, 0, NULL }
160 };
161 
162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
164 		    const uint8_t [IEEE80211_ADDR_LEN],
165 		    const uint8_t [IEEE80211_ADDR_LEN]);
166 static void	wpi_vap_delete(struct ieee80211vap *);
167 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168 		    void **, bus_size_t, bus_size_t, int);
169 static void	wpi_dma_contig_free(struct wpi_dma_info *);
170 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171 static int	wpi_alloc_shared(struct wpi_softc *);
172 static void	wpi_free_shared(struct wpi_softc *);
173 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177 		    int, int);
178 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
181 static void	wpi_mem_lock(struct wpi_softc *);
182 static void	wpi_mem_unlock(struct wpi_softc *);
183 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
184 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
185 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
186 		    const uint32_t *, int);
187 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
188 static int	wpi_alloc_fwmem(struct wpi_softc *);
189 static void	wpi_free_fwmem(struct wpi_softc *);
190 static int	wpi_load_firmware(struct wpi_softc *);
191 static void	wpi_unload_firmware(struct wpi_softc *);
192 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
193 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
194 		    struct wpi_rx_data *);
195 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
196 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
197 static void	wpi_notif_intr(struct wpi_softc *);
198 static void	wpi_intr(void *);
199 static uint8_t	wpi_plcp_signal(int);
200 static void	wpi_watchdog(void *);
201 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
202 		    struct ieee80211_node *, int);
203 static void	wpi_start(struct ifnet *, struct ifaltq_subque *);
204 static void	wpi_start_locked(struct ifnet *);
205 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
206 		    const struct ieee80211_bpf_params *);
207 static void	wpi_scan_start(struct ieee80211com *);
208 static void	wpi_scan_end(struct ieee80211com *);
209 static void	wpi_set_channel(struct ieee80211com *);
210 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
211 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
212 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
213 static void	wpi_read_eeprom(struct wpi_softc *,
214 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
215 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
216 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
217 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
218 static int	wpi_wme_update(struct ieee80211com *);
219 static int	wpi_mrr_setup(struct wpi_softc *);
220 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
221 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
222 #if 0
223 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
224 #endif
225 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
226 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
227 static int	wpi_scan(struct wpi_softc *);
228 static int	wpi_config(struct wpi_softc *);
229 static void	wpi_stop_master(struct wpi_softc *);
230 static int	wpi_power_up(struct wpi_softc *);
231 static int	wpi_reset(struct wpi_softc *);
232 static void	wpi_hwreset(void *, int);
233 static void	wpi_rfreset(void *, int);
234 static void	wpi_hw_config(struct wpi_softc *);
235 static void	wpi_init(void *);
236 static void	wpi_init_locked(struct wpi_softc *, int);
237 static void	wpi_stop(struct wpi_softc *);
238 static void	wpi_stop_locked(struct wpi_softc *);
239 
240 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
241 		    int);
242 static void	wpi_calib_timeout(void *);
243 static void	wpi_power_calibration(struct wpi_softc *, int);
244 static int	wpi_get_power_index(struct wpi_softc *,
245 		    struct wpi_power_group *, struct ieee80211_channel *, int);
246 #ifdef WPI_DEBUG
247 static const char *wpi_cmd_str(int);
248 #endif
249 static int wpi_probe(device_t);
250 static int wpi_attach(device_t);
251 static int wpi_detach(device_t);
252 static int wpi_shutdown(device_t);
253 static int wpi_suspend(device_t);
254 static int wpi_resume(device_t);
255 
256 #if defined(__DragonFly__)
257 static int  wpi_sleep(struct wpi_softc *sc, void *wchan,
258 		int flags, const char *wmsg, int timo);
259 #endif
260 
261 static device_method_t wpi_methods[] = {
262 	/* Device interface */
263 	DEVMETHOD(device_probe,		wpi_probe),
264 	DEVMETHOD(device_attach,	wpi_attach),
265 	DEVMETHOD(device_detach,	wpi_detach),
266 	DEVMETHOD(device_shutdown,	wpi_shutdown),
267 	DEVMETHOD(device_suspend,	wpi_suspend),
268 	DEVMETHOD(device_resume,	wpi_resume),
269 
270 	DEVMETHOD_END
271 };
272 
273 static driver_t wpi_driver = {
274 	"wpi",
275 	wpi_methods,
276 	sizeof (struct wpi_softc)
277 };
278 
279 static devclass_t wpi_devclass;
280 
281 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
282 
283 MODULE_VERSION(wpi, 1);
284 
285 static const uint8_t wpi_ridx_to_plcp[] = {
286 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
287 	/* R1-R4 (ral/ural is R4-R1) */
288 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
289 	/* CCK: device-dependent */
290 	10, 20, 55, 110
291 };
292 
293 static const uint8_t wpi_ridx_to_rate[] = {
294 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
295 	2, 4, 11, 22 /*CCK */
296 };
297 
298 static int
299 wpi_probe(device_t dev)
300 {
301 	const struct wpi_ident *ident;
302 
303 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
304 		if (pci_get_vendor(dev) == ident->vendor &&
305 		    pci_get_device(dev) == ident->device) {
306 			device_set_desc(dev, ident->name);
307 			return (BUS_PROBE_DEFAULT);
308 		}
309 	}
310 	return ENXIO;
311 }
312 
313 /**
314  * Load the firmare image from disk to the allocated dma buffer.
315  * we also maintain the reference to the firmware pointer as there
316  * is times where we may need to reload the firmware but we are not
317  * in a context that can access the filesystem (ie taskq cause by restart)
318  *
319  * @return 0 on success, an errno on failure
320  */
321 static int
322 wpi_load_firmware(struct wpi_softc *sc)
323 {
324 	const struct firmware *fp;
325 	struct wpi_dma_info *dma = &sc->fw_dma;
326 	const struct wpi_firmware_hdr *hdr;
327 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
328 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
329 	int error;
330 
331 	DPRINTFN(WPI_DEBUG_FIRMWARE,
332 	    ("Attempting Loading Firmware from wpi_fw module\n"));
333 
334 	WPI_UNLOCK(sc);
335 
336 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
337 		device_printf(sc->sc_dev,
338 		    "could not load firmware image 'wpifw'\n");
339 		error = ENOENT;
340 		WPI_LOCK(sc);
341 		goto fail;
342 	}
343 
344 	fp = sc->fw_fp;
345 
346 	WPI_LOCK(sc);
347 
348 	/* Validate the firmware is minimum a particular version */
349 	if (fp->version < WPI_FW_MINVERSION) {
350 	    device_printf(sc->sc_dev,
351 			   "firmware version is too old. Need %d, got %d\n",
352 			   WPI_FW_MINVERSION,
353 			   fp->version);
354 	    error = ENXIO;
355 	    goto fail;
356 	}
357 
358 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
359 		device_printf(sc->sc_dev,
360 		    "firmware file too short: %zu bytes\n", fp->datasize);
361 		error = ENXIO;
362 		goto fail;
363 	}
364 
365 	hdr = (const struct wpi_firmware_hdr *)fp->data;
366 
367 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
368 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
369 
370 	rtextsz = le32toh(hdr->rtextsz);
371 	rdatasz = le32toh(hdr->rdatasz);
372 	itextsz = le32toh(hdr->itextsz);
373 	idatasz = le32toh(hdr->idatasz);
374 	btextsz = le32toh(hdr->btextsz);
375 
376 	/* check that all firmware segments are present */
377 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
378 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
379 		device_printf(sc->sc_dev,
380 		    "firmware file too short: %zu bytes\n", fp->datasize);
381 		error = ENXIO; /* XXX appropriate error code? */
382 		goto fail;
383 	}
384 
385 	/* get pointers to firmware segments */
386 	rtext = (const uint8_t *)(hdr + 1);
387 	rdata = rtext + rtextsz;
388 	itext = rdata + rdatasz;
389 	idata = itext + itextsz;
390 	btext = idata + idatasz;
391 
392 	DPRINTFN(WPI_DEBUG_FIRMWARE,
393 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
394 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
395 	     (le32toh(hdr->version) & 0xff000000) >> 24,
396 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
397 	     (le32toh(hdr->version) & 0x0000ffff),
398 	     rtextsz, rdatasz,
399 	     itextsz, idatasz, btextsz));
400 
401 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
402 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
403 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
404 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
405 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
406 
407 	/* sanity checks */
408 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
409 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
410 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
411 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
412 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
413 	    (btextsz & 3) != 0) {
414 		device_printf(sc->sc_dev, "firmware invalid\n");
415 		error = EINVAL;
416 		goto fail;
417 	}
418 
419 	/* copy initialization images into pre-allocated DMA-safe memory */
420 	memcpy(dma->vaddr, idata, idatasz);
421 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
422 
423 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
424 
425 	/* tell adapter where to find initialization images */
426 	wpi_mem_lock(sc);
427 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
428 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
429 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
430 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
431 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
432 	wpi_mem_unlock(sc);
433 
434 	/* load firmware boot code */
435 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
436 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
437 	    goto fail;
438 	}
439 
440 	/* now press "execute" */
441 	WPI_WRITE(sc, WPI_RESET, 0);
442 
443 	/* wait at most one second for the first alive notification */
444 #if defined(__DragonFly__)
445 	if ((error = wpi_sleep(sc, sc, PCATCH, "wpiinit", hz)) != 0) {
446 		device_printf(sc->sc_dev,
447 		    "timeout waiting for adapter to initialize\n");
448 		goto fail;
449 	}
450 #else
451 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
452 		device_printf(sc->sc_dev,
453 		    "timeout waiting for adapter to initialize\n");
454 		goto fail;
455 	}
456 #endif
457 
458 	/* copy runtime images into pre-allocated DMA-sage memory */
459 	memcpy(dma->vaddr, rdata, rdatasz);
460 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
461 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
462 
463 	/* tell adapter where to find runtime images */
464 	wpi_mem_lock(sc);
465 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
466 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
467 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
468 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
469 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
470 	wpi_mem_unlock(sc);
471 
472 	/* wait at most one second for the first alive notification */
473 #if defined(__DragonFly__)
474 	if ((error = wpi_sleep(sc, sc, PCATCH, "wpiinit", hz)) != 0) {
475 		device_printf(sc->sc_dev,
476 		    "timeout waiting for adapter to initialize2\n");
477 		goto fail;
478 	}
479 #else
480 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
481 		device_printf(sc->sc_dev,
482 		    "timeout waiting for adapter to initialize2\n");
483 		goto fail;
484 	}
485 #endif
486 
487 	DPRINTFN(WPI_DEBUG_FIRMWARE,
488 	    ("Firmware loaded to driver successfully\n"));
489 	return error;
490 fail:
491 	wpi_unload_firmware(sc);
492 	return error;
493 }
494 
495 /**
496  * Free the referenced firmware image
497  */
498 static void
499 wpi_unload_firmware(struct wpi_softc *sc)
500 {
501 
502 	if (sc->fw_fp) {
503 		WPI_UNLOCK(sc);
504 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
505 		WPI_LOCK(sc);
506 		sc->fw_fp = NULL;
507 	}
508 }
509 
510 static int
511 wpi_attach(device_t dev)
512 {
513 	struct wpi_softc *sc = device_get_softc(dev);
514 	struct ifnet *ifp;
515 	struct ieee80211com *ic;
516 	int ac, error, rid, supportsa = 1;
517 	uint32_t tmp;
518 	const struct wpi_ident *ident;
519 	uint8_t macaddr[IEEE80211_ADDR_LEN];
520 
521 	sc->sc_dev = dev;
522 
523 	if (bootverbose || WPI_DEBUG_SET)
524 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
525 
526 	/*
527 	 * Some card's only support 802.11b/g not a, check to see if
528 	 * this is one such card. A 0x0 in the subdevice table indicates
529 	 * the entire subdevice range is to be ignored.
530 	 */
531 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
532 		if (ident->subdevice &&
533 		    pci_get_subdevice(dev) == ident->subdevice) {
534 		    supportsa = 0;
535 		    break;
536 		}
537 	}
538 
539 	/* Create the tasks that can be queued */
540 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
541 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
542 
543 	WPI_LOCK_INIT(sc);
544 
545 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
546 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
547 
548 	/* disable the retry timeout register */
549 	pci_write_config(dev, 0x41, 0, 1);
550 
551 	/* enable bus-mastering */
552 	pci_enable_busmaster(dev);
553 
554 	rid = PCIR_BAR(0);
555 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
556 	    RF_ACTIVE);
557 	if (sc->mem == NULL) {
558 		device_printf(dev, "could not allocate memory resource\n");
559 		error = ENOMEM;
560 		goto fail;
561 	}
562 
563 	sc->sc_st = rman_get_bustag(sc->mem);
564 	sc->sc_sh = rman_get_bushandle(sc->mem);
565 
566 	rid = 0;
567 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
568 	    RF_ACTIVE | RF_SHAREABLE);
569 	if (sc->irq == NULL) {
570 		device_printf(dev, "could not allocate interrupt resource\n");
571 		error = ENOMEM;
572 		goto fail;
573 	}
574 
575 	/*
576 	 * Allocate DMA memory for firmware transfers.
577 	 */
578 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
579 		kprintf(": could not allocate firmware memory\n");
580 		error = ENOMEM;
581 		goto fail;
582 	}
583 
584 	/*
585 	 * Put adapter into a known state.
