1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 * 18 * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $ 19 */ 20 21 #define VERSION "20071127" 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 * 26 * The 3945ABG network adapter doesn't use traditional hardware as 27 * many other adaptors do. Instead at run time the eeprom is set into a known 28 * state and told to load boot firmware. The boot firmware loads an init and a 29 * main binary firmware image into SRAM on the card via DMA. 30 * Once the firmware is loaded, the driver/hw then 31 * communicate by way of circular dma rings via the the SRAM to the firmware. 32 * 33 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 34 * The 4 tx data rings allow for prioritization QoS. 35 * 36 * The rx data ring consists of 32 dma buffers. Two registers are used to 37 * indicate where in the ring the driver and the firmware are up to. The 38 * driver sets the initial read index (reg1) and the initial write index (reg2), 39 * the firmware updates the read index (reg1) on rx of a packet and fires an 40 * interrupt. The driver then processes the buffers starting at reg1 indicating 41 * to the firmware which buffers have been accessed by updating reg2. At the 42 * same time allocating new memory for the processed buffer. 43 * 44 * A similar thing happens with the tx rings. The difference is the firmware 45 * stop processing buffers once the queue is full and until confirmation 46 * of a successful transmition (tx_intr) has occurred. 47 * 48 * The command ring operates in the same manner as the tx queues. 49 * 50 * All communication direct to the card (ie eeprom) is classed as Stage1 51 * communication 52 * 53 * All communication via the firmware to the card is classed as State2. 54 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 55 * firmware. The bootstrap firmware and runtime firmware are loaded 56 * from host memory via dma to the card then told to execute. From this point 57 * on the majority of communications between the driver and the card goes 58 * via the firmware. 59 */ 60 61 #include <sys/param.h> 62 #include <sys/sysctl.h> 63 #include <sys/sockio.h> 64 #include <sys/mbuf.h> 65 #include <sys/kernel.h> 66 #include <sys/socket.h> 67 #include <sys/systm.h> 68 #include <sys/malloc.h> 69 #include <sys/queue.h> 70 #include <sys/taskqueue.h> 71 #include <sys/module.h> 72 #include <sys/bus.h> 73 #include <sys/endian.h> 74 #include <sys/linker.h> 75 #include <sys/firmware.h> 76 77 #include <sys/bus.h> 78 #include <sys/resource.h> 79 #include <sys/rman.h> 80 81 #include <bus/pci/pcireg.h> 82 #include <bus/pci/pcivar.h> 83 84 #include <net/bpf.h> 85 #include <net/if.h> 86 #include <net/if_arp.h> 87 #include <net/ifq_var.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <netproto/802_11/ieee80211_var.h> 94 #include <netproto/802_11/ieee80211_radiotap.h> 95 #include <netproto/802_11/ieee80211_regdomain.h> 96 #include <netproto/802_11/ieee80211_ratectl.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_systm.h> 100 #include <netinet/in_var.h> 101 #include <netinet/ip.h> 102 #include <netinet/if_ether.h> 103 104 /* XXX: move elsewhere */ 105 #define abs(x) (((x) < 0) ? -(x) : (x)) 106 107 #include "if_wpireg.h" 108 #include "if_wpivar.h" 109 110 #define WPI_DEBUG 111 112 #ifdef WPI_DEBUG 113 #define DPRINTF(x) do { if (wpi_debug != 0) kprintf x; } while (0) 114 #define DPRINTFN(n, x) do { if (wpi_debug & n) kprintf x; } while (0) 115 #define WPI_DEBUG_SET (wpi_debug != 0) 116 117 enum { 118 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 119 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 120 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 121 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 122 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 123 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 124 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 125 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 126 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 127 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 128 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 129 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 130 WPI_DEBUG_ANY = 0xffffffff 131 }; 132 133 static int wpi_debug = 1; 134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 135 TUNABLE_INT("debug.wpi", &wpi_debug); 136 137 #else 138 #define DPRINTF(x) 139 #define DPRINTFN(n, x) 140 #define WPI_DEBUG_SET 0 141 #endif 142 143 struct wpi_ident { 144 uint16_t vendor; 145 uint16_t device; 146 uint16_t subdevice; 147 const char *name; 148 }; 149 150 static const struct wpi_ident wpi_ident_table[] = { 151 /* The below entries support ABG regardless of the subid */ 152 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 153 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 154 /* The below entries only support BG */ 155 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 156 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 157 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 158 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 159 { 0, 0, 0, NULL } 160 }; 161 162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 163 const char name[IFNAMSIZ], int unit, int opmode, 164 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 165 const uint8_t mac[IEEE80211_ADDR_LEN]); 166 static void wpi_vap_delete(struct ieee80211vap *); 167 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 168 void **, bus_size_t, bus_size_t, int); 169 static void wpi_dma_contig_free(struct wpi_dma_info *); 170 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 171 static int wpi_alloc_shared(struct wpi_softc *); 172 static void wpi_free_shared(struct wpi_softc *); 173 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 174 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 175 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 176 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 177 int, int); 178 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 179 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *, 181 const uint8_t mac[IEEE80211_ADDR_LEN]); 182 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 183 static void wpi_mem_lock(struct wpi_softc *); 184 static void wpi_mem_unlock(struct wpi_softc *); 185 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 186 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 187 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 188 const uint32_t *, int); 189 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 190 static int wpi_alloc_fwmem(struct wpi_softc *); 191 static void wpi_free_fwmem(struct wpi_softc *); 192 static int wpi_load_firmware(struct wpi_softc *); 193 static void wpi_unload_firmware(struct wpi_softc *); 194 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 195 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 196 struct wpi_rx_data *); 197 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 198 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 199 static void wpi_notif_intr(struct wpi_softc *); 200 static void wpi_intr(void *); 201 static uint8_t wpi_plcp_signal(int); 202 static void wpi_watchdog(void *); 203 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 204 struct ieee80211_node *, int); 205 static void wpi_start(struct ifnet *); 206 static void wpi_start_locked(struct ifnet *); 207 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 208 const struct ieee80211_bpf_params *); 209 static void wpi_scan_start(struct ieee80211com *); 210 static void wpi_scan_end(struct ieee80211com *); 211 static void wpi_set_channel(struct ieee80211com *); 212 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 213 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 214 static int wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); 215 static void wpi_read_eeprom(struct wpi_softc *, 216 uint8_t macaddr[IEEE80211_ADDR_LEN]); 217 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 218 static void wpi_read_eeprom_group(struct wpi_softc *, int); 219 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 220 static int wpi_wme_update(struct ieee80211com *); 221 static int wpi_mrr_setup(struct wpi_softc *); 222 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 223 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 224 #if 0 225 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 226 #endif 227 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 228 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 229 static int wpi_scan(struct wpi_softc *); 230 static int wpi_config(struct wpi_softc *); 231 static void wpi_stop_master(struct wpi_softc *); 232 static int wpi_power_up(struct wpi_softc *); 233 static int wpi_reset(struct wpi_softc *); 234 static void wpi_hwreset(void *, int); 235 static void wpi_rfreset(void *, int); 236 static void wpi_hw_config(struct wpi_softc *); 237 static void wpi_init(void *); 238 static void wpi_init_locked(struct wpi_softc *, int); 239 static void wpi_stop(struct wpi_softc *); 240 static void wpi_stop_locked(struct wpi_softc *); 241 242 static void wpi_newassoc(struct ieee80211_node *, int); 243 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 244 int); 245 static void wpi_calib_timeout(void *); 246 static void wpi_power_calibration(struct wpi_softc *, int); 247 static int wpi_get_power_index(struct wpi_softc *, 248 struct wpi_power_group *, struct ieee80211_channel *, int); 249 #ifdef WPI_DEBUG 250 static const char *wpi_cmd_str(int); 251 #endif 252 static int wpi_probe(device_t); 253 static int wpi_attach(device_t); 254 static int wpi_detach(device_t); 255 static int wpi_shutdown(device_t); 256 static int wpi_suspend(device_t); 257 static int wpi_resume(device_t); 258 259 260 static device_method_t wpi_methods[] = { 261 /* Device interface */ 262 DEVMETHOD(device_probe, wpi_probe), 263 DEVMETHOD(device_attach, wpi_attach), 264 DEVMETHOD(device_detach, wpi_detach), 265 DEVMETHOD(device_shutdown, wpi_shutdown), 266 DEVMETHOD(device_suspend, wpi_suspend), 267 DEVMETHOD(device_resume, wpi_resume), 268 269 { 0, 0 } 270 }; 271 272 static driver_t wpi_driver = { 273 "wpi", 274 wpi_methods, 275 sizeof (struct wpi_softc) 276 }; 277 278 static devclass_t wpi_devclass; 279 280 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 281 282 static const uint8_t wpi_ridx_to_plcp[] = { 283 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 284 /* R1-R4 (ral/ural is R4-R1) */ 285 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 286 /* CCK: device-dependent */ 287 10, 20, 55, 110 288 }; 289 static const uint8_t wpi_ridx_to_rate[] = { 290 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 291 2, 4, 11, 22 /*CCK */ 292 }; 293 294 295 static int 296 wpi_probe(device_t dev) 297 { 298 const struct wpi_ident *ident; 299 300 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 301 if (pci_get_vendor(dev) == ident->vendor && 302 pci_get_device(dev) == ident->device) { 303 device_set_desc(dev, ident->name); 304 return 0; 305 } 306 } 307 return ENXIO; 308 } 309 310 /** 311 * Load the firmare image from disk to the allocated dma buffer. 312 * we also maintain the reference to the firmware pointer as there 313 * is times where we may need to reload the firmware but we are not 314 * in a context that can access the filesystem (ie taskq cause by restart) 315 * 316 * @return 0 on success, an errno on failure 317 */ 318 static int 319 wpi_load_firmware(struct wpi_softc *sc) 320 { 321 const struct firmware *fp; 322 struct wpi_dma_info *dma = &sc->fw_dma; 323 const struct wpi_firmware_hdr *hdr; 324 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 325 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 326 int error; 327 328 DPRINTFN(WPI_DEBUG_FIRMWARE, 329 ("Attempting Loading Firmware from wpi_fw module\n")); 330 331 WPI_UNLOCK(sc); 332 333 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 334 device_printf(sc->sc_dev, 335 "could not load firmware image 'wpifw_fw'\n"); 336 error = ENOENT; 337 WPI_LOCK(sc); 338 goto fail; 339 } 340 341 fp = sc->fw_fp; 342 343 WPI_LOCK(sc); 344 345 346 /* Validate the firmware is minimum a particular version */ 347 if (fp->version < WPI_FW_MINVERSION) { 348 device_printf(sc->sc_dev, 349 "firmware version is too old. Need %d, got %d\n", 350 WPI_FW_MINVERSION, 351 fp->version); 352 error = ENXIO; 353 goto fail; 354 } 355 356 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 357 device_printf(sc->sc_dev, 358 "firmware file too short: %zu bytes\n", fp->datasize); 359 error = ENXIO; 360 goto fail; 361 } 362 363 hdr = (const struct wpi_firmware_hdr *)fp->data; 364 365 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 366 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 367 368 rtextsz = le32toh(hdr->rtextsz); 369 rdatasz = le32toh(hdr->rdatasz); 370 itextsz = le32toh(hdr->itextsz); 371 idatasz = le32toh(hdr->idatasz); 372 btextsz = le32toh(hdr->btextsz); 373 374 /* check that all firmware segments are present */ 375 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 376 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 377 device_printf(sc->sc_dev, 378 "firmware file too short: %zu bytes\n", fp->datasize); 379 error = ENXIO; /* XXX appropriate error code? */ 380 goto fail; 381 } 382 383 /* get pointers to firmware segments */ 384 rtext = (const uint8_t *)(hdr + 1); 385 rdata = rtext + rtextsz; 386 itext = rdata + rdatasz; 387 idata = itext + itextsz; 388 btext = idata + idatasz; 389 390 DPRINTFN(WPI_DEBUG_FIRMWARE, 391 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 392 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 393 (le32toh(hdr->version) & 0xff000000) >> 24, 394 (le32toh(hdr->version) & 0x00ff0000) >> 16, 395 (le32toh(hdr->version) & 0x0000ffff), 396 rtextsz, rdatasz, 397 itextsz, idatasz, btextsz)); 398 399 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 400 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 401 