xref: /dflybsd-src/sys/dev/netif/wpi/if_wpi.c (revision 6da074a26fc4a4120c3b43ebdcff22f6e8b9af4a)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $
19  */
20 
21 #define VERSION "20071127"
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_intr) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60 
61 #include <sys/param.h>
62 #include <sys/sysctl.h>
63 #include <sys/sockio.h>
64 #include <sys/mbuf.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/systm.h>
68 #include <sys/malloc.h>
69 #include <sys/queue.h>
70 #include <sys/taskqueue.h>
71 #include <sys/module.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 #include <sys/linker.h>
75 #include <sys/firmware.h>
76 
77 #include <sys/bus.h>
78 #include <sys/resource.h>
79 #include <sys/rman.h>
80 
81 #include <bus/pci/pcireg.h>
82 #include <bus/pci/pcivar.h>
83 
84 #include <net/bpf.h>
85 #include <net/if.h>
86 #include <net/if_arp.h>
87 #include <net/ifq_var.h>
88 #include <net/ethernet.h>
89 #include <net/if_dl.h>
90 #include <net/if_media.h>
91 #include <net/if_types.h>
92 
93 #include <netproto/802_11/ieee80211_var.h>
94 #include <netproto/802_11/ieee80211_radiotap.h>
95 #include <netproto/802_11/ieee80211_regdomain.h>
96 #include <netproto/802_11/ieee80211_ratectl.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/if_ether.h>
103 
104 /* XXX: move elsewhere */
105 #define abs(x) (((x) < 0) ? -(x) : (x))
106 
107 #include "if_wpireg.h"
108 #include "if_wpivar.h"
109 
110 #define WPI_DEBUG
111 
112 #ifdef WPI_DEBUG
113 #define DPRINTF(x)	do { if (wpi_debug != 0) kprintf x; } while (0)
114 #define DPRINTFN(n, x)	do { if (wpi_debug & n) kprintf x; } while (0)
115 #define	WPI_DEBUG_SET	(wpi_debug != 0)
116 
117 enum {
118 	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
119 	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
120 	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
121 	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
122 	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
123 	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
124 	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
125 	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
126 	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
127 	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
128 	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
129 	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
130 	WPI_DEBUG_ANY		= 0xffffffff
131 };
132 
133 static int wpi_debug = 1;
134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
135 TUNABLE_INT("debug.wpi", &wpi_debug);
136 
137 #else
138 #define DPRINTF(x)
139 #define DPRINTFN(n, x)
140 #define WPI_DEBUG_SET	0
141 #endif
142 
143 struct wpi_ident {
144 	uint16_t	vendor;
145 	uint16_t	device;
146 	uint16_t	subdevice;
147 	const char	*name;
148 };
149 
150 static const struct wpi_ident wpi_ident_table[] = {
151 	/* The below entries support ABG regardless of the subid */
152 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
153 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
154 	/* The below entries only support BG */
155 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
156 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
157 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
158 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
159 	{ 0, 0, 0, NULL }
160 };
161 
162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
163 		    const char name[IFNAMSIZ], int unit, int opmode,
164 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
165 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
166 static void	wpi_vap_delete(struct ieee80211vap *);
167 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
168 		    void **, bus_size_t, bus_size_t, int);
169 static void	wpi_dma_contig_free(struct wpi_dma_info *);
170 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
171 static int	wpi_alloc_shared(struct wpi_softc *);
172 static void	wpi_free_shared(struct wpi_softc *);
173 static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
174 static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
175 static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
176 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
177 		    int, int);
178 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
179 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181 			    const uint8_t mac[IEEE80211_ADDR_LEN]);
182 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
183 static void	wpi_mem_lock(struct wpi_softc *);
184 static void	wpi_mem_unlock(struct wpi_softc *);
185 static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
186 static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
187 static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
188 		    const uint32_t *, int);
189 static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
190 static int	wpi_alloc_fwmem(struct wpi_softc *);
191 static void	wpi_free_fwmem(struct wpi_softc *);
192 static int	wpi_load_firmware(struct wpi_softc *);
193 static void	wpi_unload_firmware(struct wpi_softc *);
194 static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
195 static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
196 		    struct wpi_rx_data *);
197 static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
198 static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
199 static void	wpi_notif_intr(struct wpi_softc *);
200 static void	wpi_intr(void *);
201 static uint8_t	wpi_plcp_signal(int);
202 static void	wpi_watchdog(void *);
203 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
204 		    struct ieee80211_node *, int);
205 static void	wpi_start(struct ifnet *);
206 static void	wpi_start_locked(struct ifnet *);
207 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
208 		    const struct ieee80211_bpf_params *);
209 static void	wpi_scan_start(struct ieee80211com *);
210 static void	wpi_scan_end(struct ieee80211com *);
211 static void	wpi_set_channel(struct ieee80211com *);
212 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
213 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
214 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
215 static void	wpi_read_eeprom(struct wpi_softc *,
216 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
217 static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
218 static void	wpi_read_eeprom_group(struct wpi_softc *, int);
219 static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
220 static int	wpi_wme_update(struct ieee80211com *);
221 static int	wpi_mrr_setup(struct wpi_softc *);
222 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
223 static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
224 #if 0
225 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
226 #endif
227 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
228 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
229 static int	wpi_scan(struct wpi_softc *);
230 static int	wpi_config(struct wpi_softc *);
231 static void	wpi_stop_master(struct wpi_softc *);
232 static int	wpi_power_up(struct wpi_softc *);
233 static int	wpi_reset(struct wpi_softc *);
234 static void	wpi_hwreset(void *, int);
235 static void	wpi_rfreset(void *, int);
236 static void	wpi_hw_config(struct wpi_softc *);
237 static void	wpi_init(void *);
238 static void	wpi_init_locked(struct wpi_softc *, int);
239 static void	wpi_stop(struct wpi_softc *);
240 static void	wpi_stop_locked(struct wpi_softc *);
241 
242 static void	wpi_newassoc(struct ieee80211_node *, int);
243 static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
244 		    int);
245 static void	wpi_calib_timeout(void *);
246 static void	wpi_power_calibration(struct wpi_softc *, int);
247 static int	wpi_get_power_index(struct wpi_softc *,
248 		    struct wpi_power_group *, struct ieee80211_channel *, int);
249 #ifdef WPI_DEBUG
250 static const char *wpi_cmd_str(int);
251 #endif
252 static int wpi_probe(device_t);
253 static int wpi_attach(device_t);
254 static int wpi_detach(device_t);
255 static int wpi_shutdown(device_t);
256 static int wpi_suspend(device_t);
257 static int wpi_resume(device_t);
258 
259 
260 static device_method_t wpi_methods[] = {
261 	/* Device interface */
262 	DEVMETHOD(device_probe,		wpi_probe),
263 	DEVMETHOD(device_attach,	wpi_attach),
264 	DEVMETHOD(device_detach,	wpi_detach),
265 	DEVMETHOD(device_shutdown,	wpi_shutdown),
266 	DEVMETHOD(device_suspend,	wpi_suspend),
267 	DEVMETHOD(device_resume,	wpi_resume),
268 
269 	{ 0, 0 }
270 };
271 
272 static driver_t wpi_driver = {
273 	"wpi",
274 	wpi_methods,
275 	sizeof (struct wpi_softc)
276 };
277 
278 static devclass_t wpi_devclass;
279 
280 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0);
281 
282 static const uint8_t wpi_ridx_to_plcp[] = {
283 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
284 	/* R1-R4 (ral/ural is R4-R1) */
285 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
286 	/* CCK: device-dependent */
287 	10, 20, 55, 110
288 };
289 static const uint8_t wpi_ridx_to_rate[] = {
290 	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
291 	2, 4, 11, 22 /*CCK */
292 };
293 
294 
295 static int
296 wpi_probe(device_t dev)
297 {
298 	const struct wpi_ident *ident;
299 
300 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
301 		if (pci_get_vendor(dev) == ident->vendor &&
302 		    pci_get_device(dev) == ident->device) {
303 			device_set_desc(dev, ident->name);
304 			return 0;
305 		}
306 	}
307 	return ENXIO;
308 }
309 
310 /**
311  * Load the firmare image from disk to the allocated dma buffer.