586 	 */
587 	if ((error = wpi_reset(sc)) != 0) {
588 		device_printf(dev, "could not reset adapter\n");
589 		goto fail;
590 	}
591 
592 	wpi_mem_lock(sc);
593 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
594 	if (bootverbose || WPI_DEBUG_SET)
595 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
596 
597 	wpi_mem_unlock(sc);
598 
599 	/* Allocate shared page */
600 	if ((error = wpi_alloc_shared(sc)) != 0) {
601 		device_printf(dev, "could not allocate shared page\n");
602 		goto fail;
603 	}
604 
605 	/* tx data queues  - 4 for QoS purposes */
606 	for (ac = 0; ac < WME_NUM_AC; ac++) {
607 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
608 		if (error != 0) {
609 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
610 		    goto fail;
611 		}
612 	}
613 
614 	/* command queue to talk to the card's firmware */
615 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
616 	if (error != 0) {
617 		device_printf(dev, "could not allocate command ring\n");
618 		goto fail;
619 	}
620 
621 	/* receive data queue */
622 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
623 	if (error != 0) {
624 		device_printf(dev, "could not allocate Rx ring\n");
625 		goto fail;
626 	}
627 
628 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
629 	if (ifp == NULL) {
630 		device_printf(dev, "can not if_alloc()\n");
631 		error = ENOMEM;
632 		goto fail;
633 	}
634 	ic = ifp->if_l2com;
635 
636 	ic->ic_ifp = ifp;
637 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
638 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
639 
640 	/* set device capabilities */
641 	ic->ic_caps =
642 		  IEEE80211_C_STA		/* station mode supported */
643 		| IEEE80211_C_MONITOR		/* monitor mode supported */
644 		| IEEE80211_C_TXPMGT		/* tx power management */
645 		| IEEE80211_C_SHSLOT		/* short slot time supported */
646 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
647 		| IEEE80211_C_WPA		/* 802.11i */
648 /* XXX looks like WME is partly supported? */
649 #if 0
650 		| IEEE80211_C_IBSS		/* IBSS mode support */
651 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
652 		| IEEE80211_C_WME		/* 802.11e */
653 		| IEEE80211_C_HOSTAP		/* Host access point mode */
654 #endif
655 		;
656 
657 	/*
658 	 * Read in the eeprom and also setup the channels for
659 	 * net80211. We don't set the rates as net80211 does this for us
660 	 */
661 	wpi_read_eeprom(sc, macaddr);
662 
663 	if (bootverbose || WPI_DEBUG_SET) {
664 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
665 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
666 			  sc->type > 1 ? 'B': '?');
667 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
668 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
669 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
670 			  supportsa ? "does" : "does not");
671 
672 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
673 	       what sc->rev really represents - benjsc 20070615 */
674 	}
675 
676 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
677 	ifp->if_softc = sc;
678 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
679 	ifp->if_init = wpi_init;
680 	ifp->if_ioctl = wpi_ioctl;
681 	ifp->if_start = wpi_start;
682 #if defined(__DragonFly__)
683 	ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
684 #else
685 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
686 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
687 	IFQ_SET_READY(&ifp->if_snd);
688 #endif
689 
690 	ieee80211_ifattach(ic, macaddr);
691 	/* override default methods */
692 	ic->ic_raw_xmit = wpi_raw_xmit;
693 	ic->ic_wme.wme_update = wpi_wme_update;
694 	ic->ic_scan_start = wpi_scan_start;
695 	ic->ic_scan_end = wpi_scan_end;
696 	ic->ic_set_channel = wpi_set_channel;
697 	ic->ic_scan_curchan = wpi_scan_curchan;
698 	ic->ic_scan_mindwell = wpi_scan_mindwell;
699 
700 	ic->ic_vap_create = wpi_vap_create;
701 	ic->ic_vap_delete = wpi_vap_delete;
702 
703 	ieee80211_radiotap_attach(ic,
704 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
705 		WPI_TX_RADIOTAP_PRESENT,
706 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
707 		WPI_RX_RADIOTAP_PRESENT);
708 
709 	/*
710 	 * Hook our interrupt after all initialization is complete.
711 	 */
712 #if defined (__DragonFly__)
713 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
714 	    wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
715 #else
716 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
717 	    NULL, wpi_intr, sc, &sc->sc_ih);
718 #endif
719 	if (error != 0) {
720 		device_printf(dev, "could not set up interrupt\n");
721 		goto fail;
722 	}
723 
724 	if (bootverbose)
725 		ieee80211_announce(ic);
726 #ifdef XXX_DEBUG
727 	ieee80211_announce_channels(ic);
728 #endif
729 	return 0;
730 
731 fail:	wpi_detach(dev);
732 	return ENXIO;
733 }
734 
735 static int
736 wpi_detach(device_t dev)
737 {
738 	struct wpi_softc *sc = device_get_softc(dev);
739 	struct ifnet *ifp = sc->sc_ifp;
740 	struct ieee80211com *ic;
741 	int ac;
742 
743 	if (sc->irq != NULL)
744 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
745 
746 	if (ifp != NULL) {
747 		ic = ifp->if_l2com;
748 
749 		ieee80211_draintask(ic, &sc->sc_restarttask);
750 		ieee80211_draintask(ic, &sc->sc_radiotask);
751 		wpi_stop(sc);
752 		callout_drain(&sc->watchdog_to);
753 		callout_drain(&sc->calib_to);
754 		ieee80211_ifdetach(ic);
755 	}
756 
757 	WPI_LOCK(sc);
758 	if (sc->txq[0].data_dmat) {
759 		for (ac = 0; ac < WME_NUM_AC; ac++)
760 			wpi_free_tx_ring(sc, &sc->txq[ac]);
761 
762 		wpi_free_tx_ring(sc, &sc->cmdq);
763 		wpi_free_rx_ring(sc, &sc->rxq);
764 		wpi_free_shared(sc);
765 	}
766 
767 	if (sc->fw_fp != NULL) {
768 		wpi_unload_firmware(sc);
769 	}
770 
771 	if (sc->fw_dma.tag)
772 		wpi_free_fwmem(sc);
773 	WPI_UNLOCK(sc);
774 
775 	if (sc->irq != NULL)
776 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
777 		    sc->irq);
778 	if (sc->mem != NULL)
779 		bus_release_resource(dev, SYS_RES_MEMORY,
780 		    rman_get_rid(sc->mem), sc->mem);
781 
782 	if (ifp != NULL)
783 		if_free(ifp);
784 
785 	WPI_LOCK_DESTROY(sc);
786 
787 	return 0;
788 }
789 
790 static struct ieee80211vap *
791 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
792     enum ieee80211_opmode opmode, int flags,
793     const uint8_t bssid[IEEE80211_ADDR_LEN],
794     const uint8_t mac[IEEE80211_ADDR_LEN])
795 {
796 	struct wpi_vap *wvp;
797 	struct ieee80211vap *vap;
798 
799 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
800 		return NULL;
801 	wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
802 	    M_80211_VAP, M_INTWAIT | M_ZERO);
803 	if (wvp == NULL)
804 		return NULL;
805 	vap = &wvp->vap;
806 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
807 	/* override with driver methods */
808 	wvp->newstate = vap->iv_newstate;
809 	vap->iv_newstate = wpi_newstate;
810 
811 	ieee80211_ratectl_init(vap);
812 	/* complete setup */
813 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
814 	ic->ic_opmode = opmode;
815 	return vap;
816 }
817 
818 static void
819 wpi_vap_delete(struct ieee80211vap *vap)
820 {
821 	struct wpi_vap *wvp = WPI_VAP(vap);
822 
823 	ieee80211_ratectl_deinit(vap);
824 	ieee80211_vap_detach(vap);
825 	kfree(wvp, M_80211_VAP);
826 }
827 
828 static void
829 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
830 {
831 	if (error != 0)
832 		return;
833 
834 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
835 
836 	*(bus_addr_t *)arg = segs[0].ds_addr;
837 }
838 
839 /*
840  * Allocates a contiguous block of dma memory of the requested size and
841  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
842  * allocations greater than 4096 may fail. Hence if the requested alignment is
843  * greater we allocate 'alignment' size extra memory and shift the vaddr and
844  * paddr after the dma load. This bypasses the problem at the cost of a little
845  * more memory.
846  */
847 static int
848 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
849     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
850 {
851 	int error;
852 	bus_size_t align;
853 	bus_size_t reqsize;
854 
855 	DPRINTFN(WPI_DEBUG_DMA,
856 	    ("Size: %zd - alignment %zd\n", size, alignment));
857 
858 	dma->size = size;
859 	dma->tag = NULL;
860 
861 	if (alignment > 4096) {
862 		align = PAGE_SIZE;
863 		reqsize = size + alignment;
864 	} else {
865 		align = alignment;
866 		reqsize = size;
867 	}
868 #if defined(__DragonFly__)
869 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
870 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
871 	    NULL, NULL, reqsize,
872 	    1, reqsize, flags,
873 	    &dma->tag);
874 #else
875 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
876 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
877 	    NULL, NULL, reqsize,
878 	    1, reqsize, flags,
879 	    NULL, NULL, &dma->tag);
880 #endif
881 	if (error != 0) {
882 		device_printf(sc->sc_dev,
883 		    "could not create shared page DMA tag\n");
884 		goto fail;
885 	}
886 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
887 	    flags | BUS_DMA_ZERO, &dma->map);
888 	if (error != 0) {
889 		device_printf(sc->sc_dev,
890 		    "could not allocate shared page DMA memory\n");
891 		goto fail;
892 	}
893 
894 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
895 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
896 
897 	/* Save the original pointers so we can free all the memory */
898 	dma->paddr = dma->paddr_start;
899 	dma->vaddr = dma->vaddr_start;
900 
901 	/*
902 	 * Check the alignment and increment by 4096 until we get the
903 	 * requested alignment. Fail if can't obtain the alignment
904 	 * we requested.
905 	 */
906 	if ((dma->paddr & (alignment -1 )) != 0) {
907 		int i;
908 
909 		for (i = 0; i < alignment / 4096; i++) {
910 			if ((dma->paddr & (alignment - 1 )) == 0)
911 				break;
912 			dma->paddr += 4096;
913 			dma->vaddr += 4096;
914 		}
915 		if (i == alignment / 4096) {
916 			device_printf(sc->sc_dev,
917 			    "alignment requirement was not satisfied\n");
918 			goto fail;
919 		}
920 	}
921 
922 	if (error != 0) {
923 		device_printf(sc->sc_dev,
924 		    "could not load shared page DMA map\n");
925 		goto fail;
926 	}
927 
928 	if (kvap != NULL)
929 		*kvap = dma->vaddr;
930 
931 	return 0;
932 
933 fail:
934 	wpi_dma_contig_free(dma);
935 	return error;
936 }
937 
938 static void
939 wpi_dma_contig_free(struct wpi_dma_info *dma)
940 {
941 	if (dma->tag) {
942 		if (dma->vaddr_start != NULL) {
943 			if (dma->paddr_start != 0) {
944 				bus_dmamap_sync(dma->tag, dma->map,
945 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
946 				bus_dmamap_unload(dma->tag, dma->map);
947 			}
948 			bus_dmamem_free(dma->tag, dma->vaddr_start, dma->map);
949 		}
950 		bus_dma_tag_destroy(dma->tag);
951 	}
952 }
953 
954 /*
955  * Allocate a shared page between host and NIC.
956  */
957 static int
958 wpi_alloc_shared(struct wpi_softc *sc)
959 {
960 	int error;
961 
962 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
963 	    (void **)&sc->shared, sizeof (struct wpi_shared),
964 	    PAGE_SIZE,
965 	    BUS_DMA_NOWAIT);
966 
967 	if (error != 0) {
968 		device_printf(sc->sc_dev,
969 		    "could not allocate shared area DMA memory\n");
970 	}
971 
972 	return error;
973 }
974 
975 static void
976 wpi_free_shared(struct wpi_softc *sc)
977 {
978 	wpi_dma_contig_free(&sc->shared_dma);
979 }
980 
981 static int
982 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
983 {
984 
985 	int i, error;
986 
987 	ring->cur = 0;
988 
989 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
990 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
991 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
992 
993 	if (error != 0) {
994 		device_printf(sc->sc_dev,
995 		    "%s: could not allocate rx ring DMA memory, error %d\n",
996 		    __func__, error);
997 		goto fail;
998 	}
999 
1000 #if defined(__DragonFly__)
1001         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1002 	    BUS_SPACE_MAXADDR_32BIT,
1003             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
1004             MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
1005 #else
1006         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1007 	    BUS_SPACE_MAXADDR_32BIT,
1008             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
1009             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
1010 #endif
1011         if (error != 0) {
1012                 device_printf(sc->sc_dev,
1013 		    "%s: bus_dma_tag_create_failed, error %d\n",
1014 		    __func__, error);
1015                 goto fail;
1016         }
1017 
1018 	/*
1019 	 * Setup Rx buffers.