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 402 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 403 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 404 405 /* sanity checks */ 406 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 407 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 408 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 409 idatasz > WPI_FW_INIT_DATA_MAXSZ || 410 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 411 (btextsz & 3) != 0) { 412 device_printf(sc->sc_dev, "firmware invalid\n"); 413 error = EINVAL; 414 goto fail; 415 } 416 417 /* copy initialization images into pre-allocated DMA-safe memory */ 418 memcpy(dma->vaddr, idata, idatasz); 419 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 420 421 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 422 423 /* tell adapter where to find initialization images */ 424 wpi_mem_lock(sc); 425 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 426 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 427 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 428 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 429 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 430 wpi_mem_unlock(sc); 431 432 /* load firmware boot code */ 433 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 434 device_printf(sc->sc_dev, "Failed to load microcode\n"); 435 goto fail; 436 } 437 438 /* now press "execute" */ 439 WPI_WRITE(sc, WPI_RESET, 0); 440 441 /* wait at most one second for the first alive notification */ 442 if ((error = lksleep(sc, &sc->sc_lock, 0, "wpiinit", hz)) != 0) { 443 device_printf(sc->sc_dev, 444 "timeout waiting for adapter to initialize\n"); 445 goto fail; 446 } 447 448 /* copy runtime images into pre-allocated DMA-sage memory */ 449 memcpy(dma->vaddr, rdata, rdatasz); 450 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 451 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 452 453 /* tell adapter where to find runtime images */ 454 wpi_mem_lock(sc); 455 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 456 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 457 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 458 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 459 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 460 wpi_mem_unlock(sc); 461 462 /* wait at most one second for the first alive notification */ 463 if ((error = lksleep(sc, &sc->sc_lock, 0, "wpiinit", hz)) != 0) { 464 device_printf(sc->sc_dev, 465 "timeout waiting for adapter to initialize2\n"); 466 goto fail; 467 } 468 469 DPRINTFN(WPI_DEBUG_FIRMWARE, 470 ("Firmware loaded to driver successfully\n")); 471 return error; 472 fail: 473 wpi_unload_firmware(sc); 474 return error; 475 } 476 477 /** 478 * Free the referenced firmware image 479 */ 480 static void 481 wpi_unload_firmware(struct wpi_softc *sc) 482 { 483 struct ifnet *ifp; 484 ifp = sc->sc_ifp; 485 486 if (sc->fw_fp) { 487 WPI_UNLOCK(sc); 488 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 489 WPI_LOCK(sc); 490 sc->fw_fp = NULL; 491 } 492 } 493 494 static int 495 wpi_attach(device_t dev) 496 { 497 struct wpi_softc *sc = device_get_softc(dev); 498 struct ifnet *ifp; 499 struct ieee80211com *ic; 500 int ac, error, supportsa = 1; 501 uint32_t tmp; 502 const struct wpi_ident *ident; 503 uint8_t macaddr[IEEE80211_ADDR_LEN]; 504 505 sc->sc_dev = dev; 506 507 if (bootverbose || WPI_DEBUG_SET) 508 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 509 510 /* 511 * Some card's only support 802.11b/g not a, check to see if 512 * this is one such card. A 0x0 in the subdevice table indicates 513 * the entire subdevice range is to be ignored. 514 */ 515 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 516 if (ident->subdevice && 517 pci_get_subdevice(dev) == ident->subdevice) { 518 supportsa = 0; 519 break; 520 } 521 } 522 523 /* Create the tasks that can be queued */ 524 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc); 525 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc); 526 527 WPI_LOCK_INIT(sc); 528 529 callout_init(&sc->calib_to); 530 callout_init(&sc->watchdog_to); 531 532 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 533 device_printf(dev, "chip is in D%d power mode " 534 "-- setting to D0\n", pci_get_powerstate(dev)); 535 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 536 } 537 538 /* disable the retry timeout register */ 539 pci_write_config(dev, 0x41, 0, 1); 540 541 /* enable bus-mastering */ 542 pci_enable_busmaster(dev); 543 544 sc->mem_rid = PCIR_BAR(0); 545 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 546 RF_ACTIVE); 547 if (sc->mem == NULL) { 548 device_printf(dev, "could not allocate memory resource\n"); 549 error = ENOMEM; 550 goto fail; 551 } 552 553 sc->sc_st = rman_get_bustag(sc->mem); 554 sc->sc_sh = rman_get_bushandle(sc->mem); 555 556 sc->irq_rid = 0; 557 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 558 RF_ACTIVE | RF_SHAREABLE); 559 if (sc->irq == NULL) { 560 device_printf(dev, "could not allocate interrupt resource\n"); 561 error = ENOMEM; 562 goto fail; 563 } 564 565 /* 566 * Allocate DMA memory for firmware transfers. 567 */ 568 if ((error = wpi_alloc_fwmem(sc)) != 0) { 569 kprintf(": could not allocate firmware memory\n"); 570 error = ENOMEM; 571 goto fail; 572 } 573 574 /* 575 * Put adapter into a known state. 576 */ 577 if ((error = wpi_reset(sc)) != 0) { 578 device_printf(dev, "could not reset adapter\n"); 579 goto fail; 580 } 581 582 wpi_mem_lock(sc); 583 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 584 if (bootverbose || WPI_DEBUG_SET) 585 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 586 587 wpi_mem_unlock(sc); 588 589 /* Allocate shared page */ 590 if ((error = wpi_alloc_shared(sc)) != 0) { 591 device_printf(dev, "could not allocate shared page\n"); 592 goto fail; 593 } 594 595 /* tx data queues - 4 for QoS purposes */ 596 for (ac = 0; ac < WME_NUM_AC; ac++) { 597 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 598 if (error != 0) { 599 device_printf(dev, "could not allocate Tx ring %d\n",ac); 600 goto fail; 601 } 602 } 603 604 /* command queue to talk to the card's firmware */ 605 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 606 if (error != 0) { 607 device_printf(dev, "could not allocate command ring\n"); 608 goto fail; 609 } 610 611 /* receive data queue */ 612 error = wpi_alloc_rx_ring(sc, &sc->rxq); 613 if (error != 0) { 614 device_printf(dev, "could not allocate Rx ring\n"); 615 goto fail; 616 } 617 618 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 619 if (ifp == NULL) { 620 device_printf(dev, "can not if_alloc()\n"); 621 error = ENOMEM; 622 goto fail; 623 } 624 ic = ifp->if_l2com; 625 626 ic->ic_ifp = ifp; 627 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 628 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 629 630 /* set device capabilities */ 631 ic->ic_caps = 632 IEEE80211_C_STA /* station mode supported */ 633 | IEEE80211_C_MONITOR /* monitor mode supported */ 634 | IEEE80211_C_TXPMGT /* tx power management */ 635 | IEEE80211_C_SHSLOT /* short slot time supported */ 636 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 637 | IEEE80211_C_WPA /* 802.11i */ 638 /* XXX looks like WME is partly supported? */ 639 #if 0 640 | IEEE80211_C_IBSS /* IBSS mode support */ 641 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 642 | IEEE80211_C_WME /* 802.11e */ 643 | IEEE80211_C_HOSTAP /* Host access point mode */ 644 #endif 645 ; 646 647 /* 648 * Read in the eeprom and also setup the channels for 649 * net80211. We don't set the rates as net80211 does this for us 650 */ 651 wpi_read_eeprom(sc, macaddr); 652 653 if (bootverbose || WPI_DEBUG_SET) { 654 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 655 device_printf(sc->sc_dev, "Hardware Type: %c\n", 656 sc->type > 1 ? 'B': '?'); 657 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 658 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 659 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 660 supportsa ? "does" : "does not"); 661 662 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 663 what sc->rev really represents - benjsc 20070615 */ 664 } 665 666 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 667 ifp->if_softc = sc; 668 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 669 ifp->if_init = wpi_init; 670 ifp->if_ioctl = wpi_ioctl; 671 ifp->if_start = wpi_start; 672 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN); 673 ifq_set_ready(&ifp->if_snd); 674 675 ieee80211_ifattach(ic, macaddr); 676 /* override default methods */ 677 ic->ic_node_alloc = wpi_node_alloc; 678 ic->ic_newassoc = wpi_newassoc; 679 ic->ic_raw_xmit = wpi_raw_xmit; 680 ic->ic_wme.wme_update = wpi_wme_update; 681 ic->ic_scan_start = wpi_scan_start; 682 ic->ic_scan_end = wpi_scan_end; 683 ic->ic_set_channel = wpi_set_channel; 684 ic->ic_scan_curchan = wpi_scan_curchan; 685 ic->ic_scan_mindwell = wpi_scan_mindwell; 686 687 ic->ic_vap_create = wpi_vap_create; 688 ic->ic_vap_delete = wpi_vap_delete; 689 690 ieee80211_radiotap_attach(ic, 691 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 692 WPI_TX_RADIOTAP_PRESENT, 693 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 694 WPI_RX_RADIOTAP_PRESENT); 695 696 /* 697 * Hook our interrupt after all initialization is complete. 698 */ 699 error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE, 700 wpi_intr, sc, &sc->sc_ih, ifp->if_serializer); 701 if (error != 0) { 702 device_printf(dev, "could not set up interrupt\n"); 703 goto fail; 704 } 705 706 if (bootverbose) 707 ieee80211_announce(ic); 708 #ifdef XXX_DEBUG 709 ieee80211_announce_channels(ic); 710 #endif 711 return 0; 712 713 fail: wpi_detach(dev); 714 return ENXIO; 715 } 716 717 static int 718 wpi_detach(device_t dev) 719 { 720 struct wpi_softc *sc = device_get_softc(dev); 721 struct ifnet *ifp = sc->sc_ifp; 722 struct ieee80211com *ic; 723 int ac; 724 725 if (ifp != NULL) { 726 ic = ifp->if_l2com; 727 728 ieee80211_draintask(ic, &sc->sc_restarttask); 729 ieee80211_draintask(ic, &sc->sc_radiotask); 730 wpi_stop(sc); 731 callout_stop(&sc->watchdog_to); 732 callout_stop(&sc->calib_to); 733 ieee80211_ifdetach(ic); 734 } 735 736 WPI_LOCK(sc); 737 if (sc->txq[0].data_dmat) { 738 for (ac = 0; ac < WME_NUM_AC; ac++) 739 wpi_free_tx_ring(sc, &sc->txq[ac]); 740 741 wpi_free_tx_ring(sc, &sc->cmdq); 742 wpi_free_rx_ring(sc, &sc->rxq); 743 wpi_free_shared(sc); 744 } 745 746 if (sc->fw_fp != NULL) { 747 wpi_unload_firmware(sc); 748 } 749 750 if (sc->fw_dma.tag) 751 wpi_free_fwmem(sc); 752 WPI_UNLOCK(sc); 753 754 if (sc->irq != NULL) { 755 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 756 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 757 } 758 759 if (sc->mem != NULL) 760 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 761 762 if (ifp != NULL) 763 if_free(ifp); 764 765 WPI_LOCK_DESTROY(sc); 766 767 return 0; 768 } 769 770 static struct ieee80211vap * 771 wpi_vap_create(struct ieee80211com *ic, 772 const char name[IFNAMSIZ], int unit, int opmode, int flags, 773 const uint8_t bssid[IEEE80211_ADDR_LEN], 774 const uint8_t mac[IEEE80211_ADDR_LEN]) 775 { 776 struct wpi_vap *wvp; 777 struct ieee80211vap *vap; 778 779 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 780 return NULL; 781 wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap), 782 M_80211_VAP, M_INTWAIT | M_ZERO); 783 if (wvp == NULL) 784 return NULL; 785 vap = &wvp->vap; 786 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 787 /* override with driver methods */ 788 wvp->newstate = vap->iv_newstate; 789 vap->iv_newstate = wpi_newstate; 790 791 ieee80211_ratectl_init(vap); 792 793 /* complete setup */ 794 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 795 ic->ic_opmode = opmode; 796 return vap; 797 } 798 799 static void 800 wpi_vap_delete(struct ieee80211vap *vap) 801 { 802 struct wpi_vap *wvp = WPI_VAP(vap); 803 804 ieee80211_ratectl_deinit(vap); 805 ieee80211_vap_detach(vap); 806 kfree(wvp, M_80211_VAP); 807 } 808 809 static void 810 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 811 { 812 if (error != 0) 813 return; 814 815 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 816 817 *(bus_addr_t *)arg = segs[0].ds_addr; 818 } 819 820 /* 821 * Allocates a contiguous block of dma memory of the requested size and 822 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 823 * allocations greater than 4096 may fail. Hence if the requested alignment is 824 * greater we allocate 'alignment' size extra memory and shift the vaddr and 825 * paddr after the dma load. This bypasses the problem at the cost of a little 826 * more memory. 827 */ 828 static int 829 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 830 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 831 { 832 int error; 833 bus_size_t align; 834 bus_size_t reqsize; 835 836 DPRINTFN(WPI_DEBUG_DMA, 837 ("Size: %zd - alignment %zd\n", size, alignment)); 838 839 dma->size = size; 840 dma->tag = NULL; 841 842 if (alignment > 4096) { 843 align = PAGE_SIZE; 844 reqsize = size + alignment; 845 } else { 846 align = alignment; 847 reqsize = size; 848 } 849 error = bus_dma_tag_create(dma->tag, align, 850 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 851 NULL, NULL, reqsize, 852 1, reqsize, flags, 853 &dma->tag); 854 if (error != 0) { 855 device_printf(sc->sc_dev, 856 "could not create shared page DMA tag\n"); 857 goto fail; 858 } 859 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 860 flags | BUS_DMA_ZERO, &dma->map); 861 if (error != 0) { 862 device_printf(sc->sc_dev, 863 "could not allocate shared page DMA memory\n"); 864 goto fail; 865 } 866 867 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 868 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 869 870 /* Save the original pointers so we can free all the memory */ 871 dma->paddr = dma->paddr_start; 872 dma->vaddr = dma->vaddr_start; 873 874 /* 875 * Check the alignment and increment by 4096 until we get the 876 * requested alignment. Fail if can't obtain the alignment 877 * we requested. 