312  * we also maintain the reference to the firmware pointer as there
313  * is times where we may need to reload the firmware but we are not
314  * in a context that can access the filesystem (ie taskq cause by restart)
315  *
316  * @return 0 on success, an errno on failure
317  */
318 static int
319 wpi_load_firmware(struct wpi_softc *sc)
320 {
321 	const struct firmware *fp;
322 	struct wpi_dma_info *dma = &sc->fw_dma;
323 	const struct wpi_firmware_hdr *hdr;
324 #if 0
325 	struct ifnet *ifp;
326 #endif
327 	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
328 	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
329 	int error;
330 
331 #if 0
332 	ifp = sc->sc_ifp;
333 #endif
334 	DPRINTFN(WPI_DEBUG_FIRMWARE,
335 	    ("Attempting Loading Firmware from wpi_fw module\n"));
336 
337 	WPI_UNLOCK(sc);
338 
339 #if 0
340 	lwkt_serialize_exit(ifp->if_serializer);
341 #endif
342 
343 #if 0
344 	if ((img = firmware_image_load("", dma->tag)) == NULL) {
345 		error = ENOENT;
346 		lwkt_serialize_enter(ifp->if_serializer);
347 		goto fail;
348 	}
349 #endif
350 
351 
352 	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
353 		device_printf(sc->sc_dev,
354 		    "could not load firmware image 'wpifw_fw'\n");
355 		error = ENOENT;
356 		WPI_LOCK(sc);
357 #if 0
358 		lwkt_serialize_enter(ifp->if_serializer);
359 #endif
360 		goto fail;
361 	}
362 
363 	fp = sc->fw_fp;
364 
365 #if 0
366 	lwkt_serialize_enter(ifp->if_serializer);
367 #endif
368 	WPI_LOCK(sc);
369 
370 
371 	/* Validate the firmware is minimum a particular version */
372 	if (fp->version < WPI_FW_MINVERSION) {
373 	    device_printf(sc->sc_dev,
374 			   "firmware version is too old. Need %d, got %d\n",
375 			   WPI_FW_MINVERSION,
376 			   fp->version);
377 	    error = ENXIO;
378 	    goto fail;
379 	}
380 #if 0
381 #endif
382 
383 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
384 		device_printf(sc->sc_dev,
385 		    "firmware file too short: %zu bytes\n", fp->datasize);
386 		error = ENXIO;
387 		goto fail;
388 	}
389 
390 	hdr = (const struct wpi_firmware_hdr *)fp->data;
391 
392 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
393 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
394 
395 	rtextsz = le32toh(hdr->rtextsz);
396 	rdatasz = le32toh(hdr->rdatasz);
397 	itextsz = le32toh(hdr->itextsz);
398 	idatasz = le32toh(hdr->idatasz);
399 	btextsz = le32toh(hdr->btextsz);
400 
401 	/* check that all firmware segments are present */
402 	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
403 		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
404 		device_printf(sc->sc_dev,
405 		    "firmware file too short: %zu bytes\n", fp->datasize);
406 		error = ENXIO; /* XXX appropriate error code? */
407 		goto fail;
408 	}
409 
410 	/* get pointers to firmware segments */
411 	rtext = (const uint8_t *)(hdr + 1);
412 	rdata = rtext + rtextsz;
413 	itext = rdata + rdatasz;
414 	idata = itext + itextsz;
415 	btext = idata + idatasz;
416 
417 	DPRINTFN(WPI_DEBUG_FIRMWARE,
418 	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
419 	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
420 	     (le32toh(hdr->version) & 0xff000000) >> 24,
421 	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
422 	     (le32toh(hdr->version) & 0x0000ffff),
423 	     rtextsz, rdatasz,
424 	     itextsz, idatasz, btextsz));
425 
426 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
427 	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
428 	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
429 	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
430 	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
431 
432 	/* sanity checks */
433 	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
434 	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
435 	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
436 	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
437 	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
438 	    (btextsz & 3) != 0) {
439 		device_printf(sc->sc_dev, "firmware invalid\n");
440 		error = EINVAL;
441 		goto fail;
442 	}
443 
444 	/* copy initialization images into pre-allocated DMA-safe memory */
445 	memcpy(dma->vaddr, idata, idatasz);
446 	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
447 
448 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
449 
450 	/* tell adapter where to find initialization images */
451 	wpi_mem_lock(sc);
452 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
453 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
454 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
455 	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
456 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
457 	wpi_mem_unlock(sc);
458 
459 	/* load firmware boot code */
460 	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
461 	    device_printf(sc->sc_dev, "Failed to load microcode\n");
462 	    goto fail;
463 	}
464 
465 	/* now press "execute" */
466 	WPI_WRITE(sc, WPI_RESET, 0);
467 
468 	/* wait at most one second for the first alive notification */
469 	if ((error = lksleep(sc, &sc->sc_lock, 0, "wpiinit", hz)) != 0) {
470 		device_printf(sc->sc_dev,
471 		    "timeout waiting for adapter to initialize\n");
472 		goto fail;
473 	}
474 
475 	/* copy runtime images into pre-allocated DMA-sage memory */
476 	memcpy(dma->vaddr, rdata, rdatasz);
477 	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
478 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
479 
480 	/* tell adapter where to find runtime images */
481 	wpi_mem_lock(sc);
482 	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
483 	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
484 	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
485 	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
486 	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
487 	wpi_mem_unlock(sc);
488 
489 	/* wait at most one second for the first alive notification */
490 	if ((error = lksleep(sc, &sc->sc_lock, 0, "wpiinit", hz)) != 0) {
491 		device_printf(sc->sc_dev,
492 		    "timeout waiting for adapter to initialize2\n");
493 		goto fail;
494 	}
495 
496 	DPRINTFN(WPI_DEBUG_FIRMWARE,
497 	    ("Firmware loaded to driver successfully\n"));
498 /*
499 	sc->sc_fw_image = img;
500 */
501 	return error;
502 fail:
503 	wpi_unload_firmware(sc);
504 	return error;
505 }
506 
507 /**
508  * Free the referenced firmware image
509  */
510 static void
511 wpi_unload_firmware(struct wpi_softc *sc)
512 {
513 	struct ifnet *ifp;
514 	ifp = sc->sc_ifp;
515 
516 	if (sc->fw_fp) {
517 		WPI_UNLOCK(sc);
518 #if 0
519 		lwkt_serialize_exit(ifp->if_serializer);
520 #endif
521 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
522 #if 0
523 		firmware_image_unload(sc->sc_fw_image);
524 #endif
525 #if 0
526 		lwkt_serialize_enter(ifp->if_serializer);
527 #endif
528 		WPI_LOCK(sc);
529 		sc->fw_fp = NULL;
530 	}
531 }
532 
533 static int
534 wpi_attach(device_t dev)
535 {
536 	struct wpi_softc *sc = device_get_softc(dev);
537 	struct ifnet *ifp;
538 	struct ieee80211com *ic;
539 	int ac, error, supportsa = 1;
540 	uint32_t tmp;
541 	const struct wpi_ident *ident;
542 	uint8_t macaddr[IEEE80211_ADDR_LEN];
543 
544 	sc->sc_dev = dev;
545 
546 	if (bootverbose || WPI_DEBUG_SET)
547 	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
548 
549 	/*
550 	 * Some card's only support 802.11b/g not a, check to see if
551 	 * this is one such card. A 0x0 in the subdevice table indicates
552 	 * the entire subdevice range is to be ignored.