1020 	 */
1021 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1022 		struct wpi_rx_data *data = &ring->data[i];
1023 		struct mbuf *m;
1024 		bus_addr_t paddr;
1025 
1026 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1027 		if (error != 0) {
1028 			device_printf(sc->sc_dev,
1029 			    "%s: bus_dmamap_create failed, error %d\n",
1030 			    __func__, error);
1031 			goto fail;
1032 		}
1033 		m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1034 		if (m == NULL) {
1035 			device_printf(sc->sc_dev,
1036 			   "%s: could not allocate rx mbuf\n", __func__);
1037 			error = ENOMEM;
1038 			goto fail;
1039 		}
1040 		/* map page */
1041 		error = bus_dmamap_load(ring->data_dmat, data->map,
1042 		    mtod(m, caddr_t), MJUMPAGESIZE,
1043 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1044 		if (error != 0 && error != EFBIG) {
1045 			device_printf(sc->sc_dev,
1046 			    "%s: bus_dmamap_load failed, error %d\n",
1047 			    __func__, error);
1048 			m_freem(m);
1049 			error = ENOMEM;	/* XXX unique code */
1050 			goto fail;
1051 		}
1052 		bus_dmamap_sync(ring->data_dmat, data->map,
1053 		    BUS_DMASYNC_PREWRITE);
1054 
1055 		data->m = m;
1056 		ring->desc[i] = htole32(paddr);
1057 	}
1058 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1059 	    BUS_DMASYNC_PREWRITE);
1060 	return 0;
1061 fail:
1062 	wpi_free_rx_ring(sc, ring);
1063 	return error;
1064 }
1065 
1066 static void
1067 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1068 {
1069 	int ntries;
1070 
1071 	wpi_mem_lock(sc);
1072 
1073 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1074 
1075 	for (ntries = 0; ntries < 100; ntries++) {
1076 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1077 			break;
1078 		DELAY(10);
1079 	}
1080 
1081 	wpi_mem_unlock(sc);
1082 
1083 #ifdef WPI_DEBUG
1084 	if (ntries == 100 && wpi_debug > 0)
1085 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1086 #endif
1087 
1088 	ring->cur = 0;
1089 }
1090 
1091 static void
1092 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1093 {
1094 	int i;
1095 
1096 	wpi_dma_contig_free(&ring->desc_dma);
1097 
1098 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1099 		struct wpi_rx_data *data = &ring->data[i];
1100 
1101 		if (data->m != NULL) {
1102 			bus_dmamap_sync(ring->data_dmat, data->map,
1103 			    BUS_DMASYNC_POSTREAD);
1104 			bus_dmamap_unload(ring->data_dmat, data->map);
1105 			m_freem(data->m);
1106 		}
1107 		if (data->map != NULL)
1108 			bus_dmamap_destroy(ring->data_dmat, data->map);
1109 	}
1110 }
1111 
1112 static int
1113 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1114 	int qid)
1115 {
1116 	struct wpi_tx_data *data;
1117 	int i, error;
1118 
1119 	ring->qid = qid;
1120 	ring->count = count;
1121 	ring->queued = 0;
1122 	ring->cur = 0;
1123 	ring->data = NULL;
1124 
1125 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1126 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1127 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1128 
1129 	if (error != 0) {
1130 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1131 	    goto fail;
1132 	}
1133 
1134 	/* update shared page with ring's base address */
1135 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1136 
1137 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1138 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1139 		BUS_DMA_NOWAIT);
1140 
1141 	if (error != 0) {
1142 		device_printf(sc->sc_dev,
1143 		    "could not allocate tx command DMA memory\n");
1144 		goto fail;
1145 	}
1146 
1147 	ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1148 	    M_INTWAIT | M_ZERO);
1149 	if (ring->data == NULL) {
1150 		device_printf(sc->sc_dev,
1151 		    "could not allocate tx data slots\n");
1152 		goto fail;
1153 	}
1154 
1155 #if defined(__DragonFly__)
1156 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1157 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1158 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT,
1159 	    &ring->data_dmat);
1160 #else
1161 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1162 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1163 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1164 	    &ring->data_dmat);
1165 #endif
1166 	if (error != 0) {
1167 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1168 		goto fail;
1169 	}
1170 
1171 	for (i = 0; i < count; i++) {
1172 		data = &ring->data[i];
1173 
1174 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1175 		if (error != 0) {
1176 			device_printf(sc->sc_dev,
1177 			    "could not create tx buf DMA map\n");
1178 			goto fail;
1179 		}
1180 		bus_dmamap_sync(ring->data_dmat, data->map,
1181 		    BUS_DMASYNC_PREWRITE);
1182 	}
1183 
1184 	return 0;
1185 
1186 fail:
1187 	wpi_free_tx_ring(sc, ring);
1188 	return error;
1189 }
1190 
1191 static void
1192 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1193 {
1194 	struct wpi_tx_data *data;
1195 	int i, ntries;
1196 
1197 	wpi_mem_lock(sc);
1198 
1199 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1200 	for (ntries = 0; ntries < 100; ntries++) {
1201 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1202 			break;
1203 		DELAY(10);
1204 	}
1205 #ifdef WPI_DEBUG
1206 	if (ntries == 100 && wpi_debug > 0)
1207 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1208 		    ring->qid);
1209 #endif
1210 	wpi_mem_unlock(sc);
1211 
1212 	for (i = 0; i < ring->count; i++) {
1213 		data = &ring->data[i];
1214 
1215 		if (data->m != NULL) {
1216 			bus_dmamap_unload(ring->data_dmat, data->map);
1217 			m_freem(data->m);
1218 			data->m = NULL;
1219 		}
1220 	}
1221 
1222 	ring->queued = 0;
1223 	ring->cur = 0;
1224 }
1225 
1226 static void
1227 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1228 {
1229 	struct wpi_tx_data *data;
1230 	int i;
1231 
1232 	wpi_dma_contig_free(&ring->desc_dma);
1233 	wpi_dma_contig_free(&ring->cmd_dma);
1234 
1235 	if (ring->data != NULL) {
1236 		for (i = 0; i < ring->count; i++) {
1237 			data = &ring->data[i];
1238 
1239 			if (data->m != NULL) {
1240 				bus_dmamap_sync(ring->data_dmat, data->map,
1241 				    BUS_DMASYNC_POSTWRITE);
1242 				bus_dmamap_unload(ring->data_dmat, data->map);
1243 				m_freem(data->m);
1244 				data->m = NULL;
1245 			}
1246 		}
1247 		kfree(ring->data, M_DEVBUF);
1248 	}
1249 
1250 	if (ring->data_dmat != NULL)
1251 		bus_dma_tag_destroy(ring->data_dmat);
1252 }
1253 
1254 static int
1255 wpi_shutdown(device_t dev)
1256 {
1257 	struct wpi_softc *sc = device_get_softc(dev);
1258 
1259 	WPI_LOCK(sc);
1260 	wpi_stop_locked(sc);
1261 	wpi_unload_firmware(sc);
1262 	WPI_UNLOCK(sc);
1263 
1264 	return 0;
1265 }
1266 
1267 static int
1268 wpi_suspend(device_t dev)
1269 {
1270 	struct wpi_softc *sc = device_get_softc(dev);
1271 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1272 
1273 	ieee80211_suspend_all(ic);
1274 	return 0;
1275 }
1276 
1277 static int
1278 wpi_resume(device_t dev)
1279 {
1280 	struct wpi_softc *sc = device_get_softc(dev);
1281 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1282 
1283 	pci_write_config(dev, 0x41, 0, 1);
1284 
1285 	ieee80211_resume_all(ic);
1286 	return 0;
1287 }
1288 
1289 /**
1290  * Called by net80211 when ever there is a change to 80211 state machine
1291  */
1292 static int
1293 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1294 {
1295 	struct wpi_vap *wvp = WPI_VAP(vap);
1296 	struct ieee80211com *ic = vap->iv_ic;
1297 	struct ifnet *ifp = ic->ic_ifp;
1298 	struct wpi_softc *sc = ifp->if_softc;
1299 	int error;
1300 
1301 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1302 		ieee80211_state_name[vap->iv_state],
1303 		ieee80211_state_name[nstate], sc->flags));
1304 
1305 	IEEE80211_UNLOCK(ic);
1306 	WPI_LOCK(sc);
1307 	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1308 		/*
1309 		 * On !INIT -> SCAN transitions, we need to clear any possible
1310 		 * knowledge about associations.
1311 		 */
1312 		error = wpi_config(sc);
1313 		if (error != 0) {
1314 			device_printf(sc->sc_dev,
1315 			    "%s: device config failed, error %d\n",
1316 			    __func__, error);
1317 		}
1318 	}
1319 	if (nstate == IEEE80211_S_AUTH ||
1320 	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1321 		/*
1322 		 * The node must be registered in the firmware before auth.
1323 		 * Also the associd must be cleared on RUN -> ASSOC
1324 		 * transitions.
1325 		 */
1326 		error = wpi_auth(sc, vap);
1327 		if (error != 0) {
1328 			device_printf(sc->sc_dev,
1329 			    "%s: could not move to auth state, error %d\n",
1330 			    __func__, error);
1331 		}
1332 	}
1333 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1334 		error = wpi_run(sc, vap);
1335 		if (error != 0) {
1336 			device_printf(sc->sc_dev,
1337 			    "%s: could not move to run state, error %d\n",
1338 			    __func__, error);
1339 		}
1340 	}
1341 	if (nstate == IEEE80211_S_RUN) {
1342 		/* RUN -> RUN transition; just restart the timers */
1343 		wpi_calib_timeout(sc);
1344 		/* XXX split out rate control timer */
1345 	}
1346 	WPI_UNLOCK(sc);
1347 	IEEE80211_LOCK(ic);
1348 	return wvp->newstate(vap, nstate, arg);
1349 }
1350 
1351 /*
1352  * Grab exclusive access to NIC memory.
1353  */
1354 static void
1355 wpi_mem_lock(struct wpi_softc *sc)
1356 {
1357 	int ntries;
1358 	uint32_t tmp;
1359 
1360 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1361 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1362 
1363 	/* spin until we actually get the lock */
1364 	for (ntries = 0; ntries < 100; ntries++) {
1365 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1366 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1367 			break;
1368 		DELAY(10);
1369 	}
1370 	if (ntries == 100)
1371 		device_printf(sc->sc_dev, "could not lock memory\n");
1372 }
1373 
1374 /*
1375  * Release lock on NIC memory.
1376  */
1377 static void
1378 wpi_mem_unlock(struct wpi_softc *sc)
1379 {
1380 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1381 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1382 }
1383 
1384 static uint32_t
1385 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1386 {
1387 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1388 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1389 }
1390 
1391 static void
1392 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1393 {
1394 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1395 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1396 }
1397 
1398 static void
1399 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1400     const uint32_t *data, int wlen)
1401 {
1402 	for (; wlen > 0; wlen--, data++, addr+=4)
1403 		wpi_mem_write(sc, addr, *data);
1404 }
1405 
1406 /*
1407  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1408  * using the traditional bit-bang method. Data is read up until len bytes have
1409  * been obtained.
1410  */
1411 static uint16_t
1412 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1413 {
1414 	int ntries;
1415 	uint32_t val;
1416 	uint8_t *out = data;
1417 
1418 	wpi_mem_lock(sc);
1419 
1420 	for (; len > 0; len -= 2, addr++) {
1421 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1422 
1423 		for (ntries = 0; ntries < 10; ntries++) {
1424 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1425 				break;
1426 			DELAY(5);
1427 		}
1428 
1429 		if (ntries == 10) {
1430 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1431 			return ETIMEDOUT;
1432 		}
1433 
1434 		*out++= val >> 16;
1435 		if (len > 1)
1436 			*out ++= val >> 24;
1437 	}
1438 
1439 	wpi_mem_unlock(sc);
1440 
1441 	return 0;
1442 }
1443 
1444 /*
1445  * The firmware text and data segments are transferred to the NIC using DMA.
1446  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1447  * where to find it.  Once the NIC has copied the firmware into its internal
1448  * memory, we can free our local copy in the driver.
1449  */
1450 static int
1451 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1452 {
1453 	int error, ntries;
1454 
1455 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1456 
1457 	size /= sizeof(uint32_t);
1458 
1459 	wpi_mem_lock(sc);
1460 
1461 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1462 	    (const uint32_t *)fw, size);
1463 
1464 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1465 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1466 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1467 
1468 	/* run microcode */
1469 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1470 
1471 	/* wait while the adapter is busy copying the firmware */
1472 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1473 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1474 		DPRINTFN(WPI_DEBUG_HW,
1475 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1476 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1477 		if (status & WPI_TX_IDLE(6)) {
1478 			DPRINTFN(WPI_DEBUG_HW,
1479 			    ("Status Match! - ntries = %d\n", ntries));
1480 			break;
1481 		}
1482 		DELAY(10);
1483 	}
1484 	if (ntries == 1000) {
1485 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1486 		error = ETIMEDOUT;
1487 	}
1488 
1489 	/* start the microcode executing */
1490 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1491 
1492 	wpi_mem_unlock(sc);
1493 
1494 	return (error);
1495 }
1496 
1497 static void
1498 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1499 	struct wpi_rx_data *data)
1500 {
1501 	struct ifnet *ifp = sc->sc_ifp;
1502 	struct ieee80211com *ic = ifp->if_l2com;
1503 	struct wpi_rx_ring *ring = &sc->rxq;
1504 	struct wpi_rx_stat *stat;
1505 	struct wpi_rx_head *head;
1506 	struct wpi_rx_tail *tail;
1507 	struct ieee80211_node *ni;
1508 	struct mbuf *m, *mnew;
1509 	bus_addr_t paddr;
1510 	int error;
1511 
1512 	stat = (struct wpi_rx_stat *)(desc + 1);
1513 
1514 	if (stat->len > WPI_STAT_MAXLEN) {
1515 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1516 #if defined(__DragonFly__)
1517 		IFNET_STAT_INC(ifp, ierrors, 1);
1518 #else
1519 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1520 #endif
1521 		return;
1522 	}
1523 
1524 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1525 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1526 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1527 
1528 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1529 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1530 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1531 	    (uintmax_t)le64toh(tail->tstamp)));
1532 
1533 	/* discard Rx frames with bad CRC early */
1534 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1535 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1536 		    le32toh(tail->flags)));
1537 #if defined(__DragonFly__)
1538 		IFNET_STAT_INC(ifp, ierrors, 1);
1539 #else
1540 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1541 #endif
1542 		return;
1543 	}
1544 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1545 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1546 		    le16toh(head->len)));
1547 #if defined(__DragonFly__)
1548 		IFNET_STAT_INC(ifp, ierrors, 1);
1549 #else
1550 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1551 #endif
1552 		return;
1553 	}
1554 
1555 	/* XXX don't need mbuf, just dma buffer */
1556 	mnew = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1557 	if (mnew == NULL) {
1558 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1559 		    __func__));
1560 #if defined(__DragonFly__)
1561 		IFNET_STAT_INC(ifp, ierrors, 1);
1562 #else
1563 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1564 #endif
1565 		return;
1566 	}
1567 	bus_dmamap_unload(ring->data_dmat, data->map);
1568 
1569 	error = bus_dmamap_load(ring->data_dmat, data->map,
1570 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1571 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1572 	if (error != 0 && error != EFBIG) {
1573 		device_printf(sc->sc_dev,
1574 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1575 		m_freem(mnew);
1576 #if defined(__DragonFly__)
1577 		IFNET_STAT_INC(ifp, ierrors, 1);
1578 #else
1579 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1580 #endif
1581 		return;
1582 	}
1583 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1584 
1585 	/* finalize mbuf and swap in new one */
1586 	m = data->m;
1587 	m->m_pkthdr.rcvif = ifp;
1588 	m->m_data = (caddr_t)(head + 1);
1589 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1590 
1591 	data->m = mnew;
1592 	/* update Rx descriptor */
1593 	ring->desc[ring->cur] = htole32(paddr);
1594 
1595 	if (ieee80211_radiotap_active(ic)) {
1596 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1597 
1598 		tap->wr_flags = 0;
1599 		tap->wr_chan_freq =
1600 			htole16(ic->ic_channels[head->chan].ic_freq);
1601 		tap->wr_chan_flags =
1602 			htole16(ic->ic_channels[head->chan].ic_flags);
1603 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1604 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1605 		tap->wr_tsft = tail->tstamp;
1606 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1607 		switch (head->rate) {
1608 		/* CCK rates */
1609 		case  10: tap->wr_rate =   2; break;
1610 		case  20: tap->wr_rate =   4; break;
1611 		case  55: tap->wr_rate =  11; break;
1612 		case 110: tap->wr_rate =  22; break;
1613 		/* OFDM rates */
1614 		case 0xd: tap->wr_rate =  12; break;
1615 		case 0xf: tap->wr_rate =  18; break;
1616 		case 0x5: tap->wr_rate =  24; break;
1617 		case 0x7: tap->wr_rate =  36; break;
1618 		case 0x9: tap->wr_rate =  48; break;
1619 		case 0xb: tap->wr_rate =  72; break;
1620 		case 0x1: tap->wr_rate =  96; break;
1621 		case 0x3: tap->wr_rate = 108; break;
1622 		/* unknown rate: should not happen */
1623 		default:  tap->wr_rate =   0;
1624 		}
1625 		if (le16toh(head->flags) & 0x4)
1626 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1627 	}
1628 
1629 	WPI_UNLOCK(sc);
1630 
1631 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1632 	if (ni != NULL) {
1633 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1634 		ieee80211_free_node(ni);
1635 	} else
1636 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1637 
1638 	WPI_LOCK(sc);
1639 }
1640 
1641 static void
1642 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1643 {
1644 	struct ifnet *ifp = sc->sc_ifp;
1645 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1646 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1647 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1648 	struct ieee80211_node *ni = txdata->ni;
1649 	struct ieee80211vap *vap = ni->ni_vap;
1650 	int retrycnt = 0;
1651 
1652 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1653 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1654 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1655 	    le32toh(stat->status)));
1656 
1657 	/*
1658 	 * Update rate control statistics for the node.