878 */ 879 if ((dma->paddr & (alignment -1 )) != 0) { 880 int i; 881 882 for (i = 0; i < alignment / 4096; i++) { 883 if ((dma->paddr & (alignment - 1 )) == 0) 884 break; 885 dma->paddr += 4096; 886 dma->vaddr += 4096; 887 } 888 if (i == alignment / 4096) { 889 device_printf(sc->sc_dev, 890 "alignment requirement was not satisfied\n"); 891 goto fail; 892 } 893 } 894 895 if (error != 0) { 896 device_printf(sc->sc_dev, 897 "could not load shared page DMA map\n"); 898 goto fail; 899 } 900 901 if (kvap != NULL) 902 *kvap = dma->vaddr; 903 904 return 0; 905 906 fail: 907 wpi_dma_contig_free(dma); 908 return error; 909 } 910 911 static void 912 wpi_dma_contig_free(struct wpi_dma_info *dma) 913 { 914 if (dma->tag) { 915 if (dma->map != NULL) { 916 if (dma->paddr_start != 0) { 917 bus_dmamap_sync(dma->tag, dma->map, 918 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 919 bus_dmamap_unload(dma->tag, dma->map); 920 } 921 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 922 } 923 bus_dma_tag_destroy(dma->tag); 924 } 925 } 926 927 /* 928 * Allocate a shared page between host and NIC. 929 */ 930 static int 931 wpi_alloc_shared(struct wpi_softc *sc) 932 { 933 int error; 934 935 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 936 (void **)&sc->shared, sizeof (struct wpi_shared), 937 PAGE_SIZE, 938 BUS_DMA_NOWAIT); 939 940 if (error != 0) { 941 device_printf(sc->sc_dev, 942 "could not allocate shared area DMA memory\n"); 943 } 944 945 return error; 946 } 947 948 static void 949 wpi_free_shared(struct wpi_softc *sc) 950 { 951 wpi_dma_contig_free(&sc->shared_dma); 952 } 953 954 static int 955 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 956 { 957 958 int i, error; 959 960 ring->cur = 0; 961 962 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 963 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 964 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 965 966 if (error != 0) { 967 device_printf(sc->sc_dev, 968 "%s: could not allocate rx ring DMA memory, error %d\n", 969 __func__, error); 970 goto fail; 971 } 972 973 error = bus_dma_tag_create(ring->data_dmat, 1, 0, 974 BUS_SPACE_MAXADDR_32BIT, 975 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, 976 MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat); 977 if (error != 0) { 978 device_printf(sc->sc_dev, 979 "%s: bus_dma_tag_create_failed, error %d\n", 980 __func__, error); 981 goto fail; 982 } 983 984 /* 985 * Setup Rx buffers. 986 */ 987 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 988 struct wpi_rx_data *data = &ring->data[i]; 989 struct mbuf *m; 990 bus_addr_t paddr; 991 992 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 993 if (error != 0) { 994 device_printf(sc->sc_dev, 995 "%s: bus_dmamap_create failed, error %d\n", 996 __func__, error); 997 goto fail; 998 } 999 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 1000 if (m == NULL) { 1001 device_printf(sc->sc_dev, 1002 "%s: could not allocate rx mbuf\n", __func__); 1003 error = ENOMEM; 1004 goto fail; 1005 } 1006 /* map page */ 1007 error = bus_dmamap_load(ring->data_dmat, data->map, 1008 mtod(m, caddr_t), MCLBYTES, 1009 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1010 if (error != 0 && error != EFBIG) { 1011 device_printf(sc->sc_dev, 1012 "%s: bus_dmamap_load failed, error %d\n", 1013 __func__, error); 1014 m_freem(m); 1015 error = ENOMEM; /* XXX unique code */ 1016 goto fail; 1017 } 1018 bus_dmamap_sync(ring->data_dmat, data->map, 1019 BUS_DMASYNC_PREWRITE); 1020 1021 data->m = m; 1022 ring->desc[i] = htole32(paddr); 1023 } 1024 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1025 BUS_DMASYNC_PREWRITE); 1026 return 0; 1027 fail: 1028 wpi_free_rx_ring(sc, ring); 1029 return error; 1030 } 1031 1032 static void 1033 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1034 { 1035 int ntries; 1036 1037 wpi_mem_lock(sc); 1038 1039 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1040 1041 for (ntries = 0; ntries < 100; ntries++) { 1042 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1043 break; 1044 DELAY(10); 1045 } 1046 1047 wpi_mem_unlock(sc); 1048 1049 #ifdef WPI_DEBUG 1050 if (ntries == 100 && wpi_debug > 0) 1051 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1052 #endif 1053 1054 ring->cur = 0; 1055 } 1056 1057 static void 1058 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1059 { 1060 int i; 1061 1062 wpi_dma_contig_free(&ring->desc_dma); 1063 1064 for (i = 0; i < WPI_RX_RING_COUNT; i++) 1065 if (ring->data[i].m != NULL) 1066 m_freem(ring->data[i].m); 1067 } 1068 1069 static int 1070 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1071 int qid) 1072 { 1073 struct wpi_tx_data *data; 1074 int i, error; 1075 1076 ring->qid = qid; 1077 ring->count = count; 1078 ring->queued = 0; 1079 ring->cur = 0; 1080 ring->data = NULL; 1081 1082 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1083 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1084 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1085 1086 if (error != 0) { 1087 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1088 goto fail; 1089 } 1090 1091 /* update shared page with ring's base address */ 1092 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1093 1094 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1095 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1096 BUS_DMA_NOWAIT); 1097 1098 if (error != 0) { 1099 device_printf(sc->sc_dev, 1100 "could not allocate tx command DMA memory\n"); 1101 goto fail; 1102 } 1103 1104 ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1105 M_INTWAIT | M_ZERO); 1106 if (ring->data == NULL) { 1107 device_printf(sc->sc_dev, 1108 "could not allocate tx data slots\n"); 1109 goto fail; 1110 } 1111 1112 error = bus_dma_tag_create(ring->data_dmat, 1, 0, 1113 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1114 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, 1115 &ring->data_dmat); 1116 if (error != 0) { 1117 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1118 goto fail; 1119 } 1120 1121 for (i = 0; i < count; i++) { 1122 data = &ring->data[i]; 1123 1124 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1125 if (error != 0) { 1126 device_printf(sc->sc_dev, 1127 "could not create tx buf DMA map\n"); 1128 goto fail; 1129 } 1130 bus_dmamap_sync(ring->data_dmat, data->map, 1131 BUS_DMASYNC_PREWRITE); 1132 } 1133 1134 return 0; 1135 1136 fail: 1137 wpi_free_tx_ring(sc, ring); 1138 return error; 1139 } 1140 1141 static void 1142 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1143 { 1144 struct wpi_tx_data *data; 1145 int i, ntries; 1146 1147 wpi_mem_lock(sc); 1148 1149 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1150 for (ntries = 0; ntries < 100; ntries++) { 1151 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1152 break; 1153 DELAY(10); 1154 } 1155 #ifdef WPI_DEBUG 1156 if (ntries == 100 && wpi_debug > 0) 1157 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1158 ring->qid); 1159 #endif 1160 wpi_mem_unlock(sc); 1161 1162 for (i = 0; i < ring->count; i++) { 1163 data = &ring->data[i]; 1164 1165 if (data->m != NULL) { 1166 bus_dmamap_unload(ring->data_dmat, data->map); 1167 m_freem(data->m); 1168 data->m = NULL; 1169 } 1170 } 1171 1172 ring->queued = 0; 1173 ring->cur = 0; 1174 } 1175 1176 static void 1177 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1178 { 1179 struct wpi_tx_data *data; 1180 int i; 1181 1182 wpi_dma_contig_free(&ring->desc_dma); 1183 wpi_dma_contig_free(&ring->cmd_dma); 1184 1185 if (ring->data != NULL) { 1186 for (i = 0; i < ring->count; i++) { 1187 data = &ring->data[i]; 1188 1189 if (data->m != NULL) { 1190 bus_dmamap_sync(ring->data_dmat, data->map, 1191 BUS_DMASYNC_POSTWRITE); 1192 bus_dmamap_unload(ring->data_dmat, data->map); 1193 m_freem(data->m); 1194 data->m = NULL; 1195 } 1196 } 1197 kfree(ring->data, M_DEVBUF); 1198 } 1199 1200 if (ring->data_dmat != NULL) 1201 bus_dma_tag_destroy(ring->data_dmat); 1202 } 1203 1204 static int 1205 wpi_shutdown(device_t dev) 1206 { 1207 struct wpi_softc *sc = device_get_softc(dev); 1208 1209 WPI_LOCK(sc); 1210 wpi_stop_locked(sc); 1211 wpi_unload_firmware(sc); 1212 WPI_UNLOCK(sc); 1213 1214 return 0; 1215 } 1216 1217 static int 1218 wpi_suspend(device_t dev) 1219 { 1220 struct wpi_softc *sc = device_get_softc(dev); 1221 1222 wpi_stop(sc); 1223 return 0; 1224 } 1225 1226 static int 1227 wpi_resume(device_t dev) 1228 { 1229 struct wpi_softc *sc = device_get_softc(dev); 1230 struct ifnet *ifp = sc->sc_ifp; 1231 1232 pci_write_config(dev, 0x41, 0, 1); 1233 1234 if (ifp->if_flags & IFF_UP) { 1235 wpi_init(ifp->if_softc); 1236 if (ifp->if_flags & IFF_RUNNING) 1237 wpi_start(ifp); 1238 } 1239 return 0; 1240 } 1241 1242 /* ARGSUSED */ 1243 static struct ieee80211_node * 1244 wpi_node_alloc(struct ieee80211vap *vap __unused, 1245 const uint8_t mac[IEEE80211_ADDR_LEN] __unused) 1246 { 1247 struct wpi_node *wn; 1248 1249 wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO); 1250 1251 return &wn->ni; 1252 } 1253 1254 /** 1255 * Called by net80211 when ever there is a change to 80211 state machine 1256 */ 1257 static int 1258 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1259 { 1260 struct wpi_vap *wvp = WPI_VAP(vap); 1261 struct ieee80211com *ic = vap->iv_ic; 1262 struct ifnet *ifp = ic->ic_ifp; 1263 struct wpi_softc *sc = ifp->if_softc; 1264 int error; 1265 1266 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1267 ieee80211_state_name[vap->iv_state], 1268 ieee80211_state_name[nstate], sc->flags)); 1269 1270 IEEE80211_UNLOCK(ic); 1271 WPI_LOCK(sc); 1272 if (nstate == IEEE80211_S_AUTH) { 1273 /* The node must be registered in the firmware before auth */ 1274 error = wpi_auth(sc, vap); 1275 if (error != 0) { 1276 device_printf(sc->sc_dev, 1277 "%s: could not move to auth state, error %d\n", 1278 __func__, error); 1279 } 1280 } 1281 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1282 error = wpi_run(sc, vap); 1283 if (error != 0) { 1284 device_printf(sc->sc_dev, 1285 "%s: could not move to run state, error %d\n", 1286 __func__, error); 1287 } 1288 } 1289 if (nstate == IEEE80211_S_RUN) { 1290 /* RUN -> RUN transition; just restart the timers */ 1291 wpi_calib_timeout(sc); 1292 /* XXX split out rate control timer */ 1293 } 1294 WPI_UNLOCK(sc); 1295 IEEE80211_LOCK(ic); 1296 return wvp->newstate(vap, nstate, arg); 1297 } 1298 1299 /* 1300 * Grab exclusive access to NIC memory. 1301 */ 1302 static void 1303 wpi_mem_lock(struct wpi_softc *sc) 1304 { 1305 int ntries; 1306 uint32_t tmp; 1307 1308 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1309 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1310 1311 /* spin until we actually get the lock */ 1312 for (ntries = 0; ntries < 100; ntries++) { 1313 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1314 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1315 break; 1316 DELAY(10); 1317 } 1318 if (ntries == 100) 1319 device_printf(sc->sc_dev, "could not lock memory\n"); 1320 } 1321 1322 /* 1323 * Release lock on NIC memory. 1324 */ 1325 static void 1326 wpi_mem_unlock(struct wpi_softc *sc) 1327 { 1328 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1329 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1330 } 1331 1332 static uint32_t 1333 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1334 { 1335 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1336 return WPI_READ(sc, WPI_READ_MEM_DATA); 1337 } 1338 1339 static void 1340 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1341 { 1342 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1343 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1344 } 1345 1346 static void 1347 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1348 const uint32_t *data, int wlen) 1349 { 1350 for (; wlen > 0; wlen--, data++, addr+=4) 1351 wpi_mem_write(sc, addr, *data); 1352 } 1353 1354 /* 1355 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1356 * using the traditional bit-bang method. Data is read up until len bytes have 1357 * been obtained. 1358 */ 1359 static uint16_t 1360 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1361 { 1362 int ntries; 1363 uint32_t val; 1364 uint8_t *out = data; 1365 1366 wpi_mem_lock(sc); 1367 1368 for (; len > 0; len -= 2, addr++) { 1369 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1370 1371 for (ntries = 0; ntries < 10; ntries++) { 1372 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1373 break; 1374 DELAY(5); 1375 } 1376 1377 if (ntries == 10) { 1378 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1379 return ETIMEDOUT; 1380 } 1381 1382 *out++= val >> 16; 1383 if (len > 1) 1384 *out ++= val >> 24; 1385 } 1386 1387 wpi_mem_unlock(sc); 1388 1389 return 0; 1390 } 1391 1392 /* 1393 * The firmware text and data segments are transferred to the NIC using DMA. 1394 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1395 * where to find it. Once the NIC has copied the firmware into its internal 1396 * memory, we can free our local copy in the driver. 