553 	 */
554 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
555 		if (ident->subdevice &&
556 		    pci_get_subdevice(dev) == ident->subdevice) {
557 		    supportsa = 0;
558 		    break;
559 		}
560 	}
561 
562 	/* Create the tasks that can be queued */
563 	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
564 	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
565 
566 	WPI_LOCK_INIT(sc);
567 
568 	callout_init(&sc->calib_to);
569 	callout_init(&sc->watchdog_to);
570 
571 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
572 		device_printf(dev, "chip is in D%d power mode "
573 		    "-- setting to D0\n", pci_get_powerstate(dev));
574 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
575 	}
576 
577 	/* disable the retry timeout register */
578 	pci_write_config(dev, 0x41, 0, 1);
579 
580 	/* enable bus-mastering */
581 	pci_enable_busmaster(dev);
582 
583 	sc->mem_rid = PCIR_BAR(0);
584 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
585 	    RF_ACTIVE);
586 	if (sc->mem == NULL) {
587 		device_printf(dev, "could not allocate memory resource\n");
588 		error = ENOMEM;
589 		goto fail;
590 	}
591 
592 	sc->sc_st = rman_get_bustag(sc->mem);
593 	sc->sc_sh = rman_get_bushandle(sc->mem);
594 
595 	sc->irq_rid = 0;
596 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
597 	    RF_ACTIVE | RF_SHAREABLE);
598 	if (sc->irq == NULL) {
599 		device_printf(dev, "could not allocate interrupt resource\n");
600 		error = ENOMEM;
601 		goto fail;
602 	}
603 
604 	/*
605 	 * Allocate DMA memory for firmware transfers.
606 	 */
607 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
608 		kprintf(": could not allocate firmware memory\n");
609 		error = ENOMEM;
610 		goto fail;
611 	}
612 
613 	/*
614 	 * Put adapter into a known state.
615 	 */
616 	if ((error = wpi_reset(sc)) != 0) {
617 		device_printf(dev, "could not reset adapter\n");
618 		goto fail;
619 	}
620 
621 	wpi_mem_lock(sc);
622 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
623 	if (bootverbose || WPI_DEBUG_SET)
624 	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
625 
626 	wpi_mem_unlock(sc);
627 
628 	/* Allocate shared page */
629 	if ((error = wpi_alloc_shared(sc)) != 0) {
630 		device_printf(dev, "could not allocate shared page\n");
631 		goto fail;
632 	}
633 
634 	/* tx data queues  - 4 for QoS purposes */
635 	for (ac = 0; ac < WME_NUM_AC; ac++) {
636 		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
637 		if (error != 0) {
638 		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
639 		    goto fail;
640 		}
641 	}
642 
643 	/* command queue to talk to the card's firmware */
644 	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
645 	if (error != 0) {
646 		device_printf(dev, "could not allocate command ring\n");
647 		goto fail;
648 	}
649 
650 	/* receive data queue */
651 	error = wpi_alloc_rx_ring(sc, &sc->rxq);
652 	if (error != 0) {
653 		device_printf(dev, "could not allocate Rx ring\n");
654 		goto fail;
655 	}
656 
657 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
658 	if (ifp == NULL) {
659 		device_printf(dev, "can not if_alloc()\n");
660 		error = ENOMEM;
661 		goto fail;
662 	}
663 	ic = ifp->if_l2com;
664 
665 	ic->ic_ifp = ifp;
666 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
667 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
668 
669 	/* set device capabilities */
670 	ic->ic_caps =
671 		  IEEE80211_C_STA		/* station mode supported */
672 		| IEEE80211_C_MONITOR		/* monitor mode supported */
673 		| IEEE80211_C_TXPMGT		/* tx power management */
674 		| IEEE80211_C_SHSLOT		/* short slot time supported */
675 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
676 		| IEEE80211_C_WPA		/* 802.11i */
677 /* XXX looks like WME is partly supported? */
678 #if 0
679 		| IEEE80211_C_IBSS		/* IBSS mode support */
680 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
681 		| IEEE80211_C_WME		/* 802.11e */
682 		| IEEE80211_C_HOSTAP		/* Host access point mode */
683 #endif
684 		;
685 
686 	/*
687 	 * Read in the eeprom and also setup the channels for
688 	 * net80211. We don't set the rates as net80211 does this for us
689 	 */
690 	wpi_read_eeprom(sc, macaddr);
691 
692 	if (bootverbose || WPI_DEBUG_SET) {
693 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
694 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
695 			  sc->type > 1 ? 'B': '?');
696 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
697 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
698 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
699 			  supportsa ? "does" : "does not");
700 
701 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
702 	       what sc->rev really represents - benjsc 20070615 */
703 	}
704 
705 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
706 	ifp->if_softc = sc;
707 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
708 	ifp->if_init = wpi_init;
709 	ifp->if_ioctl = wpi_ioctl;
710 	ifp->if_start = wpi_start;
711 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
712 	ifq_set_ready(&ifp->if_snd);
713 
714 	ieee80211_ifattach(ic, macaddr);
715 	/* override default methods */
716 	ic->ic_node_alloc = wpi_node_alloc;
717 	ic->ic_newassoc = wpi_newassoc;
718 	ic->ic_raw_xmit = wpi_raw_xmit;
719 	ic->ic_wme.wme_update = wpi_wme_update;
720 	ic->ic_scan_start = wpi_scan_start;
721 	ic->ic_scan_end = wpi_scan_end;
722 	ic->ic_set_channel = wpi_set_channel;
723 	ic->ic_scan_curchan = wpi_scan_curchan;
724 	ic->ic_scan_mindwell = wpi_scan_mindwell;
725 
726 	ic->ic_vap_create = wpi_vap_create;
727 	ic->ic_vap_delete = wpi_vap_delete;
728 
729 	ieee80211_radiotap_attach(ic,
730 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
731 		WPI_TX_RADIOTAP_PRESENT,
732 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
733 		WPI_RX_RADIOTAP_PRESENT);
734 
735 	/*
736 	 * Hook our interrupt after all initialization is complete.