1659 	 * XXX we should not count mgmt frames since they're always sent at
1660 	 * the lowest available bit-rate.
1661 	 * XXX frames w/o ACK shouldn't be used either
1662 	 */
1663 	if (stat->ntries > 0) {
1664 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1665 		retrycnt = 1;
1666 	}
1667 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1668 	    &retrycnt, NULL);
1669 
1670 	/* XXX oerrors should only count errors !maxtries */
1671 #if defined(__DragonFly__)
1672 	if ((le32toh(stat->status) & 0xff) != 1)
1673 		IFNET_STAT_INC(ifp, oerrors, 1);
1674 	else
1675 		IFNET_STAT_INC(ifp, opackets, 1);
1676 #else
1677 	if ((le32toh(stat->status) & 0xff) != 1)
1678 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1679 	else
1680 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1681 #endif
1682 
1683 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1684 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1685 	/* XXX handle M_TXCB? */
1686 	m_freem(txdata->m);
1687 	txdata->m = NULL;
1688 	ieee80211_free_node(txdata->ni);
1689 	txdata->ni = NULL;
1690 
1691 	ring->queued--;
1692 
1693 	sc->sc_tx_timer = 0;
1694 #if defined(__DragonFly__)
1695 	ifq_clr_oactive(&ifp->if_snd);
1696 #else
1697 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1698 #endif
1699 	wpi_start_locked(ifp);
1700 }
1701 
1702 static void
1703 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1704 {
1705 	struct wpi_tx_ring *ring = &sc->cmdq;
1706 	struct wpi_tx_data *data;
1707 
1708 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1709 				 "type=%s len=%d\n", desc->qid, desc->idx,
1710 				 desc->flags, wpi_cmd_str(desc->type),
1711 				 le32toh(desc->len)));
1712 
1713 	if ((desc->qid & 7) != 4)
1714 		return;	/* not a command ack */
1715 
1716 	data = &ring->data[desc->idx];
1717 
1718 	/* if the command was mapped in a mbuf, free it */
1719 	if (data->m != NULL) {
1720 		bus_dmamap_unload(ring->data_dmat, data->map);
1721 		m_freem(data->m);
1722 		data->m = NULL;
1723 	}
1724 
1725 	sc->flags &= ~WPI_FLAG_BUSY;
1726 	wakeup(&ring->cmd[desc->idx]);
1727 }
1728 
1729 static void
1730 wpi_notif_intr(struct wpi_softc *sc)
1731 {
1732 	struct ifnet *ifp = sc->sc_ifp;
1733 	struct ieee80211com *ic = ifp->if_l2com;
1734 	struct wpi_rx_desc *desc;
1735 	struct wpi_rx_data *data;
1736 	uint32_t hw;
1737 
1738 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1739 	    BUS_DMASYNC_POSTREAD);
1740 
1741 	hw = le32toh(sc->shared->next);
1742 	while (sc->rxq.cur != hw) {
1743 		data = &sc->rxq.data[sc->rxq.cur];
1744 
1745 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1746 		    BUS_DMASYNC_POSTREAD);
1747 		desc = (void *)data->m->m_ext.ext_buf;
1748 
1749 		DPRINTFN(WPI_DEBUG_NOTIFY,
1750 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1751 			  desc->qid,
1752 			  desc->idx,
1753 			  desc->flags,
1754 			  desc->type,
1755 			  le32toh(desc->len)));
1756 
1757 		if (!(desc->qid & 0x80))	/* reply to a command */
1758 			wpi_cmd_intr(sc, desc);
1759 
1760 		switch (desc->type) {
1761 		case WPI_RX_DONE:
1762 			/* a 802.11 frame was received */
1763 			wpi_rx_intr(sc, desc, data);
1764 			break;
1765 
1766 		case WPI_TX_DONE:
1767 			/* a 802.11 frame has been transmitted */
1768 			wpi_tx_intr(sc, desc);
1769 			break;
1770 
1771 		case WPI_UC_READY:
1772 		{
1773 			struct wpi_ucode_info *uc =
1774 				(struct wpi_ucode_info *)(desc + 1);
1775 
1776 			/* the microcontroller is ready */
1777 			DPRINTF(("microcode alive notification version %x "
1778 				"alive %x\n", le32toh(uc->version),
1779 				le32toh(uc->valid)));
1780 
1781 			if (le32toh(uc->valid) != 1) {
1782 				device_printf(sc->sc_dev,
1783 				    "microcontroller initialization failed\n");
1784 				wpi_stop_locked(sc);
1785 			}
1786 			break;
1787 		}
1788 		case WPI_STATE_CHANGED:
1789 		{
1790 			uint32_t *status = (uint32_t *)(desc + 1);
1791 
1792 			/* enabled/disabled notification */
1793 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1794 
1795 			if (le32toh(*status) & 1) {
1796 				device_printf(sc->sc_dev,
1797 				    "Radio transmitter is switched off\n");
1798 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1799 #if defined(__DragonFly__)
1800 				ifp->if_flags &= ~IFF_RUNNING;
1801 #else
1802 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1803 #endif
1804 				/* Disable firmware commands */
1805 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1806 			}
1807 			break;
1808 		}
1809 		case WPI_START_SCAN:
1810 		{
1811 #ifdef WPI_DEBUG
1812 			struct wpi_start_scan *scan =
1813 				(struct wpi_start_scan *)(desc + 1);
1814 #endif
1815 
1816 			DPRINTFN(WPI_DEBUG_SCANNING,
1817 				 ("scanning channel %d status %x\n",
1818 			    scan->chan, le32toh(scan->status)));
1819 			break;
1820 		}
1821 		case WPI_STOP_SCAN:
1822 		{
1823 #ifdef WPI_DEBUG
1824 			struct wpi_stop_scan *scan =
1825 				(struct wpi_stop_scan *)(desc + 1);
1826 #endif
1827 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1828 
1829 			DPRINTFN(WPI_DEBUG_SCANNING,
1830 			    ("scan finished nchan=%d status=%d chan=%d\n",
1831 			     scan->nchan, scan->status, scan->chan));
1832 
1833 			sc->sc_scan_timer = 0;
1834 			ieee80211_scan_next(vap);
1835 			break;
1836 		}
1837 		case WPI_MISSED_BEACON:
1838 		{
1839 			struct wpi_missed_beacon *beacon =
1840 				(struct wpi_missed_beacon *)(desc + 1);
1841 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1842 
1843 			if (le32toh(beacon->consecutive) >=
1844 			    vap->iv_bmissthreshold) {
1845 				DPRINTF(("Beacon miss: %u >= %u\n",
1846 					 le32toh(beacon->consecutive),
1847 					 vap->iv_bmissthreshold));
1848 				ieee80211_beacon_miss(ic);
1849 			}
1850 			break;
1851 		}
1852 		}
1853 
1854 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1855 	}
1856 
1857 	/* tell the firmware what we have processed */
1858 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1859 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1860 }
1861 
1862 static void
1863 wpi_intr(void *arg)
1864 {
1865 	struct wpi_softc *sc = arg;
1866 	uint32_t r;
1867 
1868 	WPI_LOCK(sc);
1869 
1870 	r = WPI_READ(sc, WPI_INTR);
1871 	if (r == 0 || r == 0xffffffff) {
1872 		WPI_UNLOCK(sc);
1873 		return;
1874 	}
1875 
1876 	/* disable interrupts */
1877 	WPI_WRITE(sc, WPI_MASK, 0);
1878 	/* ack interrupts */
1879 	WPI_WRITE(sc, WPI_INTR, r);
1880 
1881 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1882 		struct ifnet *ifp = sc->sc_ifp;
1883 		struct ieee80211com *ic = ifp->if_l2com;
1884 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1885 
1886 		device_printf(sc->sc_dev, "fatal firmware error\n");
1887 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1888 				"(Hardware Error)"));
1889 		if (vap != NULL)
1890 			ieee80211_cancel_scan(vap);
1891 		ieee80211_runtask(ic, &sc->sc_restarttask);
1892 		sc->flags &= ~WPI_FLAG_BUSY;
1893 		WPI_UNLOCK(sc);
1894 		return;
1895 	}
1896 
1897 	if (r & WPI_RX_INTR)
1898 		wpi_notif_intr(sc);
1899 
1900 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1901 		wakeup(sc);
1902 
1903 	/* re-enable interrupts */
1904 	if (sc->sc_ifp->if_flags & IFF_UP)
1905 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1906 
1907 	WPI_UNLOCK(sc);
1908 }
1909 
1910 static uint8_t
1911 wpi_plcp_signal(int rate)
1912 {
1913 	switch (rate) {
1914 	/* CCK rates (returned values are device-dependent) */
1915 	case 2:		return 10;
1916 	case 4:		return 20;
1917 	case 11:	return 55;
1918 	case 22:	return 110;
1919 
1920 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1921 	/* R1-R4 (ral/ural is R4-R1) */
1922 	case 12:	return 0xd;
1923 	case 18:	return 0xf;
1924 	case 24:	return 0x5;
1925 	case 36:	return 0x7;
1926 	case 48:	return 0x9;
1927 	case 72:	return 0xb;
1928 	case 96:	return 0x1;
1929 	case 108:	return 0x3;
1930 
1931 	/* unsupported rates (should not get there) */
1932 	default:	return 0;
1933 	}
1934 }
1935 
1936 /* quickly determine if a given rate is CCK or OFDM */
1937 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1938 
1939 /*
1940  * Construct the data packet for a transmit buffer and acutally put
1941  * the buffer onto the transmit ring, kicking the card to process the
1942  * the buffer.