1397 */ 1398 static int 1399 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1400 { 1401 int error, ntries; 1402 1403 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1404 1405 size /= sizeof(uint32_t); 1406 1407 wpi_mem_lock(sc); 1408 1409 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1410 (const uint32_t *)fw, size); 1411 1412 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1413 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1414 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1415 1416 /* run microcode */ 1417 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1418 1419 /* wait while the adapter is busy copying the firmware */ 1420 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1421 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1422 DPRINTFN(WPI_DEBUG_HW, 1423 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1424 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1425 if (status & WPI_TX_IDLE(6)) { 1426 DPRINTFN(WPI_DEBUG_HW, 1427 ("Status Match! - ntries = %d\n", ntries)); 1428 break; 1429 } 1430 DELAY(10); 1431 } 1432 if (ntries == 1000) { 1433 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1434 error = ETIMEDOUT; 1435 } 1436 1437 /* start the microcode executing */ 1438 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1439 1440 wpi_mem_unlock(sc); 1441 1442 return (error); 1443 } 1444 1445 static void 1446 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1447 struct wpi_rx_data *data) 1448 { 1449 struct ifnet *ifp = sc->sc_ifp; 1450 struct ieee80211com *ic = ifp->if_l2com; 1451 struct wpi_rx_ring *ring = &sc->rxq; 1452 struct wpi_rx_stat *stat; 1453 struct wpi_rx_head *head; 1454 struct wpi_rx_tail *tail; 1455 struct ieee80211_node *ni; 1456 struct mbuf *m, *mnew; 1457 bus_addr_t paddr; 1458 int error; 1459 1460 stat = (struct wpi_rx_stat *)(desc + 1); 1461 1462 if (stat->len > WPI_STAT_MAXLEN) { 1463 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1464 ifp->if_ierrors++; 1465 return; 1466 } 1467 1468 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1469 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1470 1471 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1472 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1473 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1474 (uintmax_t)le64toh(tail->tstamp))); 1475 1476 /* discard Rx frames with bad CRC early */ 1477 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1478 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1479 le32toh(tail->flags))); 1480 ifp->if_ierrors++; 1481 return; 1482 } 1483 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1484 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1485 le16toh(head->len))); 1486 ifp->if_ierrors++; 1487 return; 1488 } 1489 1490 /* XXX don't need mbuf, just dma buffer */ 1491 mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 1492 if (mnew == NULL) { 1493 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1494 __func__)); 1495 ifp->if_ierrors++; 1496 return; 1497 } 1498 error = bus_dmamap_load(ring->data_dmat, data->map, 1499 mtod(mnew, caddr_t), MCLBYTES, 1500 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1501 if (error != 0 && error != EFBIG) { 1502 device_printf(sc->sc_dev, 1503 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1504 m_freem(mnew); 1505 ifp->if_ierrors++; 1506 return; 1507 } 1508 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1509 1510 /* finalize mbuf and swap in new one */ 1511 m = data->m; 1512 m->m_pkthdr.rcvif = ifp; 1513 m->m_data = (caddr_t)(head + 1); 1514 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1515 1516 data->m = mnew; 1517 /* update Rx descriptor */ 1518 ring->desc[ring->cur] = htole32(paddr); 1519 1520 if (ieee80211_radiotap_active(ic)) { 1521 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1522 1523 tap->wr_flags = 0; 1524 tap->wr_chan_freq = 1525 htole16(ic->ic_channels[head->chan].ic_freq); 1526 tap->wr_chan_flags = 1527 htole16(ic->ic_channels[head->chan].ic_flags); 1528 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1529 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1530 tap->wr_tsft = tail->tstamp; 1531 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1532 switch (head->rate) { 1533 /* CCK rates */ 1534 case 10: tap->wr_rate = 2; break; 1535 case 20: tap->wr_rate = 4; break; 1536 case 55: tap->wr_rate = 11; break; 1537 case 110: tap->wr_rate = 22; break; 1538 /* OFDM rates */ 1539 case 0xd: tap->wr_rate = 12; break; 1540 case 0xf: tap->wr_rate = 18; break; 1541 case 0x5: tap->wr_rate = 24; break; 1542 case 0x7: tap->wr_rate = 36; break; 1543 case 0x9: tap->wr_rate = 48; break; 1544 case 0xb: tap->wr_rate = 72; break; 1545 case 0x1: tap->wr_rate = 96; break; 1546 case 0x3: tap->wr_rate = 108; break; 1547 /* unknown rate: should not happen */ 1548 default: tap->wr_rate = 0; 1549 } 1550 if (le16toh(head->flags) & 0x4) 1551 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1552 } 1553 1554 WPI_UNLOCK(sc); 1555 1556 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1557 if (ni != NULL) { 1558 (void) ieee80211_input(ni, m, stat->rssi, 0); 1559 ieee80211_free_node(ni); 1560 } else 1561 (void) ieee80211_input_all(ic, m, stat->rssi, 0); 1562 1563 WPI_LOCK(sc); 1564 } 1565 1566 static void 1567 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1568 { 1569 struct ifnet *ifp = sc->sc_ifp; 1570 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1571 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1572 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1573 struct ieee80211_node *ni = txdata->ni; 1574 struct ieee80211vap *vap = ni->ni_vap; 1575 int retrycnt = 0; 1576 1577 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1578 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1579 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1580 le32toh(stat->status))); 1581 1582 /* 1583 * Update rate control statistics for the node. 1584 * XXX we should not count mgmt frames since they're always sent at 1585 * the lowest available bit-rate. 1586 * XXX frames w/o ACK shouldn't be used either 1587 */ 1588 if (stat->ntries > 0) { 1589 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1590 retrycnt = 1; 1591 } 1592 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, 1593 &retrycnt, NULL); 1594 1595 /* XXX oerrors should only count errors !maxtries */ 1596 if ((le32toh(stat->status) & 0xff) != 1) 1597 ifp->if_oerrors++; 1598 else 1599 ifp->if_opackets++; 1600 1601 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1602 bus_dmamap_unload(ring->data_dmat, txdata->map); 1603 /* XXX handle M_TXCB? */ 1604 m_freem(txdata->m); 1605 txdata->m = NULL; 1606 ieee80211_free_node(txdata->ni); 1607 txdata->ni = NULL; 1608 1609 ring->queued--; 1610 1611 sc->sc_tx_timer = 0; 1612 ifp->if_flags &= ~IFF_OACTIVE; 1613 wpi_start_locked(ifp); 1614 } 1615 1616 static void 1617 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1618 { 1619 struct wpi_tx_ring *ring = &sc->cmdq; 1620 struct wpi_tx_data *data; 1621 1622 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1623 "type=%s len=%d\n", desc->qid, desc->idx, 1624 desc->flags, wpi_cmd_str(desc->type), 1625 le32toh(desc->len))); 1626 1627 if ((desc->qid & 7) != 4) 1628 return; /* not a command ack */ 1629 1630 data = &ring->data[desc->idx]; 1631 1632 /* if the command was mapped in a mbuf, free it */ 1633 if (data->m != NULL) { 1634 bus_dmamap_unload(ring->data_dmat, data->map); 1635 m_freem(data->m); 1636 data->m = NULL; 1637 } 1638 1639 sc->flags &= ~WPI_FLAG_BUSY; 1640 wakeup(&ring->cmd[desc->idx]); 1641 } 1642 1643 static void 1644 wpi_notif_intr(struct wpi_softc *sc) 1645 { 1646 struct ifnet *ifp = sc->sc_ifp; 1647 struct ieee80211com *ic = ifp->if_l2com; 1648 struct wpi_rx_desc *desc; 1649 struct wpi_rx_data *data; 1650 uint32_t hw; 1651 1652 hw = le32toh(sc->shared->next); 1653 while (sc->rxq.cur != hw) { 1654 data = &sc->rxq.data[sc->rxq.cur]; 1655 desc = (void *)data->m->m_ext.ext_buf; 1656 1657 DPRINTFN(WPI_DEBUG_NOTIFY, 1658 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1659 desc->qid, 1660 desc->idx, 1661 desc->flags, 1662 desc->type, 1663 le32toh(desc->len))); 1664 1665 if (!(desc->qid & 0x80)) /* reply to a command */ 1666 wpi_cmd_intr(sc, desc); 1667 1668 switch (desc->type) { 1669 case WPI_RX_DONE: 1670 /* a 802.11 frame was received */ 1671 wpi_rx_intr(sc, desc, data); 1672 break; 1673 1674 case WPI_TX_DONE: 1675 /* a 802.11 frame has been transmitted */ 1676 wpi_tx_intr(sc, desc); 1677 break; 1678 1679 case WPI_UC_READY: 1680 { 1681 struct wpi_ucode_info *uc = 1682 (struct wpi_ucode_info *)(desc + 1); 1683 1684 /* the microcontroller is ready */ 1685 DPRINTF(("microcode alive notification version %x " 1686 "alive %x\n", le32toh(uc->version), 1687 le32toh(uc->valid))); 1688 1689 if (le32toh(uc->valid) != 1) { 1690 device_printf(sc->sc_dev, 1691 "microcontroller initialization failed\n"); 1692 wpi_stop_locked(sc); 1693 } 1694 break; 1695 } 1696 case WPI_STATE_CHANGED: 1697 { 1698 uint32_t *status = (uint32_t *)(desc + 1); 1699 1700 /* enabled/disabled notification */ 1701 DPRINTF(("state changed to %x\n", le32toh(*status))); 1702 1703 if (le32toh(*status) & 1) { 1704 device_printf(sc->sc_dev, 1705 "Radio transmitter is switched off\n"); 1706 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1707 ifp->if_flags &= ~IFF_RUNNING; 1708 /* Disable firmware commands */ 1709 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1710 } 1711 break; 1712 } 1713 case WPI_START_SCAN: 1714 { 1715 #ifdef WPI_DEBUG 1716 struct wpi_start_scan *scan = 1717 (struct wpi_start_scan *)(desc + 1); 1718 #endif 1719 1720 DPRINTFN(WPI_DEBUG_SCANNING, 1721 ("scanning channel %d status %x\n", 1722 scan->chan, le32toh(scan->status))); 1723 break; 1724 } 1725 case WPI_STOP_SCAN: 1726 { 1727 #ifdef WPI_DEBUG 1728 struct wpi_stop_scan *scan = 1729 (struct wpi_stop_scan *)(desc + 1); 1730 #endif 1731 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1732 1733 DPRINTFN(WPI_DEBUG_SCANNING, 1734 ("scan finished nchan=%d status=%d chan=%d\n", 1735 scan->nchan, scan->status, scan->chan)); 1736 1737 sc->sc_scan_timer = 0; 1738 ieee80211_scan_next(vap); 1739 break; 1740 } 1741 case WPI_MISSED_BEACON: 1742 { 1743 struct wpi_missed_beacon *beacon = 1744 (struct wpi_missed_beacon *)(desc + 1); 1745 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1746 1747 if (le32toh(beacon->consecutive) >= 1748 vap->iv_bmissthreshold) { 1749 DPRINTF(("Beacon miss: %u >= %u\n", 1750 le32toh(beacon->consecutive), 1751 vap->iv_bmissthreshold)); 1752 ieee80211_beacon_miss(ic); 1753 } 1754 break; 1755 } 1756 } 1757 1758 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1759 } 1760 1761 /* tell the firmware what we have processed */ 1762 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1763 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1764 } 1765 1766 static void 1767 wpi_intr(void *arg) 1768 { 1769 struct wpi_softc *sc = arg; 1770 uint32_t r; 1771 1772 WPI_LOCK(sc); 1773 1774 r = WPI_READ(sc, WPI_INTR); 1775 if (r == 0 || r == 0xffffffff) { 1776 WPI_UNLOCK(sc); 1777 return; 1778 } 1779 1780 /* disable interrupts */ 1781 WPI_WRITE(sc, WPI_MASK, 0); 1782 /* ack interrupts */ 1783 WPI_WRITE(sc, WPI_INTR, r); 1784 1785 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1786 struct ifnet *ifp = sc->sc_ifp; 1787 struct ieee80211com *ic = ifp->if_l2com; 1788 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1789 1790 device_printf(sc->sc_dev, "fatal firmware error\n"); 1791 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1792 "(Hardware Error)")); 1793 if (vap != NULL) 1794 ieee80211_cancel_scan(vap); 1795 ieee80211_runtask(ic, &sc->sc_restarttask); 1796 sc->flags &= ~WPI_FLAG_BUSY; 1797 WPI_UNLOCK(sc); 1798 return; 1799 } 1800 1801 if (r & WPI_RX_INTR) 1802 wpi_notif_intr(sc); 1803 1804 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1805 wakeup(sc); 1806 1807 /* re-enable interrupts */ 1808 if (sc->sc_ifp->if_flags & IFF_UP) 1809 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1810 1811 WPI_UNLOCK(sc); 1812 } 1813 1814 static uint8_t 1815 wpi_plcp_signal(int rate) 1816 { 1817 switch (rate) { 1818 /* CCK rates (returned values are device-dependent) */ 1819 case 2: return 10; 1820 case 4: return 20; 1821 case 11: return 55; 1822 case 22: return 110; 1823 1824 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1825 /* R1-R4 (ral/ural is R4-R1) */ 1826 case 12: return 0xd; 1827 case 18: return 0xf; 1828 case 24: return 0x5; 1829 case 36: return 0x7; 1830 case 48: return 0x9; 1831 case 72: return 0xb; 1832 case 96: return 0x1; 1833 case 108: return 0x3; 1834 1835 /* unsupported rates (should not get there) */ 1836 default: return 0; 1837 } 1838 } 1839 1840 /* quickly determine if a given rate is CCK or OFDM */ 1841 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1842 1843 /* 1844 * Construct the data packet for a transmit buffer and acutally put 1845 * the buffer onto the transmit ring, kicking the card to process the 1846 * the buffer. 