xref: /dflybsd-src/sys/dev/netif/wpi/if_wpi.c (revision a9656fbcd49c376aba5e04370d8b0f1fa96e063c)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $
19  */
20 
21 #define VERSION "20071127"
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_intr) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60 
61 #include <sys/param.h>
62 #include <sys/sysctl.h>
63 #include <sys/sockio.h>
64 #include <sys/mbuf.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/systm.h>
68 #include <sys/malloc.h>
69 #include <sys/queue.h>
70 #include <sys/taskqueue.h>
71 #include <sys/module.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/linker.h>
75 #include <sys/firmware.h>
76 
77 #include <sys/bus.h>
78 #include <sys/resource.h>
79 #include <sys/rman.h>
80 
81 #include <bus/pci/pcireg.h>
82 #include <bus/pci/pcivar.h>
83 
84 #include <net/bpf.h>
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ifq_var.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <netproto/802_11/ieee80211_var.h>
94 #include <netproto/802_11/ieee80211_radiotap.h>
95 #include <netproto/802_11/ieee80211_regdomain.h>
96 #include <netproto/802_11/ieee80211_ratectl.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103 
104 /* XXX: move elsewhere */
105 #define abs(x) (((x) < 0) ? -(x) : (x))
106 
107 #include "if_wpireg.h"
108 #include "if_wpivar.h"
109 
110 #define WPI_DEBUG
111 
112 #ifdef WPI_DEBUG
113 #define DPRINTF(x)	do { if (wpi_debug != 0) kprintf x; } while (0)
114 #define DPRINTFN(n, x)	do { if (wpi_debug & n) kprintf x; } while (0)
115 #define	WPI_DEBUG_SET	(wpi_debug != 0)
116 
117 enum {
118 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
119 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
120 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
121 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
122 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
123 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
124 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
125 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
126 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
127 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
128 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
129 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
130 	WPI_DEBUG_ANY		= 0xffffffff
131 };
132 
133 static int wpi_debug = 1;
134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135 TUNABLE_INT("debug.wpi", &wpi_debug);
136 
137 #else
138 #define DPRINTF(x)
139 #define DPRINTFN(n, x)
140 #define WPI_DEBUG_SET	0
141 #endif
142 
143 struct wpi_ident {
144 	uint16_t	vendor;
145 	uint16_t	device;
146 	uint16_t	subdevice;
147 	const char	*name;
148 };
149 
150 static const struct wpi_ident wpi_ident_table[] = {
151 	/* The below entries support ABG regardless of the subid */
152 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154 	/* The below entries only support BG */
155 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159 	{ 0, 0, 0, NULL }
160 };
161 
162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163 		    const char name[IFNAMSIZ], int unit, int opmode,
164 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
165 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
166 static void	wpi_vap_delete(struct ieee80211vap *);
167 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168 		    void **, bus_size_t, bus_size_t, int);
169 static void	wpi_dma_contig_free(struct wpi_dma_info *);
170 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171 static int	wpi_alloc_shared(struct wpi_softc *);
172 static void	wpi_free_shared(struct wpi_softc *);
173 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177 		    int, int);
178 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
182 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
183 static void	wpi_mem_lock(struct wpi_softc *);
184 static void	wpi_mem_unlock(struct wpi_softc *);
185 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
186 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
187 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
188 		    const uint32_t *, int);
189 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
190 static int	wpi_alloc_fwmem(struct wpi_softc *);
191 static void	wpi_free_fwmem(struct wpi_softc *);
192 static int	wpi_load_firmware(struct wpi_softc *);
193 static void	wpi_unload_firmware(struct wpi_softc *);
194 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
195 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
196 		    struct wpi_rx_data *);
197 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
198 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
199 static void	wpi_notif_intr(struct wpi_softc *);
200 static void	wpi_intr(void *);
201 static uint8_t	wpi_plcp_signal(int);
202 static void	wpi_watchdog(void *);
203 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
204 		    struct ieee80211_node *, int);
205 static void	wpi_start(struct ifnet *);
206 static void	wpi_start_locked(struct ifnet *);
207 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
208 		    const struct ieee80211_bpf_params *);
209 static void	wpi_scan_start(struct ieee80211com *);
210 static void	wpi_scan_end(struct ieee80211com *);
211 static void	wpi_set_channel(struct ieee80211com *);
212 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
213 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
214 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
215 static void	wpi_read_eeprom(struct wpi_softc *,
216 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
217 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
218 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
219 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
220 static int	wpi_wme_update(struct ieee80211com *);
221 static int	wpi_mrr_setup(struct wpi_softc *);
222 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
223 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
224 #if 0
225 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
226 #endif
227 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
228 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
229 static int	wpi_scan(struct wpi_softc *);
230 static int	wpi_config(struct wpi_softc *);
231 static void	wpi_stop_master(struct wpi_softc *);
232 static int	wpi_power_up(struct wpi_softc *);
233 static int	wpi_reset(struct wpi_softc *);
234 static void	wpi_hwreset(void *, int);
235 static void	wpi_rfreset(void *, int);
236 static void	wpi_hw_config(struct wpi_softc *);
237 static void	wpi_init(void *);
238 static void	wpi_init_locked(struct wpi_softc *, int);
239 static void	wpi_stop(struct wpi_softc *);
240 static void	wpi_stop_locked(struct wpi_softc *);
241 
242 static void	wpi_newassoc(struct ieee80211_node *, int);
243 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
244 		    int);
245 static void	wpi_calib_timeout(void *);
246 static void	wpi_power_calibration(struct wpi_softc *, int);
247 static int	wpi_get_power_index(struct wpi_softc *,
248 		    struct wpi_power_group *, struct ieee80211_channel *, int);
249 #ifdef WPI_DEBUG
250 static const char *wpi_cmd_str(int);
251 #endif
252 static int wpi_probe(device_t);
253 static int wpi_attach(device_t);
254 static int wpi_detach(device_t);
255 static int wpi_shutdown(device_t);
256 static int wpi_suspend(device_t);
257 static int wpi_resume(device_t);
258 
259 
260 static device_method_t wpi_methods[] = {
261 	/* Device interface */
262 	DEVMETHOD(device_probe,		wpi_probe),
263 	DEVMETHOD(device_attach,	wpi_attach),
264 	DEVMETHOD(device_detach,	wpi_detach),
265 	DEVMETHOD(device_shutdown,	wpi_shutdown),
266 	DEVMETHOD(device_suspend,	wpi_suspend),
267 	DEVMETHOD(device_resume,	wpi_resume),
268 
269 	{ 0, 0 }
270 };
271 
272 static driver_t wpi_driver = {
273 	"wpi",
274 	wpi_methods,
275 	sizeof (struct wpi_softc)
276 };
277 
278 static devclass_t wpi_devclass;
279 
280 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
281 
282 static const uint8_t wpi_ridx_to_plcp[] = {
283 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
284 	/* R1-R4 (ral/ural is R4-R1) */
285 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
286 	/* CCK: device-dependent */
287 	10, 20, 55, 110
288 };
289 static const uint8_t wpi_ridx_to_rate[] = {
290 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
291 	2, 4, 11, 22 /*CCK */
292 };
293 
294 
295 static int
296 wpi_probe(device_t dev)
297 {
298 	const struct wpi_ident *ident;
299 
300 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
301 		if (pci_get_vendor(dev) == ident->vendor &&
302 		    pci_get_device(dev) == ident->device) {
303 			device_set_desc(dev, ident->name);
304 			return 0;
305 		}
306 	}
307 	return ENXIO;
308 }
309 
310 /**
311  * Load the firmare image from disk to the allocated dma buffer.
312  * we also maintain the reference to the firmware pointer as there
313  * is times where we may need to reload the firmware but we are not
314  * in a context that can access the filesystem (ie taskq cause by restart)
315  *
316  * @return 0 on success, an errno on failure
317  */
318 static int
319 wpi_load_firmware(struct wpi_softc *sc)
320 {
321 	const struct firmware *fp;
322 	struct wpi_dma_info *dma = &sc->fw_dma;
323 	const struct wpi_firmware_hdr *hdr;
324 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
325 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
326 	int error;
327 
328 	DPRINTFN(WPI_DEBUG_FIRMWARE,
329 	    ("Attempting Loading Firmware from wpi_fw module\n"));
330 
331 	WPI_UNLOCK(sc);
332 
333 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
334 		device_printf(sc->sc_dev,
335 		    "could not load firmware image 'wpifw_fw'\n");
336 		error = ENOENT;
337 		WPI_LOCK(sc);
338 		goto fail;
339 	}
340 
341 	fp = sc->fw_fp;
342 
343 	WPI_LOCK(sc);
344 
345 
346 	/* Validate the firmware is minimum a particular version */
347 	if (fp->version < WPI_FW_MINVERSION) {
348 	    device_printf(sc->sc_dev,
349 			   "firmware version is too old. Need %d, got %d\n",
350 			   WPI_FW_MINVERSION,
351 			   fp->version);
352 	    error = ENXIO;
353 	    goto fail;
354 	}
355 
356 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
357 		device_printf(sc->sc_dev,
358 		    "firmware file too short: %zu bytes\n", fp->datasize);
359 		error = ENXIO;
360 		goto fail;
361 	}
362 
363 	hdr = (const struct wpi_firmware_hdr *)fp->data;
364 
365 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
366 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
367 
368 	rtextsz = le32toh(hdr->rtextsz);
369 	rdatasz = le32toh(hdr->rdatasz);
370 	itextsz = le32toh(hdr->itextsz);
371 	idatasz = le32toh(hdr->idatasz);
372 	btextsz = le32toh(hdr->btextsz);
373 
374 	/* check that all firmware segments are present */
375 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
376 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
377 		device_printf(sc->sc_dev,
378 		    "firmware file too short: %zu bytes\n", fp->datasize);
379 		error = ENXIO; /* XXX appropriate error code? */
380 		goto fail;
381 	}
382 
383 	/* get pointers to firmware segments */
384 	rtext = (const uint8_t *)(hdr + 1);
385 	rdata = rtext + rtextsz;
386 	itext = rdata + rdatasz;
387 	idata = itext + itextsz;
388 	btext = idata + idatasz;
389 
390 	DPRINTFN(WPI_DEBUG_FIRMWARE,
391 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
392 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
393 	     (le32toh(hdr->version) & 0xff000000) >> 24,
394 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
395 	     (le32toh(hdr->version) & 0x0000ffff),
396 	     rtextsz, rdatasz,
397 	     itextsz, idatasz, btextsz));
398 
399 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
400 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
401 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
402 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
403 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
404 
405 	/* sanity checks */
406 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
407 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
408 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
409 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
410 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
411 	    (btextsz & 3) != 0) {
412 		device_printf(sc->sc_dev, "firmware invalid\n");
413 		error = EINVAL;
414 		goto fail;
415 	}
416 
417 	/* copy initialization images into pre-allocated DMA-safe memory */
418 	memcpy(dma->vaddr, idata, idatasz);
419 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
420 
421 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
422 
423 	/* tell adapter where to find initialization images */
424 	wpi_mem_lock(sc);
425 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
426 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
427 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
428 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
429 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
430 	wpi_mem_unlock(sc);
431 
432 	/* load firmware boot code */
433 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
434 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
435 	    goto fail;
436 	}
437 
438 	/* now press "execute" */
439 	WPI_WRITE(sc, WPI_RESET, 0);
440 
441 	/* wait at most one second for the first alive notification */
442 	if ((error = lksleep(sc, &sc->sc_lock, 0, "wpiinit", hz)) != 0) {
443 		device_printf(sc->sc_dev,
444 		    "timeout waiting for adapter to initialize\n");
445 		goto fail;
446 	}
447 
448 	/* copy runtime images into pre-allocated DMA-sage memory */
449 	memcpy(dma->vaddr, rdata, rdatasz);
450 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
451 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
452 
453 	/* tell adapter where to find runtime images */
454 	wpi_mem_lock(sc);
455 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
456 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
457 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
458 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
459 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
460 	wpi_mem_unlock(sc);
461 
462 	/* wait at most one second for the first alive notification */
463 	if ((error = lksleep(sc, &sc->sc_lock, 0, "wpiinit", hz)) != 0) {
464 		device_printf(sc->sc_dev,
465 		    "timeout waiting for adapter to initialize2\n");
466 		goto fail;
467 	}
468 
469 	DPRINTFN(WPI_DEBUG_FIRMWARE,
470 	    ("Firmware loaded to driver successfully\n"));
471 	return error;
472 fail:
473 	wpi_unload_firmware(sc);
474 	return error;
475 }
476 
477 /**
478  * Free the referenced firmware image
479  */
480 static void
481 wpi_unload_firmware(struct wpi_softc *sc)
482 {
483 	struct ifnet *ifp;
484 	ifp = sc->sc_ifp;
485 
486 	if (sc->fw_fp) {
487 		WPI_UNLOCK(sc);
488 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
489 		WPI_LOCK(sc);
490 		sc->fw_fp = NULL;
491 	}
492 }
493 
494 static int
495 wpi_attach(device_t dev)
496 {
497 	struct wpi_softc *sc = device_get_softc(dev);
498 	struct ifnet *ifp;
499 	struct ieee80211com *ic;
500 	int ac, error, supportsa = 1;
501 	uint32_t tmp;
502 	const struct wpi_ident *ident;
503 	uint8_t macaddr[IEEE80211_ADDR_LEN];
504 
505 	sc->sc_dev = dev;
506 
507 	if (bootverbose || WPI_DEBUG_SET)
508 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
509 
510 	/*
511 	 * Some card's only support 802.11b/g not a, check to see if
512 	 * this is one such card. A 0x0 in the subdevice table indicates
513 	 * the entire subdevice range is to be ignored.