1943  */
1944 static int
1945 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1946 	int ac)
1947 {
1948 	struct ieee80211vap *vap = ni->ni_vap;
1949 	struct ifnet *ifp = sc->sc_ifp;
1950 	struct ieee80211com *ic = ifp->if_l2com;
1951 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1952 	struct wpi_tx_ring *ring = &sc->txq[ac];
1953 	struct wpi_tx_desc *desc;
1954 	struct wpi_tx_data *data;
1955 	struct wpi_tx_cmd *cmd;
1956 	struct wpi_cmd_data *tx;
1957 	struct ieee80211_frame *wh;
1958 	const struct ieee80211_txparam *tp;
1959 	struct ieee80211_key *k;
1960 	struct mbuf *mnew;
1961 	int i, error, nsegs, rate, hdrlen, ismcast;
1962 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1963 
1964 	desc = &ring->desc[ring->cur];
1965 	data = &ring->data[ring->cur];
1966 
1967 	wh = mtod(m0, struct ieee80211_frame *);
1968 
1969 	hdrlen = ieee80211_hdrsize(wh);
1970 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1971 
1972 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1973 		k = ieee80211_crypto_encap(ni, m0);
1974 		if (k == NULL) {
1975 			m_freem(m0);
1976 			return ENOBUFS;
1977 		}
1978 		/* packet header may have moved, reset our local pointer */
1979 		wh = mtod(m0, struct ieee80211_frame *);
1980 	}
1981 
1982 	cmd = &ring->cmd[ring->cur];
1983 	cmd->code = WPI_CMD_TX_DATA;
1984 	cmd->flags = 0;
1985 	cmd->qid = ring->qid;
1986 	cmd->idx = ring->cur;
1987 
1988 	tx = (struct wpi_cmd_data *)cmd->data;
1989 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1990 	tx->timeout = htole16(0);
1991 	tx->ofdm_mask = 0xff;
1992 	tx->cck_mask = 0x0f;
1993 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1994 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1995 	tx->len = htole16(m0->m_pkthdr.len);
1996 
1997 	if (!ismcast) {
1998 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1999 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
2000 			tx->flags |= htole32(WPI_TX_NEED_ACK);
2001 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2002 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
2003 			tx->rts_ntries = 7;
2004 		}
2005 	}
2006 	/* pick a rate */
2007 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2008 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
2009 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2010 		/* tell h/w to set timestamp in probe responses */
2011 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2012 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
2013 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2014 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2015 			tx->timeout = htole16(3);
2016 		else
2017 			tx->timeout = htole16(2);
2018 		rate = tp->mgmtrate;
2019 	} else if (ismcast) {
2020 		rate = tp->mcastrate;
2021 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2022 		rate = tp->ucastrate;
2023 	} else {
2024 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2025 		rate = ni->ni_txrate;
2026 	}
2027 	tx->rate = wpi_plcp_signal(rate);
2028 
2029 	/* be very persistant at sending frames out */
2030 #if 0
2031 	tx->data_ntries = tp->maxretry;
2032 #else
2033 	tx->data_ntries = 15;		/* XXX way too high */
2034 #endif
2035 
2036 	if (ieee80211_radiotap_active_vap(vap)) {
2037 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2038 		tap->wt_flags = 0;
2039 		tap->wt_rate = rate;
2040 		tap->wt_hwqueue = ac;
2041 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2042 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2043 
2044 		ieee80211_radiotap_tx(vap, m0);
2045 	}
2046 
2047 	/* save and trim IEEE802.11 header */
2048 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
2049 	m_adj(m0, hdrlen);
2050 
2051 #if defined(__DragonFly__)
2052 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
2053 	    m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
2054 #else
2055 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2056 	    &nsegs, BUS_DMA_NOWAIT);
2057 #endif
2058 	if (error != 0 && error != EFBIG) {
2059 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
2060 		    error);
2061 		m_freem(m0);
2062 		return error;
2063 	}
2064 	if (error != 0) {
2065 		/* XXX use m_collapse */
2066 		mnew = m_defrag(m0, MB_DONTWAIT);
2067 		if (mnew == NULL) {
2068 			device_printf(sc->sc_dev,
2069 			    "could not defragment mbuf\n");
2070 			m_freem(m0);
2071 			return ENOBUFS;
2072 		}
2073 		m0 = mnew;
2074 
2075 #if defined(__DragonFly__)
2076 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
2077 		    data->map, m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
2078 #else
2079 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2080 		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
2081 #endif
2082 		if (error != 0) {
2083 			device_printf(sc->sc_dev,
2084 			    "could not map mbuf (error %d)\n", error);
2085 			m_freem(m0);
2086 			return error;
2087 		}
2088 	}
2089 
2090 	data->m = m0;
2091 	data->ni = ni;
2092 
2093 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2094 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2095 
2096 	/* first scatter/gather segment is used by the tx data command */
2097 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2098 	    (1 + nsegs) << 24);
2099 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2100 	    ring->cur * sizeof (struct wpi_tx_cmd));
2101 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2102 	for (i = 1; i <= nsegs; i++) {
2103 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2104 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2105 	}
2106 
2107 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2108 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2109 	    BUS_DMASYNC_PREWRITE);
2110 
2111 	ring->queued++;
2112 
2113 	/* kick ring */
2114 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2115 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2116 
2117 	return 0;
2118 }
2119 
2120 /**
2121  * Process data waiting to be sent on the IFNET output queue
2122  */
2123 static void
2124 wpi_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2125 {
2126 	struct wpi_softc *sc = ifp->if_softc;
2127 
2128 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2129 
2130 	WPI_LOCK(sc);
2131 	wpi_start_locked(ifp);
2132 	WPI_UNLOCK(sc);
2133 }
2134 
2135 static void
2136 wpi_start_locked(struct ifnet *ifp)
2137 {
2138 	struct wpi_softc *sc = ifp->if_softc;
2139 	struct ieee80211_node *ni;
2140 	struct mbuf *m;
2141 	int ac;
2142 
2143 	WPI_LOCK_ASSERT(sc);
2144 
2145 #if defined(__DragonFly__)
2146 	if ((ifp->if_flags & IFF_RUNNING) == 0)
2147 		return;
2148 #else
2149 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2150 		return;
2151 #endif
2152 
2153 	for (;;) {
2154 #if defined(__DragonFly__)
2155 		m = ifq_dequeue(&ifp->if_snd);
2156 #else
2157 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2158 #endif
2159 		if (m == NULL)
2160 			break;
2161 		ac = M_WME_GETAC(m);
2162 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2163 			/* there is no place left in this ring */
2164 #if defined(__DragonFly__)
2165 			ifq_prepend(&ifp->if_snd, m);
2166 			ifq_set_oactive(&ifp->if_snd);
2167 #else
2168 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2169 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2170 #endif
2171 			break;
2172 		}
2173 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2174 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2175 			ieee80211_free_node(ni);
2176 #if defined(__DragonFly__)
2177 			IFNET_STAT_INC(ifp, oerrors, 1);
2178 #else
2179 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2180 #endif
2181 			break;
2182 		}
2183 		sc->sc_tx_timer = 5;
2184 	}
2185 }
2186 
2187 static int
2188 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2189 	const struct ieee80211_bpf_params *params)
2190 {
2191 	struct ieee80211com *ic = ni->ni_ic;
2192 	struct ifnet *ifp = ic->ic_ifp;
2193 	struct wpi_softc *sc = ifp->if_softc;
2194 
2195 	/* prevent management frames from being sent if we're not ready */
2196 #if defined(__DragonFly__)
2197 	if (!(ifp->if_flags & IFF_RUNNING)) {
2198 		m_freem(m);
2199 		ieee80211_free_node(ni);
2200 		return ENETDOWN;
2201 	}
2202 #else
2203 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2204 		m_freem(m);
2205 		ieee80211_free_node(ni);
2206 		return ENETDOWN;
2207 	}
2208 #endif
2209 	WPI_LOCK(sc);
2210 
2211 	/* management frames go into ring 0 */
2212 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2213 #if defined(__DragonFly__)
2214 		ifq_set_oactive(&ifp->if_snd);
2215 #else
2216 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2217 #endif
2218 		m_freem(m);
2219 		WPI_UNLOCK(sc);
2220 		ieee80211_free_node(ni);
2221 		return ENOBUFS;		/* XXX */
2222 	}
2223 
2224 #if defined(__DragonFly__)
2225 	IFNET_STAT_INC(ifp, opackets, 1);
2226 #else
2227 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2228 #endif
2229 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2230 		goto bad;
2231 	sc->sc_tx_timer = 5;
2232 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2233 
2234 	WPI_UNLOCK(sc);
2235 	return 0;
2236 bad:
2237 #if defined(__DragonFly__)
2238 	IFNET_STAT_INC(ifp, oerrors, 1);
2239 #else
2240 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2241 #endif
2242 	WPI_UNLOCK(sc);
2243 	ieee80211_free_node(ni);
2244 	return EIO;		/* XXX */
2245 }
2246 
2247 static int
2248 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,
2249     struct ucred *cred __unused)
2250 {
2251 	struct wpi_softc *sc = ifp->if_softc;
2252 	struct ieee80211com *ic = ifp->if_l2com;
2253 	struct ifreq *ifr = (struct ifreq *) data;
2254 	int error = 0, startall = 0;
2255 
2256 	switch (cmd) {
2257 	case SIOCSIFFLAGS:
2258 		WPI_LOCK(sc);
2259 #if defined(__DragonFly__)
2260 		if ((ifp->if_flags & IFF_UP)) {
2261 			if (!(ifp->if_flags & IFF_RUNNING)) {
2262 				wpi_init_locked(sc, 0);
2263 				startall = 1;
2264 			}
2265 		} else if ((ifp->if_flags & IFF_RUNNING) ||
2266 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2267 			wpi_stop_locked(sc);
2268 #else
2269 		if ((ifp->if_flags & IFF_UP)) {
2270 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2271 				wpi_init_locked(sc, 0);
2272 				startall = 1;
2273 			}
2274 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2275 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2276 			wpi_stop_locked(sc);
2277 #endif
2278 		WPI_UNLOCK(sc);
2279 		if (startall)
2280 			ieee80211_start_all(ic);
2281 		break;
2282 	case SIOCGIFMEDIA:
2283 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2284 		break;
2285 	case SIOCGIFADDR:
2286 		error = ether_ioctl(ifp, cmd, data);
2287 		break;
2288 	default:
2289 		error = EINVAL;
2290 		break;
2291 	}
2292 	return error;
2293 }
2294 
2295 /*
2296  * Extract various information from EEPROM.
2297  */
2298 static void
2299 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2300 {
2301 	int i;
2302 
2303 	/* read the hardware capabilities, revision and SKU type */
2304 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2305 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2306 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2307 
2308 	/* read the regulatory domain */
2309 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2310 
2311 	/* read in the hw MAC address */
2312 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2313 
2314 	/* read the list of authorized channels */
2315 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2316 		wpi_read_eeprom_channels(sc,i);
2317 
2318 	/* read the power level calibration info for each group */
2319 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2320 		wpi_read_eeprom_group(sc,i);
2321 }
2322 
2323 /*
2324  * Send a command to the firmware.
2325  */
2326 static int
2327 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2328 {
2329 	struct wpi_tx_ring *ring = &sc->cmdq;
2330 	struct wpi_tx_desc *desc;
2331 	struct wpi_tx_cmd *cmd;
2332 
2333 #ifdef WPI_DEBUG
2334 	if (!async) {
2335 		WPI_LOCK_ASSERT(sc);
2336 	}
2337 #endif
2338 
2339 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2340 		    async));
2341 
2342 	if (sc->flags & WPI_FLAG_BUSY) {
2343 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2344 		    __func__, code);
2345 		return EAGAIN;
2346 	}
2347 	sc->flags|= WPI_FLAG_BUSY;
2348 
2349 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2350 	    code, size));
2351 
2352 	desc = &ring->desc[ring->cur];
2353 	cmd = &ring->cmd[ring->cur];
2354 
2355 	cmd->code = code;
2356 	cmd->flags = 0;
2357 	cmd->qid = ring->qid;
2358 	cmd->idx = ring->cur;
2359 	memcpy(cmd->data, buf, size);
2360 
2361 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2362 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2363 		ring->cur * sizeof (struct wpi_tx_cmd));
2364 	desc->segs[0].len  = htole32(4 + size);
2365 
2366 	/* kick cmd ring */
2367 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2368 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2369 
2370 	if (async) {
2371 		sc->flags &= ~ WPI_FLAG_BUSY;
2372 		return 0;
2373 	}
2374 
2375 #if defined(__DragonFly__)
2376 	return wpi_sleep(sc, cmd, PCATCH, "wpicmd", hz);
2377 #else
2378 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2379 #endif
2380 }
2381 
2382 static int
2383 wpi_wme_update(struct ieee80211com *ic)
2384 {
2385 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2386 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2387 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2388 	const struct wmeParams *wmep;
2389 	struct wpi_wme_setup wme;
2390 	int ac;
2391 
2392 	/* don't override default WME values if WME is not actually enabled */
2393 	if (!(ic->ic_flags & IEEE80211_F_WME))
2394 		return 0;
2395 
2396 	wme.flags = 0;
2397 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2398 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2399 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2400 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2401 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2402 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2403 
2404 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2405 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2406 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2407 	}
2408 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2409 #undef WPI_USEC
2410 #undef WPI_EXP2
2411 }
2412 
2413 /*
2414  * Configure h/w multi-rate retries.
2415  */
2416 static int
2417 wpi_mrr_setup(struct wpi_softc *sc)
2418 {
2419 	struct ifnet *ifp = sc->sc_ifp;
2420 	struct ieee80211com *ic = ifp->if_l2com;
2421 	struct wpi_mrr_setup mrr;
2422 	int i, error;
2423 
2424 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2425 
2426 	/* CCK rates (not used with 802.11a) */
2427 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2428 		mrr.rates[i].flags = 0;
2429 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2430 		/* fallback to the immediate lower CCK rate (if any) */
2431 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2432 		/* try one time at this rate before falling back to "next" */
2433 		mrr.rates[i].ntries = 1;
2434 	}
2435 
2436 	/* OFDM rates (not used with 802.11b) */
2437 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2438 		mrr.rates[i].flags = 0;
2439 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2440 		/* fallback to the immediate lower OFDM rate (if any) */
2441 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2442 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2443 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2444 			WPI_OFDM6 : WPI_CCK2) :
2445 		    i - 1;
2446 		/* try one time at this rate before falling back to "next" */
2447 		mrr.rates[i].ntries = 1;
2448 	}
2449 
2450 	/* setup MRR for control frames */
2451 	mrr.which = WPI_MRR_CTL;
2452 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2453 	if (error != 0) {
2454 		device_printf(sc->sc_dev,
2455 		    "could not setup MRR for control frames\n");
2456 		return error;
2457 	}
2458 
2459 	/* setup MRR for data frames */
2460 	mrr.which = WPI_MRR_DATA;
2461 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2462 	if (error != 0) {
2463 		device_printf(sc->sc_dev,
2464 		    "could not setup MRR for data frames\n");
2465 		return error;
2466 	}
2467 
2468 	return 0;
2469 }
2470 
2471 static void
2472 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2473 {
2474 	struct wpi_cmd_led led;
2475 
2476 	led.which = which;
2477 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2478 	led.off = off;
2479 	led.on = on;
2480 
2481 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2482 }
2483 
2484 static void
2485 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2486 {
2487 	struct wpi_cmd_tsf tsf;
2488 	uint64_t val, mod;
2489 
2490 	memset(&tsf, 0, sizeof tsf);
2491 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2492 	tsf.bintval = htole16(ni->ni_intval);
2493 	tsf.lintval = htole16(10);
2494 
2495 	/* compute remaining time until next beacon */
2496 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2497 	mod = le64toh(tsf.tstamp) % val;
2498 	tsf.binitval = htole32((uint32_t)(val - mod));
2499 
2500 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2501 		device_printf(sc->sc_dev, "could not enable TSF\n");
2502 }
2503 
2504 #if 0
2505 /*
2506  * Build a beacon frame that the firmware will broadcast periodically in
2507  * IBSS or HostAP modes.