1847 */ 1848 static int 1849 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1850 int ac) 1851 { 1852 struct ieee80211vap *vap = ni->ni_vap; 1853 struct ifnet *ifp = sc->sc_ifp; 1854 struct ieee80211com *ic = ifp->if_l2com; 1855 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1856 struct wpi_tx_ring *ring = &sc->txq[ac]; 1857 struct wpi_tx_desc *desc; 1858 struct wpi_tx_data *data; 1859 struct wpi_tx_cmd *cmd; 1860 struct wpi_cmd_data *tx; 1861 struct ieee80211_frame *wh; 1862 const struct ieee80211_txparam *tp; 1863 struct ieee80211_key *k; 1864 struct mbuf *mnew; 1865 int i, error, nsegs, rate, hdrlen, ismcast; 1866 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1867 1868 desc = &ring->desc[ring->cur]; 1869 data = &ring->data[ring->cur]; 1870 1871 wh = mtod(m0, struct ieee80211_frame *); 1872 1873 hdrlen = ieee80211_hdrsize(wh); 1874 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1875 1876 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1877 k = ieee80211_crypto_encap(ni, m0); 1878 if (k == NULL) { 1879 m_freem(m0); 1880 return ENOBUFS; 1881 } 1882 /* packet header may have moved, reset our local pointer */ 1883 wh = mtod(m0, struct ieee80211_frame *); 1884 } 1885 1886 cmd = &ring->cmd[ring->cur]; 1887 cmd->code = WPI_CMD_TX_DATA; 1888 cmd->flags = 0; 1889 cmd->qid = ring->qid; 1890 cmd->idx = ring->cur; 1891 1892 tx = (struct wpi_cmd_data *)cmd->data; 1893 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1894 tx->timeout = htole16(0); 1895 tx->ofdm_mask = 0xff; 1896 tx->cck_mask = 0x0f; 1897 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1898 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1899 tx->len = htole16(m0->m_pkthdr.len); 1900 1901 if (!ismcast) { 1902 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1903 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1904 tx->flags |= htole32(WPI_TX_NEED_ACK); 1905 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1906 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1907 tx->rts_ntries = 7; 1908 } 1909 } 1910 /* pick a rate */ 1911 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1912 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1913 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1914 /* tell h/w to set timestamp in probe responses */ 1915 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1916 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1917 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1918 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1919 tx->timeout = htole16(3); 1920 else 1921 tx->timeout = htole16(2); 1922 rate = tp->mgmtrate; 1923 } else if (ismcast) { 1924 rate = tp->mcastrate; 1925 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1926 rate = tp->ucastrate; 1927 } else { 1928 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1929 rate = ni->ni_txrate; 1930 } 1931 tx->rate = wpi_plcp_signal(rate); 1932 1933 /* be very persistant at sending frames out */ 1934 #if 0 1935 tx->data_ntries = tp->maxretry; 1936 #else 1937 tx->data_ntries = 30; /* XXX way too high */ 1938 #endif 1939 1940 if (ieee80211_radiotap_active_vap(vap)) { 1941 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1942 tap->wt_flags = 0; 1943 tap->wt_rate = rate; 1944 tap->wt_hwqueue = ac; 1945 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1946 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1947 1948 ieee80211_radiotap_tx(vap, m0); 1949 } 1950 1951 /* save and trim IEEE802.11 header */ 1952 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1953 m_adj(m0, hdrlen); 1954 1955 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs, 1956 1, &nsegs, BUS_DMA_NOWAIT); 1957 if (error != 0 && error != EFBIG) { 1958 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1959 error); 1960 m_freem(m0); 1961 return error; 1962 } 1963 if (error != 0) { 1964 /* XXX use m_collapse */ 1965 mnew = m_defrag(m0, MB_DONTWAIT); 1966 if (mnew == NULL) { 1967 device_printf(sc->sc_dev, 1968 "could not defragment mbuf\n"); 1969 m_freem(m0); 1970 return ENOBUFS; 1971 } 1972 m0 = mnew; 1973 1974 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, 1975 m0, segs, 1, &nsegs, BUS_DMA_NOWAIT); 1976 if (error != 0) { 1977 device_printf(sc->sc_dev, 1978 "could not map mbuf (error %d)\n", error); 1979 m_freem(m0); 1980 return error; 1981 } 1982 } 1983 1984 data->m = m0; 1985 data->ni = ni; 1986 1987 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1988 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 1989 1990 /* first scatter/gather segment is used by the tx data command */ 1991 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1992 (1 + nsegs) << 24); 1993 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1994 ring->cur * sizeof (struct wpi_tx_cmd)); 1995 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 1996 for (i = 1; i <= nsegs; i++) { 1997 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 1998 desc->segs[i].len = htole32(segs[i - 1].ds_len); 1999 } 2000 2001 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2002 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2003 BUS_DMASYNC_PREWRITE); 2004 2005 ring->queued++; 2006 2007 /* kick ring */ 2008 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2009 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2010 2011 return 0; 2012 } 2013 2014 /** 2015 * Process data waiting to be sent on the IFNET output queue 2016 */ 2017 static void 2018 wpi_start(struct ifnet *ifp) 2019 { 2020 struct wpi_softc *sc = ifp->if_softc; 2021 2022 WPI_LOCK(sc); 2023 wpi_start_locked(ifp); 2024 WPI_UNLOCK(sc); 2025 } 2026 2027 static void 2028 wpi_start_locked(struct ifnet *ifp) 2029 { 2030 struct wpi_softc *sc = ifp->if_softc; 2031 struct ieee80211_node *ni; 2032 struct mbuf *m; 2033 int ac; 2034 2035 WPI_LOCK_ASSERT(sc); 2036 2037 if ((ifp->if_flags & IFF_RUNNING) == 0) { 2038 ifq_purge(&ifp->if_snd); 2039 return; 2040 } 2041 2042 for (;;) { 2043 IF_DEQUEUE(&ifp->if_snd, m); 2044 if (m == NULL) 2045 break; 2046 ac = M_WME_GETAC(m); 2047 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2048 /* there is no place left in this ring */ 2049 ifq_prepend(&ifp->if_snd, m); 2050 ifp->if_flags |= IFF_OACTIVE; 2051 break; 2052 } 2053 ni = ieee80211_ref_node((struct ieee80211_node *)m->m_pkthdr.rcvif); 2054 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2055 ieee80211_free_node(ni); 2056 ifp->if_oerrors++; 2057 break; 2058 } 2059 sc->sc_tx_timer = 5; 2060 } 2061 } 2062 2063 static int 2064 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2065 const struct ieee80211_bpf_params *params) 2066 { 2067 struct ieee80211com *ic = ni->ni_ic; 2068 struct ifnet *ifp = ic->ic_ifp; 2069 struct wpi_softc *sc = ifp->if_softc; 2070 2071 /* prevent management frames from being sent if we're not ready */ 2072 if (!(ifp->if_flags & IFF_RUNNING)) { 2073 m_freem(m); 2074 ieee80211_free_node(ni); 2075 return ENETDOWN; 2076 } 2077 WPI_LOCK(sc); 2078 2079 /* management frames go into ring 0 */ 2080 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2081 ifp->if_flags |= IFF_OACTIVE; 2082 m_freem(m); 2083 WPI_UNLOCK(sc); 2084 ieee80211_free_node(ni); 2085 return ENOBUFS; /* XXX */ 2086 } 2087 2088 ifp->if_opackets++; 2089 if (wpi_tx_data(sc, m, ni, 0) != 0) 2090 goto bad; 2091 sc->sc_tx_timer = 5; 2092 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2093 2094 WPI_UNLOCK(sc); 2095 return 0; 2096 bad: 2097 ifp->if_oerrors++; 2098 WPI_UNLOCK(sc); 2099 ieee80211_free_node(ni); 2100 return EIO; /* XXX */ 2101 } 2102 2103 static int 2104 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred) 2105 { 2106 struct wpi_softc *sc = ifp->if_softc; 2107 struct ieee80211com *ic = ifp->if_l2com; 2108 struct ifreq *ifr = (struct ifreq *) data; 2109 int error = 0, startall = 0; 2110 2111 switch (cmd) { 2112 case SIOCSIFFLAGS: 2113 WPI_LOCK(sc); 2114 if ((ifp->if_flags & IFF_UP)) { 2115 if (!(ifp->if_flags & IFF_RUNNING)) { 2116 wpi_init_locked(sc, 0); 2117 startall = 1; 2118 } 2119 } else if ((ifp->if_flags & IFF_RUNNING) || 2120 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2121 wpi_stop_locked(sc); 2122 WPI_UNLOCK(sc); 2123 if (startall) 2124 ieee80211_start_all(ic); 2125 break; 2126 case SIOCGIFMEDIA: 2127 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2128 break; 2129 case SIOCGIFADDR: 2130 error = ether_ioctl(ifp, cmd, data); 2131 break; 2132 default: 2133 error = EINVAL; 2134 break; 2135 } 2136 return error; 2137 } 2138 2139 /* 2140 * Extract various information from EEPROM. 2141 */ 2142 static void 2143 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2144 { 2145 int i; 2146 2147 /* read the hardware capabilities, revision and SKU type */ 2148 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2149 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2150 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2151 2152 /* read the regulatory domain */ 2153 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2154 2155 /* read in the hw MAC address */ 2156 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2157 2158 /* read the list of authorized channels */ 2159 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2160 wpi_read_eeprom_channels(sc,i); 2161 2162 /* read the power level calibration info for each group */ 2163 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2164 wpi_read_eeprom_group(sc,i); 2165 } 2166 2167 /* 2168 * Send a command to the firmware. 2169 */ 2170 static int 2171 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2172 { 2173 struct wpi_tx_ring *ring = &sc->cmdq; 2174 struct wpi_tx_desc *desc; 2175 struct wpi_tx_cmd *cmd; 2176 2177 #ifdef WPI_DEBUG 2178 if (!async) { 2179 WPI_LOCK_ASSERT(sc); 2180 } 2181 #endif 2182 2183 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2184 async)); 2185 2186 if (sc->flags & WPI_FLAG_BUSY) { 2187 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2188 __func__, code); 2189 return EAGAIN; 2190 } 2191 sc->flags|= WPI_FLAG_BUSY; 2192 2193 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2194 code, size)); 2195 2196 desc = &ring->desc[ring->cur]; 2197 cmd = &ring->cmd[ring->cur]; 2198 2199 cmd->code = code; 2200 cmd->flags = 0; 2201 cmd->qid = ring->qid; 2202 cmd->idx = ring->cur; 2203 memcpy(cmd->data, buf, size); 2204 2205 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2206 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2207 ring->cur * sizeof (struct wpi_tx_cmd)); 2208 desc->segs[0].len = htole32(4 + size); 2209 2210 /* kick cmd ring */ 2211 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2212 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2213 2214 if (async) { 2215 sc->flags &= ~ WPI_FLAG_BUSY; 2216 return 0; 2217 } 2218 2219 return lksleep(cmd, &sc->sc_lock, 0, "wpicmd", hz); 2220 } 2221 2222 static int 2223 wpi_wme_update(struct ieee80211com *ic) 2224 { 2225 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2226 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2227 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2228 const struct wmeParams *wmep; 2229 struct wpi_wme_setup wme; 2230 int ac; 2231 2232 /* don't override default WME values if WME is not actually enabled */ 2233 if (!(ic->ic_flags & IEEE80211_F_WME)) 2234 return 0; 2235 2236 wme.flags = 0; 2237 for (ac = 0; ac < WME_NUM_AC; ac++) { 2238 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2239 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2240 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2241 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2242 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2243 2244 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2245 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2246 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2247 } 2248 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2249 #undef WPI_USEC 2250 #undef WPI_EXP2 2251 } 2252 2253 /* 2254 * Configure h/w multi-rate retries. 2255 */ 2256 static int 2257 wpi_mrr_setup(struct wpi_softc *sc) 2258 { 2259 struct ifnet *ifp = sc->sc_ifp; 2260 struct ieee80211com *ic = ifp->if_l2com; 2261 struct wpi_mrr_setup mrr; 2262 int i, error; 2263 2264 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2265 2266 /* CCK rates (not used with 802.11a) */ 2267 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2268 mrr.rates[i].flags = 0; 2269 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2270 /* fallback to the immediate lower CCK rate (if any) */ 2271 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2272 /* try one time at this rate before falling back to "next" */ 2273 mrr.rates[i].ntries = 1; 2274 } 2275 2276 /* OFDM rates (not used with 802.11b) */ 2277 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2278 mrr.rates[i].flags = 0; 2279 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2280 /* fallback to the immediate lower OFDM rate (if any) */ 2281 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2282 mrr.rates[i].next = (i == WPI_OFDM6) ? 2283 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2284 WPI_OFDM6 : WPI_CCK2) : 2285 i - 1; 2286 /* try one time at this rate before falling back to "next" */ 2287 mrr.rates[i].ntries = 1; 2288 } 2289 2290 /* setup MRR for control frames */ 2291 mrr.which = htole32(WPI_MRR_CTL); 2292 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2293 if (error != 0) { 2294 device_printf(sc->sc_dev, 2295 "could not setup MRR for control frames\n"); 2296 return error; 2297 } 2298 2299 /* setup MRR for data frames */ 2300 mrr.which = htole32(WPI_MRR_DATA); 2301 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2302 if (error != 0) { 2303 device_printf(sc->sc_dev, 2304 "could not setup MRR for data frames\n"); 2305 return error; 2306 } 2307 2308 return 0; 2309 } 2310 2311 static void 2312 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2313 { 2314 struct wpi_cmd_led led; 2315 2316 led.which = which; 2317 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2318 led.off = off; 2319 led.on = on; 2320 2321 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2322 } 2323 2324 static void 2325 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2326 { 2327 struct wpi_cmd_tsf tsf; 2328 uint64_t val, mod; 2329 2330 memset(&tsf, 0, sizeof tsf); 2331 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2332 tsf.bintval = htole16(ni->ni_intval); 2333 tsf.lintval = htole16(10); 2334 2335 /* compute remaining time until next beacon */ 2336 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2337 mod = le64toh(tsf.tstamp) % val; 2338 tsf.binitval = htole32((uint32_t)(val - mod)); 2339 2340 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2341 device_printf(sc->sc_dev, "could not enable TSF\n"); 2342 } 2343 2344 #if 0 2345 /* 2346 * Build a beacon frame that the firmware will broadcast periodically in 2347 * IBSS or HostAP modes. 