514 	 */
515 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
516 		if (ident->subdevice &&
517 		    pci_get_subdevice(dev) == ident->subdevice) {
518 		    supportsa = 0;
519 		    break;
520 		}
521 	}
522 
523 	/* Create the tasks that can be queued */
524 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
525 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
526 
527 	WPI_LOCK_INIT(sc);
528 
529 	callout_init(&sc->calib_to);
530 	callout_init(&sc->watchdog_to);
531 
532 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
533 		device_printf(dev, "chip is in D%d power mode "
534 		    "-- setting to D0\n", pci_get_powerstate(dev));
535 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
536 	}
537 
538 	/* disable the retry timeout register */
539 	pci_write_config(dev, 0x41, 0, 1);
540 
541 	/* enable bus-mastering */
542 	pci_enable_busmaster(dev);
543 
544 	sc->mem_rid = PCIR_BAR(0);
545 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
546 	    RF_ACTIVE);
547 	if (sc->mem == NULL) {
548 		device_printf(dev, "could not allocate memory resource\n");
549 		error = ENOMEM;
550 		goto fail;
551 	}
552 
553 	sc->sc_st = rman_get_bustag(sc->mem);
554 	sc->sc_sh = rman_get_bushandle(sc->mem);
555 
556 	sc->irq_rid = 0;
557 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
558 	    RF_ACTIVE | RF_SHAREABLE);
559 	if (sc->irq == NULL) {
560 		device_printf(dev, "could not allocate interrupt resource\n");
561 		error = ENOMEM;
562 		goto fail;
563 	}
564 
565 	/*
566 	 * Allocate DMA memory for firmware transfers.
567 	 */
568 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
569 		kprintf(": could not allocate firmware memory\n");
570 		error = ENOMEM;
571 		goto fail;
572 	}
573 
574 	/*
575 	 * Put adapter into a known state.
576 	 */
577 	if ((error = wpi_reset(sc)) != 0) {
578 		device_printf(dev, "could not reset adapter\n");
579 		goto fail;
580 	}
581 
582 	wpi_mem_lock(sc);
583 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
584 	if (bootverbose || WPI_DEBUG_SET)
585 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
586 
587 	wpi_mem_unlock(sc);
588 
589 	/* Allocate shared page */
590 	if ((error = wpi_alloc_shared(sc)) != 0) {
591 		device_printf(dev, "could not allocate shared page\n");
592 		goto fail;
593 	}
594 
595 	/* tx data queues  - 4 for QoS purposes */
596 	for (ac = 0; ac < WME_NUM_AC; ac++) {
597 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
598 		if (error != 0) {
599 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
600 		    goto fail;
601 		}
602 	}
603 
604 	/* command queue to talk to the card's firmware */
605 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
606 	if (error != 0) {
607 		device_printf(dev, "could not allocate command ring\n");
608 		goto fail;
609 	}
610 
611 	/* receive data queue */
612 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
613 	if (error != 0) {
614 		device_printf(dev, "could not allocate Rx ring\n");
615 		goto fail;
616 	}
617 
618 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
619 	if (ifp == NULL) {
620 		device_printf(dev, "can not if_alloc()\n");
621 		error = ENOMEM;
622 		goto fail;
623 	}
624 	ic = ifp->if_l2com;
625 
626 	ic->ic_ifp = ifp;
627 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
628 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
629 
630 	/* set device capabilities */
631 	ic->ic_caps =
632 		  IEEE80211_C_STA		/* station mode supported */
633 		| IEEE80211_C_MONITOR		/* monitor mode supported */
634 		| IEEE80211_C_TXPMGT		/* tx power management */
635 		| IEEE80211_C_SHSLOT		/* short slot time supported */
636 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
637 		| IEEE80211_C_WPA		/* 802.11i */
638 /* XXX looks like WME is partly supported? */
639 #if 0
640 		| IEEE80211_C_IBSS		/* IBSS mode support */
641 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
642 		| IEEE80211_C_WME		/* 802.11e */
643 		| IEEE80211_C_HOSTAP		/* Host access point mode */
644 #endif
645 		;
646 
647 	/*
648 	 * Read in the eeprom and also setup the channels for
649 	 * net80211. We don't set the rates as net80211 does this for us
650 	 */
651 	wpi_read_eeprom(sc, macaddr);
652 
653 	if (bootverbose || WPI_DEBUG_SET) {
654 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
655 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
656 			  sc->type > 1 ? 'B': '?');
657 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
658 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
659 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
660 			  supportsa ? "does" : "does not");
661 
662 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
663 	       what sc->rev really represents - benjsc 20070615 */
664 	}
665 
666 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
667 	ifp->if_softc = sc;
668 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
669 	ifp->if_init = wpi_init;
670 	ifp->if_ioctl = wpi_ioctl;
671 	ifp->if_start = wpi_start;
672 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
673 	ifq_set_ready(&ifp->if_snd);
674 
675 	ieee80211_ifattach(ic, macaddr);
676 	/* override default methods */
677 	ic->ic_node_alloc = wpi_node_alloc;
678 	ic->ic_newassoc = wpi_newassoc;
679 	ic->ic_raw_xmit = wpi_raw_xmit;
680 	ic->ic_wme.wme_update = wpi_wme_update;
681 	ic->ic_scan_start = wpi_scan_start;
682 	ic->ic_scan_end = wpi_scan_end;
683 	ic->ic_set_channel = wpi_set_channel;
684 	ic->ic_scan_curchan = wpi_scan_curchan;
685 	ic->ic_scan_mindwell = wpi_scan_mindwell;
686 
687 	ic->ic_vap_create = wpi_vap_create;
688 	ic->ic_vap_delete = wpi_vap_delete;
689 
690 	ieee80211_radiotap_attach(ic,
691 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
692 		WPI_TX_RADIOTAP_PRESENT,
693 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
694 		WPI_RX_RADIOTAP_PRESENT);
695 
696 	/*
697 	 * Hook our interrupt after all initialization is complete.
698 	 */
699 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
700 	    wpi_intr, sc, &sc->sc_ih, ifp->if_serializer);
701 	if (error != 0) {
702 		device_printf(dev, "could not set up interrupt\n");
703 		goto fail;
704 	}
705 
706 	if (bootverbose)
707 		ieee80211_announce(ic);
708 #ifdef XXX_DEBUG
709 	ieee80211_announce_channels(ic);
710 #endif
711 	return 0;
712 
713 fail:	wpi_detach(dev);
714 	return ENXIO;
715 }
716 
717 static int
718 wpi_detach(device_t dev)
719 {
720 	struct wpi_softc *sc = device_get_softc(dev);
721 	struct ifnet *ifp = sc->sc_ifp;
722 	struct ieee80211com *ic;
723 	int ac;
724 
725 	if (ifp != NULL) {
726 		ic = ifp->if_l2com;
727 
728 		ieee80211_draintask(ic, &sc->sc_restarttask);
729 		ieee80211_draintask(ic, &sc->sc_radiotask);
730 		wpi_stop(sc);
731 		callout_stop(&sc->watchdog_to);
732 		callout_stop(&sc->calib_to);
733 		ieee80211_ifdetach(ic);
734 	}
735 
736 	WPI_LOCK(sc);
737 	if (sc->txq[0].data_dmat) {
738 		for (ac = 0; ac < WME_NUM_AC; ac++)
739 			wpi_free_tx_ring(sc, &sc->txq[ac]);
740 
741 		wpi_free_tx_ring(sc, &sc->cmdq);
742 		wpi_free_rx_ring(sc, &sc->rxq);
743 		wpi_free_shared(sc);
744 	}
745 
746 	if (sc->fw_fp != NULL) {
747 		wpi_unload_firmware(sc);
748 	}
749 
750 	if (sc->fw_dma.tag)
751 		wpi_free_fwmem(sc);
752 	WPI_UNLOCK(sc);
753 
754 	if (sc->irq != NULL) {
755 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
756 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
757 	}
758 
759 	if (sc->mem != NULL)
760 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
761 
762 	if (ifp != NULL)
763 		if_free(ifp);
764 
765 	WPI_LOCK_DESTROY(sc);
766 
767 	return 0;
768 }
769 
770 static struct ieee80211vap *
771 wpi_vap_create(struct ieee80211com *ic,
772 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
773 	const uint8_t bssid[IEEE80211_ADDR_LEN],
774 	const uint8_t mac[IEEE80211_ADDR_LEN])
775 {
776 	struct wpi_vap *wvp;
777 	struct ieee80211vap *vap;
778 
779 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
780 		return NULL;
781 	wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
782 	    M_80211_VAP, M_INTWAIT | M_ZERO);
783 	if (wvp == NULL)
784 		return NULL;
785 	vap = &wvp->vap;
786 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
787 	/* override with driver methods */
788 	wvp->newstate = vap->iv_newstate;
789 	vap->iv_newstate = wpi_newstate;
790 
791 	ieee80211_ratectl_init(vap);
792 
793 	/* complete setup */
794 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
795 	ic->ic_opmode = opmode;
796 	return vap;
797 }
798 
799 static void
800 wpi_vap_delete(struct ieee80211vap *vap)
801 {
802 	struct wpi_vap *wvp = WPI_VAP(vap);
803 
804 	ieee80211_ratectl_deinit(vap);
805 	ieee80211_vap_detach(vap);
806 	kfree(wvp, M_80211_VAP);
807 }
808 
809 static void
810 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
811 {
812 	if (error != 0)
813 		return;
814 
815 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
816 
817 	*(bus_addr_t *)arg = segs[0].ds_addr;
818 }
819 
820 /*
821  * Allocates a contiguous block of dma memory of the requested size and
822  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
823  * allocations greater than 4096 may fail. Hence if the requested alignment is
824  * greater we allocate 'alignment' size extra memory and shift the vaddr and
825  * paddr after the dma load. This bypasses the problem at the cost of a little
826  * more memory.
827  */
828 static int
829 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
830     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
831 {
832 	int error;
833 	bus_size_t align;
834 	bus_size_t reqsize;
835 
836 	DPRINTFN(WPI_DEBUG_DMA,
837 	    ("Size: %zd - alignment %zd\n", size, alignment));
838 
839 	dma->size = size;
840 	dma->tag = NULL;
841 
842 	if (alignment > 4096) {
843 		align = PAGE_SIZE;
844 		reqsize = size + alignment;
845 	} else {
846 		align = alignment;
847 		reqsize = size;
848 	}
849 	error = bus_dma_tag_create(dma->tag, align,
850 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
851 	    NULL, NULL, reqsize,
852 	    1, reqsize, flags,
853 	    &dma->tag);
854 	if (error != 0) {
855 		device_printf(sc->sc_dev,
856 		    "could not create shared page DMA tag\n");
857 		goto fail;
858 	}
859 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
860 	    flags | BUS_DMA_ZERO, &dma->map);
861 	if (error != 0) {
862 		device_printf(sc->sc_dev,
863 		    "could not allocate shared page DMA memory\n");
864 		goto fail;
865 	}
866 
867 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
868 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
869 
870 	/* Save the original pointers so we can free all the memory */
871 	dma->paddr = dma->paddr_start;
872 	dma->vaddr = dma->vaddr_start;
873 
874 	/*
875 	 * Check the alignment and increment by 4096 until we get the
876 	 * requested alignment. Fail if can't obtain the alignment
877 	 * we requested.
878 	 */
879 	if ((dma->paddr & (alignment -1 )) != 0) {
880 		int i;
881 
882 		for (i = 0; i < alignment / 4096; i++) {
883 			if ((dma->paddr & (alignment - 1 )) == 0)
884 				break;
885 			dma->paddr += 4096;
886 			dma->vaddr += 4096;
887 		}
888 		if (i == alignment / 4096) {
889 			device_printf(sc->sc_dev,
890 			    "alignment requirement was not satisfied\n");
891 			goto fail;
892 		}
893 	}
894 
895 	if (error != 0) {
896 		device_printf(sc->sc_dev,
897 		    "could not load shared page DMA map\n");
898 		goto fail;
899 	}
900 
901 	if (kvap != NULL)
902 		*kvap = dma->vaddr;
903 
904 	return 0;
905 
906 fail:
907 	wpi_dma_contig_free(dma);
908 	return error;
909 }
910 
911 static void
912 wpi_dma_contig_free(struct wpi_dma_info *dma)
913 {
914 	if (dma->tag) {
915 		if (dma->map != NULL) {
916 			if (dma->paddr_start != 0) {
917 				bus_dmamap_sync(dma->tag, dma->map,
918 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
919 				bus_dmamap_unload(dma->tag, dma->map);
920 			}
921 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
922 		}
923 		bus_dma_tag_destroy(dma->tag);
924 	}
925 }
926 
927 /*
928  * Allocate a shared page between host and NIC.
929  */
930 static int
931 wpi_alloc_shared(struct wpi_softc *sc)
932 {
933 	int error;
934 
935 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
936 	    (void **)&sc->shared, sizeof (struct wpi_shared),
937 	    PAGE_SIZE,
938 	    BUS_DMA_NOWAIT);
939 
940 	if (error != 0) {
941 		device_printf(sc->sc_dev,
942 		    "could not allocate shared area DMA memory\n");
943 	}
944 
945 	return error;
946 }
947 
948 static void
949 wpi_free_shared(struct wpi_softc *sc)
950 {
951 	wpi_dma_contig_free(&sc->shared_dma);
952 }
953 
954 static int
955 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
956 {
957 
958 	int i, error;
959 
960 	ring->cur = 0;
961 
962 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
963 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
964 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
965 
966 	if (error != 0) {
967 		device_printf(sc->sc_dev,
968 		    "%s: could not allocate rx ring DMA memory, error %d\n",
969 		    __func__, error);
970 		goto fail;
971 	}
972 
973         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
974 	    BUS_SPACE_MAXADDR_32BIT,
975             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
976             MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
977         if (error != 0) {
978                 device_printf(sc->sc_dev,
979 		    "%s: bus_dma_tag_create_failed, error %d\n",
980 		    __func__, error);
981                 goto fail;
982         }
983 
984 	/*
985 	 * Setup Rx buffers.