737 	 */
738 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
739 	    wpi_intr, sc, &sc->sc_ih, ifp->if_serializer);
740 	if (error != 0) {
741 		device_printf(dev, "could not set up interrupt\n");
742 		goto fail;
743 	}
744 
745 	if (bootverbose)
746 		ieee80211_announce(ic);
747 #ifdef XXX_DEBUG
748 	ieee80211_announce_channels(ic);
749 #endif
750 	return 0;
751 
752 fail:	wpi_detach(dev);
753 	return ENXIO;
754 }
755 
756 static int
757 wpi_detach(device_t dev)
758 {
759 	struct wpi_softc *sc = device_get_softc(dev);
760 	struct ifnet *ifp = sc->sc_ifp;
761 	struct ieee80211com *ic;
762 	int ac;
763 
764 	if (ifp != NULL) {
765 		ic = ifp->if_l2com;
766 
767 		ieee80211_draintask(ic, &sc->sc_restarttask);
768 		ieee80211_draintask(ic, &sc->sc_radiotask);
769 		wpi_stop(sc);
770 		callout_stop(&sc->watchdog_to);
771 		callout_stop(&sc->calib_to);
772 		ieee80211_ifdetach(ic);
773 	}
774 
775 	WPI_LOCK(sc);
776 	if (sc->txq[0].data_dmat) {
777 		for (ac = 0; ac < WME_NUM_AC; ac++)
778 			wpi_free_tx_ring(sc, &sc->txq[ac]);
779 
780 		wpi_free_tx_ring(sc, &sc->cmdq);
781 		wpi_free_rx_ring(sc, &sc->rxq);
782 		wpi_free_shared(sc);
783 	}
784 
785 	if (sc->fw_fp != NULL) {
786 		wpi_unload_firmware(sc);
787 	}
788 
789 	if (sc->fw_dma.tag)
790 		wpi_free_fwmem(sc);
791 	WPI_UNLOCK(sc);
792 
793 	if (sc->irq != NULL) {
794 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
795 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
796 	}
797 
798 	if (sc->mem != NULL)
799 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
800 
801 	if (ifp != NULL)
802 		if_free(ifp);
803 
804 	WPI_LOCK_DESTROY(sc);
805 
806 	return 0;
807 }
808 
809 static struct ieee80211vap *
810 wpi_vap_create(struct ieee80211com *ic,
811 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
812 	const uint8_t bssid[IEEE80211_ADDR_LEN],
813 	const uint8_t mac[IEEE80211_ADDR_LEN])
814 {
815 	struct wpi_vap *wvp;
816 	struct ieee80211vap *vap;
817 
818 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
819 		return NULL;
820 	wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap),
821 	    M_80211_VAP, M_INTWAIT | M_ZERO);
822 	if (wvp == NULL)
823 		return NULL;
824 	vap = &wvp->vap;
825 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
826 	/* override with driver methods */
827 	wvp->newstate = vap->iv_newstate;
828 	vap->iv_newstate = wpi_newstate;
829 
830 	ieee80211_ratectl_init(vap);
831 
832 	/* complete setup */
833 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
834 	ic->ic_opmode = opmode;
835 	return vap;
836 }
837 
838 static void
839 wpi_vap_delete(struct ieee80211vap *vap)
840 {
841 	struct wpi_vap *wvp = WPI_VAP(vap);
842 
843 	ieee80211_ratectl_deinit(vap);
844 	ieee80211_vap_detach(vap);
845 	kfree(wvp, M_80211_VAP);
846 }
847 
848 static void
849 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
850 {
851 	if (error != 0)
852 		return;
853 
854 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
855 
856 	*(bus_addr_t *)arg = segs[0].ds_addr;
857 }
858 
859 /*
860  * Allocates a contiguous block of dma memory of the requested size and
861  * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
862  * allocations greater than 4096 may fail. Hence if the requested alignment is
863  * greater we allocate 'alignment' size extra memory and shift the vaddr and
864  * paddr after the dma load. This bypasses the problem at the cost of a little
865  * more memory.
866  */
867 static int
868 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
869     void **kvap, bus_size_t size, bus_size_t alignment, int flags)
870 {
871 	int error;
872 	bus_size_t align;
873 	bus_size_t reqsize;
874 
875 	DPRINTFN(WPI_DEBUG_DMA,
876 	    ("Size: %zd - alignment %zd\n", size, alignment));
877 
878 	dma->size = size;
879 	dma->tag = NULL;
880 
881 	if (alignment > 4096) {
882 		align = PAGE_SIZE;
883 		reqsize = size + alignment;
884 	} else {
885 		align = alignment;
886 		reqsize = size;
887 	}
888 	error = bus_dma_tag_create(dma->tag, align,
889 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
890 	    NULL, NULL, reqsize,
891 	    1, reqsize, flags,
892 	    &dma->tag);
893 	if (error != 0) {
894 		device_printf(sc->sc_dev,
895 		    "could not create shared page DMA tag\n");
896 		goto fail;
897 	}
898 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
899 	    flags | BUS_DMA_ZERO, &dma->map);
900 	if (error != 0) {
901 		device_printf(sc->sc_dev,
902 		    "could not allocate shared page DMA memory\n");
903 		goto fail;
904 	}
905 
906 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
907 	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
908 
909 	/* Save the original pointers so we can free all the memory */
910 	dma->paddr = dma->paddr_start;
911 	dma->vaddr = dma->vaddr_start;
912 
913 	/*
914 	 * Check the alignment and increment by 4096 until we get the
915 	 * requested alignment. Fail if can't obtain the alignment
916 	 * we requested.
917 	 */
918 	if ((dma->paddr & (alignment -1 )) != 0) {
919 		int i;
920 
921 		for (i = 0; i < alignment / 4096; i++) {
922 			if ((dma->paddr & (alignment - 1 )) == 0)
923 				break;
924 			dma->paddr += 4096;
925 			dma->vaddr += 4096;
926 		}
927 		if (i == alignment / 4096) {
928 			device_printf(sc->sc_dev,
929 			    "alignment requirement was not satisfied\n");
930 			goto fail;
931 		}
932 	}
933 
934 	if (error != 0) {
935 		device_printf(sc->sc_dev,
936 		    "could not load shared page DMA map\n");
937 		goto fail;
938 	}
939 
940 	if (kvap != NULL)
941 		*kvap = dma->vaddr;
942 
943 	return 0;
944 
945 fail:
946 	wpi_dma_contig_free(dma);
947 	return error;
948 }
949 
950 static void
951 wpi_dma_contig_free(struct wpi_dma_info *dma)
952 {
953 	if (dma->tag) {
954 		if (dma->map != NULL) {
955 			if (dma->paddr_start != 0) {
956 				bus_dmamap_sync(dma->tag, dma->map,
957 				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
958 				bus_dmamap_unload(dma->tag, dma->map);
959 			}
960 			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
961 		}
962 		bus_dma_tag_destroy(dma->tag);
963 	}
964 }
965 
966 /*
967  * Allocate a shared page between host and NIC.
968  */
969 static int
970 wpi_alloc_shared(struct wpi_softc *sc)
971 {
972 	int error;
973 
974 	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
975 	    (void **)&sc->shared, sizeof (struct wpi_shared),
976 	    PAGE_SIZE,
977 	    BUS_DMA_NOWAIT);
978 
979 	if (error != 0) {
980 		device_printf(sc->sc_dev,
981 		    "could not allocate shared area DMA memory\n");
982 	}
983 
984 	return error;
985 }
986 
987 static void
988 wpi_free_shared(struct wpi_softc *sc)
989 {
990 	wpi_dma_contig_free(&sc->shared_dma);
991 }
992 
993 static int
994 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
995 {
996 
997 	int i, error;
998 
999 	ring->cur = 0;
1000 
1001 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1002 	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
1003 	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1004 
1005 	if (error != 0) {
1006 		device_printf(sc->sc_dev,
1007 		    "%s: could not allocate rx ring DMA memory, error %d\n",
1008 		    __func__, error);
1009 		goto fail;
1010 	}
1011 
1012         error = bus_dma_tag_create(ring->data_dmat, 1, 0,
1013 	    BUS_SPACE_MAXADDR_32BIT,
1014             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
1015             MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
1016         if (error != 0) {
1017                 device_printf(sc->sc_dev,
1018 		    "%s: bus_dma_tag_create_failed, error %d\n",
1019 		    __func__, error);
1020                 goto fail;
1021         }
1022 
1023 	/*
1024 	 * Setup Rx buffers.