2508  */
2509 static int
2510 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2511 {
2512 	struct ifnet *ifp = sc->sc_ifp;
2513 	struct ieee80211com *ic = ifp->if_l2com;
2514 	struct wpi_tx_ring *ring = &sc->cmdq;
2515 	struct wpi_tx_desc *desc;
2516 	struct wpi_tx_data *data;
2517 	struct wpi_tx_cmd *cmd;
2518 	struct wpi_cmd_beacon *bcn;
2519 	struct ieee80211_beacon_offsets bo;
2520 	struct mbuf *m0;
2521 	bus_addr_t physaddr;
2522 	int error;
2523 
2524 	desc = &ring->desc[ring->cur];
2525 	data = &ring->data[ring->cur];
2526 
2527 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2528 	if (m0 == NULL) {
2529 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2530 		return ENOMEM;
2531 	}
2532 
2533 	cmd = &ring->cmd[ring->cur];
2534 	cmd->code = WPI_CMD_SET_BEACON;
2535 	cmd->flags = 0;
2536 	cmd->qid = ring->qid;
2537 	cmd->idx = ring->cur;
2538 
2539 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2540 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2541 	bcn->id = WPI_ID_BROADCAST;
2542 	bcn->ofdm_mask = 0xff;
2543 	bcn->cck_mask = 0x0f;
2544 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2545 	bcn->len = htole16(m0->m_pkthdr.len);
2546 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2547 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2548 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2549 
2550 	/* save and trim IEEE802.11 header */
2551 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2552 	m_adj(m0, sizeof (struct ieee80211_frame));
2553 
2554 	/* assume beacon frame is contiguous */
2555 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2556 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2557 	if (error != 0) {
2558 		device_printf(sc->sc_dev, "could not map beacon\n");
2559 		m_freem(m0);
2560 		return error;
2561 	}
2562 
2563 	data->m = m0;
2564 
2565 	/* first scatter/gather segment is used by the beacon command */
2566 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2567 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2568 		ring->cur * sizeof (struct wpi_tx_cmd));
2569 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2570 	desc->segs[1].addr = htole32(physaddr);
2571 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2572 
2573 	/* kick cmd ring */
2574 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2575 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2576 
2577 	return 0;
2578 }
2579 #endif
2580 
2581 static int
2582 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2583 {
2584 	struct ieee80211com *ic = vap->iv_ic;
2585 	struct ieee80211_node *ni = vap->iv_bss;
2586 	struct wpi_node_info node;
2587 	int error;
2588 
2589 
2590 	/* update adapter's configuration */
2591 	sc->config.associd = 0;
2592 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2593 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2594 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2595 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2596 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2597 		    WPI_CONFIG_24GHZ);
2598 	} else {
2599 		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2600 		    WPI_CONFIG_24GHZ);
2601 	}
2602 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2603 		sc->config.cck_mask  = 0;
2604 		sc->config.ofdm_mask = 0x15;
2605 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2606 		sc->config.cck_mask  = 0x03;
2607 		sc->config.ofdm_mask = 0;
2608 	} else {
2609 		/* XXX assume 802.11b/g */
2610 		sc->config.cck_mask  = 0x0f;
2611 		sc->config.ofdm_mask = 0x15;
2612 	}
2613 
2614 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2615 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2616 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2617 		sizeof (struct wpi_config), 1);
2618 	if (error != 0) {
2619 		device_printf(sc->sc_dev, "could not configure\n");
2620 		return error;
2621 	}
2622 
2623 	/* configuration has changed, set Tx power accordingly */
2624 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2625 		device_printf(sc->sc_dev, "could not set Tx power\n");
2626 		return error;
2627 	}
2628 
2629 	/* add default node */
2630 	memset(&node, 0, sizeof node);
2631 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2632 	node.id = WPI_ID_BSS;
2633 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2634 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2635 	node.action = htole32(WPI_ACTION_SET_RATE);
2636 	node.antenna = WPI_ANTENNA_BOTH;
2637 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2638 	if (error != 0)
2639 		device_printf(sc->sc_dev, "could not add BSS node\n");
2640 
2641 	return (error);
2642 }
2643 
2644 static int
2645 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2646 {
2647 	struct ieee80211com *ic = vap->iv_ic;
2648 	struct ieee80211_node *ni = vap->iv_bss;
2649 	int error;
2650 
2651 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2652 		/* link LED blinks while monitoring */
2653 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2654 		return 0;
2655 	}
2656 
2657 	wpi_enable_tsf(sc, ni);
2658 
2659 	/* update adapter's configuration */
2660 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2661 	/* short preamble/slot time are negotiated when associating */
2662 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2663 	    WPI_CONFIG_SHSLOT);
2664 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2665 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2666 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2667 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2668 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2669 
2670 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2671 
2672 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2673 		    sc->config.flags));
2674 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2675 		    wpi_config), 1);
2676 	if (error != 0) {
2677 		device_printf(sc->sc_dev, "could not update configuration\n");
2678 		return error;
2679 	}
2680 
2681 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2682 	if (error != 0) {
2683 		device_printf(sc->sc_dev, "could set txpower\n");
2684 		return error;
2685 	}
2686 
2687 	/* link LED always on while associated */
2688 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2689 
2690 	/* start automatic rate control timer */
2691 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2692 
2693 	return (error);
2694 }
2695 
2696 /*
2697  * Send a scan request to the firmware.  Since this command is huge, we map it
2698  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2699  * much of this code is similar to that in wpi_cmd but because we must manually
2700  * construct the probe & channels, we duplicate what's needed here. XXX In the
2701  * future, this function should be modified to use wpi_cmd to help cleanup the
2702  * code base.
2703  */
2704 static int
2705 wpi_scan(struct wpi_softc *sc)
2706 {
2707 	struct ifnet *ifp = sc->sc_ifp;
2708 	struct ieee80211com *ic = ifp->if_l2com;
2709 	struct ieee80211_scan_state *ss = ic->ic_scan;
2710 	struct wpi_tx_ring *ring = &sc->cmdq;
2711 	struct wpi_tx_desc *desc;
2712 	struct wpi_tx_data *data;
2713 	struct wpi_tx_cmd *cmd;
2714 	struct wpi_scan_hdr *hdr;
2715 	struct wpi_scan_chan *chan;
2716 	struct ieee80211_frame *wh;
2717 	struct ieee80211_rateset *rs;
2718 	struct ieee80211_channel *c;
2719 	enum ieee80211_phymode mode;
2720 	uint8_t *frm;
2721 	int pktlen, error, i, nssid;
2722 	bus_addr_t physaddr;
2723 
2724 	desc = &ring->desc[ring->cur];
2725 	data = &ring->data[ring->cur];
2726 
2727 	data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2728 	if (data->m == NULL) {
2729 		device_printf(sc->sc_dev,
2730 		    "could not allocate mbuf for scan command\n");
2731 		return ENOMEM;
2732 	}
2733 
2734 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2735 	cmd->code = WPI_CMD_SCAN;
2736 	cmd->flags = 0;
2737 	cmd->qid = ring->qid;
2738 	cmd->idx = ring->cur;
2739 
2740 	hdr = (struct wpi_scan_hdr *)cmd->data;
2741 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2742 
2743 	/*
2744 	 * Move to the next channel if no packets are received within 5 msecs
2745 	 * after sending the probe request (this helps to reduce the duration
2746 	 * of active scans).
2747 	 */
2748 	hdr->quiet = htole16(5);
2749 	hdr->threshold = htole16(1);
2750 
2751 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2752 		/* send probe requests at 6Mbps */
2753 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2754 
2755 		/* Enable crc checking */
2756 		hdr->promotion = htole16(1);
2757 	} else {
2758 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2759 		/* send probe requests at 1Mbps */
2760 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2761 	}
2762 	hdr->tx.id = WPI_ID_BROADCAST;
2763 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2764 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2765 
2766 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2767 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2768 	for (i = 0; i < nssid; i++) {
2769 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2770 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
2771 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2772 		    hdr->scan_essids[i].esslen);
2773 #ifdef WPI_DEBUG
2774 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2775 			kprintf("Scanning Essid: ");
2776 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2777 			    hdr->scan_essids[i].esslen);
2778 			kprintf("\n");
2779 		}
2780 #endif
2781 	}
2782 
2783 	/*
2784 	 * Build a probe request frame.  Most of the following code is a
2785 	 * copy & paste of what is done in net80211.
2786 	 */
2787 	wh = (struct ieee80211_frame *)&hdr->scan_essids[WPI_SCAN_MAX_ESSIDS];
2788 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2789 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2790 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2791 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2792 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2793 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2794 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2795 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2796 
2797 	frm = (uint8_t *)(wh + 1);
2798 
2799 	mode = ieee80211_chan2mode(ic->ic_curchan);
2800 	rs = &ic->ic_sup_rates[mode];
2801 
2802 	frm = ieee80211_add_ssid(frm, NULL, 0);
2803 	frm = ieee80211_add_rates(frm, rs);
2804 	frm = ieee80211_add_xrates(frm, rs);
2805 
2806 	/* setup length of probe request */
2807 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2808 
2809 	/*
2810 	 * Construct information about the channel that we
2811 	 * want to scan. The firmware expects this to be directly
2812 	 * after the scan probe request
2813 	 */
2814 	c = ic->ic_curchan;
2815 	chan = (struct wpi_scan_chan *)frm;
2816 	chan->chan = ieee80211_chan2ieee(ic, c);
2817 	chan->flags = 0;
2818 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2819 		chan->flags |= WPI_CHAN_ACTIVE;
2820 		if (nssid != 0)
2821 			chan->flags |= WPI_CHAN_DIRECT;
2822 	}
2823 	chan->gain_dsp = 0x6e; /* Default level */
2824 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2825 		chan->active = htole16(10);
2826 		chan->passive = htole16(ss->ss_maxdwell);
2827 		chan->gain_radio = 0x3b;
2828 	} else {
2829 		chan->active = htole16(20);
2830 		chan->passive = htole16(ss->ss_maxdwell);
2831 		chan->gain_radio = 0x28;
2832 	}
2833 
2834 	DPRINTFN(WPI_DEBUG_SCANNING,
2835 	    ("Scanning %u Passive: %d\n",
2836 	     chan->chan,
2837 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2838 
2839 	hdr->nchan++;
2840 	chan++;
2841 
2842 	frm += sizeof (struct wpi_scan_chan);
2843 #if 0
2844 	// XXX All Channels....
2845 	for (c  = &ic->ic_channels[1];
2846 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2847 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2848 			continue;
2849 
2850 		chan->chan = ieee80211_chan2ieee(ic, c);
2851 		chan->flags = 0;
2852 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2853 		    chan->flags |= WPI_CHAN_ACTIVE;
2854 		    if (ic->ic_des_ssid[0].len != 0)
2855 			chan->flags |= WPI_CHAN_DIRECT;
2856 		}
2857 		chan->gain_dsp = 0x6e; /* Default level */
2858 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2859 			chan->active = htole16(10);
2860 			chan->passive = htole16(110);
2861 			chan->gain_radio = 0x3b;
2862 		} else {
2863 			chan->active = htole16(20);
2864 			chan->passive = htole16(120);
2865 			chan->gain_radio = 0x28;
2866 		}
2867 
2868 		DPRINTFN(WPI_DEBUG_SCANNING,
2869 			 ("Scanning %u Passive: %d\n",
2870 			  chan->chan,
2871 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2872 
2873 		hdr->nchan++;
2874 		chan++;
2875 
2876 		frm += sizeof (struct wpi_scan_chan);
2877 	}
2878 #endif
2879 
2880 	hdr->len = htole16(frm - (uint8_t *)hdr);
2881 	pktlen = frm - (uint8_t *)cmd;
2882 
2883 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2884 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2885 	if (error != 0) {
2886 		device_printf(sc->sc_dev, "could not map scan command\n");
2887 		m_freem(data->m);
2888 		data->m = NULL;
2889 		return error;
2890 	}
2891 
2892 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2893 	desc->segs[0].addr = htole32(physaddr);
2894 	desc->segs[0].len  = htole32(pktlen);
2895 
2896 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2897 	    BUS_DMASYNC_PREWRITE);
2898 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2899 
2900 	/* kick cmd ring */
2901 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2902 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2903 
2904 	sc->sc_scan_timer = 5;
2905 	return 0;	/* will be notified async. of failure/success */
2906 }
2907 
2908 /**
2909  * Configure the card to listen to a particular channel, this transisions the
2910  * card in to being able to receive frames from remote devices.