986 	 */
987 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
988 		struct wpi_rx_data *data = &ring->data[i];
989 		struct mbuf *m;
990 		bus_addr_t paddr;
991 
992 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
993 		if (error != 0) {
994 			device_printf(sc->sc_dev,
995 			    "%s: bus_dmamap_create failed, error %d\n",
996 			    __func__, error);
997 			goto fail;
998 		}
999 		m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1000 		if (m == NULL) {
1001 			device_printf(sc->sc_dev,
1002 			   "%s: could not allocate rx mbuf\n", __func__);
1003 			error = ENOMEM;
1004 			goto fail;
1005 		}
1006 		/* map page */
1007 		error = bus_dmamap_load(ring->data_dmat, data->map,
1008 		    mtod(m, caddr_t), MCLBYTES,
1009 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1010 		if (error != 0 && error != EFBIG) {
1011 			device_printf(sc->sc_dev,
1012 			    "%s: bus_dmamap_load failed, error %d\n",
1013 			    __func__, error);
1014 			m_freem(m);
1015 			error = ENOMEM;	/* XXX unique code */
1016 			goto fail;
1017 		}
1018 		bus_dmamap_sync(ring->data_dmat, data->map,
1019 		    BUS_DMASYNC_PREWRITE);
1020 
1021 		data->m = m;
1022 		ring->desc[i] = htole32(paddr);
1023 	}
1024 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1025 	    BUS_DMASYNC_PREWRITE);
1026 	return 0;
1027 fail:
1028 	wpi_free_rx_ring(sc, ring);
1029 	return error;
1030 }
1031 
1032 static void
1033 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1034 {
1035 	int ntries;
1036 
1037 	wpi_mem_lock(sc);
1038 
1039 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1040 
1041 	for (ntries = 0; ntries < 100; ntries++) {
1042 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1043 			break;
1044 		DELAY(10);
1045 	}
1046 
1047 	wpi_mem_unlock(sc);
1048 
1049 #ifdef WPI_DEBUG
1050 	if (ntries == 100 && wpi_debug > 0)
1051 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1052 #endif
1053 
1054 	ring->cur = 0;
1055 }
1056 
1057 static void
1058 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1059 {
1060 	int i;
1061 
1062 	wpi_dma_contig_free(&ring->desc_dma);
1063 
1064 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1065 		if (ring->data[i].m != NULL)
1066 			m_freem(ring->data[i].m);
1067 }
1068 
1069 static int
1070 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1071 	int qid)
1072 {
1073 	struct wpi_tx_data *data;
1074 	int i, error;
1075 
1076 	ring->qid = qid;
1077 	ring->count = count;
1078 	ring->queued = 0;
1079 	ring->cur = 0;
1080 	ring->data = NULL;
1081 
1082 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1083 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1084 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1085 
1086 	if (error != 0) {
1087 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1088 	    goto fail;
1089 	}
1090 
1091 	/* update shared page with ring's base address */
1092 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1093 
1094 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1095 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1096 		BUS_DMA_NOWAIT);
1097 
1098 	if (error != 0) {
1099 		device_printf(sc->sc_dev,
1100 		    "could not allocate tx command DMA memory\n");
1101 		goto fail;
1102 	}
1103 
1104 	ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1105 	    M_INTWAIT | M_ZERO);
1106 	if (ring->data == NULL) {
1107 		device_printf(sc->sc_dev,
1108 		    "could not allocate tx data slots\n");
1109 		goto fail;
1110 	}
1111 
1112 	error = bus_dma_tag_create(ring->data_dmat, 1, 0,
1113 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1114 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT,
1115 	    &ring->data_dmat);
1116 	if (error != 0) {
1117 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1118 		goto fail;
1119 	}
1120 
1121 	for (i = 0; i < count; i++) {
1122 		data = &ring->data[i];
1123 
1124 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1125 		if (error != 0) {
1126 			device_printf(sc->sc_dev,
1127 			    "could not create tx buf DMA map\n");
1128 			goto fail;
1129 		}
1130 		bus_dmamap_sync(ring->data_dmat, data->map,
1131 		    BUS_DMASYNC_PREWRITE);
1132 	}
1133 
1134 	return 0;
1135 
1136 fail:
1137 	wpi_free_tx_ring(sc, ring);
1138 	return error;
1139 }
1140 
1141 static void
1142 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1143 {
1144 	struct wpi_tx_data *data;
1145 	int i, ntries;
1146 
1147 	wpi_mem_lock(sc);
1148 
1149 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1150 	for (ntries = 0; ntries < 100; ntries++) {
1151 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1152 			break;
1153 		DELAY(10);
1154 	}
1155 #ifdef WPI_DEBUG
1156 	if (ntries == 100 && wpi_debug > 0)
1157 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1158 		    ring->qid);
1159 #endif
1160 	wpi_mem_unlock(sc);
1161 
1162 	for (i = 0; i < ring->count; i++) {
1163 		data = &ring->data[i];
1164 
1165 		if (data->m != NULL) {
1166 			bus_dmamap_unload(ring->data_dmat, data->map);
1167 			m_freem(data->m);
1168 			data->m = NULL;
1169 		}
1170 	}
1171 
1172 	ring->queued = 0;
1173 	ring->cur = 0;
1174 }
1175 
1176 static void
1177 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1178 {
1179 	struct wpi_tx_data *data;
1180 	int i;
1181 
1182 	wpi_dma_contig_free(&ring->desc_dma);
1183 	wpi_dma_contig_free(&ring->cmd_dma);
1184 
1185 	if (ring->data != NULL) {
1186 		for (i = 0; i < ring->count; i++) {
1187 			data = &ring->data[i];
1188 
1189 			if (data->m != NULL) {
1190 				bus_dmamap_sync(ring->data_dmat, data->map,
1191 				    BUS_DMASYNC_POSTWRITE);
1192 				bus_dmamap_unload(ring->data_dmat, data->map);
1193 				m_freem(data->m);
1194 				data->m = NULL;
1195 			}
1196 		}
1197 		kfree(ring->data, M_DEVBUF);
1198 	}
1199 
1200 	if (ring->data_dmat != NULL)
1201 		bus_dma_tag_destroy(ring->data_dmat);
1202 }
1203 
1204 static int
1205 wpi_shutdown(device_t dev)
1206 {
1207 	struct wpi_softc *sc = device_get_softc(dev);
1208 
1209 	WPI_LOCK(sc);
1210 	wpi_stop_locked(sc);
1211 	wpi_unload_firmware(sc);
1212 	WPI_UNLOCK(sc);
1213 
1214 	return 0;
1215 }
1216 
1217 static int
1218 wpi_suspend(device_t dev)
1219 {
1220 	struct wpi_softc *sc = device_get_softc(dev);
1221 
1222 	wpi_stop(sc);
1223 	return 0;
1224 }
1225 
1226 static int
1227 wpi_resume(device_t dev)
1228 {
1229 	struct wpi_softc *sc = device_get_softc(dev);
1230 	struct ifnet *ifp = sc->sc_ifp;
1231 
1232 	pci_write_config(dev, 0x41, 0, 1);
1233 
1234 	if (ifp->if_flags & IFF_UP) {
1235 		wpi_init(ifp->if_softc);
1236 		if (ifp->if_flags & IFF_RUNNING)
1237 			wpi_start(ifp);
1238 	}
1239 	return 0;
1240 }
1241 
1242 /* ARGSUSED */
1243 static struct ieee80211_node *
1244 wpi_node_alloc(struct ieee80211vap *vap __unused,
1245 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1246 {
1247 	struct wpi_node *wn;
1248 
1249 	wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO);
1250 
1251 	return &wn->ni;
1252 }
1253 
1254 /**
1255  * Called by net80211 when ever there is a change to 80211 state machine
1256  */
1257 static int
1258 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1259 {
1260 	struct wpi_vap *wvp = WPI_VAP(vap);
1261 	struct ieee80211com *ic = vap->iv_ic;
1262 	struct ifnet *ifp = ic->ic_ifp;
1263 	struct wpi_softc *sc = ifp->if_softc;
1264 	int error;
1265 
1266 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1267 		ieee80211_state_name[vap->iv_state],
1268 		ieee80211_state_name[nstate], sc->flags));
1269 
1270 	IEEE80211_UNLOCK(ic);
1271 	WPI_LOCK(sc);
1272 	if (nstate == IEEE80211_S_AUTH) {
1273 		/* The node must be registered in the firmware before auth */
1274 		error = wpi_auth(sc, vap);
1275 		if (error != 0) {
1276 			device_printf(sc->sc_dev,
1277 			    "%s: could not move to auth state, error %d\n",
1278 			    __func__, error);
1279 		}
1280 	}
1281 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1282 		error = wpi_run(sc, vap);
1283 		if (error != 0) {
1284 			device_printf(sc->sc_dev,
1285 			    "%s: could not move to run state, error %d\n",
1286 			    __func__, error);
1287 		}
1288 	}
1289 	if (nstate == IEEE80211_S_RUN) {
1290 		/* RUN -> RUN transition; just restart the timers */
1291 		wpi_calib_timeout(sc);
1292 		/* XXX split out rate control timer */
1293 	}
1294 	WPI_UNLOCK(sc);
1295 	IEEE80211_LOCK(ic);
1296 	return wvp->newstate(vap, nstate, arg);
1297 }
1298 
1299 /*
1300  * Grab exclusive access to NIC memory.
1301  */
1302 static void
1303 wpi_mem_lock(struct wpi_softc *sc)
1304 {
1305 	int ntries;
1306 	uint32_t tmp;
1307 
1308 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1309 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1310 
1311 	/* spin until we actually get the lock */
1312 	for (ntries = 0; ntries < 100; ntries++) {
1313 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1314 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1315 			break;
1316 		DELAY(10);
1317 	}
1318 	if (ntries == 100)
1319 		device_printf(sc->sc_dev, "could not lock memory\n");
1320 }
1321 
1322 /*
1323  * Release lock on NIC memory.
1324  */
1325 static void
1326 wpi_mem_unlock(struct wpi_softc *sc)
1327 {
1328 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1329 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1330 }
1331 
1332 static uint32_t
1333 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1334 {
1335 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1336 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1337 }
1338 
1339 static void
1340 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1341 {
1342 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1343 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1344 }
1345 
1346 static void
1347 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1348     const uint32_t *data, int wlen)
1349 {
1350 	for (; wlen > 0; wlen--, data++, addr+=4)
1351 		wpi_mem_write(sc, addr, *data);
1352 }
1353 
1354 /*
1355  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1356  * using the traditional bit-bang method. Data is read up until len bytes have
1357  * been obtained.
1358  */
1359 static uint16_t
1360 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1361 {
1362 	int ntries;
1363 	uint32_t val;
1364 	uint8_t *out = data;
1365 
1366 	wpi_mem_lock(sc);
1367 
1368 	for (; len > 0; len -= 2, addr++) {
1369 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1370 
1371 		for (ntries = 0; ntries < 10; ntries++) {
1372 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1373 				break;
1374 			DELAY(5);
1375 		}
1376 
1377 		if (ntries == 10) {
1378 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1379 			return ETIMEDOUT;
1380 		}
1381 
1382 		*out++= val >> 16;
1383 		if (len > 1)
1384 			*out ++= val >> 24;
1385 	}
1386 
1387 	wpi_mem_unlock(sc);
1388 
1389 	return 0;
1390 }
1391 
1392 /*
1393  * The firmware text and data segments are transferred to the NIC using DMA.
1394  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1395  * where to find it.  Once the NIC has copied the firmware into its internal
1396  * memory, we can free our local copy in the driver.