1025 	 */
1026 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1027 		struct wpi_rx_data *data = &ring->data[i];
1028 		struct mbuf *m;
1029 		bus_addr_t paddr;
1030 
1031 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1032 		if (error != 0) {
1033 			device_printf(sc->sc_dev,
1034 			    "%s: bus_dmamap_create failed, error %d\n",
1035 			    __func__, error);
1036 			goto fail;
1037 		}
1038 		m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1039 		if (m == NULL) {
1040 			device_printf(sc->sc_dev,
1041 			   "%s: could not allocate rx mbuf\n", __func__);
1042 			error = ENOMEM;
1043 			goto fail;
1044 		}
1045 		/* map page */
1046 		error = bus_dmamap_load(ring->data_dmat, data->map,
1047 		    mtod(m, caddr_t), MCLBYTES,
1048 		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1049 		if (error != 0 && error != EFBIG) {
1050 			device_printf(sc->sc_dev,
1051 			    "%s: bus_dmamap_load failed, error %d\n",
1052 			    __func__, error);
1053 			m_freem(m);
1054 			error = ENOMEM;	/* XXX unique code */
1055 			goto fail;
1056 		}
1057 		bus_dmamap_sync(ring->data_dmat, data->map,
1058 		    BUS_DMASYNC_PREWRITE);
1059 
1060 		data->m = m;
1061 		ring->desc[i] = htole32(paddr);
1062 	}
1063 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1064 	    BUS_DMASYNC_PREWRITE);
1065 	return 0;
1066 fail:
1067 	wpi_free_rx_ring(sc, ring);
1068 	return error;
1069 }
1070 
1071 static void
1072 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1073 {
1074 	int ntries;
1075 
1076 	wpi_mem_lock(sc);
1077 
1078 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1079 
1080 	for (ntries = 0; ntries < 100; ntries++) {
1081 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1082 			break;
1083 		DELAY(10);
1084 	}
1085 
1086 	wpi_mem_unlock(sc);
1087 
1088 #ifdef WPI_DEBUG
1089 	if (ntries == 100 && wpi_debug > 0)
1090 		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1091 #endif
1092 
1093 	ring->cur = 0;
1094 }
1095 
1096 static void
1097 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1098 {
1099 	int i;
1100 
1101 	wpi_dma_contig_free(&ring->desc_dma);
1102 
1103 	for (i = 0; i < WPI_RX_RING_COUNT; i++)
1104 		if (ring->data[i].m != NULL)
1105 			m_freem(ring->data[i].m);
1106 }
1107 
1108 static int
1109 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1110 	int qid)
1111 {
1112 	struct wpi_tx_data *data;
1113 	int i, error;
1114 
1115 	ring->qid = qid;
1116 	ring->count = count;
1117 	ring->queued = 0;
1118 	ring->cur = 0;
1119 	ring->data = NULL;
1120 
1121 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1122 		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1123 		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1124 
1125 	if (error != 0) {
1126 	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1127 	    goto fail;
1128 	}
1129 
1130 	/* update shared page with ring's base address */
1131 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1132 
1133 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1134 		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1135 		BUS_DMA_NOWAIT);
1136 
1137 	if (error != 0) {
1138 		device_printf(sc->sc_dev,
1139 		    "could not allocate tx command DMA memory\n");
1140 		goto fail;
1141 	}
1142 
1143 	ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1144 	    M_INTWAIT | M_ZERO);
1145 	if (ring->data == NULL) {
1146 		device_printf(sc->sc_dev,
1147 		    "could not allocate tx data slots\n");
1148 		goto fail;
1149 	}
1150 
1151 	error = bus_dma_tag_create(ring->data_dmat, 1, 0,
1152 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1153 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT,
1154 	    &ring->data_dmat);
1155 	if (error != 0) {
1156 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1157 		goto fail;
1158 	}
1159 
1160 	for (i = 0; i < count; i++) {
1161 		data = &ring->data[i];
1162 
1163 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1164 		if (error != 0) {
1165 			device_printf(sc->sc_dev,
1166 			    "could not create tx buf DMA map\n");
1167 			goto fail;
1168 		}
1169 		bus_dmamap_sync(ring->data_dmat, data->map,
1170 		    BUS_DMASYNC_PREWRITE);
1171 	}
1172 
1173 	return 0;
1174 
1175 fail:
1176 	wpi_free_tx_ring(sc, ring);
1177 	return error;
1178 }
1179 
1180 static void
1181 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1182 {
1183 	struct wpi_tx_data *data;
1184 	int i, ntries;
1185 
1186 	wpi_mem_lock(sc);
1187 
1188 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1189 	for (ntries = 0; ntries < 100; ntries++) {
1190 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1191 			break;
1192 		DELAY(10);
1193 	}
1194 #ifdef WPI_DEBUG
1195 	if (ntries == 100 && wpi_debug > 0)
1196 		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1197 		    ring->qid);
1198 #endif
1199 	wpi_mem_unlock(sc);
1200 
1201 	for (i = 0; i < ring->count; i++) {
1202 		data = &ring->data[i];
1203 
1204 		if (data->m != NULL) {
1205 			bus_dmamap_unload(ring->data_dmat, data->map);
1206 			m_freem(data->m);
1207 			data->m = NULL;
1208 		}
1209 	}
1210 
1211 	ring->queued = 0;
1212 	ring->cur = 0;
1213 }
1214 
1215 static void
1216 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1217 {
1218 	struct wpi_tx_data *data;
1219 	int i;
1220 
1221 	wpi_dma_contig_free(&ring->desc_dma);
1222 	wpi_dma_contig_free(&ring->cmd_dma);
1223 
1224 	if (ring->data != NULL) {
1225 		for (i = 0; i < ring->count; i++) {
1226 			data = &ring->data[i];
1227 
1228 			if (data->m != NULL) {
1229 				bus_dmamap_sync(ring->data_dmat, data->map,
1230 				    BUS_DMASYNC_POSTWRITE);
1231 				bus_dmamap_unload(ring->data_dmat, data->map);
1232 				m_freem(data->m);
1233 				data->m = NULL;
1234 			}
1235 		}
1236 		kfree(ring->data, M_DEVBUF);
1237 	}
1238 
1239 	if (ring->data_dmat != NULL)
1240 		bus_dma_tag_destroy(ring->data_dmat);
1241 }
1242 
1243 static int
1244 wpi_shutdown(device_t dev)
1245 {
1246 	struct wpi_softc *sc = device_get_softc(dev);
1247 
1248 	WPI_LOCK(sc);
1249 	wpi_stop_locked(sc);
1250 	wpi_unload_firmware(sc);
1251 	WPI_UNLOCK(sc);
1252 
1253 	return 0;
1254 }
1255 
1256 static int
1257 wpi_suspend(device_t dev)
1258 {
1259 	struct wpi_softc *sc = device_get_softc(dev);
1260 
1261 	wpi_stop(sc);
1262 	return 0;
1263 }
1264 
1265 static int
1266 wpi_resume(device_t dev)
1267 {
1268 	struct wpi_softc *sc = device_get_softc(dev);
1269 	struct ifnet *ifp = sc->sc_ifp;
1270 
1271 	pci_write_config(dev, 0x41, 0, 1);
1272 
1273 	if (ifp->if_flags & IFF_UP) {
1274 		wpi_init(ifp->if_softc);
1275 		if (ifp->if_flags & IFF_RUNNING)
1276 			wpi_start(ifp);
1277 	}
1278 	return 0;
1279 }
1280 
1281 /* ARGSUSED */
1282 static struct ieee80211_node *