2348 */ 2349 static int 2350 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2351 { 2352 struct ifnet *ifp = sc->sc_ifp; 2353 struct ieee80211com *ic = ifp->if_l2com; 2354 struct wpi_tx_ring *ring = &sc->cmdq; 2355 struct wpi_tx_desc *desc; 2356 struct wpi_tx_data *data; 2357 struct wpi_tx_cmd *cmd; 2358 struct wpi_cmd_beacon *bcn; 2359 struct ieee80211_beacon_offsets bo; 2360 struct mbuf *m0; 2361 bus_addr_t physaddr; 2362 int error; 2363 2364 desc = &ring->desc[ring->cur]; 2365 data = &ring->data[ring->cur]; 2366 2367 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2368 if (m0 == NULL) { 2369 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2370 return ENOMEM; 2371 } 2372 2373 cmd = &ring->cmd[ring->cur]; 2374 cmd->code = WPI_CMD_SET_BEACON; 2375 cmd->flags = 0; 2376 cmd->qid = ring->qid; 2377 cmd->idx = ring->cur; 2378 2379 bcn = (struct wpi_cmd_beacon *)cmd->data; 2380 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2381 bcn->id = WPI_ID_BROADCAST; 2382 bcn->ofdm_mask = 0xff; 2383 bcn->cck_mask = 0x0f; 2384 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2385 bcn->len = htole16(m0->m_pkthdr.len); 2386 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2387 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2388 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2389 2390 /* save and trim IEEE802.11 header */ 2391 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2392 m_adj(m0, sizeof (struct ieee80211_frame)); 2393 2394 /* assume beacon frame is contiguous */ 2395 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2396 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2397 if (error != 0) { 2398 device_printf(sc->sc_dev, "could not map beacon\n"); 2399 m_freem(m0); 2400 return error; 2401 } 2402 2403 data->m = m0; 2404 2405 /* first scatter/gather segment is used by the beacon command */ 2406 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2407 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2408 ring->cur * sizeof (struct wpi_tx_cmd)); 2409 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2410 desc->segs[1].addr = htole32(physaddr); 2411 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2412 2413 /* kick cmd ring */ 2414 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2415 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2416 2417 return 0; 2418 } 2419 #endif 2420 2421 static int 2422 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2423 { 2424 struct ieee80211com *ic = vap->iv_ic; 2425 struct ieee80211_node *ni; 2426 struct wpi_node_info node; 2427 int error; 2428 2429 2430 /* update adapter's configuration */ 2431 sc->config.associd = 0; 2432 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2433 ni = ieee80211_ref_node(vap->iv_bss); 2434 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2435 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2436 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2437 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2438 WPI_CONFIG_24GHZ); 2439 } 2440 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2441 sc->config.cck_mask = 0; 2442 sc->config.ofdm_mask = 0x15; 2443 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2444 sc->config.cck_mask = 0x03; 2445 sc->config.ofdm_mask = 0; 2446 } else { 2447 /* XXX assume 802.11b/g */ 2448 sc->config.cck_mask = 0x0f; 2449 sc->config.ofdm_mask = 0x15; 2450 } 2451 2452 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2453 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2454 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2455 sizeof (struct wpi_config), 1); 2456 if (error != 0) { 2457 device_printf(sc->sc_dev, "could not configure\n"); 2458 ieee80211_free_node(ni); 2459 return error; 2460 } 2461 2462 /* configuration has changed, set Tx power accordingly */ 2463 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2464 device_printf(sc->sc_dev, "could not set Tx power\n"); 2465 ieee80211_free_node(ni); 2466 return error; 2467 } 2468 2469 /* add default node */ 2470 memset(&node, 0, sizeof node); 2471 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2472 ieee80211_free_node(ni); 2473 node.id = WPI_ID_BSS; 2474 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2475 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2476 node.action = htole32(WPI_ACTION_SET_RATE); 2477 node.antenna = WPI_ANTENNA_BOTH; 2478 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2479 if (error != 0) 2480 device_printf(sc->sc_dev, "could not add BSS node\n"); 2481 2482 return (error); 2483 } 2484 2485 static int 2486 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2487 { 2488 struct ieee80211com *ic = vap->iv_ic; 2489 struct ieee80211_node *ni; 2490 int error; 2491 2492 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2493 /* link LED blinks while monitoring */ 2494 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2495 return 0; 2496 } 2497 2498 ni = ieee80211_ref_node(vap->iv_bss); 2499 wpi_enable_tsf(sc, ni); 2500 2501 /* update adapter's configuration */ 2502 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2503 /* short preamble/slot time are negotiated when associating */ 2504 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2505 WPI_CONFIG_SHSLOT); 2506 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2507 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2508 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2509 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2510 sc->config.filter |= htole32(WPI_FILTER_BSS); 2511 2512 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2513 2514 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2515 sc->config.flags)); 2516 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2517 wpi_config), 1); 2518 if (error != 0) { 2519 device_printf(sc->sc_dev, "could not update configuration\n"); 2520 ieee80211_free_node(ni); 2521 return error; 2522 } 2523 2524 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2525 ieee80211_free_node(ni); 2526 if (error != 0) { 2527 device_printf(sc->sc_dev, "could set txpower\n"); 2528 return error; 2529 } 2530 2531 /* link LED always on while associated */ 2532 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2533 2534 /* start automatic rate control timer */ 2535 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2536 2537 return (error); 2538 } 2539 2540 /* 2541 * Send a scan request to the firmware. Since this command is huge, we map it 2542 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2543 * much of this code is similar to that in wpi_cmd but because we must manually 2544 * construct the probe & channels, we duplicate what's needed here. XXX In the 2545 * future, this function should be modified to use wpi_cmd to help cleanup the 2546 * code base. 2547 */ 2548 static int 2549 wpi_scan(struct wpi_softc *sc) 2550 { 2551 struct ifnet *ifp = sc->sc_ifp; 2552 struct ieee80211com *ic = ifp->if_l2com; 2553 struct ieee80211_scan_state *ss = ic->ic_scan; 2554 struct wpi_tx_ring *ring = &sc->cmdq; 2555 struct wpi_tx_desc *desc; 2556 struct wpi_tx_data *data; 2557 struct wpi_tx_cmd *cmd; 2558 struct wpi_scan_hdr *hdr; 2559 struct wpi_scan_chan *chan; 2560 struct ieee80211_frame *wh; 2561 struct ieee80211_rateset *rs; 2562 struct ieee80211_channel *c; 2563 enum ieee80211_phymode mode; 2564 uint8_t *frm; 2565 int nrates, pktlen, error, i, nssid; 2566 bus_addr_t physaddr; 2567 2568 desc = &ring->desc[ring->cur]; 2569 data = &ring->data[ring->cur]; 2570 2571 data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 2572 if (data->m == NULL) { 2573 device_printf(sc->sc_dev, 2574 "could not allocate mbuf for scan command\n"); 2575 return ENOMEM; 2576 } 2577 2578 cmd = mtod(data->m, struct wpi_tx_cmd *); 2579 cmd->code = WPI_CMD_SCAN; 2580 cmd->flags = 0; 2581 cmd->qid = ring->qid; 2582 cmd->idx = ring->cur; 2583 2584 hdr = (struct wpi_scan_hdr *)cmd->data; 2585 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2586 2587 /* 2588 * Move to the next channel if no packets are received within 5 msecs 2589 * after sending the probe request (this helps to reduce the duration 2590 * of active scans). 2591 */ 2592 hdr->quiet = htole16(5); 2593 hdr->threshold = htole16(1); 2594 2595 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2596 /* send probe requests at 6Mbps */ 2597 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2598 2599 /* Enable crc checking */ 2600 hdr->promotion = htole16(1); 2601 } else { 2602 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2603 /* send probe requests at 1Mbps */ 2604 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2605 } 2606 hdr->tx.id = WPI_ID_BROADCAST; 2607 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2608 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2609 2610 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2611 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2612 for (i = 0; i < nssid; i++) { 2613 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2614 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2615 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2616 hdr->scan_essids[i].esslen); 2617 #ifdef WPI_DEBUG 2618 if (wpi_debug & WPI_DEBUG_SCANNING) { 2619 kprintf("Scanning Essid: "); 2620 ieee80211_print_essid(hdr->scan_essids[i].essid, 2621 hdr->scan_essids[i].esslen); 2622 kprintf("\n"); 2623 } 2624 #endif 2625 } 2626 2627 /* 2628 * Build a probe request frame. Most of the following code is a 2629 * copy & paste of what is done in net80211. 2630 */ 2631 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2632 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2633 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2634 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2635 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2636 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2637 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2638 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2639 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2640 2641 frm = (uint8_t *)(wh + 1); 2642 2643 /* add essid IE, the hardware will fill this in for us */ 2644 *frm++ = IEEE80211_ELEMID_SSID; 2645 *frm++ = 0; 2646 2647 mode = ieee80211_chan2mode(ic->ic_curchan); 2648 rs = &ic->ic_sup_rates[mode]; 2649 2650 /* add supported rates IE */ 2651 *frm++ = IEEE80211_ELEMID_RATES; 2652 nrates = rs->rs_nrates; 2653 if (nrates > IEEE80211_RATE_SIZE) 2654 nrates = IEEE80211_RATE_SIZE; 2655 *frm++ = nrates; 2656 memcpy(frm, rs->rs_rates, nrates); 2657 frm += nrates; 2658 2659 /* add supported xrates IE */ 2660 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2661 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2662 *frm++ = IEEE80211_ELEMID_XRATES; 2663 *frm++ = nrates; 2664 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2665 frm += nrates; 2666 } 2667 2668 /* setup length of probe request */ 2669 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2670 2671 /* 2672 * Construct information about the channel that we 2673 * want to scan. The firmware expects this to be directly 2674 * after the scan probe request 2675 */ 2676 c = ic->ic_curchan; 2677 chan = (struct wpi_scan_chan *)frm; 2678 chan->chan = ieee80211_chan2ieee(ic, c); 2679 chan->flags = 0; 2680 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2681 chan->flags |= WPI_CHAN_ACTIVE; 2682 if (nssid != 0) 2683 chan->flags |= WPI_CHAN_DIRECT; 2684 } 2685 chan->gain_dsp = 0x6e; /* Default level */ 2686 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2687 chan->active = htole16(10); 2688 chan->passive = htole16(ss->ss_maxdwell); 2689 chan->gain_radio = 0x3b; 2690 } else { 2691 chan->active = htole16(20); 2692 chan->passive = htole16(ss->ss_maxdwell); 2693 chan->gain_radio = 0x28; 2694 } 2695 2696 DPRINTFN(WPI_DEBUG_SCANNING, 2697 ("Scanning %u Passive: %d\n", 2698 chan->chan, 2699 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2700 2701 hdr->nchan++; 2702 chan++; 2703 2704 frm += sizeof (struct wpi_scan_chan); 2705 #if 0 2706 // XXX All Channels.... 2707 for (c = &ic->ic_channels[1]; 2708 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2709 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2710 continue; 2711 2712 chan->chan = ieee80211_chan2ieee(ic, c); 2713 chan->flags = 0; 2714 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2715 chan->flags |= WPI_CHAN_ACTIVE; 2716 if (ic->ic_des_ssid[0].len != 0) 2717 chan->flags |= WPI_CHAN_DIRECT; 2718 } 2719 chan->gain_dsp = 0x6e; /* Default level */ 2720 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2721 chan->active = htole16(10); 2722 chan->passive = htole16(110); 2723 chan->gain_radio = 0x3b; 2724 } else { 2725 chan->active = htole16(20); 2726 chan->passive = htole16(120); 2727 chan->gain_radio = 0x28; 2728 } 2729 2730 DPRINTFN(WPI_DEBUG_SCANNING, 2731 ("Scanning %u Passive: %d\n", 2732 chan->chan, 2733 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2734 2735 hdr->nchan++; 2736 chan++; 2737 2738 frm += sizeof (struct wpi_scan_chan); 2739 } 2740 #endif 2741 2742 hdr->len = htole16(frm - (uint8_t *)hdr); 2743 pktlen = frm - (uint8_t *)cmd; 2744 2745 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2746 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2747 if (error != 0) { 2748 device_printf(sc->sc_dev, "could not map scan command\n"); 2749 m_freem(data->m); 2750 data->m = NULL; 2751 return error; 2752 } 2753 2754 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2755 desc->segs[0].addr = htole32(physaddr); 2756 desc->segs[0].len = htole32(pktlen); 2757 2758 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2759 BUS_DMASYNC_PREWRITE); 2760 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2761 2762 /* kick cmd ring */ 2763 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2764 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2765 2766 sc->sc_scan_timer = 5; 2767 return 0; /* will be notified async. of failure/success */ 2768 } 2769 2770 /** 2771 * Configure the card to listen to a particular channel, this transisions the 2772 * card in to being able to receive frames from remote devices. 