1397  */
1398 static int
1399 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1400 {
1401 	int error, ntries;
1402 
1403 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1404 
1405 	size /= sizeof(uint32_t);
1406 
1407 	wpi_mem_lock(sc);
1408 
1409 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1410 	    (const uint32_t *)fw, size);
1411 
1412 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1413 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1414 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1415 
1416 	/* run microcode */
1417 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1418 
1419 	/* wait while the adapter is busy copying the firmware */
1420 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1421 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1422 		DPRINTFN(WPI_DEBUG_HW,
1423 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1424 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1425 		if (status & WPI_TX_IDLE(6)) {
1426 			DPRINTFN(WPI_DEBUG_HW,
1427 			    ("Status Match! - ntries = %d\n", ntries));
1428 			break;
1429 		}
1430 		DELAY(10);
1431 	}
1432 	if (ntries == 1000) {
1433 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1434 		error = ETIMEDOUT;
1435 	}
1436 
1437 	/* start the microcode executing */
1438 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1439 
1440 	wpi_mem_unlock(sc);
1441 
1442 	return (error);
1443 }
1444 
1445 static void
1446 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1447 	struct wpi_rx_data *data)
1448 {
1449 	struct ifnet *ifp = sc->sc_ifp;
1450 	struct ieee80211com *ic = ifp->if_l2com;
1451 	struct wpi_rx_ring *ring = &sc->rxq;
1452 	struct wpi_rx_stat *stat;
1453 	struct wpi_rx_head *head;
1454 	struct wpi_rx_tail *tail;
1455 	struct ieee80211_node *ni;
1456 	struct mbuf *m, *mnew;
1457 	bus_addr_t paddr;
1458 	int error;
1459 
1460 	stat = (struct wpi_rx_stat *)(desc + 1);
1461 
1462 	if (stat->len > WPI_STAT_MAXLEN) {
1463 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1464 		ifp->if_ierrors++;
1465 		return;
1466 	}
1467 
1468 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1469 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1470 
1471 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1472 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1473 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1474 	    (uintmax_t)le64toh(tail->tstamp)));
1475 
1476 	/* discard Rx frames with bad CRC early */
1477 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1478 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1479 		    le32toh(tail->flags)));
1480 		ifp->if_ierrors++;
1481 		return;
1482 	}
1483 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1484 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1485 		    le16toh(head->len)));
1486 		ifp->if_ierrors++;
1487 		return;
1488 	}
1489 
1490 	/* XXX don't need mbuf, just dma buffer */
1491 	mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1492 	if (mnew == NULL) {
1493 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1494 		    __func__));
1495 		ifp->if_ierrors++;
1496 		return;
1497 	}
1498 	error = bus_dmamap_load(ring->data_dmat, data->map,
1499 	    mtod(mnew, caddr_t), MCLBYTES,
1500 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1501 	if (error != 0 && error != EFBIG) {
1502 		device_printf(sc->sc_dev,
1503 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1504 		m_freem(mnew);
1505 		ifp->if_ierrors++;
1506 		return;
1507 	}
1508 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1509 
1510 	/* finalize mbuf and swap in new one */
1511 	m = data->m;
1512 	m->m_pkthdr.rcvif = ifp;
1513 	m->m_data = (caddr_t)(head + 1);
1514 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1515 
1516 	data->m = mnew;
1517 	/* update Rx descriptor */
1518 	ring->desc[ring->cur] = htole32(paddr);
1519 
1520 	if (ieee80211_radiotap_active(ic)) {
1521 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1522 
1523 		tap->wr_flags = 0;
1524 		tap->wr_chan_freq =
1525 			htole16(ic->ic_channels[head->chan].ic_freq);
1526 		tap->wr_chan_flags =
1527 			htole16(ic->ic_channels[head->chan].ic_flags);
1528 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1529 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1530 		tap->wr_tsft = tail->tstamp;
1531 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1532 		switch (head->rate) {
1533 		/* CCK rates */
1534 		case  10: tap->wr_rate =   2; break;
1535 		case  20: tap->wr_rate =   4; break;
1536 		case  55: tap->wr_rate =  11; break;
1537 		case 110: tap->wr_rate =  22; break;
1538 		/* OFDM rates */
1539 		case 0xd: tap->wr_rate =  12; break;
1540 		case 0xf: tap->wr_rate =  18; break;
1541 		case 0x5: tap->wr_rate =  24; break;
1542 		case 0x7: tap->wr_rate =  36; break;
1543 		case 0x9: tap->wr_rate =  48; break;
1544 		case 0xb: tap->wr_rate =  72; break;
1545 		case 0x1: tap->wr_rate =  96; break;
1546 		case 0x3: tap->wr_rate = 108; break;
1547 		/* unknown rate: should not happen */
1548 		default:  tap->wr_rate =   0;
1549 		}
1550 		if (le16toh(head->flags) & 0x4)
1551 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1552 	}
1553 
1554 	WPI_UNLOCK(sc);
1555 
1556 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1557 	if (ni != NULL) {
1558 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1559 		ieee80211_free_node(ni);
1560 	} else
1561 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1562 
1563 	WPI_LOCK(sc);
1564 }
1565 
1566 static void
1567 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1568 {
1569 	struct ifnet *ifp = sc->sc_ifp;
1570 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1571 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1572 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1573 	struct ieee80211_node *ni = txdata->ni;
1574 	struct ieee80211vap *vap = ni->ni_vap;
1575 	int retrycnt = 0;
1576 
1577 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1578 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1579 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1580 	    le32toh(stat->status)));
1581 
1582 	/*
1583 	 * Update rate control statistics for the node.
1584 	 * XXX we should not count mgmt frames since they're always sent at
1585 	 * the lowest available bit-rate.
1586 	 * XXX frames w/o ACK shouldn't be used either
1587 	 */
1588 	if (stat->ntries > 0) {
1589 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1590 		retrycnt = 1;
1591 	}
1592 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1593 		&retrycnt, NULL);
1594 
1595 	/* XXX oerrors should only count errors !maxtries */
1596 	if ((le32toh(stat->status) & 0xff) != 1)
1597 		ifp->if_oerrors++;
1598 	else
1599 		ifp->if_opackets++;
1600 
1601 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1602 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1603 	/* XXX handle M_TXCB? */
1604 	m_freem(txdata->m);
1605 	txdata->m = NULL;
1606 	ieee80211_free_node(txdata->ni);
1607 	txdata->ni = NULL;
1608 
1609 	ring->queued--;
1610 
1611 	sc->sc_tx_timer = 0;
1612 	ifp->if_flags &= ~IFF_OACTIVE;
1613 	wpi_start_locked(ifp);
1614 }
1615 
1616 static void
1617 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1618 {
1619 	struct wpi_tx_ring *ring = &sc->cmdq;
1620 	struct wpi_tx_data *data;
1621 
1622 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1623 				 "type=%s len=%d\n", desc->qid, desc->idx,
1624 				 desc->flags, wpi_cmd_str(desc->type),
1625 				 le32toh(desc->len)));
1626 
1627 	if ((desc->qid & 7) != 4)
1628 		return;	/* not a command ack */
1629 
1630 	data = &ring->data[desc->idx];
1631 
1632 	/* if the command was mapped in a mbuf, free it */
1633 	if (data->m != NULL) {
1634 		bus_dmamap_unload(ring->data_dmat, data->map);
1635 		m_freem(data->m);
1636 		data->m = NULL;
1637 	}
1638 
1639 	sc->flags &= ~WPI_FLAG_BUSY;
1640 	wakeup(&ring->cmd[desc->idx]);
1641 }
1642 
1643 static void
1644 wpi_notif_intr(struct wpi_softc *sc)
1645 {
1646 	struct ifnet *ifp = sc->sc_ifp;
1647 	struct ieee80211com *ic = ifp->if_l2com;
1648 	struct wpi_rx_desc *desc;
1649 	struct wpi_rx_data *data;
1650 	uint32_t hw;
1651 
1652 	hw = le32toh(sc->shared->next);
1653 	while (sc->rxq.cur != hw) {
1654 		data = &sc->rxq.data[sc->rxq.cur];
1655 		desc = (void *)data->m->m_ext.ext_buf;
1656 
1657 		DPRINTFN(WPI_DEBUG_NOTIFY,
1658 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1659 			  desc->qid,
1660 			  desc->idx,
1661 			  desc->flags,
1662 			  desc->type,
1663 			  le32toh(desc->len)));
1664 
1665 		if (!(desc->qid & 0x80))	/* reply to a command */
1666 			wpi_cmd_intr(sc, desc);
1667 
1668 		switch (desc->type) {
1669 		case WPI_RX_DONE:
1670 			/* a 802.11 frame was received */
1671 			wpi_rx_intr(sc, desc, data);
1672 			break;
1673 
1674 		case WPI_TX_DONE:
1675 			/* a 802.11 frame has been transmitted */
1676 			wpi_tx_intr(sc, desc);
1677 			break;
1678 
1679 		case WPI_UC_READY:
1680 		{
1681 			struct wpi_ucode_info *uc =
1682 				(struct wpi_ucode_info *)(desc + 1);
1683 
1684 			/* the microcontroller is ready */
1685 			DPRINTF(("microcode alive notification version %x "
1686 				"alive %x\n", le32toh(uc->version),
1687 				le32toh(uc->valid)));
1688 
1689 			if (le32toh(uc->valid) != 1) {
1690 				device_printf(sc->sc_dev,
1691 				    "microcontroller initialization failed\n");
1692 				wpi_stop_locked(sc);
1693 			}
1694 			break;
1695 		}
1696 		case WPI_STATE_CHANGED:
1697 		{
1698 			uint32_t *status = (uint32_t *)(desc + 1);
1699 
1700 			/* enabled/disabled notification */
1701 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1702 
1703 			if (le32toh(*status) & 1) {
1704 				device_printf(sc->sc_dev,
1705 				    "Radio transmitter is switched off\n");
1706 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1707 				ifp->if_flags &= ~IFF_RUNNING;
1708 				/* Disable firmware commands */
1709 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1710 			}
1711 			break;
1712 		}
1713 		case WPI_START_SCAN:
1714 		{
1715 #ifdef WPI_DEBUG
1716 			struct wpi_start_scan *scan =
1717 				(struct wpi_start_scan *)(desc + 1);
1718 #endif
1719 
1720 			DPRINTFN(WPI_DEBUG_SCANNING,
1721 				 ("scanning channel %d status %x\n",
1722 			    scan->chan, le32toh(scan->status)));
1723 			break;
1724 		}
1725 		case WPI_STOP_SCAN:
1726 		{
1727 #ifdef WPI_DEBUG
1728 			struct wpi_stop_scan *scan =
1729 				(struct wpi_stop_scan *)(desc + 1);
1730 #endif
1731 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1732 
1733 			DPRINTFN(WPI_DEBUG_SCANNING,
1734 			    ("scan finished nchan=%d status=%d chan=%d\n",
1735 			     scan->nchan, scan->status, scan->chan));
1736 
1737 			sc->sc_scan_timer = 0;
1738 			ieee80211_scan_next(vap);
1739 			break;
1740 		}
1741 		case WPI_MISSED_BEACON:
1742 		{
1743 			struct wpi_missed_beacon *beacon =
1744 				(struct wpi_missed_beacon *)(desc + 1);
1745 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1746 
1747 			if (le32toh(beacon->consecutive) >=
1748 			    vap->iv_bmissthreshold) {
1749 				DPRINTF(("Beacon miss: %u >= %u\n",
1750 					 le32toh(beacon->consecutive),
1751 					 vap->iv_bmissthreshold));
1752 				ieee80211_beacon_miss(ic);
1753 			}
1754 			break;
1755 		}
1756 		}
1757 
1758 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1759 	}
1760 
1761 	/* tell the firmware what we have processed */
1762 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1763 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1764 }
1765 
1766 static void
1767 wpi_intr(void *arg)
1768 {
1769 	struct wpi_softc *sc = arg;
1770 	uint32_t r;
1771 
1772 	WPI_LOCK(sc);
1773 
1774 	r = WPI_READ(sc, WPI_INTR);
1775 	if (r == 0 || r == 0xffffffff) {
1776 		WPI_UNLOCK(sc);
1777 		return;
1778 	}
1779 
1780 	/* disable interrupts */
1781 	WPI_WRITE(sc, WPI_MASK, 0);
1782 	/* ack interrupts */
1783 	WPI_WRITE(sc, WPI_INTR, r);
1784 
1785 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1786 		struct ifnet *ifp = sc->sc_ifp;
1787 		struct ieee80211com *ic = ifp->if_l2com;
1788 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1789 
1790 		device_printf(sc->sc_dev, "fatal firmware error\n");
1791 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1792 				"(Hardware Error)"));
1793 		if (vap != NULL)
1794 			ieee80211_cancel_scan(vap);
1795 		ieee80211_runtask(ic, &sc->sc_restarttask);
1796 		sc->flags &= ~WPI_FLAG_BUSY;
1797 		WPI_UNLOCK(sc);
1798 		return;
1799 	}
1800 
1801 	if (r & WPI_RX_INTR)
1802 		wpi_notif_intr(sc);
1803 
1804 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1805 		wakeup(sc);
1806 
1807 	/* re-enable interrupts */
1808 	if (sc->sc_ifp->if_flags & IFF_UP)
1809 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1810 
1811 	WPI_UNLOCK(sc);
1812 }
1813 
1814 static uint8_t
1815 wpi_plcp_signal(int rate)
1816 {
1817 	switch (rate) {
1818 	/* CCK rates (returned values are device-dependent) */
1819 	case 2:		return 10;
1820 	case 4:		return 20;
1821 	case 11:	return 55;
1822 	case 22:	return 110;
1823 
1824 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1825 	/* R1-R4 (ral/ural is R4-R1) */
1826 	case 12:	return 0xd;
1827 	case 18:	return 0xf;
1828 	case 24:	return 0x5;
1829 	case 36:	return 0x7;
1830 	case 48:	return 0x9;
1831 	case 72:	return 0xb;
1832 	case 96:	return 0x1;
1833 	case 108:	return 0x3;
1834 
1835 	/* unsupported rates (should not get there) */
1836 	default:	return 0;
1837 	}
1838 }
1839 
1840 /* quickly determine if a given rate is CCK or OFDM */
1841 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1842 
1843 /*
1844  * Construct the data packet for a transmit buffer and acutally put
1845  * the buffer onto the transmit ring, kicking the card to process the
1846  * the buffer.