2911  */
2912 static int
2913 wpi_config(struct wpi_softc *sc)
2914 {
2915 	struct ifnet *ifp = sc->sc_ifp;
2916 	struct ieee80211com *ic = ifp->if_l2com;
2917 	struct wpi_power power;
2918 	struct wpi_bluetooth bluetooth;
2919 	struct wpi_node_info node;
2920 	int error;
2921 
2922 	/* set power mode */
2923 	memset(&power, 0, sizeof power);
2924 	power.flags = htole32(WPI_POWER_CAM|0x8);
2925 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2926 	if (error != 0) {
2927 		device_printf(sc->sc_dev, "could not set power mode\n");
2928 		return error;
2929 	}
2930 
2931 	/* configure bluetooth coexistence */
2932 	memset(&bluetooth, 0, sizeof bluetooth);
2933 	bluetooth.flags = 3;
2934 	bluetooth.lead = 0xaa;
2935 	bluetooth.kill = 1;
2936 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2937 	    0);
2938 	if (error != 0) {
2939 		device_printf(sc->sc_dev,
2940 		    "could not configure bluetooth coexistence\n");
2941 		return error;
2942 	}
2943 
2944 	/* configure adapter */
2945 	memset(&sc->config, 0, sizeof (struct wpi_config));
2946 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2947 	/*set default channel*/
2948 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2949 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2950 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2951 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2952 		    WPI_CONFIG_24GHZ);
2953 	}
2954 	sc->config.filter = 0;
2955 	switch (ic->ic_opmode) {
2956 	case IEEE80211_M_STA:
2957 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2958 		sc->config.mode = WPI_MODE_STA;
2959 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2960 		break;
2961 	case IEEE80211_M_IBSS:
2962 	case IEEE80211_M_AHDEMO:
2963 		sc->config.mode = WPI_MODE_IBSS;
2964 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2965 					     WPI_FILTER_MULTICAST);
2966 		break;
2967 	case IEEE80211_M_HOSTAP:
2968 		sc->config.mode = WPI_MODE_HOSTAP;
2969 		break;
2970 	case IEEE80211_M_MONITOR:
2971 		sc->config.mode = WPI_MODE_MONITOR;
2972 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2973 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2974 		break;
2975 	default:
2976 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2977 		return EINVAL;
2978 	}
2979 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2980 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2981 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2982 		sizeof (struct wpi_config), 0);
2983 	if (error != 0) {
2984 		device_printf(sc->sc_dev, "configure command failed\n");
2985 		return error;
2986 	}
2987 
2988 	/* configuration has changed, set Tx power accordingly */
2989 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2990 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2991 	    return error;
2992 	}
2993 
2994 	/* add broadcast node */
2995 	memset(&node, 0, sizeof node);
2996 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2997 	node.id = WPI_ID_BROADCAST;
2998 	node.rate = wpi_plcp_signal(2);
2999 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3000 	if (error != 0) {
3001 		device_printf(sc->sc_dev, "could not add broadcast node\n");
3002 		return error;
3003 	}
3004 
3005 	/* Setup rate scalling */
3006 	error = wpi_mrr_setup(sc);
3007 	if (error != 0) {
3008 		device_printf(sc->sc_dev, "could not setup MRR\n");
3009 		return error;
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 static void
3016 wpi_stop_master(struct wpi_softc *sc)
3017 {
3018 	uint32_t tmp;
3019 	int ntries;
3020 
3021 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
3022 
3023 	tmp = WPI_READ(sc, WPI_RESET);
3024 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
3025 
3026 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3027 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3028 		return;	/* already asleep */
3029 
3030 	for (ntries = 0; ntries < 100; ntries++) {
3031 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3032 			break;
3033 		DELAY(10);
3034 	}
3035 	if (ntries == 100) {
3036 		device_printf(sc->sc_dev, "timeout waiting for master\n");
3037 	}
3038 }
3039 
3040 static int
3041 wpi_power_up(struct wpi_softc *sc)
3042 {
3043 	uint32_t tmp;
3044 	int ntries;
3045 
3046 	wpi_mem_lock(sc);
3047 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3048 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3049 	wpi_mem_unlock(sc);
3050 
3051 	for (ntries = 0; ntries < 5000; ntries++) {
3052 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3053 			break;
3054 		DELAY(10);
3055 	}
3056 	if (ntries == 5000) {
3057 		device_printf(sc->sc_dev,
3058 		    "timeout waiting for NIC to power up\n");
3059 		return ETIMEDOUT;
3060 	}
3061 	return 0;
3062 }
3063 
3064 static int
3065 wpi_reset(struct wpi_softc *sc)
3066 {
3067 	uint32_t tmp;
3068 	int ntries;
3069 
3070 	DPRINTFN(WPI_DEBUG_HW,
3071 	    ("Resetting the card - clearing any uploaded firmware\n"));
3072 
3073 	/* clear any pending interrupts */
3074 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3075 
3076 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3077 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3078 
3079 	tmp = WPI_READ(sc, WPI_CHICKEN);
3080 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3081 
3082 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3083 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3084 
3085 	/* wait for clock stabilization */
3086 	for (ntries = 0; ntries < 25000; ntries++) {
3087 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3088 			break;
3089 		DELAY(10);
3090 	}
3091 	if (ntries == 25000) {
3092 		device_printf(sc->sc_dev,
3093 		    "timeout waiting for clock stabilization\n");
3094 		return ETIMEDOUT;
3095 	}
3096 
3097 	/* initialize EEPROM */
3098 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3099 
3100 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3101 		device_printf(sc->sc_dev, "EEPROM not found\n");
3102 		return EIO;
3103 	}
3104 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3105 
3106 	return 0;
3107 }
3108 
3109 static void
3110 wpi_hw_config(struct wpi_softc *sc)
3111 {
3112 	uint32_t rev, hw;
3113 
3114 	/* voodoo from the Linux "driver".. */
3115 	hw = WPI_READ(sc, WPI_HWCONFIG);
3116 
3117 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
3118 	if ((rev & 0xc0) == 0x40)
3119 		hw |= WPI_HW_ALM_MB;
3120 	else if (!(rev & 0x80))
3121 		hw |= WPI_HW_ALM_MM;
3122 
3123 	if (sc->cap == 0x80)
3124 		hw |= WPI_HW_SKU_MRC;
3125 
3126 	hw &= ~WPI_HW_REV_D;
3127 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3128 		hw |= WPI_HW_REV_D;
3129 
3130 	if (sc->type > 1)
3131 		hw |= WPI_HW_TYPE_B;
3132 
3133 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3134 }
3135 
3136 static void
3137 wpi_rfkill_resume(struct wpi_softc *sc)
3138 {
3139 	struct ifnet *ifp = sc->sc_ifp;
3140 	struct ieee80211com *ic = ifp->if_l2com;
3141 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3142 	int ntries;
3143 
3144 	/* enable firmware again */
3145 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3146 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3147 
3148 	/* wait for thermal sensors to calibrate */
3149 	for (ntries = 0; ntries < 1000; ntries++) {
3150 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3151 			break;
3152 		DELAY(10);
3153 	}
3154 
3155 	if (ntries == 1000) {
3156 		device_printf(sc->sc_dev,
3157 		    "timeout waiting for thermal calibration\n");
3158 		return;
3159 	}
3160 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3161 
3162 	if (wpi_config(sc) != 0) {
3163 		device_printf(sc->sc_dev, "device config failed\n");
3164 		return;
3165 	}
3166 
3167 #if defined(__DragonFly__)
3168 	ifq_clr_oactive(&ifp->if_snd);
3169 	ifp->if_flags |= IFF_RUNNING;
3170 #else
3171 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3172 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3173 #endif
3174 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3175 
3176 	if (vap != NULL) {
3177 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3178 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3179 				ieee80211_beacon_miss(ic);
3180 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3181 			} else
3182 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3183 		} else {
3184 			ieee80211_scan_next(vap);
3185 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3186 		}
3187 	}
3188 
3189 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3190 }
3191 
3192 static void
3193 wpi_init_locked(struct wpi_softc *sc, int force)
3194 {
3195 	struct ifnet *ifp = sc->sc_ifp;
3196 	uint32_t tmp;
3197 	int ntries, qid;
3198 
3199 	wpi_stop_locked(sc);
3200 	(void)wpi_reset(sc);
3201 
3202 	wpi_mem_lock(sc);
3203 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3204 	DELAY(20);
3205 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3206 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3207 	wpi_mem_unlock(sc);
3208 
3209 	(void)wpi_power_up(sc);
3210 	wpi_hw_config(sc);
3211 
3212 	/* init Rx ring */
3213 	wpi_mem_lock(sc);
3214 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3215 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3216 	    offsetof(struct wpi_shared, next));
3217 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3218 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3219 	wpi_mem_unlock(sc);
3220 
3221 	/* init Tx rings */
3222 	wpi_mem_lock(sc);
3223 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3224 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3225 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3226 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3227 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3228 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3229 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3230 
3231 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3232 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3233 
3234 	for (qid = 0; qid < 6; qid++) {
3235 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3236 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3237 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3238 	}
3239 	wpi_mem_unlock(sc);
3240 
3241 	/* clear "radio off" and "disable command" bits (reversed logic) */
3242 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3243 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3244 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3245 
3246 	/* clear any pending interrupts */
3247 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3248 
3249 	/* enable interrupts */
3250 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3251 
3252 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3253 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3254 
3255 	if ((wpi_load_firmware(sc)) != 0) {
3256 	    device_printf(sc->sc_dev,
3257 		"A problem occurred loading the firmware to the driver\n");
3258 	    return;
3259 	}
3260 
3261 	/* At this point the firmware is up and running. If the hardware
3262 	 * RF switch is turned off thermal calibration will fail, though
3263 	 * the card is still happy to continue to accept commands, catch
3264 	 * this case and schedule a task to watch for it to be turned on.
3265 	 */
3266 	wpi_mem_lock(sc);
3267 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3268 	wpi_mem_unlock(sc);
3269 
3270 	if (!(tmp & 0x1)) {
3271 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3272 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3273 		goto out;
3274 	}
3275 
3276 	/* wait for thermal sensors to calibrate */
3277 	for (ntries = 0; ntries < 1000; ntries++) {
3278 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3279 			break;
3280 		DELAY(10);
3281 	}
3282 
3283 	if (ntries == 1000) {
3284 		device_printf(sc->sc_dev,
3285 		    "timeout waiting for thermal sensors calibration\n");
3286 		return;
3287 	}
3288 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3289 
3290 	if (wpi_config(sc) != 0) {
3291 		device_printf(sc->sc_dev, "device config failed\n");
3292 		return;
3293 	}
3294 
3295 #if defined(__DragonFly__)
3296 	ifq_clr_oactive(&ifp->if_snd);
3297 	ifp->if_flags |= IFF_RUNNING;
3298 #else
3299 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3300 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3301 #endif
3302 out:
3303 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3304 }
3305 
3306 static void
3307 wpi_init(void *arg)
3308 {
3309 	struct wpi_softc *sc = arg;
3310 	struct ifnet *ifp = sc->sc_ifp;
3311 	struct ieee80211com *ic = ifp->if_l2com;
3312 
3313 	WPI_LOCK(sc);
3314 	wpi_init_locked(sc, 0);
3315 	WPI_UNLOCK(sc);
3316 
3317 #if defined(__DragonFly__)
3318 	if (ifp->if_flags & IFF_RUNNING)
3319 		ieee80211_start_all(ic);		/* start all vaps */
3320 #else
3321 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3322 		ieee80211_start_all(ic);		/* start all vaps */
3323 #endif
3324 }
3325 
3326 static void
3327 wpi_stop_locked(struct wpi_softc *sc)
3328 {
3329 	struct ifnet *ifp = sc->sc_ifp;
3330 	uint32_t tmp;
3331 	int ac;
3332 
3333 	sc->sc_tx_timer = 0;
3334 	sc->sc_scan_timer = 0;
3335 #if defined(__DragonFly__)
3336 	ifq_clr_oactive(&ifp->if_snd);
3337 	ifp->if_flags &= ~IFF_RUNNING;
3338 #else
3339 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3340 #endif
3341 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3342 	callout_stop_sync(&sc->watchdog_to);
3343 	callout_stop_sync(&sc->calib_to);
3344 
3345 	/* disable interrupts */
3346 	WPI_WRITE(sc, WPI_MASK, 0);
3347 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3348 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3349 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3350 
3351 	wpi_mem_lock(sc);
3352 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3353 	wpi_mem_unlock(sc);
3354 
3355 	/* reset all Tx rings */
3356 	for (ac = 0; ac < 4; ac++)
3357 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3358 	wpi_reset_tx_ring(sc, &sc->cmdq);
3359 
3360 	/* reset Rx ring */
3361 	wpi_reset_rx_ring(sc, &sc->rxq);
3362 
3363 	wpi_mem_lock(sc);
3364 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3365 	wpi_mem_unlock(sc);
3366 
3367 	DELAY(5);
3368 
3369 	wpi_stop_master(sc);
3370 
3371 	tmp = WPI_READ(sc, WPI_RESET);
3372 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3373 	sc->flags &= ~WPI_FLAG_BUSY;
3374 }
3375 
3376 static void
3377 wpi_stop(struct wpi_softc *sc)
3378 {
3379 	WPI_LOCK(sc);
3380 	wpi_stop_locked(sc);
3381 	WPI_UNLOCK(sc);
3382 }
3383 
3384 static void
3385 wpi_calib_timeout(void *arg)
3386 {
3387 	struct wpi_softc *sc = arg;
3388 	struct ifnet *ifp = sc->sc_ifp;
3389 	struct ieee80211com *ic = ifp->if_l2com;
3390 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3391 	int temp;
3392 
3393 	if (vap->iv_state != IEEE80211_S_RUN)
3394 		return;
3395 
3396 	/* update sensor data */
3397 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3398 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3399 
3400 	wpi_power_calibration(sc, temp);
3401 
3402 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3403 }
3404 
3405 /*
3406  * This function is called periodically (every 60 seconds) to adjust output
3407  * power to temperature changes.
3408  */
3409 static void
3410 wpi_power_calibration(struct wpi_softc *sc, int temp)
3411 {
3412 	struct ifnet *ifp = sc->sc_ifp;
3413 	struct ieee80211com *ic = ifp->if_l2com;
3414 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3415 
3416 	/* sanity-check read value */
3417 	if (temp < -260 || temp > 25) {
3418 		/* this can't be correct, ignore */
3419 		DPRINTFN(WPI_DEBUG_TEMP,
3420 		    ("out-of-range temperature reported: %d\n", temp));
3421 		return;
3422 	}
3423 
3424 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3425 
3426 	/* adjust Tx power if need be */
3427 	if (abs(temp - sc->temp) <= 6)
3428 		return;
3429 
3430 	sc->temp = temp;
3431 
3432 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3433 		/* just warn, too bad for the automatic calibration... */
3434 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3435 	}
3436 }
3437 
3438 /**
3439  * Read the eeprom to find out what channels are valid for the given
3440  * band and update net80211 with what we find.