2773 */ 2774 static int 2775 wpi_config(struct wpi_softc *sc) 2776 { 2777 struct ifnet *ifp = sc->sc_ifp; 2778 struct ieee80211com *ic = ifp->if_l2com; 2779 struct wpi_power power; 2780 struct wpi_bluetooth bluetooth; 2781 struct wpi_node_info node; 2782 int error; 2783 2784 /* set power mode */ 2785 memset(&power, 0, sizeof power); 2786 power.flags = htole32(WPI_POWER_CAM|0x8); 2787 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2788 if (error != 0) { 2789 device_printf(sc->sc_dev, "could not set power mode\n"); 2790 return error; 2791 } 2792 2793 /* configure bluetooth coexistence */ 2794 memset(&bluetooth, 0, sizeof bluetooth); 2795 bluetooth.flags = 3; 2796 bluetooth.lead = 0xaa; 2797 bluetooth.kill = 1; 2798 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2799 0); 2800 if (error != 0) { 2801 device_printf(sc->sc_dev, 2802 "could not configure bluetooth coexistence\n"); 2803 return error; 2804 } 2805 2806 /* configure adapter */ 2807 memset(&sc->config, 0, sizeof (struct wpi_config)); 2808 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2809 /*set default channel*/ 2810 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2811 sc->config.flags = htole32(WPI_CONFIG_TSF); 2812 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2813 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2814 WPI_CONFIG_24GHZ); 2815 } 2816 sc->config.filter = 0; 2817 switch (ic->ic_opmode) { 2818 case IEEE80211_M_STA: 2819 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2820 sc->config.mode = WPI_MODE_STA; 2821 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2822 break; 2823 case IEEE80211_M_IBSS: 2824 case IEEE80211_M_AHDEMO: 2825 sc->config.mode = WPI_MODE_IBSS; 2826 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2827 WPI_FILTER_MULTICAST); 2828 break; 2829 case IEEE80211_M_HOSTAP: 2830 sc->config.mode = WPI_MODE_HOSTAP; 2831 break; 2832 case IEEE80211_M_MONITOR: 2833 sc->config.mode = WPI_MODE_MONITOR; 2834 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2835 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2836 break; 2837 default: 2838 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2839 return EINVAL; 2840 } 2841 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2842 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2843 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2844 sizeof (struct wpi_config), 0); 2845 if (error != 0) { 2846 device_printf(sc->sc_dev, "configure command failed\n"); 2847 return error; 2848 } 2849 2850 /* configuration has changed, set Tx power accordingly */ 2851 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2852 device_printf(sc->sc_dev, "could not set Tx power\n"); 2853 return error; 2854 } 2855 2856 /* add broadcast node */ 2857 memset(&node, 0, sizeof node); 2858 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2859 node.id = WPI_ID_BROADCAST; 2860 node.rate = wpi_plcp_signal(2); 2861 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2862 if (error != 0) { 2863 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2864 return error; 2865 } 2866 2867 /* Setup rate scalling */ 2868 error = wpi_mrr_setup(sc); 2869 if (error != 0) { 2870 device_printf(sc->sc_dev, "could not setup MRR\n"); 2871 return error; 2872 } 2873 2874 return 0; 2875 } 2876 2877 static void 2878 wpi_stop_master(struct wpi_softc *sc) 2879 { 2880 uint32_t tmp; 2881 int ntries; 2882 2883 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2884 2885 tmp = WPI_READ(sc, WPI_RESET); 2886 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2887 2888 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2889 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2890 return; /* already asleep */ 2891 2892 for (ntries = 0; ntries < 100; ntries++) { 2893 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2894 break; 2895 DELAY(10); 2896 } 2897 if (ntries == 100) { 2898 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2899 } 2900 } 2901 2902 static int 2903 wpi_power_up(struct wpi_softc *sc) 2904 { 2905 uint32_t tmp; 2906 int ntries; 2907 2908 wpi_mem_lock(sc); 2909 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2910 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2911 wpi_mem_unlock(sc); 2912 2913 for (ntries = 0; ntries < 5000; ntries++) { 2914 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2915 break; 2916 DELAY(10); 2917 } 2918 if (ntries == 5000) { 2919 device_printf(sc->sc_dev, 2920 "timeout waiting for NIC to power up\n"); 2921 return ETIMEDOUT; 2922 } 2923 return 0; 2924 } 2925 2926 static int 2927 wpi_reset(struct wpi_softc *sc) 2928 { 2929 uint32_t tmp; 2930 int ntries; 2931 2932 DPRINTFN(WPI_DEBUG_HW, 2933 ("Resetting the card - clearing any uploaded firmware\n")); 2934 2935 /* clear any pending interrupts */ 2936 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2937 2938 tmp = WPI_READ(sc, WPI_PLL_CTL); 2939 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2940 2941 tmp = WPI_READ(sc, WPI_CHICKEN); 2942 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2943 2944 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2945 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2946 2947 /* wait for clock stabilization */ 2948 for (ntries = 0; ntries < 25000; ntries++) { 2949 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2950 break; 2951 DELAY(10); 2952 } 2953 if (ntries == 25000) { 2954 device_printf(sc->sc_dev, 2955 "timeout waiting for clock stabilization\n"); 2956 return ETIMEDOUT; 2957 } 2958 2959 /* initialize EEPROM */ 2960 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2961 2962 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2963 device_printf(sc->sc_dev, "EEPROM not found\n"); 2964 return EIO; 2965 } 2966 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2967 2968 return 0; 2969 } 2970 2971 static void 2972 wpi_hw_config(struct wpi_softc *sc) 2973 { 2974 uint32_t rev, hw; 2975 2976 /* voodoo from the Linux "driver".. */ 2977 hw = WPI_READ(sc, WPI_HWCONFIG); 2978 2979 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2980 if ((rev & 0xc0) == 0x40) 2981 hw |= WPI_HW_ALM_MB; 2982 else if (!(rev & 0x80)) 2983 hw |= WPI_HW_ALM_MM; 2984 2985 if (sc->cap == 0x80) 2986 hw |= WPI_HW_SKU_MRC; 2987 2988 hw &= ~WPI_HW_REV_D; 2989 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2990 hw |= WPI_HW_REV_D; 2991 2992 if (sc->type > 1) 2993 hw |= WPI_HW_TYPE_B; 2994 2995 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2996 } 2997 2998 static void 2999 wpi_rfkill_resume(struct wpi_softc *sc) 3000 { 3001 struct ifnet *ifp = sc->sc_ifp; 3002 struct ieee80211com *ic = ifp->if_l2com; 3003 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3004 int ntries; 3005 3006 /* enable firmware again */ 3007 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3008 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3009 3010 /* wait for thermal sensors to calibrate */ 3011 for (ntries = 0; ntries < 1000; ntries++) { 3012 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3013 break; 3014 DELAY(10); 3015 } 3016 3017 if (ntries == 1000) { 3018 device_printf(sc->sc_dev, 3019 "timeout waiting for thermal calibration\n"); 3020 return; 3021 } 3022 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3023 3024 if (wpi_config(sc) != 0) { 3025 device_printf(sc->sc_dev, "device config failed\n"); 3026 return; 3027 } 3028 3029 ifp->if_flags &= ~IFF_OACTIVE; 3030 ifp->if_flags |= IFF_RUNNING; 3031 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3032 3033 if (vap != NULL) { 3034 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3035 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3036 ieee80211_beacon_miss(ic); 3037 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3038 } else 3039 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3040 } else { 3041 ieee80211_scan_next(vap); 3042 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3043 } 3044 } 3045 3046 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3047 } 3048 3049 static void 3050 wpi_init_locked(struct wpi_softc *sc, int force) 3051 { 3052 struct ifnet *ifp = sc->sc_ifp; 3053 uint32_t tmp; 3054 int ntries, qid; 3055 3056 wpi_stop_locked(sc); 3057 (void)wpi_reset(sc); 3058 3059 wpi_mem_lock(sc); 3060 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3061 DELAY(20); 3062 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3063 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3064 wpi_mem_unlock(sc); 3065 3066 (void)wpi_power_up(sc); 3067 wpi_hw_config(sc); 3068 3069 /* init Rx ring */ 3070 wpi_mem_lock(sc); 3071 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3072 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3073 offsetof(struct wpi_shared, next)); 3074 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3075 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3076 wpi_mem_unlock(sc); 3077 3078 /* init Tx rings */ 3079 wpi_mem_lock(sc); 3080 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3081 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3082 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3083 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3084 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3085 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3086 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3087 3088 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3089 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3090 3091 for (qid = 0; qid < 6; qid++) { 3092 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3093 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3094 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3095 } 3096 wpi_mem_unlock(sc); 3097 3098 /* clear "radio off" and "disable command" bits (reversed logic) */ 3099 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3100 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3101 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3102 3103 /* clear any pending interrupts */ 3104 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3105 3106 /* enable interrupts */ 3107 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3108 3109 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3110 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3111 3112 if ((wpi_load_firmware(sc)) != 0) { 3113 device_printf(sc->sc_dev, 3114 "A problem occurred loading the firmware to the driver\n"); 3115 return; 3116 } 3117 3118 /* At this point the firmware is up and running. If the hardware 3119 * RF switch is turned off thermal calibration will fail, though 3120 * the card is still happy to continue to accept commands, catch 3121 * this case and schedule a task to watch for it to be turned on. 3122 */ 3123 wpi_mem_lock(sc); 3124 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3125 wpi_mem_unlock(sc); 3126 3127 if (!(tmp & 0x1)) { 3128 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3129 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3130 goto out; 3131 } 3132 3133 /* wait for thermal sensors to calibrate */ 3134 for (ntries = 0; ntries < 1000; ntries++) { 3135 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3136 break; 3137 DELAY(10); 3138 } 3139 3140 if (ntries == 1000) { 3141 device_printf(sc->sc_dev, 3142 "timeout waiting for thermal sensors calibration\n"); 3143 return; 3144 } 3145 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3146 3147 if (wpi_config(sc) != 0) { 3148 device_printf(sc->sc_dev, "device config failed\n"); 3149 return; 3150 } 3151 3152 ifp->if_flags &= ~IFF_OACTIVE; 3153 ifp->if_flags |= IFF_RUNNING; 3154 out: 3155 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3156 } 3157 3158 static void 3159 wpi_init(void *arg) 3160 { 3161 struct wpi_softc *sc = arg; 3162 struct ifnet *ifp = sc->sc_ifp; 3163 struct ieee80211com *ic = ifp->if_l2com; 3164 3165 WPI_LOCK(sc); 3166 wpi_init_locked(sc, 0); 3167 WPI_UNLOCK(sc); 3168 3169 if (ifp->if_flags & IFF_RUNNING) 3170 ieee80211_start_all(ic); /* start all vaps */ 3171 } 3172 3173 static void 3174 wpi_stop_locked(struct wpi_softc *sc) 3175 { 3176 struct ifnet *ifp = sc->sc_ifp; 3177 uint32_t tmp; 3178 int ac; 3179 3180 sc->sc_tx_timer = 0; 3181 sc->sc_scan_timer = 0; 3182 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3183 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3184 callout_stop(&sc->watchdog_to); 3185 callout_stop(&sc->calib_to); 3186 3187 3188 /* disable interrupts */ 3189 WPI_WRITE(sc, WPI_MASK, 0); 3190 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3191 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3192 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3193 3194 wpi_mem_lock(sc); 3195 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3196 wpi_mem_unlock(sc); 3197 3198 /* reset all Tx rings */ 3199 for (ac = 0; ac < 4; ac++) 3200 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3201 wpi_reset_tx_ring(sc, &sc->cmdq); 3202 3203 /* reset Rx ring */ 3204 wpi_reset_rx_ring(sc, &sc->rxq); 3205 3206 wpi_mem_lock(sc); 3207 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3208 wpi_mem_unlock(sc); 3209 3210 DELAY(5); 3211 3212 wpi_stop_master(sc); 3213 3214 tmp = WPI_READ(sc, WPI_RESET); 3215 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3216 sc->flags &= ~WPI_FLAG_BUSY; 3217 } 3218 3219 static void 3220 wpi_stop(struct wpi_softc *sc) 3221 { 3222 WPI_LOCK(sc); 3223 wpi_stop_locked(sc); 3224 WPI_UNLOCK(sc); 3225 } 3226 3227 static void 3228 wpi_newassoc(struct ieee80211_node *ni, int isnew) 3229 { 3230 /* XXX move */ 3231 ieee80211_ratectl_node_init(ni); 3232 } 3233 3234 static void 3235 wpi_calib_timeout(void *arg) 3236 { 3237 struct wpi_softc *sc = arg; 3238 struct ifnet *ifp = sc->sc_ifp; 3239 struct ieee80211com *ic = ifp->if_l2com; 3240 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3241 int temp; 3242 3243 if (vap->iv_state != IEEE80211_S_RUN) 3244 return; 3245 3246 /* update sensor data */ 3247 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3248 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3249 3250 wpi_power_calibration(sc, temp); 3251 3252 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3253 } 3254 3255 /* 3256 * This function is called periodically (every 60 seconds) to adjust output 3257 * power to temperature changes. 