1847  */
1848 static int
1849 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1850 	int ac)
1851 {
1852 	struct ieee80211vap *vap = ni->ni_vap;
1853 	struct ifnet *ifp = sc->sc_ifp;
1854 	struct ieee80211com *ic = ifp->if_l2com;
1855 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1856 	struct wpi_tx_ring *ring = &sc->txq[ac];
1857 	struct wpi_tx_desc *desc;
1858 	struct wpi_tx_data *data;
1859 	struct wpi_tx_cmd *cmd;
1860 	struct wpi_cmd_data *tx;
1861 	struct ieee80211_frame *wh;
1862 	const struct ieee80211_txparam *tp;
1863 	struct ieee80211_key *k;
1864 	struct mbuf *mnew;
1865 	int i, error, nsegs, rate, hdrlen, ismcast;
1866 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1867 
1868 	desc = &ring->desc[ring->cur];
1869 	data = &ring->data[ring->cur];
1870 
1871 	wh = mtod(m0, struct ieee80211_frame *);
1872 
1873 	hdrlen = ieee80211_hdrsize(wh);
1874 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1875 
1876 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1877 		k = ieee80211_crypto_encap(ni, m0);
1878 		if (k == NULL) {
1879 			m_freem(m0);
1880 			return ENOBUFS;
1881 		}
1882 		/* packet header may have moved, reset our local pointer */
1883 		wh = mtod(m0, struct ieee80211_frame *);
1884 	}
1885 
1886 	cmd = &ring->cmd[ring->cur];
1887 	cmd->code = WPI_CMD_TX_DATA;
1888 	cmd->flags = 0;
1889 	cmd->qid = ring->qid;
1890 	cmd->idx = ring->cur;
1891 
1892 	tx = (struct wpi_cmd_data *)cmd->data;
1893 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1894 	tx->timeout = htole16(0);
1895 	tx->ofdm_mask = 0xff;
1896 	tx->cck_mask = 0x0f;
1897 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1898 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1899 	tx->len = htole16(m0->m_pkthdr.len);
1900 
1901 	if (!ismcast) {
1902 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1903 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1904 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1905 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1906 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1907 			tx->rts_ntries = 7;
1908 		}
1909 	}
1910 	/* pick a rate */
1911 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1912 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1913 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1914 		/* tell h/w to set timestamp in probe responses */
1915 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1916 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1917 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1918 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1919 			tx->timeout = htole16(3);
1920 		else
1921 			tx->timeout = htole16(2);
1922 		rate = tp->mgmtrate;
1923 	} else if (ismcast) {
1924 		rate = tp->mcastrate;
1925 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1926 		rate = tp->ucastrate;
1927 	} else {
1928 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1929 		rate = ni->ni_txrate;
1930 	}
1931 	tx->rate = wpi_plcp_signal(rate);
1932 
1933 	/* be very persistant at sending frames out */
1934 #if 0
1935 	tx->data_ntries = tp->maxretry;
1936 #else
1937 	tx->data_ntries = 30;		/* XXX way too high */
1938 #endif
1939 
1940 	if (ieee80211_radiotap_active_vap(vap)) {
1941 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1942 		tap->wt_flags = 0;
1943 		tap->wt_rate = rate;
1944 		tap->wt_hwqueue = ac;
1945 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1946 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1947 
1948 		ieee80211_radiotap_tx(vap, m0);
1949 	}
1950 
1951 	/* save and trim IEEE802.11 header */
1952 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1953 	m_adj(m0, hdrlen);
1954 
1955 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs,
1956 	    1, &nsegs, BUS_DMA_NOWAIT);
1957 	if (error != 0 && error != EFBIG) {
1958 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1959 		    error);
1960 		m_freem(m0);
1961 		return error;
1962 	}
1963 	if (error != 0) {
1964 		/* XXX use m_collapse */
1965 		mnew = m_defrag(m0, MB_DONTWAIT);
1966 		if (mnew == NULL) {
1967 			device_printf(sc->sc_dev,
1968 			    "could not defragment mbuf\n");
1969 			m_freem(m0);
1970 			return ENOBUFS;
1971 		}
1972 		m0 = mnew;
1973 
1974 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
1975 		    m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1976 		if (error != 0) {
1977 			device_printf(sc->sc_dev,
1978 			    "could not map mbuf (error %d)\n", error);
1979 			m_freem(m0);
1980 			return error;
1981 		}
1982 	}
1983 
1984 	data->m = m0;
1985 	data->ni = ni;
1986 
1987 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1988 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1989 
1990 	/* first scatter/gather segment is used by the tx data command */
1991 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1992 	    (1 + nsegs) << 24);
1993 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
1994 	    ring->cur * sizeof (struct wpi_tx_cmd));
1995 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
1996 	for (i = 1; i <= nsegs; i++) {
1997 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
1998 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
1999 	}
2000 
2001 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2002 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2003 	    BUS_DMASYNC_PREWRITE);
2004 
2005 	ring->queued++;
2006 
2007 	/* kick ring */
2008 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2009 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2010 
2011 	return 0;
2012 }
2013 
2014 /**
2015  * Process data waiting to be sent on the IFNET output queue
2016  */
2017 static void
2018 wpi_start(struct ifnet *ifp)
2019 {
2020 	struct wpi_softc *sc = ifp->if_softc;
2021 
2022 	WPI_LOCK(sc);
2023 	wpi_start_locked(ifp);
2024 	WPI_UNLOCK(sc);
2025 }
2026 
2027 static void
2028 wpi_start_locked(struct ifnet *ifp)
2029 {
2030 	struct wpi_softc *sc = ifp->if_softc;
2031 	struct ieee80211_node *ni;
2032 	struct mbuf *m;
2033 	int ac;
2034 
2035 	WPI_LOCK_ASSERT(sc);
2036 
2037 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2038 		ifq_purge(&ifp->if_snd);
2039 		return;
2040 	}
2041 
2042 	for (;;) {
2043 		IF_DEQUEUE(&ifp->if_snd, m);
2044 		if (m == NULL)
2045 			break;
2046 		ac = M_WME_GETAC(m);
2047 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2048 			/* there is no place left in this ring */
2049 			ifq_prepend(&ifp->if_snd, m);
2050 			ifp->if_flags |= IFF_OACTIVE;
2051 			break;
2052 		}
2053 		ni = ieee80211_ref_node((struct ieee80211_node *)m->m_pkthdr.rcvif);
2054 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2055 			ieee80211_free_node(ni);
2056 			ifp->if_oerrors++;
2057 			break;
2058 		}
2059 		sc->sc_tx_timer = 5;
2060 	}
2061 }
2062 
2063 static int
2064 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2065 	const struct ieee80211_bpf_params *params)
2066 {
2067 	struct ieee80211com *ic = ni->ni_ic;
2068 	struct ifnet *ifp = ic->ic_ifp;
2069 	struct wpi_softc *sc = ifp->if_softc;
2070 
2071 	/* prevent management frames from being sent if we're not ready */
2072 	if (!(ifp->if_flags & IFF_RUNNING)) {
2073 		m_freem(m);
2074 		ieee80211_free_node(ni);
2075 		return ENETDOWN;
2076 	}
2077 	WPI_LOCK(sc);
2078 
2079 	/* management frames go into ring 0 */
2080 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2081 		ifp->if_flags |= IFF_OACTIVE;
2082 		m_freem(m);
2083 		WPI_UNLOCK(sc);
2084 		ieee80211_free_node(ni);
2085 		return ENOBUFS;		/* XXX */
2086 	}
2087 
2088 	ifp->if_opackets++;
2089 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2090 		goto bad;
2091 	sc->sc_tx_timer = 5;
2092 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2093 
2094 	WPI_UNLOCK(sc);
2095 	return 0;
2096 bad:
2097 	ifp->if_oerrors++;
2098 	WPI_UNLOCK(sc);
2099 	ieee80211_free_node(ni);
2100 	return EIO;		/* XXX */
2101 }
2102 
2103 static int
2104 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred)
2105 {
2106 	struct wpi_softc *sc = ifp->if_softc;
2107 	struct ieee80211com *ic = ifp->if_l2com;
2108 	struct ifreq *ifr = (struct ifreq *) data;
2109 	int error = 0, startall = 0;
2110 
2111 	switch (cmd) {
2112 	case SIOCSIFFLAGS:
2113 		WPI_LOCK(sc);
2114 		if ((ifp->if_flags & IFF_UP)) {
2115 			if (!(ifp->if_flags & IFF_RUNNING)) {
2116 				wpi_init_locked(sc, 0);
2117 				startall = 1;
2118 			}
2119 		} else if ((ifp->if_flags & IFF_RUNNING) ||
2120 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2121 			wpi_stop_locked(sc);
2122 		WPI_UNLOCK(sc);
2123 		if (startall)
2124 			ieee80211_start_all(ic);
2125 		break;
2126 	case SIOCGIFMEDIA:
2127 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2128 		break;
2129 	case SIOCGIFADDR:
2130 		error = ether_ioctl(ifp, cmd, data);
2131 		break;
2132 	default:
2133 		error = EINVAL;
2134 		break;
2135 	}
2136 	return error;
2137 }
2138 
2139 /*
2140  * Extract various information from EEPROM.
2141  */
2142 static void
2143 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2144 {
2145 	int i;
2146 
2147 	/* read the hardware capabilities, revision and SKU type */
2148 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2149 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2150 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2151 
2152 	/* read the regulatory domain */
2153 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2154 
2155 	/* read in the hw MAC address */
2156 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2157 
2158 	/* read the list of authorized channels */
2159 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2160 		wpi_read_eeprom_channels(sc,i);
2161 
2162 	/* read the power level calibration info for each group */
2163 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2164 		wpi_read_eeprom_group(sc,i);
2165 }
2166 
2167 /*
2168  * Send a command to the firmware.
2169  */
2170 static int
2171 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2172 {
2173 	struct wpi_tx_ring *ring = &sc->cmdq;
2174 	struct wpi_tx_desc *desc;
2175 	struct wpi_tx_cmd *cmd;
2176 
2177 #ifdef WPI_DEBUG
2178 	if (!async) {
2179 		WPI_LOCK_ASSERT(sc);
2180 	}
2181 #endif
2182 
2183 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2184 		    async));
2185 
2186 	if (sc->flags & WPI_FLAG_BUSY) {
2187 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2188 		    __func__, code);
2189 		return EAGAIN;
2190 	}
2191 	sc->flags|= WPI_FLAG_BUSY;
2192 
2193 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2194 	    code, size));
2195 
2196 	desc = &ring->desc[ring->cur];
2197 	cmd = &ring->cmd[ring->cur];
2198 
2199 	cmd->code = code;
2200 	cmd->flags = 0;
2201 	cmd->qid = ring->qid;
2202 	cmd->idx = ring->cur;
2203 	memcpy(cmd->data, buf, size);
2204 
2205 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2206 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2207 		ring->cur * sizeof (struct wpi_tx_cmd));
2208 	desc->segs[0].len  = htole32(4 + size);
2209 
2210 	/* kick cmd ring */
2211 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2212 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2213 
2214 	if (async) {
2215 		sc->flags &= ~ WPI_FLAG_BUSY;
2216 		return 0;
2217 	}
2218 
2219 	return lksleep(cmd, &sc->sc_lock, 0, "wpicmd", hz);
2220 }
2221 
2222 static int
2223 wpi_wme_update(struct ieee80211com *ic)
2224 {
2225 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2226 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2227 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2228 	const struct wmeParams *wmep;
2229 	struct wpi_wme_setup wme;
2230 	int ac;
2231 
2232 	/* don't override default WME values if WME is not actually enabled */
2233 	if (!(ic->ic_flags & IEEE80211_F_WME))
2234 		return 0;
2235 
2236 	wme.flags = 0;
2237 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2238 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2239 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2240 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2241 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2242 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2243 
2244 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2245 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2246 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2247 	}
2248 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2249 #undef WPI_USEC
2250 #undef WPI_EXP2
2251 }
2252 
2253 /*
2254  * Configure h/w multi-rate retries.
2255  */
2256 static int
2257 wpi_mrr_setup(struct wpi_softc *sc)
2258 {
2259 	struct ifnet *ifp = sc->sc_ifp;
2260 	struct ieee80211com *ic = ifp->if_l2com;
2261 	struct wpi_mrr_setup mrr;
2262 	int i, error;
2263 
2264 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2265 
2266 	/* CCK rates (not used with 802.11a) */
2267 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2268 		mrr.rates[i].flags = 0;
2269 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2270 		/* fallback to the immediate lower CCK rate (if any) */
2271 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2272 		/* try one time at this rate before falling back to "next" */
2273 		mrr.rates[i].ntries = 1;
2274 	}
2275 
2276 	/* OFDM rates (not used with 802.11b) */
2277 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2278 		mrr.rates[i].flags = 0;
2279 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2280 		/* fallback to the immediate lower OFDM rate (if any) */
2281 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2282 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2283 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2284 			WPI_OFDM6 : WPI_CCK2) :
2285 		    i - 1;
2286 		/* try one time at this rate before falling back to "next" */
2287 		mrr.rates[i].ntries = 1;
2288 	}
2289 
2290 	/* setup MRR for control frames */
2291 	mrr.which = htole32(WPI_MRR_CTL);
2292 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2293 	if (error != 0) {
2294 		device_printf(sc->sc_dev,
2295 		    "could not setup MRR for control frames\n");
2296 		return error;
2297 	}
2298 
2299 	/* setup MRR for data frames */
2300 	mrr.which = htole32(WPI_MRR_DATA);
2301 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2302 	if (error != 0) {
2303 		device_printf(sc->sc_dev,
2304 		    "could not setup MRR for data frames\n");
2305 		return error;
2306 	}
2307 
2308 	return 0;
2309 }
2310 
2311 static void
2312 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2313 {
2314 	struct wpi_cmd_led led;
2315 
2316 	led.which = which;
2317 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2318 	led.off = off;
2319 	led.on = on;
2320 
2321 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2322 }
2323 
2324 static void
2325 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2326 {
2327 	struct wpi_cmd_tsf tsf;
2328 	uint64_t val, mod;
2329 
2330 	memset(&tsf, 0, sizeof tsf);
2331 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2332 	tsf.bintval = htole16(ni->ni_intval);
2333 	tsf.lintval = htole16(10);
2334 
2335 	/* compute remaining time until next beacon */
2336 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2337 	mod = le64toh(tsf.tstamp) % val;
2338 	tsf.binitval = htole32((uint32_t)(val - mod));
2339 
2340 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2341 		device_printf(sc->sc_dev, "could not enable TSF\n");
2342 }
2343 
2344 #if 0
2345 /*
2346  * Build a beacon frame that the firmware will broadcast periodically in
2347  * IBSS or HostAP modes.