1283 wpi_node_alloc(struct ieee80211vap *vap __unused,
1284 	const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
1285 {
1286 	struct wpi_node *wn;
1287 
1288 	wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO);
1289 
1290 	return &wn->ni;
1291 }
1292 
1293 /**
1294  * Called by net80211 when ever there is a change to 80211 state machine
1295  */
1296 static int
1297 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1298 {
1299 	struct wpi_vap *wvp = WPI_VAP(vap);
1300 	struct ieee80211com *ic = vap->iv_ic;
1301 	struct ifnet *ifp = ic->ic_ifp;
1302 	struct wpi_softc *sc = ifp->if_softc;
1303 	int error;
1304 
1305 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1306 		ieee80211_state_name[vap->iv_state],
1307 		ieee80211_state_name[nstate], sc->flags));
1308 
1309 	IEEE80211_UNLOCK(ic);
1310 	WPI_LOCK(sc);
1311 	if (nstate == IEEE80211_S_AUTH) {
1312 		/* The node must be registered in the firmware before auth */
1313 		error = wpi_auth(sc, vap);
1314 		if (error != 0) {
1315 			device_printf(sc->sc_dev,
1316 			    "%s: could not move to auth state, error %d\n",
1317 			    __func__, error);
1318 		}
1319 	}
1320 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1321 		error = wpi_run(sc, vap);
1322 		if (error != 0) {
1323 			device_printf(sc->sc_dev,
1324 			    "%s: could not move to run state, error %d\n",
1325 			    __func__, error);
1326 		}
1327 	}
1328 	if (nstate == IEEE80211_S_RUN) {
1329 		/* RUN -> RUN transition; just restart the timers */
1330 		wpi_calib_timeout(sc);
1331 		/* XXX split out rate control timer */
1332 	}
1333 	WPI_UNLOCK(sc);
1334 	IEEE80211_LOCK(ic);
1335 	return wvp->newstate(vap, nstate, arg);
1336 }
1337 
1338 /*
1339  * Grab exclusive access to NIC memory.
1340  */
1341 static void
1342 wpi_mem_lock(struct wpi_softc *sc)
1343 {
1344 	int ntries;
1345 	uint32_t tmp;
1346 
1347 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1348 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1349 
1350 	/* spin until we actually get the lock */
1351 	for (ntries = 0; ntries < 100; ntries++) {
1352 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1353 			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1354 			break;
1355 		DELAY(10);
1356 	}
1357 	if (ntries == 100)
1358 		device_printf(sc->sc_dev, "could not lock memory\n");
1359 }
1360 
1361 /*
1362  * Release lock on NIC memory.
1363  */
1364 static void
1365 wpi_mem_unlock(struct wpi_softc *sc)
1366 {
1367 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1368 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1369 }
1370 
1371 static uint32_t
1372 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1373 {
1374 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1375 	return WPI_READ(sc, WPI_READ_MEM_DATA);
1376 }
1377 
1378 static void
1379 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1380 {
1381 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1382 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1383 }
1384 
1385 static void
1386 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1387     const uint32_t *data, int wlen)
1388 {
1389 	for (; wlen > 0; wlen--, data++, addr+=4)
1390 		wpi_mem_write(sc, addr, *data);
1391 }
1392 
1393 /*
1394  * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1395  * using the traditional bit-bang method. Data is read up until len bytes have
1396  * been obtained.
1397  */
1398 static uint16_t
1399 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1400 {
1401 	int ntries;
1402 	uint32_t val;
1403 	uint8_t *out = data;
1404 
1405 	wpi_mem_lock(sc);
1406 
1407 	for (; len > 0; len -= 2, addr++) {
1408 		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1409 
1410 		for (ntries = 0; ntries < 10; ntries++) {
1411 			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1412 				break;
1413 			DELAY(5);
1414 		}
1415 
1416 		if (ntries == 10) {
1417 			device_printf(sc->sc_dev, "could not read EEPROM\n");
1418 			return ETIMEDOUT;
1419 		}
1420 
1421 		*out++= val >> 16;
1422 		if (len > 1)
1423 			*out ++= val >> 24;
1424 	}
1425 
1426 	wpi_mem_unlock(sc);
1427 
1428 	return 0;
1429 }
1430 
1431 /*
1432  * The firmware text and data segments are transferred to the NIC using DMA.
1433  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1434  * where to find it.  Once the NIC has copied the firmware into its internal
1435  * memory, we can free our local copy in the driver.
1436  */
1437 static int
1438 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1439 {
1440 	int error, ntries;
1441 
1442 	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1443 
1444 	size /= sizeof(uint32_t);
1445 
1446 	wpi_mem_lock(sc);
1447 
1448 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1449 	    (const uint32_t *)fw, size);
1450 
1451 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1452 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1453 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1454 
1455 	/* run microcode */
1456 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1457 
1458 	/* wait while the adapter is busy copying the firmware */
1459 	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1460 		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1461 		DPRINTFN(WPI_DEBUG_HW,
1462 		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1463 		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1464 		if (status & WPI_TX_IDLE(6)) {
1465 			DPRINTFN(WPI_DEBUG_HW,
1466 			    ("Status Match! - ntries = %d\n", ntries));
1467 			break;
1468 		}
1469 		DELAY(10);
1470 	}
1471 	if (ntries == 1000) {
1472 		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1473 		error = ETIMEDOUT;
1474 	}
1475 
1476 	/* start the microcode executing */
1477 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1478 
1479 	wpi_mem_unlock(sc);
1480 
1481 	return (error);
1482 }
1483 
1484 static void
1485 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1486 	struct wpi_rx_data *data)
1487 {
1488 	struct ifnet *ifp = sc->sc_ifp;
1489 	struct ieee80211com *ic = ifp->if_l2com;
1490 	struct wpi_rx_ring *ring = &sc->rxq;
1491 	struct wpi_rx_stat *stat;
1492 	struct wpi_rx_head *head;
1493 	struct wpi_rx_tail *tail;
1494 	struct ieee80211_node *ni;
1495 	struct mbuf *m, *mnew;
1496 	bus_addr_t paddr;
1497 	int error;
1498 
1499 	stat = (struct wpi_rx_stat *)(desc + 1);
1500 
1501 	if (stat->len > WPI_STAT_MAXLEN) {
1502 		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1503 		ifp->if_ierrors++;
1504 		return;
1505 	}
1506 
1507 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1508 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1509 