3258 */ 3259 static void 3260 wpi_power_calibration(struct wpi_softc *sc, int temp) 3261 { 3262 struct ifnet *ifp = sc->sc_ifp; 3263 struct ieee80211com *ic = ifp->if_l2com; 3264 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3265 3266 /* sanity-check read value */ 3267 if (temp < -260 || temp > 25) { 3268 /* this can't be correct, ignore */ 3269 DPRINTFN(WPI_DEBUG_TEMP, 3270 ("out-of-range temperature reported: %d\n", temp)); 3271 return; 3272 } 3273 3274 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3275 3276 /* adjust Tx power if need be */ 3277 if (abs(temp - sc->temp) <= 6) 3278 return; 3279 3280 sc->temp = temp; 3281 3282 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3283 /* just warn, too bad for the automatic calibration... */ 3284 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3285 } 3286 } 3287 3288 /** 3289 * Read the eeprom to find out what channels are valid for the given 3290 * band and update net80211 with what we find. 3291 */ 3292 static void 3293 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3294 { 3295 struct ifnet *ifp = sc->sc_ifp; 3296 struct ieee80211com *ic = ifp->if_l2com; 3297 const struct wpi_chan_band *band = &wpi_bands[n]; 3298 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3299 struct ieee80211_channel *c; 3300 int chan, i, passive; 3301 3302 wpi_read_prom_data(sc, band->addr, channels, 3303 band->nchan * sizeof (struct wpi_eeprom_chan)); 3304 3305 for (i = 0; i < band->nchan; i++) { 3306 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3307 DPRINTFN(WPI_DEBUG_HW, 3308 ("Channel Not Valid: %d, band %d\n", 3309 band->chan[i],n)); 3310 continue; 3311 } 3312 3313 passive = 0; 3314 chan = band->chan[i]; 3315 c = &ic->ic_channels[ic->ic_nchans++]; 3316 3317 /* is active scan allowed on this channel? */ 3318 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3319 passive = IEEE80211_CHAN_PASSIVE; 3320 } 3321 3322 if (n == 0) { /* 2GHz band */ 3323 c->ic_ieee = chan; 3324 c->ic_freq = ieee80211_ieee2mhz(chan, 3325 IEEE80211_CHAN_2GHZ); 3326 c->ic_flags = IEEE80211_CHAN_B | passive; 3327 3328 c = &ic->ic_channels[ic->ic_nchans++]; 3329 c->ic_ieee = chan; 3330 c->ic_freq = ieee80211_ieee2mhz(chan, 3331 IEEE80211_CHAN_2GHZ); 3332 c->ic_flags = IEEE80211_CHAN_G | passive; 3333 3334 } else { /* 5GHz band */ 3335 /* 3336 * Some 3945ABG adapters support channels 7, 8, 11 3337 * and 12 in the 2GHz *and* 5GHz bands. 3338 * Because of limitations in our net80211(9) stack, 3339 * we can't support these channels in 5GHz band. 3340 * XXX not true; just need to map to proper frequency 3341 */ 3342 if (chan <= 14) 3343 continue; 3344 3345 c->ic_ieee = chan; 3346 c->ic_freq = ieee80211_ieee2mhz(chan, 3347 IEEE80211_CHAN_5GHZ); 3348 c->ic_flags = IEEE80211_CHAN_A | passive; 3349 } 3350 3351 /* save maximum allowed power for this channel */ 3352 sc->maxpwr[chan] = channels[i].maxpwr; 3353 3354 #if 0 3355 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3356 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3357 //ic->ic_channels[chan].ic_minpower... 3358 //ic->ic_channels[chan].ic_maxregtxpower... 3359 #endif 3360 3361 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3362 " passive=%d, offset %d\n", chan, c->ic_freq, 3363 channels[i].flags, sc->maxpwr[chan], 3364 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3365 ic->ic_nchans)); 3366 } 3367 } 3368 3369 static void 3370 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3371 { 3372 struct wpi_power_group *group = &sc->groups[n]; 3373 struct wpi_eeprom_group rgroup; 3374 int i; 3375 3376 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3377 sizeof rgroup); 3378 3379 /* save power group information */ 3380 group->chan = rgroup.chan; 3381 group->maxpwr = rgroup.maxpwr; 3382 /* temperature at which the samples were taken */ 3383 group->temp = (int16_t)le16toh(rgroup.temp); 3384 3385 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3386 group->chan, group->maxpwr, group->temp)); 3387 3388 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3389 group->samples[i].index = rgroup.samples[i].index; 3390 group->samples[i].power = rgroup.samples[i].power; 3391 3392 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3393 group->samples[i].index, group->samples[i].power)); 3394 } 3395 } 3396 3397 /* 3398 * Update Tx power to match what is defined for channel `c'. 3399 */ 3400 static int 3401 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3402 { 3403 struct ifnet *ifp = sc->sc_ifp; 3404 struct ieee80211com *ic = ifp->if_l2com; 3405 struct wpi_power_group *group; 3406 struct wpi_cmd_txpower txpower; 3407 u_int chan; 3408 int i; 3409 3410 /* get channel number */ 3411 chan = ieee80211_chan2ieee(ic, c); 3412 3413 /* find the power group to which this channel belongs */ 3414 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3415 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3416 if (chan <= group->chan) 3417 break; 3418 } else 3419 group = &sc->groups[0]; 3420 3421 memset(&txpower, 0, sizeof txpower); 3422 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3423 txpower.channel = htole16(chan); 3424 3425 /* set Tx power for all OFDM and CCK rates */ 3426 for (i = 0; i <= 11 ; i++) { 3427 /* retrieve Tx power for this channel/rate combination */ 3428 int idx = wpi_get_power_index(sc, group, c, 3429 wpi_ridx_to_rate[i]); 3430 3431 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3432 3433 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3434 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3435 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3436 } else { 3437 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3438 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3439 } 3440 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3441 chan, wpi_ridx_to_rate[i], idx)); 3442 } 3443 3444 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3445 } 3446 3447 /* 3448 * Determine Tx power index for a given channel/rate combination. 3449 * This takes into account the regulatory information from EEPROM and the 3450 * current temperature. 3451 */ 3452 static int 3453 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3454 struct ieee80211_channel *c, int rate) 3455 { 3456 /* fixed-point arithmetic division using a n-bit fractional part */ 3457 #define fdivround(a, b, n) \ 3458 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3459 3460 /* linear interpolation */ 3461 #define interpolate(x, x1, y1, x2, y2, n) \ 3462 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3463 3464 struct ifnet *ifp = sc->sc_ifp; 3465 struct ieee80211com *ic = ifp->if_l2com; 3466 struct wpi_power_sample *sample; 3467 int pwr, idx; 3468 u_int chan; 3469 3470 /* get channel number */ 3471 chan = ieee80211_chan2ieee(ic, c); 3472 3473 /* default power is group's maximum power - 3dB */ 3474 pwr = group->maxpwr / 2; 3475 3476 /* decrease power for highest OFDM rates to reduce distortion */ 3477 switch (rate) { 3478 case 72: /* 36Mb/s */ 3479 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3480 break; 3481 case 96: /* 48Mb/s */ 3482 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3483 break; 3484 case 108: /* 54Mb/s */ 3485 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3486 break; 3487 } 3488 3489 /* never exceed channel's maximum allowed Tx power */ 3490 pwr = min(pwr, sc->maxpwr[chan]); 3491 3492 /* retrieve power index into gain tables from samples */ 3493 for (sample = group->samples; sample < &group->samples[3]; sample++) 3494 if (pwr > sample[1].power) 3495 break; 3496 /* fixed-point linear interpolation using a 19-bit fractional part */ 3497 idx = interpolate(pwr, sample[0].power, sample[0].index, 3498 sample[1].power, sample[1].index, 19); 3499 3500 /* 3501 * Adjust power index based on current temperature 3502 * - if colder than factory-calibrated: decreate output power 3503 * - if warmer than factory-calibrated: increase output power 3504 */ 3505 idx -= (sc->temp - group->temp) * 11 / 100; 3506 3507 /* decrease power for CCK rates (-5dB) */ 3508 if (!WPI_RATE_IS_OFDM(rate)) 3509 idx += 10; 3510 3511 /* keep power index in a valid range */ 3512 if (idx < 0) 3513 return 0; 3514 if (idx > WPI_MAX_PWR_INDEX) 3515 return WPI_MAX_PWR_INDEX; 3516 return idx; 3517 3518 #undef interpolate 3519 #undef fdivround 3520 } 3521 3522 /** 3523 * Called by net80211 framework to indicate that a scan 3524 * is starting. This function doesn't actually do the scan, 3525 * wpi_scan_curchan starts things off. This function is more 3526 * of an early warning from the framework we should get ready 3527 * for the scan. 3528 */ 3529 static void 3530 wpi_scan_start(struct ieee80211com *ic) 3531 { 3532 struct ifnet *ifp = ic->ic_ifp; 3533 struct wpi_softc *sc = ifp->if_softc; 3534 3535 WPI_LOCK(sc); 3536 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3537 WPI_UNLOCK(sc); 3538 } 3539 3540 /** 3541 * Called by the net80211 framework, indicates that the 3542 * scan has ended. If there is a scan in progress on the card 3543 * then it should be aborted. 3544 */ 3545 static void 3546 wpi_scan_end(struct ieee80211com *ic) 3547 { 3548 /* XXX ignore */ 3549 } 3550 3551 /** 3552 * Called by the net80211 framework to indicate to the driver 3553 * that the channel should be changed 3554 */ 3555 static void 3556 wpi_set_channel(struct ieee80211com *ic) 3557 { 3558 struct ifnet *ifp = ic->ic_ifp; 3559 struct wpi_softc *sc = ifp->if_softc; 3560 int error; 3561 3562 /* 3563 * Only need to set the channel in Monitor mode. AP scanning and auth 3564 * are already taken care of by their respective firmware commands. 3565 */ 3566 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3567 error = wpi_config(sc); 3568 if (error != 0) 3569 device_printf(sc->sc_dev, 3570 "error %d settting channel\n", error); 3571 } 3572 } 3573 3574 /** 3575 * Called by net80211 to indicate that we need to scan the current 3576 * channel. The channel is previously be set via the wpi_set_channel 3577 * callback. 3578 */ 3579 static void 3580 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3581 { 3582 struct ieee80211vap *vap = ss->ss_vap; 3583 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3584 struct wpi_softc *sc = ifp->if_softc; 3585 3586 WPI_LOCK(sc); 3587 if (wpi_scan(sc)) 3588 ieee80211_cancel_scan(vap); 3589 WPI_UNLOCK(sc); 3590 } 3591 3592 /** 3593 * Called by the net80211 framework to indicate 3594 * the minimum dwell time has been met, terminate the scan. 3595 * We don't actually terminate the scan as the firmware will notify 3596 * us when it's finished and we have no way to interrupt it. 3597 */ 3598 static void 3599 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3600 { 3601 /* NB: don't try to abort scan; wait for firmware to finish */ 3602 } 3603 3604 static void 3605 wpi_hwreset(void *arg, int pending) 3606 { 3607 struct wpi_softc *sc = arg; 3608 3609 WPI_LOCK(sc); 3610 wpi_init_locked(sc, 0); 3611 WPI_UNLOCK(sc); 3612 } 3613 3614 static void 3615 wpi_rfreset(void *arg, int pending) 3616 { 3617 struct wpi_softc *sc = arg; 3618 3619 WPI_LOCK(sc); 3620 wpi_rfkill_resume(sc); 3621 WPI_UNLOCK(sc); 3622 } 3623 3624 /* 3625 * Allocate DMA-safe memory for firmware transfer. 3626 */ 3627 static int 3628 wpi_alloc_fwmem(struct wpi_softc *sc) 3629 { 3630 /* allocate enough contiguous space to store text and data */ 3631 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3632 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3633 BUS_DMA_NOWAIT); 3634 } 3635 3636 static void 3637 wpi_free_fwmem(struct wpi_softc *sc) 3638 { 3639 wpi_dma_contig_free(&sc->fw_dma); 3640 } 3641 3642 /** 3643 * Called every second, wpi_watchdog used by the watch dog timer 3644 * to check that the card is still alive 3645 */ 3646 static void 3647 wpi_watchdog(void *arg) 3648 { 3649 struct wpi_softc *sc = arg; 3650 struct ifnet *ifp = sc->sc_ifp; 3651 struct ieee80211com *ic = ifp->if_l2com; 3652 uint32_t tmp; 3653 3654 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3655 3656 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3657 /* No need to lock firmware memory */ 3658 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3659 3660 if ((tmp & 0x1) == 0) { 3661 /* Radio kill switch is still off */ 3662 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3663 return; 3664 } 3665 3666 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3667 ieee80211_runtask(ic, &sc->sc_radiotask); 3668 return; 3669 } 3670 3671 if (sc->sc_tx_timer > 0) { 3672 if (--sc->sc_tx_timer == 0) { 3673 device_printf(sc->sc_dev,"device timeout\n"); 3674 ifp->if_oerrors++; 3675 ieee80211_runtask(ic, &sc->sc_restarttask); 3676 } 3677 } 3678 if (sc->sc_scan_timer > 0) { 3679 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3680 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3681 device_printf(sc->sc_dev,"scan timeout\n"); 3682 ieee80211_cancel_scan(vap); 3683 ieee80211_runtask(ic, &sc->sc_restarttask); 3684 } 3685 } 3686 3687 if (ifp->if_flags & IFF_RUNNING) 3688 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3689 } 3690 3691 #ifdef WPI_DEBUG 3692 static const char *wpi_cmd_str(int cmd) 3693 { 3694 switch (cmd) { 3695 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3696 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3697 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3698 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3699 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3700 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3701 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3702 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3703 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3704 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3705 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3706 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3707 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3708 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3709 3710 default: 3711 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3712 return "UNKNOWN CMD"; /* Make the compiler happy */ 3713 } 3714 } 3715 #endif 3716 3717 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3718 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3719 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3720 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1); 3721 /* 3722 MODULE_DEPEND(wpi, wpifw_fw_fw, 1, 1, 1); 3723 MODULE_DEPEND(wpi, ath_rate, 1, 1, 1); 3724 */ 3725