2348  */
2349 static int
2350 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2351 {
2352 	struct ifnet *ifp = sc->sc_ifp;
2353 	struct ieee80211com *ic = ifp->if_l2com;
2354 	struct wpi_tx_ring *ring = &sc->cmdq;
2355 	struct wpi_tx_desc *desc;
2356 	struct wpi_tx_data *data;
2357 	struct wpi_tx_cmd *cmd;
2358 	struct wpi_cmd_beacon *bcn;
2359 	struct ieee80211_beacon_offsets bo;
2360 	struct mbuf *m0;
2361 	bus_addr_t physaddr;
2362 	int error;
2363 
2364 	desc = &ring->desc[ring->cur];
2365 	data = &ring->data[ring->cur];
2366 
2367 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2368 	if (m0 == NULL) {
2369 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2370 		return ENOMEM;
2371 	}
2372 
2373 	cmd = &ring->cmd[ring->cur];
2374 	cmd->code = WPI_CMD_SET_BEACON;
2375 	cmd->flags = 0;
2376 	cmd->qid = ring->qid;
2377 	cmd->idx = ring->cur;
2378 
2379 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2380 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2381 	bcn->id = WPI_ID_BROADCAST;
2382 	bcn->ofdm_mask = 0xff;
2383 	bcn->cck_mask = 0x0f;
2384 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2385 	bcn->len = htole16(m0->m_pkthdr.len);
2386 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2387 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2388 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2389 
2390 	/* save and trim IEEE802.11 header */
2391 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2392 	m_adj(m0, sizeof (struct ieee80211_frame));
2393 
2394 	/* assume beacon frame is contiguous */
2395 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2396 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2397 	if (error != 0) {
2398 		device_printf(sc->sc_dev, "could not map beacon\n");
2399 		m_freem(m0);
2400 		return error;
2401 	}
2402 
2403 	data->m = m0;
2404 
2405 	/* first scatter/gather segment is used by the beacon command */
2406 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2407 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2408 		ring->cur * sizeof (struct wpi_tx_cmd));
2409 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2410 	desc->segs[1].addr = htole32(physaddr);
2411 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2412 
2413 	/* kick cmd ring */
2414 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2415 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2416 
2417 	return 0;
2418 }
2419 #endif
2420 
2421 static int
2422 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2423 {
2424 	struct ieee80211com *ic = vap->iv_ic;
2425 	struct ieee80211_node *ni;
2426 	struct wpi_node_info node;
2427 	int error;
2428 
2429 
2430 	/* update adapter's configuration */
2431 	sc->config.associd = 0;
2432 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2433 	ni = ieee80211_ref_node(vap->iv_bss);
2434 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2435 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2436 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2437 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2438 		    WPI_CONFIG_24GHZ);
2439 	}
2440 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2441 		sc->config.cck_mask  = 0;
2442 		sc->config.ofdm_mask = 0x15;
2443 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2444 		sc->config.cck_mask  = 0x03;
2445 		sc->config.ofdm_mask = 0;
2446 	} else {
2447 		/* XXX assume 802.11b/g */
2448 		sc->config.cck_mask  = 0x0f;
2449 		sc->config.ofdm_mask = 0x15;
2450 	}
2451 
2452 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2453 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2454 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2455 		sizeof (struct wpi_config), 1);
2456 	if (error != 0) {
2457 		device_printf(sc->sc_dev, "could not configure\n");
2458 		ieee80211_free_node(ni);
2459 		return error;
2460 	}
2461 
2462 	/* configuration has changed, set Tx power accordingly */
2463 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2464 		device_printf(sc->sc_dev, "could not set Tx power\n");
2465 		ieee80211_free_node(ni);
2466 		return error;
2467 	}
2468 
2469 	/* add default node */
2470 	memset(&node, 0, sizeof node);
2471 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2472 	ieee80211_free_node(ni);
2473 	node.id = WPI_ID_BSS;
2474 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2475 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2476 	node.action = htole32(WPI_ACTION_SET_RATE);
2477 	node.antenna = WPI_ANTENNA_BOTH;
2478 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2479 	if (error != 0)
2480 		device_printf(sc->sc_dev, "could not add BSS node\n");
2481 
2482 	return (error);
2483 }
2484 
2485 static int
2486 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2487 {
2488 	struct ieee80211com *ic = vap->iv_ic;
2489 	struct ieee80211_node *ni;
2490 	int error;
2491 
2492 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2493 		/* link LED blinks while monitoring */
2494 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2495 		return 0;
2496 	}
2497 
2498 	ni = ieee80211_ref_node(vap->iv_bss);
2499 	wpi_enable_tsf(sc, ni);
2500 
2501 	/* update adapter's configuration */
2502 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2503 	/* short preamble/slot time are negotiated when associating */
2504 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2505 	    WPI_CONFIG_SHSLOT);
2506 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2507 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2508 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2509 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2510 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2511 
2512 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2513 
2514 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2515 		    sc->config.flags));
2516 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2517 		    wpi_config), 1);
2518 	if (error != 0) {
2519 		device_printf(sc->sc_dev, "could not update configuration\n");
2520 		ieee80211_free_node(ni);
2521 		return error;
2522 	}
2523 
2524 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2525 	ieee80211_free_node(ni);
2526 	if (error != 0) {
2527 		device_printf(sc->sc_dev, "could set txpower\n");
2528 		return error;
2529 	}
2530 
2531 	/* link LED always on while associated */
2532 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2533 
2534 	/* start automatic rate control timer */
2535 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2536 
2537 	return (error);
2538 }
2539 
2540 /*
2541  * Send a scan request to the firmware.  Since this command is huge, we map it
2542  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2543  * much of this code is similar to that in wpi_cmd but because we must manually
2544  * construct the probe & channels, we duplicate what's needed here. XXX In the
2545  * future, this function should be modified to use wpi_cmd to help cleanup the
2546  * code base.
2547  */
2548 static int
2549 wpi_scan(struct wpi_softc *sc)
2550 {
2551 	struct ifnet *ifp = sc->sc_ifp;
2552 	struct ieee80211com *ic = ifp->if_l2com;
2553 	struct ieee80211_scan_state *ss = ic->ic_scan;
2554 	struct wpi_tx_ring *ring = &sc->cmdq;
2555 	struct wpi_tx_desc *desc;
2556 	struct wpi_tx_data *data;
2557 	struct wpi_tx_cmd *cmd;
2558 	struct wpi_scan_hdr *hdr;
2559 	struct wpi_scan_chan *chan;
2560 	struct ieee80211_frame *wh;
2561 	struct ieee80211_rateset *rs;
2562 	struct ieee80211_channel *c;
2563 	enum ieee80211_phymode mode;
2564 	uint8_t *frm;
2565 	int nrates, pktlen, error, i, nssid;
2566 	bus_addr_t physaddr;
2567 
2568 	desc = &ring->desc[ring->cur];
2569 	data = &ring->data[ring->cur];
2570 
2571 	data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2572 	if (data->m == NULL) {
2573 		device_printf(sc->sc_dev,
2574 		    "could not allocate mbuf for scan command\n");
2575 		return ENOMEM;
2576 	}
2577 
2578 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2579 	cmd->code = WPI_CMD_SCAN;
2580 	cmd->flags = 0;
2581 	cmd->qid = ring->qid;
2582 	cmd->idx = ring->cur;
2583 
2584 	hdr = (struct wpi_scan_hdr *)cmd->data;
2585 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2586 
2587 	/*
2588 	 * Move to the next channel if no packets are received within 5 msecs
2589 	 * after sending the probe request (this helps to reduce the duration
2590 	 * of active scans).
2591 	 */
2592 	hdr->quiet = htole16(5);
2593 	hdr->threshold = htole16(1);
2594 
2595 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2596 		/* send probe requests at 6Mbps */
2597 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2598 
2599 		/* Enable crc checking */
2600 		hdr->promotion = htole16(1);
2601 	} else {
2602 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2603 		/* send probe requests at 1Mbps */
2604 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2605 	}
2606 	hdr->tx.id = WPI_ID_BROADCAST;
2607 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2608 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2609 
2610 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2611 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2612 	for (i = 0; i < nssid; i++) {
2613 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2614 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2615 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2616 		    hdr->scan_essids[i].esslen);
2617 #ifdef WPI_DEBUG
2618 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2619 			kprintf("Scanning Essid: ");
2620 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2621 			    hdr->scan_essids[i].esslen);
2622 			kprintf("\n");
2623 		}
2624 #endif
2625 	}
2626 
2627 	/*
2628 	 * Build a probe request frame.  Most of the following code is a
2629 	 * copy & paste of what is done in net80211.
2630 	 */
2631 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2632 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2633 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2634 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2635 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2636 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2637 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2638 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2639 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2640 
2641 	frm = (uint8_t *)(wh + 1);
2642 
2643 	/* add essid IE, the hardware will fill this in for us */
2644 	*frm++ = IEEE80211_ELEMID_SSID;
2645 	*frm++ = 0;
2646 
2647 	mode = ieee80211_chan2mode(ic->ic_curchan);
2648 	rs = &ic->ic_sup_rates[mode];
2649 
2650 	/* add supported rates IE */
2651 	*frm++ = IEEE80211_ELEMID_RATES;
2652 	nrates = rs->rs_nrates;
2653 	if (nrates > IEEE80211_RATE_SIZE)
2654 		nrates = IEEE80211_RATE_SIZE;
2655 	*frm++ = nrates;
2656 	memcpy(frm, rs->rs_rates, nrates);
2657 	frm += nrates;
2658 
2659 	/* add supported xrates IE */
2660 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2661 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2662 		*frm++ = IEEE80211_ELEMID_XRATES;
2663 		*frm++ = nrates;
2664 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2665 		frm += nrates;
2666 	}
2667 
2668 	/* setup length of probe request */
2669 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2670 
2671 	/*
2672 	 * Construct information about the channel that we
2673 	 * want to scan. The firmware expects this to be directly
2674 	 * after the scan probe request
2675 	 */
2676 	c = ic->ic_curchan;
2677 	chan = (struct wpi_scan_chan *)frm;
2678 	chan->chan = ieee80211_chan2ieee(ic, c);
2679 	chan->flags = 0;
2680 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2681 		chan->flags |= WPI_CHAN_ACTIVE;
2682 		if (nssid != 0)
2683 			chan->flags |= WPI_CHAN_DIRECT;
2684 	}
2685 	chan->gain_dsp = 0x6e; /* Default level */
2686 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2687 		chan->active = htole16(10);
2688 		chan->passive = htole16(ss->ss_maxdwell);
2689 		chan->gain_radio = 0x3b;
2690 	} else {
2691 		chan->active = htole16(20);
2692 		chan->passive = htole16(ss->ss_maxdwell);
2693 		chan->gain_radio = 0x28;
2694 	}
2695 
2696 	DPRINTFN(WPI_DEBUG_SCANNING,
2697 	    ("Scanning %u Passive: %d\n",
2698 	     chan->chan,
2699 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2700 
2701 	hdr->nchan++;
2702 	chan++;
2703 
2704 	frm += sizeof (struct wpi_scan_chan);
2705 #if 0
2706 	// XXX All Channels....
2707 	for (c  = &ic->ic_channels[1];
2708 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2709 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2710 			continue;
2711 
2712 		chan->chan = ieee80211_chan2ieee(ic, c);
2713 		chan->flags = 0;
2714 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2715 		    chan->flags |= WPI_CHAN_ACTIVE;
2716 		    if (ic->ic_des_ssid[0].len != 0)
2717 			chan->flags |= WPI_CHAN_DIRECT;
2718 		}
2719 		chan->gain_dsp = 0x6e; /* Default level */
2720 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2721 			chan->active = htole16(10);
2722 			chan->passive = htole16(110);
2723 			chan->gain_radio = 0x3b;
2724 		} else {
2725 			chan->active = htole16(20);
2726 			chan->passive = htole16(120);
2727 			chan->gain_radio = 0x28;
2728 		}
2729 
2730 		DPRINTFN(WPI_DEBUG_SCANNING,
2731 			 ("Scanning %u Passive: %d\n",
2732 			  chan->chan,
2733 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2734 
2735 		hdr->nchan++;
2736 		chan++;
2737 
2738 		frm += sizeof (struct wpi_scan_chan);
2739 	}
2740 #endif
2741 
2742 	hdr->len = htole16(frm - (uint8_t *)hdr);
2743 	pktlen = frm - (uint8_t *)cmd;
2744 
2745 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2746 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2747 	if (error != 0) {
2748 		device_printf(sc->sc_dev, "could not map scan command\n");
2749 		m_freem(data->m);
2750 		data->m = NULL;
2751 		return error;
2752 	}
2753 
2754 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2755 	desc->segs[0].addr = htole32(physaddr);
2756 	desc->segs[0].len  = htole32(pktlen);
2757 
2758 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2759 	    BUS_DMASYNC_PREWRITE);
2760 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2761 
2762 	/* kick cmd ring */
2763 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2764 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2765 
2766 	sc->sc_scan_timer = 5;
2767 	return 0;	/* will be notified async. of failure/success */
2768 }
2769 
2770 /**
2771  * Configure the card to listen to a particular channel, this transisions the
2772  * card in to being able to receive frames from remote devices.