1510 	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1511 	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1512 	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1513 	    (uintmax_t)le64toh(tail->tstamp)));
1514 
1515 	/* discard Rx frames with bad CRC early */
1516 	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1517 		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1518 		    le32toh(tail->flags)));
1519 		ifp->if_ierrors++;
1520 		return;
1521 	}
1522 	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1523 		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1524 		    le16toh(head->len)));
1525 		ifp->if_ierrors++;
1526 		return;
1527 	}
1528 
1529 	/* XXX don't need mbuf, just dma buffer */
1530 	mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1531 	if (mnew == NULL) {
1532 		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1533 		    __func__));
1534 		ifp->if_ierrors++;
1535 		return;
1536 	}
1537 	error = bus_dmamap_load(ring->data_dmat, data->map,
1538 	    mtod(mnew, caddr_t), MCLBYTES,
1539 	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1540 	if (error != 0 && error != EFBIG) {
1541 		device_printf(sc->sc_dev,
1542 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1543 		m_freem(mnew);
1544 		ifp->if_ierrors++;
1545 		return;
1546 	}
1547 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1548 
1549 	/* finalize mbuf and swap in new one */
1550 	m = data->m;
1551 	m->m_pkthdr.rcvif = ifp;
1552 	m->m_data = (caddr_t)(head + 1);
1553 	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1554 
1555 	data->m = mnew;
1556 	/* update Rx descriptor */
1557 	ring->desc[ring->cur] = htole32(paddr);
1558 
1559 	if (ieee80211_radiotap_active(ic)) {
1560 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1561 
1562 		tap->wr_flags = 0;
1563 		tap->wr_chan_freq =
1564 			htole16(ic->ic_channels[head->chan].ic_freq);
1565 		tap->wr_chan_flags =
1566 			htole16(ic->ic_channels[head->chan].ic_flags);
1567 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1568 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1569 		tap->wr_tsft = tail->tstamp;
1570 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1571 		switch (head->rate) {
1572 		/* CCK rates */
1573 		case  10: tap->wr_rate =   2; break;
1574 		case  20: tap->wr_rate =   4; break;
1575 		case  55: tap->wr_rate =  11; break;
1576 		case 110: tap->wr_rate =  22; break;
1577 		/* OFDM rates */
1578 		case 0xd: tap->wr_rate =  12; break;
1579 		case 0xf: tap->wr_rate =  18; break;
1580 		case 0x5: tap->wr_rate =  24; break;
1581 		case 0x7: tap->wr_rate =  36; break;
1582 		case 0x9: tap->wr_rate =  48; break;
1583 		case 0xb: tap->wr_rate =  72; break;
1584 		case 0x1: tap->wr_rate =  96; break;
1585 		case 0x3: tap->wr_rate = 108; break;
1586 		/* unknown rate: should not happen */
1587 		default:  tap->wr_rate =   0;
1588 		}
1589 		if (le16toh(head->flags) & 0x4)
1590 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1591 	}
1592 
1593 	WPI_UNLOCK(sc);
1594 
1595 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1596 	if (ni != NULL) {
1597 		(void) ieee80211_input(ni, m, stat->rssi, 0);
1598 		ieee80211_free_node(ni);
1599 	} else
1600 		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1601 
1602 	WPI_LOCK(sc);
1603 }
1604 
1605 static void
1606 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1607 {
1608 	struct ifnet *ifp = sc->sc_ifp;
1609 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1610 	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1611 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1612 	struct ieee80211_node *ni = txdata->ni;
1613 	struct ieee80211vap *vap = ni->ni_vap;
1614 	int retrycnt = 0;
1615 
1616 	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1617 	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1618 	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1619 	    le32toh(stat->status)));
1620 
1621 	/*
1622 	 * Update rate control statistics for the node.
1623 	 * XXX we should not count mgmt frames since they're always sent at
1624 	 * the lowest available bit-rate.
1625 	 * XXX frames w/o ACK shouldn't be used either
1626 	 */
1627 	if (stat->ntries > 0) {
1628 		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1629 		retrycnt = 1;
1630 	}
1631 	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1632 		&retrycnt, NULL);
1633 
1634 	/* XXX oerrors should only count errors !maxtries */
1635 	if ((le32toh(stat->status) & 0xff) != 1)
1636 		ifp->if_oerrors++;
1637 	else
1638 		ifp->if_opackets++;
1639 
1640 	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1641 	bus_dmamap_unload(ring->data_dmat, txdata->map);
1642 	/* XXX handle M_TXCB? */
1643 	m_freem(txdata->m);
1644 	txdata->m = NULL;
1645 	ieee80211_free_node(txdata->ni);
1646 	txdata->ni = NULL;
1647 
1648 	ring->queued--;
1649 
1650 	sc->sc_tx_timer = 0;
1651 	ifp->if_flags &= ~IFF_OACTIVE;
1652 	wpi_start_locked(ifp);
1653 }
1654 
1655 static void
1656 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1657 {
1658 	struct wpi_tx_ring *ring = &sc->cmdq;
1659 	struct wpi_tx_data *data;
1660 
1661 	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1662 				 "type=%s len=%d\n", desc->qid, desc->idx,
1663 				 desc->flags, wpi_cmd_str(desc->type),
1664 				 le32toh(desc->len)));
1665 
1666 	if ((desc->qid & 7) != 4)
1667 		return;	/* not a command ack */
1668 
1669 	data = &ring->data[desc->idx];
1670 
1671 	/* if the command was mapped in a mbuf, free it */
1672 	if (data->m != NULL) {
1673 		bus_dmamap_unload(ring->data_dmat, data->map);
1674 		m_freem(data->m);
1675 		data->m = NULL;
1676 	}
1677 
1678 	sc->flags &= ~WPI_FLAG_BUSY;
1679 	wakeup(&ring->cmd[desc->idx]);
1680 }
1681 
1682 static void
1683 wpi_notif_intr(struct wpi_softc *sc)
1684 {
1685 	struct ifnet *ifp = sc->sc_ifp;
1686 	struct ieee80211com *ic = ifp->if_l2com;
1687 	struct wpi_rx_desc *desc;
1688 	struct wpi_rx_data *data;
1689 	uint32_t hw;
1690 
1691 	hw = le32toh(sc->shared->next);
1692 	while (sc->rxq.cur != hw) {
1693 		data = &sc->rxq.data[sc->rxq.cur];
1694 		desc = (void *)data->m->m_ext.ext_buf;
1695 
1696 		DPRINTFN(WPI_DEBUG_NOTIFY,
1697 			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1698 			  desc->qid,
1699 			  desc->idx,
1700 			  desc->flags,
1701 			  desc->type,
1702 			  le32toh(desc->len)));
1703 
1704 		if (!(desc->qid & 0x80))	/* reply to a command */
1705 			wpi_cmd_intr(sc, desc);
1706 
1707 		switch (desc->type) {
1708 		case WPI_RX_DONE:
1709 			/* a 802.11 frame was received */
1710 			wpi_rx_intr(sc, desc, data);
1711 			break;
1712 
1713 		case WPI_TX_DONE:
1714 			/* a 802.11 frame has been transmitted */
1715 			wpi_tx_intr(sc, desc);
1716 			break;
1717 
1718 		case WPI_UC_READY:
1719 		{
1720 			struct wpi_ucode_info *uc =