3441  */
3442 static void
3443 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3444 {
3445 	struct ifnet *ifp = sc->sc_ifp;
3446 	struct ieee80211com *ic = ifp->if_l2com;
3447 	const struct wpi_chan_band *band = &wpi_bands[n];
3448 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3449 	struct ieee80211_channel *c;
3450 	int chan, i, passive;
3451 
3452 	wpi_read_prom_data(sc, band->addr, channels,
3453 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3454 
3455 	for (i = 0; i < band->nchan; i++) {
3456 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3457 			DPRINTFN(WPI_DEBUG_HW,
3458 			    ("Channel Not Valid: %d, band %d\n",
3459 			     band->chan[i],n));
3460 			continue;
3461 		}
3462 
3463 		passive = 0;
3464 		chan = band->chan[i];
3465 		c = &ic->ic_channels[ic->ic_nchans++];
3466 
3467 		/* is active scan allowed on this channel? */
3468 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3469 			passive = IEEE80211_CHAN_PASSIVE;
3470 		}
3471 
3472 		if (n == 0) {	/* 2GHz band */
3473 			c->ic_ieee = chan;
3474 			c->ic_freq = ieee80211_ieee2mhz(chan,
3475 			    IEEE80211_CHAN_2GHZ);
3476 			c->ic_flags = IEEE80211_CHAN_B | passive;
3477 
3478 			c = &ic->ic_channels[ic->ic_nchans++];
3479 			c->ic_ieee = chan;
3480 			c->ic_freq = ieee80211_ieee2mhz(chan,
3481 			    IEEE80211_CHAN_2GHZ);
3482 			c->ic_flags = IEEE80211_CHAN_G | passive;
3483 
3484 		} else {	/* 5GHz band */
3485 			/*
3486 			 * Some 3945ABG adapters support channels 7, 8, 11
3487 			 * and 12 in the 2GHz *and* 5GHz bands.
3488 			 * Because of limitations in our net80211(9) stack,
3489 			 * we can't support these channels in 5GHz band.
3490 			 * XXX not true; just need to map to proper frequency
3491 			 */
3492 			if (chan <= 14)
3493 				continue;
3494 
3495 			c->ic_ieee = chan;
3496 			c->ic_freq = ieee80211_ieee2mhz(chan,
3497 			    IEEE80211_CHAN_5GHZ);
3498 			c->ic_flags = IEEE80211_CHAN_A | passive;
3499 		}
3500 
3501 		/* save maximum allowed power for this channel */
3502 		sc->maxpwr[chan] = channels[i].maxpwr;
3503 
3504 #if 0
3505 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3506 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3507 		//ic->ic_channels[chan].ic_minpower...
3508 		//ic->ic_channels[chan].ic_maxregtxpower...
3509 #endif
3510 
3511 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3512 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3513 		    channels[i].flags, sc->maxpwr[chan],
3514 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3515 		    ic->ic_nchans));
3516 	}
3517 }
3518 
3519 static void
3520 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3521 {
3522 	struct wpi_power_group *group = &sc->groups[n];
3523 	struct wpi_eeprom_group rgroup;
3524 	int i;
3525 
3526 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3527 	    sizeof rgroup);
3528 
3529 	/* save power group information */
3530 	group->chan   = rgroup.chan;
3531 	group->maxpwr = rgroup.maxpwr;
3532 	/* temperature at which the samples were taken */
3533 	group->temp   = (int16_t)le16toh(rgroup.temp);
3534 
3535 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3536 		    group->chan, group->maxpwr, group->temp));
3537 
3538 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3539 		group->samples[i].index = rgroup.samples[i].index;
3540 		group->samples[i].power = rgroup.samples[i].power;
3541 
3542 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3543 			    group->samples[i].index, group->samples[i].power));
3544 	}
3545 }
3546 
3547 /*
3548  * Update Tx power to match what is defined for channel `c'.
3549  */
3550 static int
3551 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3552 {
3553 	struct ifnet *ifp = sc->sc_ifp;
3554 	struct ieee80211com *ic = ifp->if_l2com;
3555 	struct wpi_power_group *group;
3556 	struct wpi_cmd_txpower txpower;
3557 	u_int chan;
3558 	int i;
3559 
3560 	/* get channel number */
3561 	chan = ieee80211_chan2ieee(ic, c);
3562 
3563 	/* find the power group to which this channel belongs */
3564 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3565 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3566 			if (chan <= group->chan)
3567 				break;
3568 	} else
3569 		group = &sc->groups[0];
3570 
3571 	memset(&txpower, 0, sizeof txpower);
3572 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3573 	txpower.channel = htole16(chan);
3574 
3575 	/* set Tx power for all OFDM and CCK rates */
3576 	for (i = 0; i <= 11 ; i++) {
3577 		/* retrieve Tx power for this channel/rate combination */
3578 		int idx = wpi_get_power_index(sc, group, c,
3579 		    wpi_ridx_to_rate[i]);
3580 
3581 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3582 
3583 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3584 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3585 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3586 		} else {
3587 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3588 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3589 		}
3590 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3591 			    chan, wpi_ridx_to_rate[i], idx));
3592 	}
3593 
3594 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3595 }
3596 
3597 /*
3598  * Determine Tx power index for a given channel/rate combination.
3599  * This takes into account the regulatory information from EEPROM and the
3600  * current temperature.
3601  */
3602 static int
3603 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3604     struct ieee80211_channel *c, int rate)
3605 {
3606 /* fixed-point arithmetic division using a n-bit fractional part */
3607 #define fdivround(a, b, n)      \
3608 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3609 
3610 /* linear interpolation */
3611 #define interpolate(x, x1, y1, x2, y2, n)       \
3612 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3613 
3614 	struct ifnet *ifp = sc->sc_ifp;
3615 	struct ieee80211com *ic = ifp->if_l2com;
3616 	struct wpi_power_sample *sample;
3617 	int pwr, idx;
3618 	u_int chan;
3619 
3620 	/* get channel number */
3621 	chan = ieee80211_chan2ieee(ic, c);
3622 
3623 	/* default power is group's maximum power - 3dB */
3624 	pwr = group->maxpwr / 2;
3625 
3626 	/* decrease power for highest OFDM rates to reduce distortion */
3627 	switch (rate) {
3628 		case 72:	/* 36Mb/s */
3629 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3630 			break;
3631 		case 96:	/* 48Mb/s */
3632 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3633 			break;
3634 		case 108:	/* 54Mb/s */
3635 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3636 			break;
3637 	}
3638 
3639 	/* never exceed channel's maximum allowed Tx power */
3640 	pwr = min(pwr, sc->maxpwr[chan]);
3641 
3642 	/* retrieve power index into gain tables from samples */
3643 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3644 		if (pwr > sample[1].power)
3645 			break;
3646 	/* fixed-point linear interpolation using a 19-bit fractional part */
3647 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3648 	    sample[1].power, sample[1].index, 19);
3649 
3650 	/*
3651 	 *  Adjust power index based on current temperature
3652 	 *	- if colder than factory-calibrated: decreate output power
3653 	 *	- if warmer than factory-calibrated: increase output power
3654 	 */
3655 	idx -= (sc->temp - group->temp) * 11 / 100;
3656 
3657 	/* decrease power for CCK rates (-5dB) */
3658 	if (!WPI_RATE_IS_OFDM(rate))
3659 		idx += 10;
3660 
3661 	/* keep power index in a valid range */
3662 	if (idx < 0)
3663 		return 0;
3664 	if (idx > WPI_MAX_PWR_INDEX)
3665 		return WPI_MAX_PWR_INDEX;
3666 	return idx;
3667 
3668 #undef interpolate
3669 #undef fdivround
3670 }
3671 
3672 /**
3673  * Called by net80211 framework to indicate that a scan
3674  * is starting. This function doesn't actually do the scan,
3675  * wpi_scan_curchan starts things off. This function is more
3676  * of an early warning from the framework we should get ready
3677  * for the scan.
3678  */
3679 static void
3680 wpi_scan_start(struct ieee80211com *ic)
3681 {
3682 	struct ifnet *ifp = ic->ic_ifp;
3683 	struct wpi_softc *sc = ifp->if_softc;
3684 
3685 	WPI_LOCK(sc);
3686 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3687 	WPI_UNLOCK(sc);
3688 }
3689 
3690 /**
3691  * Called by the net80211 framework, indicates that the
3692  * scan has ended. If there is a scan in progress on the card
3693  * then it should be aborted.
3694  */
3695 static void
3696 wpi_scan_end(struct ieee80211com *ic)
3697 {
3698 	/* XXX ignore */
3699 }
3700 
3701 /**
3702  * Called by the net80211 framework to indicate to the driver
3703  * that the channel should be changed
3704  */
3705 static void
3706 wpi_set_channel(struct ieee80211com *ic)
3707 {
3708 	struct ifnet *ifp = ic->ic_ifp;
3709 	struct wpi_softc *sc = ifp->if_softc;
3710 	int error;
3711 
3712 	/*
3713 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3714 	 * are already taken care of by their respective firmware commands.
3715 	 */
3716 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3717 		WPI_LOCK(sc);
3718 		error = wpi_config(sc);
3719 		WPI_UNLOCK(sc);
3720 		if (error != 0)
3721 			device_printf(sc->sc_dev,
3722 			    "error %d settting channel\n", error);
3723 	}
3724 }
3725 
3726 /**
3727  * Called by net80211 to indicate that we need to scan the current
3728  * channel. The channel is previously be set via the wpi_set_channel
3729  * callback.
3730  */
3731 static void
3732 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3733 {
3734 	struct ieee80211vap *vap = ss->ss_vap;
3735 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3736 	struct wpi_softc *sc = ifp->if_softc;
3737 
3738 	WPI_LOCK(sc);
3739 	if (wpi_scan(sc))
3740 		ieee80211_cancel_scan(vap);
3741 	WPI_UNLOCK(sc);
3742 }
3743 
3744 /**
3745  * Called by the net80211 framework to indicate
3746  * the minimum dwell time has been met, terminate the scan.
3747  * We don't actually terminate the scan as the firmware will notify
3748  * us when it's finished and we have no way to interrupt it.
3749  */
3750 static void
3751 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3752 {
3753 	/* NB: don't try to abort scan; wait for firmware to finish */
3754 }
3755 
3756 static void
3757 wpi_hwreset(void *arg, int pending)
3758 {
3759 	struct wpi_softc *sc = arg;
3760 
3761 	WPI_LOCK(sc);
3762 	wpi_init_locked(sc, 0);
3763 	WPI_UNLOCK(sc);
3764 }
3765 
3766 static void
3767 wpi_rfreset(void *arg, int pending)
3768 {
3769 	struct wpi_softc *sc = arg;
3770 
3771 	WPI_LOCK(sc);
3772 	wpi_rfkill_resume(sc);
3773 	WPI_UNLOCK(sc);
3774 }
3775 
3776 /*
3777  * Allocate DMA-safe memory for firmware transfer.
3778  */
3779 static int
3780 wpi_alloc_fwmem(struct wpi_softc *sc)
3781 {
3782 	/* allocate enough contiguous space to store text and data */
3783 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3784 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3785 	    BUS_DMA_NOWAIT);
3786 }
3787 
3788 static void
3789 wpi_free_fwmem(struct wpi_softc *sc)
3790 {
3791 	wpi_dma_contig_free(&sc->fw_dma);
3792 }
3793 
3794 /**
3795  * Called every second, wpi_watchdog used by the watch dog timer
3796  * to check that the card is still alive
3797  */
3798 static void
3799 wpi_watchdog(void *arg)
3800 {
3801 	struct wpi_softc *sc = arg;
3802 	struct ifnet *ifp = sc->sc_ifp;
3803 	struct ieee80211com *ic = ifp->if_l2com;
3804 	uint32_t tmp;
3805 
3806 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3807 
3808 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3809 		/* No need to lock firmware memory */
3810 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3811 
3812 		if ((tmp & 0x1) == 0) {
3813 			/* Radio kill switch is still off */
3814 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3815 			return;
3816 		}
3817 
3818 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3819 		ieee80211_runtask(ic, &sc->sc_radiotask);
3820 		return;
3821 	}
3822 
3823 	if (sc->sc_tx_timer > 0) {
3824 		if (--sc->sc_tx_timer == 0) {
3825 			device_printf(sc->sc_dev,"device timeout\n");
3826 #if defined(__DragonFly__)
3827 			IFNET_STAT_INC(ifp, oerrors, 1);
3828 #else
3829 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3830 #endif
3831 			ieee80211_runtask(ic, &sc->sc_restarttask);
3832 		}
3833 	}
3834 	if (sc->sc_scan_timer > 0) {
3835 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3836 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3837 			device_printf(sc->sc_dev,"scan timeout\n");
3838 			ieee80211_cancel_scan(vap);
3839 			ieee80211_runtask(ic, &sc->sc_restarttask);
3840 		}
3841 	}
3842 
3843 #if defined(__DragonFly__)
3844 	if (ifp->if_flags & IFF_RUNNING)
3845 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3846 #else
3847 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3848 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3849 #endif
3850 }
3851 
3852 #if defined(__DragonFly__)
3853 static int
3854 wpi_sleep(struct wpi_softc *sc, void *wchan,
3855 	int flags, const char *wmsg, int timo)
3856 {
3857 	int iws;
3858 	int error;
3859 	iws = wlan_is_serialized();
3860 	if (iws)
3861 		wlan_serialize_exit();
3862 	error = lksleep(wchan, &sc->sc_mtx, flags, wmsg, timo);
3863 	if (iws)
3864 		wlan_serialize_enter();
3865 	return error;
3866 }
3867 #endif
3868 
3869 
3870 #ifdef WPI_DEBUG
3871 static const char *wpi_cmd_str(int cmd)
3872 {
3873 	switch (cmd) {
3874 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3875 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3876 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3877 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3878 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3879 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3880 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3881 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3882 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3883 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3884 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3885 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3886 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3887 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3888 
3889 	default:
3890 		KASSERT(1, ("Unknown Command: %d", cmd));
3891 		return "UNKNOWN CMD";	/* Make the compiler happy */
3892 	}
3893 }
3894 #endif
3895 
3896 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3897 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3898 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3899