2773  */
2774 static int
2775 wpi_config(struct wpi_softc *sc)
2776 {
2777 	struct ifnet *ifp = sc->sc_ifp;
2778 	struct ieee80211com *ic = ifp->if_l2com;
2779 	struct wpi_power power;
2780 	struct wpi_bluetooth bluetooth;
2781 	struct wpi_node_info node;
2782 	int error;
2783 
2784 	/* set power mode */
2785 	memset(&power, 0, sizeof power);
2786 	power.flags = htole32(WPI_POWER_CAM|0x8);
2787 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2788 	if (error != 0) {
2789 		device_printf(sc->sc_dev, "could not set power mode\n");
2790 		return error;
2791 	}
2792 
2793 	/* configure bluetooth coexistence */
2794 	memset(&bluetooth, 0, sizeof bluetooth);
2795 	bluetooth.flags = 3;
2796 	bluetooth.lead = 0xaa;
2797 	bluetooth.kill = 1;
2798 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2799 	    0);
2800 	if (error != 0) {
2801 		device_printf(sc->sc_dev,
2802 		    "could not configure bluetooth coexistence\n");
2803 		return error;
2804 	}
2805 
2806 	/* configure adapter */
2807 	memset(&sc->config, 0, sizeof (struct wpi_config));
2808 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2809 	/*set default channel*/
2810 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2811 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2812 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2813 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2814 		    WPI_CONFIG_24GHZ);
2815 	}
2816 	sc->config.filter = 0;
2817 	switch (ic->ic_opmode) {
2818 	case IEEE80211_M_STA:
2819 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2820 		sc->config.mode = WPI_MODE_STA;
2821 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2822 		break;
2823 	case IEEE80211_M_IBSS:
2824 	case IEEE80211_M_AHDEMO:
2825 		sc->config.mode = WPI_MODE_IBSS;
2826 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2827 					     WPI_FILTER_MULTICAST);
2828 		break;
2829 	case IEEE80211_M_HOSTAP:
2830 		sc->config.mode = WPI_MODE_HOSTAP;
2831 		break;
2832 	case IEEE80211_M_MONITOR:
2833 		sc->config.mode = WPI_MODE_MONITOR;
2834 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2835 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2836 		break;
2837 	default:
2838 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2839 		return EINVAL;
2840 	}
2841 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2842 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2843 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2844 		sizeof (struct wpi_config), 0);
2845 	if (error != 0) {
2846 		device_printf(sc->sc_dev, "configure command failed\n");
2847 		return error;
2848 	}
2849 
2850 	/* configuration has changed, set Tx power accordingly */
2851 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2852 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2853 	    return error;
2854 	}
2855 
2856 	/* add broadcast node */
2857 	memset(&node, 0, sizeof node);
2858 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2859 	node.id = WPI_ID_BROADCAST;
2860 	node.rate = wpi_plcp_signal(2);
2861 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2862 	if (error != 0) {
2863 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2864 		return error;
2865 	}
2866 
2867 	/* Setup rate scalling */
2868 	error = wpi_mrr_setup(sc);
2869 	if (error != 0) {
2870 		device_printf(sc->sc_dev, "could not setup MRR\n");
2871 		return error;
2872 	}
2873 
2874 	return 0;
2875 }
2876 
2877 static void
2878 wpi_stop_master(struct wpi_softc *sc)
2879 {
2880 	uint32_t tmp;
2881 	int ntries;
2882 
2883 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2884 
2885 	tmp = WPI_READ(sc, WPI_RESET);
2886 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2887 
2888 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2889 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2890 		return;	/* already asleep */
2891 
2892 	for (ntries = 0; ntries < 100; ntries++) {
2893 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2894 			break;
2895 		DELAY(10);
2896 	}
2897 	if (ntries == 100) {
2898 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2899 	}
2900 }
2901 
2902 static int
2903 wpi_power_up(struct wpi_softc *sc)
2904 {
2905 	uint32_t tmp;
2906 	int ntries;
2907 
2908 	wpi_mem_lock(sc);
2909 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2910 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2911 	wpi_mem_unlock(sc);
2912 
2913 	for (ntries = 0; ntries < 5000; ntries++) {
2914 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2915 			break;
2916 		DELAY(10);
2917 	}
2918 	if (ntries == 5000) {
2919 		device_printf(sc->sc_dev,
2920 		    "timeout waiting for NIC to power up\n");
2921 		return ETIMEDOUT;
2922 	}
2923 	return 0;
2924 }
2925 
2926 static int
2927 wpi_reset(struct wpi_softc *sc)
2928 {
2929 	uint32_t tmp;
2930 	int ntries;
2931 
2932 	DPRINTFN(WPI_DEBUG_HW,
2933 	    ("Resetting the card - clearing any uploaded firmware\n"));
2934 
2935 	/* clear any pending interrupts */
2936 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2937 
2938 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2939 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2940 
2941 	tmp = WPI_READ(sc, WPI_CHICKEN);
2942 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2943 
2944 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2945 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2946 
2947 	/* wait for clock stabilization */
2948 	for (ntries = 0; ntries < 25000; ntries++) {
2949 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2950 			break;
2951 		DELAY(10);
2952 	}
2953 	if (ntries == 25000) {
2954 		device_printf(sc->sc_dev,
2955 		    "timeout waiting for clock stabilization\n");
2956 		return ETIMEDOUT;
2957 	}
2958 
2959 	/* initialize EEPROM */
2960 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2961 
2962 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2963 		device_printf(sc->sc_dev, "EEPROM not found\n");
2964 		return EIO;
2965 	}
2966 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2967 
2968 	return 0;
2969 }
2970 
2971 static void
2972 wpi_hw_config(struct wpi_softc *sc)
2973 {
2974 	uint32_t rev, hw;
2975 
2976 	/* voodoo from the Linux "driver".. */
2977 	hw = WPI_READ(sc, WPI_HWCONFIG);
2978 
2979 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2980 	if ((rev & 0xc0) == 0x40)
2981 		hw |= WPI_HW_ALM_MB;
2982 	else if (!(rev & 0x80))
2983 		hw |= WPI_HW_ALM_MM;
2984 
2985 	if (sc->cap == 0x80)
2986 		hw |= WPI_HW_SKU_MRC;
2987 
2988 	hw &= ~WPI_HW_REV_D;
2989 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2990 		hw |= WPI_HW_REV_D;
2991 
2992 	if (sc->type > 1)
2993 		hw |= WPI_HW_TYPE_B;
2994 
2995 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2996 }
2997 
2998 static void
2999 wpi_rfkill_resume(struct wpi_softc *sc)
3000 {
3001 	struct ifnet *ifp = sc->sc_ifp;
3002 	struct ieee80211com *ic = ifp->if_l2com;
3003 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3004 	int ntries;
3005 
3006 	/* enable firmware again */
3007 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3008 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3009 
3010 	/* wait for thermal sensors to calibrate */
3011 	for (ntries = 0; ntries < 1000; ntries++) {
3012 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3013 			break;
3014 		DELAY(10);
3015 	}
3016 
3017 	if (ntries == 1000) {
3018 		device_printf(sc->sc_dev,
3019 		    "timeout waiting for thermal calibration\n");
3020 		return;
3021 	}
3022 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3023 
3024 	if (wpi_config(sc) != 0) {
3025 		device_printf(sc->sc_dev, "device config failed\n");
3026 		return;
3027 	}
3028 
3029 	ifp->if_flags &= ~IFF_OACTIVE;
3030 	ifp->if_flags |= IFF_RUNNING;
3031 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3032 
3033 	if (vap != NULL) {
3034 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3035 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3036 				ieee80211_beacon_miss(ic);
3037 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3038 			} else
3039 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3040 		} else {
3041 			ieee80211_scan_next(vap);
3042 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3043 		}
3044 	}
3045 
3046 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3047 }
3048 
3049 static void
3050 wpi_init_locked(struct wpi_softc *sc, int force)
3051 {
3052 	struct ifnet *ifp = sc->sc_ifp;
3053 	uint32_t tmp;
3054 	int ntries, qid;
3055 
3056 	wpi_stop_locked(sc);
3057 	(void)wpi_reset(sc);
3058 
3059 	wpi_mem_lock(sc);
3060 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3061 	DELAY(20);
3062 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3063 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3064 	wpi_mem_unlock(sc);
3065 
3066 	(void)wpi_power_up(sc);
3067 	wpi_hw_config(sc);
3068 
3069 	/* init Rx ring */
3070 	wpi_mem_lock(sc);
3071 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3072 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3073 	    offsetof(struct wpi_shared, next));
3074 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3075 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3076 	wpi_mem_unlock(sc);
3077 
3078 	/* init Tx rings */
3079 	wpi_mem_lock(sc);
3080 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3081 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3082 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3083 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3084 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3085 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3086 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3087 
3088 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3089 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3090 
3091 	for (qid = 0; qid < 6; qid++) {
3092 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3093 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3094 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3095 	}
3096 	wpi_mem_unlock(sc);
3097 
3098 	/* clear "radio off" and "disable command" bits (reversed logic) */
3099 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3100 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3101 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3102 
3103 	/* clear any pending interrupts */
3104 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3105 
3106 	/* enable interrupts */
3107 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3108 
3109 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3110 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3111 
3112 	if ((wpi_load_firmware(sc)) != 0) {
3113 	    device_printf(sc->sc_dev,
3114 		"A problem occurred loading the firmware to the driver\n");
3115 	    return;
3116 	}
3117 
3118 	/* At this point the firmware is up and running. If the hardware
3119 	 * RF switch is turned off thermal calibration will fail, though
3120 	 * the card is still happy to continue to accept commands, catch
3121 	 * this case and schedule a task to watch for it to be turned on.
3122 	 */
3123 	wpi_mem_lock(sc);
3124 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3125 	wpi_mem_unlock(sc);
3126 
3127 	if (!(tmp & 0x1)) {
3128 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3129 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3130 		goto out;
3131 	}
3132 
3133 	/* wait for thermal sensors to calibrate */
3134 	for (ntries = 0; ntries < 1000; ntries++) {
3135 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3136 			break;
3137 		DELAY(10);
3138 	}
3139 
3140 	if (ntries == 1000) {
3141 		device_printf(sc->sc_dev,
3142 		    "timeout waiting for thermal sensors calibration\n");
3143 		return;
3144 	}
3145 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3146 
3147 	if (wpi_config(sc) != 0) {
3148 		device_printf(sc->sc_dev, "device config failed\n");
3149 		return;
3150 	}
3151 
3152 	ifp->if_flags &= ~IFF_OACTIVE;
3153 	ifp->if_flags |= IFF_RUNNING;
3154 out:
3155 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3156 }
3157 
3158 static void
3159 wpi_init(void *arg)
3160 {
3161 	struct wpi_softc *sc = arg;
3162 	struct ifnet *ifp = sc->sc_ifp;
3163 	struct ieee80211com *ic = ifp->if_l2com;
3164 
3165 	WPI_LOCK(sc);
3166 	wpi_init_locked(sc, 0);
3167 	WPI_UNLOCK(sc);
3168 
3169 	if (ifp->if_flags & IFF_RUNNING)
3170 		ieee80211_start_all(ic);		/* start all vaps */
3171 }
3172 
3173 static void
3174 wpi_stop_locked(struct wpi_softc *sc)
3175 {
3176 	struct ifnet *ifp = sc->sc_ifp;
3177 	uint32_t tmp;
3178 	int ac;
3179 
3180 	sc->sc_tx_timer = 0;
3181 	sc->sc_scan_timer = 0;
3182 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3183 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3184 	callout_stop(&sc->watchdog_to);
3185 	callout_stop(&sc->calib_to);
3186 
3187 
3188 	/* disable interrupts */
3189 	WPI_WRITE(sc, WPI_MASK, 0);
3190 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3191 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3192 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3193 
3194 	wpi_mem_lock(sc);
3195 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3196 	wpi_mem_unlock(sc);
3197 
3198 	/* reset all Tx rings */
3199 	for (ac = 0; ac < 4; ac++)
3200 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3201 	wpi_reset_tx_ring(sc, &sc->cmdq);
3202 
3203 	/* reset Rx ring */
3204 	wpi_reset_rx_ring(sc, &sc->rxq);
3205 
3206 	wpi_mem_lock(sc);
3207 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3208 	wpi_mem_unlock(sc);
3209 
3210 	DELAY(5);
3211 
3212 	wpi_stop_master(sc);
3213 
3214 	tmp = WPI_READ(sc, WPI_RESET);
3215 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3216 	sc->flags &= ~WPI_FLAG_BUSY;
3217 }
3218 
3219 static void
3220 wpi_stop(struct wpi_softc *sc)
3221 {
3222 	WPI_LOCK(sc);
3223 	wpi_stop_locked(sc);
3224 	WPI_UNLOCK(sc);
3225 }
3226 
3227 static void
3228 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3229 {
3230 	/* XXX move */
3231 	ieee80211_ratectl_node_init(ni);
3232 }
3233 
3234 static void
3235 wpi_calib_timeout(void *arg)
3236 {
3237 	struct wpi_softc *sc = arg;
3238 	struct ifnet *ifp = sc->sc_ifp;
3239 	struct ieee80211com *ic = ifp->if_l2com;
3240 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3241 	int temp;
3242 
3243 	if (vap->iv_state != IEEE80211_S_RUN)
3244 		return;
3245 
3246 	/* update sensor data */
3247 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3248 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3249 
3250 	wpi_power_calibration(sc, temp);
3251 
3252 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3253 }
3254 
3255 /*
3256  * This function is called periodically (every 60 seconds) to adjust output
3257  * power to temperature changes.
3258  */
3259 static void
3260 wpi_power_calibration(struct wpi_softc *sc, int temp)
3261 {
3262 	struct ifnet *ifp = sc->sc_ifp;
3263 	struct ieee80211com *ic = ifp->if_l2com;
3264 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3265 
3266 	/* sanity-check read value */
3267 	if (temp < -260 || temp > 25) {
3268 		/* this can't be correct, ignore */
3269 		DPRINTFN(WPI_DEBUG_TEMP,
3270 		    ("out-of-range temperature reported: %d\n", temp));
3271 		return;
3272 	}
3273 
3274 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3275 
3276 	/* adjust Tx power if need be */
3277 	if (abs(temp - sc->temp) <= 6)
3278 		return;
3279 
3280 	sc->temp = temp;
3281 
3282 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3283 		/* just warn, too bad for the automatic calibration... */
3284 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3285 	}
3286 }
3287 
3288 /**
3289  * Read the eeprom to find out what channels are valid for the given
3290  * band and update net80211 with what we find.
3291  */
3292 static void
3293 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3294 {
3295 	struct ifnet *ifp = sc->sc_ifp;
3296 	struct ieee80211com *ic = ifp->if_l2com;
3297 	const struct wpi_chan_band *band = &wpi_bands[n];
3298 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3299 	struct ieee80211_channel *c;
3300 	int chan, i, passive;
3301 
3302 	wpi_read_prom_data(sc, band->addr, channels,
3303 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3304 
3305 	for (i = 0; i < band->nchan; i++) {
3306 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3307 			DPRINTFN(WPI_DEBUG_HW,
3308 			    ("Channel Not Valid: %d, band %d\n",
3309 			     band->chan[i],n));
3310 			continue;
3311 		}
3312 
3313 		passive = 0;
3314 		chan = band->chan[i];
3315 		c = &ic->ic_channels[ic->ic_nchans++];
3316 
3317 		/* is active scan allowed on this channel? */
3318 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3319 			passive = IEEE80211_CHAN_PASSIVE;
3320 		}
3321 
3322 		if (n == 0) {	/* 2GHz band */
3323 			c->ic_ieee = chan;
3324 			c->ic_freq = ieee80211_ieee2mhz(chan,
3325 			    IEEE80211_CHAN_2GHZ);
3326 			c->ic_flags = IEEE80211_CHAN_B | passive;
3327 
3328 			c = &ic->ic_channels[ic->ic_nchans++];
3329 			c->ic_ieee = chan;
3330 			c->ic_freq = ieee80211_ieee2mhz(chan,
3331 			    IEEE80211_CHAN_2GHZ);
3332 			c->ic_flags = IEEE80211_CHAN_G | passive;
3333 
3334 		} else {	/* 5GHz band */
3335 			/*
3336 			 * Some 3945ABG adapters support channels 7, 8, 11
3337 			 * and 12 in the 2GHz *and* 5GHz bands.
3338 			 * Because of limitations in our net80211(9) stack,
3339 			 * we can't support these channels in 5GHz band.
3340 			 * XXX not true; just need to map to proper frequency
3341 			 */
3342 			if (chan <= 14)
3343 				continue;
3344 
3345 			c->ic_ieee = chan;
3346 			c->ic_freq = ieee80211_ieee2mhz(chan,
3347 			    IEEE80211_CHAN_5GHZ);
3348 			c->ic_flags = IEEE80211_CHAN_A | passive;
3349 		}
3350 
3351 		/* save maximum allowed power for this channel */
3352 		sc->maxpwr[chan] = channels[i].maxpwr;
3353 
3354 #if 0
3355 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3356 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3357 		//ic->ic_channels[chan].ic_minpower...
3358 		//ic->ic_channels[chan].ic_maxregtxpower...
3359 #endif
3360 
3361 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3362 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3363 		    channels[i].flags, sc->maxpwr[chan],
3364 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3365 		    ic->ic_nchans));
3366 	}
3367 }
3368 
3369 static void
3370 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3371 {
3372 	struct wpi_power_group *group = &sc->groups[n];
3373 	struct wpi_eeprom_group rgroup;
3374 	int i;
3375 
3376 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3377 	    sizeof rgroup);
3378 
3379 	/* save power group information */
3380 	group->chan   = rgroup.chan;
3381 	group->maxpwr = rgroup.maxpwr;
3382 	/* temperature at which the samples were taken */
3383 	group->temp   = (int16_t)le16toh(rgroup.temp);
3384 
3385 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3386 		    group->chan, group->maxpwr, group->temp));
3387 
3388 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3389 		group->samples[i].index = rgroup.samples[i].index;
3390 		group->samples[i].power = rgroup.samples[i].power;
3391 
3392 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3393 			    group->samples[i].index, group->samples[i].power));
3394 	}
3395 }
3396 
3397 /*
3398  * Update Tx power to match what is defined for channel `c'.
3399  */
3400 static int
3401 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3402 {
3403 	struct ifnet *ifp = sc->sc_ifp;
3404 	struct ieee80211com *ic = ifp->if_l2com;
3405 	struct wpi_power_group *group;
3406 	struct wpi_cmd_txpower txpower;
3407 	u_int chan;
3408 	int i;
3409 
3410 	/* get channel number */
3411 	chan = ieee80211_chan2ieee(ic, c);
3412 
3413 	/* find the power group to which this channel belongs */
3414 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3415 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3416 			if (chan <= group->chan)
3417 				break;
3418 	} else
3419 		group = &sc->groups[0];
3420 
3421 	memset(&txpower, 0, sizeof txpower);
3422 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3423 	txpower.channel = htole16(chan);
3424 
3425 	/* set Tx power for all OFDM and CCK rates */
3426 	for (i = 0; i <= 11 ; i++) {
3427 		/* retrieve Tx power for this channel/rate combination */
3428 		int idx = wpi_get_power_index(sc, group, c,
3429 		    wpi_ridx_to_rate[i]);
3430 
3431 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3432 
3433 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3434 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3435 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3436 		} else {
3437 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3438 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3439 		}
3440 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3441 			    chan, wpi_ridx_to_rate[i], idx));
3442 	}
3443 
3444 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3445 }
3446 
3447 /*
3448  * Determine Tx power index for a given channel/rate combination.
3449  * This takes into account the regulatory information from EEPROM and the
3450  * current temperature.
3451  */
3452 static int
3453 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3454     struct ieee80211_channel *c, int rate)
3455 {
3456 /* fixed-point arithmetic division using a n-bit fractional part */
3457 #define fdivround(a, b, n)      \
3458 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3459 
3460 /* linear interpolation */
3461 #define interpolate(x, x1, y1, x2, y2, n)       \
3462 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3463 
3464 	struct ifnet *ifp = sc->sc_ifp;
3465 	struct ieee80211com *ic = ifp->if_l2com;
3466 	struct wpi_power_sample *sample;
3467 	int pwr, idx;
3468 	u_int chan;
3469 
3470 	/* get channel number */
3471 	chan = ieee80211_chan2ieee(ic, c);
3472 
3473 	/* default power is group's maximum power - 3dB */
3474 	pwr = group->maxpwr / 2;
3475 
3476 	/* decrease power for highest OFDM rates to reduce distortion */
3477 	switch (rate) {
3478 		case 72:	/* 36Mb/s */
3479 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3480 			break;
3481 		case 96:	/* 48Mb/s */
3482 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3483 			break;
3484 		case 108:	/* 54Mb/s */
3485 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3486 			break;
3487 	}
3488 
3489 	/* never exceed channel's maximum allowed Tx power */
3490 	pwr = min(pwr, sc->maxpwr[chan]);
3491 
3492 	/* retrieve power index into gain tables from samples */
3493 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3494 		if (pwr > sample[1].power)
3495 			break;
3496 	/* fixed-point linear interpolation using a 19-bit fractional part */
3497 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3498 	    sample[1].power, sample[1].index, 19);
3499 
3500 	/*
3501 	 *  Adjust power index based on current temperature
3502 	 *	- if colder than factory-calibrated: decreate output power
3503 	 *	- if warmer than factory-calibrated: increase output power
3504 	 */
3505 	idx -= (sc->temp - group->temp) * 11 / 100;
3506 
3507 	/* decrease power for CCK rates (-5dB) */
3508 	if (!WPI_RATE_IS_OFDM(rate))
3509 		idx += 10;
3510 
3511 	/* keep power index in a valid range */
3512 	if (idx < 0)
3513 		return 0;
3514 	if (idx > WPI_MAX_PWR_INDEX)
3515 		return WPI_MAX_PWR_INDEX;
3516 	return idx;
3517 
3518 #undef interpolate
3519 #undef fdivround
3520 }
3521 
3522 /**
3523  * Called by net80211 framework to indicate that a scan
3524  * is starting. This function doesn't actually do the scan,
3525  * wpi_scan_curchan starts things off. This function is more
3526  * of an early warning from the framework we should get ready
3527  * for the scan.
3528  */
3529 static void
3530 wpi_scan_start(struct ieee80211com *ic)
3531 {
3532 	struct ifnet *ifp = ic->ic_ifp;
3533 	struct wpi_softc *sc = ifp->if_softc;
3534 
3535 	WPI_LOCK(sc);
3536 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3537 	WPI_UNLOCK(sc);
3538 }
3539 
3540 /**
3541  * Called by the net80211 framework, indicates that the
3542  * scan has ended. If there is a scan in progress on the card
3543  * then it should be aborted.
3544  */
3545 static void
3546 wpi_scan_end(struct ieee80211com *ic)
3547 {
3548 	/* XXX ignore */
3549 }
3550 
3551 /**
3552  * Called by the net80211 framework to indicate to the driver
3553  * that the channel should be changed
3554  */
3555 static void
3556 wpi_set_channel(struct ieee80211com *ic)
3557 {
3558 	struct ifnet *ifp = ic->ic_ifp;
3559 	struct wpi_softc *sc = ifp->if_softc;
3560 	int error;
3561 
3562 	/*
3563 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3564 	 * are already taken care of by their respective firmware commands.
3565 	 */
3566 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3567 		error = wpi_config(sc);
3568 		if (error != 0)
3569 			device_printf(sc->sc_dev,
3570 			    "error %d settting channel\n", error);
3571 	}
3572 }
3573 
3574 /**
3575  * Called by net80211 to indicate that we need to scan the current
3576  * channel. The channel is previously be set via the wpi_set_channel
3577  * callback.
3578  */
3579 static void
3580 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3581 {
3582 	struct ieee80211vap *vap = ss->ss_vap;
3583 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3584 	struct wpi_softc *sc = ifp->if_softc;
3585 
3586 	WPI_LOCK(sc);
3587 	if (wpi_scan(sc))
3588 		ieee80211_cancel_scan(vap);
3589 	WPI_UNLOCK(sc);
3590 }
3591 
3592 /**
3593  * Called by the net80211 framework to indicate
3594  * the minimum dwell time has been met, terminate the scan.
3595  * We don't actually terminate the scan as the firmware will notify
3596  * us when it's finished and we have no way to interrupt it.
3597  */
3598 static void
3599 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3600 {
3601 	/* NB: don't try to abort scan; wait for firmware to finish */
3602 }
3603 
3604 static void
3605 wpi_hwreset(void *arg, int pending)
3606 {
3607 	struct wpi_softc *sc = arg;
3608 
3609 	WPI_LOCK(sc);
3610 	wpi_init_locked(sc, 0);
3611 	WPI_UNLOCK(sc);
3612 }
3613 
3614 static void
3615 wpi_rfreset(void *arg, int pending)
3616 {
3617 	struct wpi_softc *sc = arg;
3618 
3619 	WPI_LOCK(sc);
3620 	wpi_rfkill_resume(sc);
3621 	WPI_UNLOCK(sc);
3622 }
3623 
3624 /*
3625  * Allocate DMA-safe memory for firmware transfer.
3626  */
3627 static int
3628 wpi_alloc_fwmem(struct wpi_softc *sc)
3629 {
3630 	/* allocate enough contiguous space to store text and data */
3631 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3632 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3633 	    BUS_DMA_NOWAIT);
3634 }
3635 
3636 static void
3637 wpi_free_fwmem(struct wpi_softc *sc)
3638 {
3639 	wpi_dma_contig_free(&sc->fw_dma);
3640 }
3641 
3642 /**
3643  * Called every second, wpi_watchdog used by the watch dog timer
3644  * to check that the card is still alive
3645  */
3646 static void
3647 wpi_watchdog(void *arg)
3648 {
3649 	struct wpi_softc *sc = arg;
3650 	struct ifnet *ifp = sc->sc_ifp;
3651 	struct ieee80211com *ic = ifp->if_l2com;
3652 	uint32_t tmp;
3653 
3654 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3655 
3656 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3657 		/* No need to lock firmware memory */
3658 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3659 
3660 		if ((tmp & 0x1) == 0) {
3661 			/* Radio kill switch is still off */
3662 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3663 			return;
3664 		}
3665 
3666 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3667 		ieee80211_runtask(ic, &sc->sc_radiotask);
3668 		return;
3669 	}
3670 
3671 	if (sc->sc_tx_timer > 0) {
3672 		if (--sc->sc_tx_timer == 0) {
3673 			device_printf(sc->sc_dev,"device timeout\n");
3674 			ifp->if_oerrors++;
3675 			ieee80211_runtask(ic, &sc->sc_restarttask);
3676 		}
3677 	}
3678 	if (sc->sc_scan_timer > 0) {
3679 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3680 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3681 			device_printf(sc->sc_dev,"scan timeout\n");
3682 			ieee80211_cancel_scan(vap);
3683 			ieee80211_runtask(ic, &sc->sc_restarttask);
3684 		}
3685 	}
3686 
3687 	if (ifp->if_flags & IFF_RUNNING)
3688 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3689 }
3690 
3691 #ifdef WPI_DEBUG
3692 static const char *wpi_cmd_str(int cmd)
3693 {
3694 	switch (cmd) {
3695 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3696 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3697 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3698 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3699 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3700 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3701 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3702 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3703 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3704 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3705 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3706 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3707 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3708 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3709 
3710 	default:
3711 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3712 		return "UNKNOWN CMD";	/* Make the compiler happy */
3713 	}
3714 }
3715 #endif
3716 
3717 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3718 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3719 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3720 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3721 /*
3722 MODULE_DEPEND(wpi, wpifw_fw_fw, 1, 1, 1);
3723 MODULE_DEPEND(wpi, ath_rate, 1, 1, 1);
3724 */
3725