1721 				(struct wpi_ucode_info *)(desc + 1);
1722 
1723 			/* the microcontroller is ready */
1724 			DPRINTF(("microcode alive notification version %x "
1725 				"alive %x\n", le32toh(uc->version),
1726 				le32toh(uc->valid)));
1727 
1728 			if (le32toh(uc->valid) != 1) {
1729 				device_printf(sc->sc_dev,
1730 				    "microcontroller initialization failed\n");
1731 				wpi_stop_locked(sc);
1732 			}
1733 			break;
1734 		}
1735 		case WPI_STATE_CHANGED:
1736 		{
1737 			uint32_t *status = (uint32_t *)(desc + 1);
1738 
1739 			/* enabled/disabled notification */
1740 			DPRINTF(("state changed to %x\n", le32toh(*status)));
1741 
1742 			if (le32toh(*status) & 1) {
1743 				device_printf(sc->sc_dev,
1744 				    "Radio transmitter is switched off\n");
1745 				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1746 				ifp->if_flags &= ~IFF_RUNNING;
1747 				/* Disable firmware commands */
1748 				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1749 			}
1750 			break;
1751 		}
1752 		case WPI_START_SCAN:
1753 		{
1754 #ifdef WPI_DEBUG
1755 			struct wpi_start_scan *scan =
1756 				(struct wpi_start_scan *)(desc + 1);
1757 #endif
1758 
1759 			DPRINTFN(WPI_DEBUG_SCANNING,
1760 				 ("scanning channel %d status %x\n",
1761 			    scan->chan, le32toh(scan->status)));
1762 			break;
1763 		}
1764 		case WPI_STOP_SCAN:
1765 		{
1766 #ifdef WPI_DEBUG
1767 			struct wpi_stop_scan *scan =
1768 				(struct wpi_stop_scan *)(desc + 1);
1769 #endif
1770 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1771 
1772 			DPRINTFN(WPI_DEBUG_SCANNING,
1773 			    ("scan finished nchan=%d status=%d chan=%d\n",
1774 			     scan->nchan, scan->status, scan->chan));
1775 
1776 			sc->sc_scan_timer = 0;
1777 			ieee80211_scan_next(vap);
1778 			break;
1779 		}
1780 		case WPI_MISSED_BEACON:
1781 		{
1782 			struct wpi_missed_beacon *beacon =
1783 				(struct wpi_missed_beacon *)(desc + 1);
1784 			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1785 
1786 			if (le32toh(beacon->consecutive) >=
1787 			    vap->iv_bmissthreshold) {
1788 				DPRINTF(("Beacon miss: %u >= %u\n",
1789 					 le32toh(beacon->consecutive),
1790 					 vap->iv_bmissthreshold));
1791 				ieee80211_beacon_miss(ic);
1792 			}
1793 			break;
1794 		}
1795 		}
1796 
1797 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1798 	}
1799 
1800 	/* tell the firmware what we have processed */
1801 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1802 	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1803 }
1804 
1805 static void
1806 wpi_intr(void *arg)
1807 {
1808 	struct wpi_softc *sc = arg;
1809 	uint32_t r;
1810 
1811 	WPI_LOCK(sc);
1812 
1813 	r = WPI_READ(sc, WPI_INTR);
1814 	if (r == 0 || r == 0xffffffff) {
1815 		WPI_UNLOCK(sc);
1816 		return;
1817 	}
1818 
1819 	/* disable interrupts */
1820 	WPI_WRITE(sc, WPI_MASK, 0);
1821 	/* ack interrupts */
1822 	WPI_WRITE(sc, WPI_INTR, r);
1823 
1824 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1825 		struct ifnet *ifp = sc->sc_ifp;
1826 		struct ieee80211com *ic = ifp->if_l2com;
1827 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1828 
1829 		device_printf(sc->sc_dev, "fatal firmware error\n");
1830 		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1831 				"(Hardware Error)"));
1832 		if (vap != NULL)
1833 			ieee80211_cancel_scan(vap);
1834 		ieee80211_runtask(ic, &sc->sc_restarttask);
1835 		sc->flags &= ~WPI_FLAG_BUSY;
1836 		WPI_UNLOCK(sc);
1837 		return;
1838 	}
1839 
1840 	if (r & WPI_RX_INTR)
1841 		wpi_notif_intr(sc);
1842 
1843 	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1844 		wakeup(sc);
1845 
1846 	/* re-enable interrupts */
1847 	if (sc->sc_ifp->if_flags & IFF_UP)
1848 		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1849 
1850 	WPI_UNLOCK(sc);
1851 }
1852 
1853 static uint8_t
1854 wpi_plcp_signal(int rate)
1855 {
1856 	switch (rate) {
1857 	/* CCK rates (returned values are device-dependent) */
1858 	case 2:		return 10;
1859 	case 4:		return 20;
1860 	case 11:	return 55;
1861 	case 22:	return 110;
1862 
1863 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1864 	/* R1-R4 (ral/ural is R4-R1) */
1865 	case 12:	return 0xd;
1866 	case 18:	return 0xf;
1867 	case 24:	return 0x5;
1868 	case 36:	return 0x7;
1869 	case 48:	return 0x9;
1870 	case 72:	return 0xb;
1871 	case 96:	return 0x1;
1872 	case 108:	return 0x3;
1873 
1874 	/* unsupported rates (should not get there) */
1875 	default:	return 0;
1876 	}
1877 }
1878 
1879 /* quickly determine if a given rate is CCK or OFDM */
1880 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1881 
1882 /*
1883  * Construct the data packet for a transmit buffer and acutally put
1884  * the buffer onto the transmit ring, kicking the card to process the
1885  * the buffer.
1886  */
1887 static int
1888 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1889 	int ac)
1890 {
1891 	struct ieee80211vap *vap = ni->ni_vap;
1892 	struct ifnet *ifp = sc->sc_ifp;
1893 	struct ieee80211com *ic = ifp->if_l2com;
1894 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1895 	struct wpi_tx_ring *ring = &sc->txq[ac];
1896 	struct wpi_tx_desc *desc;
1897 	struct wpi_tx_data *data;
1898 	struct wpi_tx_cmd *cmd;
1899 	struct wpi_cmd_data *tx;
1900 	struct ieee80211_frame *wh;
1901 	const struct ieee80211_txparam *tp;
1902 	struct ieee80211_key *k;
1903 	struct mbuf *mnew;
1904 	int i, error, nsegs, rate, hdrlen, ismcast;
1905 	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1906 
1907 	desc = &ring->desc[ring->cur];
1908 	data = &ring->data[ring->cur];
1909 
1910 	wh = mtod(m0, struct ieee80211_frame *);
1911 
1912 	hdrlen = ieee80211_hdrsize(wh);
1913 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1914 
1915 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1916 		k = ieee80211_crypto_encap(ni, m0);
1917 		if (k == NULL) {
1918 			m_freem(m0);
1919 			return ENOBUFS;
1920 		}
1921 		/* packet header may have moved, reset our local pointer */
1922 		wh = mtod(m0, struct ieee80211_frame *);
1923 	}
1924 
1925 	cmd = &ring->cmd[ring->cur];
1926 	cmd->code = WPI_CMD_TX_DATA;
1927 	cmd->flags = 0;
1928 	cmd->qid = ring->qid;
1929 	cmd->idx = ring->cur;
1930 
1931 	tx = (struct wpi_cmd_data *)cmd->data;
1932 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1933 	tx->timeout = htole16(0);
1934 	tx->ofdm_mask = 0xff;
1935 	tx->cck_mask = 0x0f;
1936 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1937 	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1938 	tx->len = htole16(m0->m_pkthdr.len);
1939 
1940 	if (!ismcast) {
1941 		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1942 		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1943 			tx->flags |= htole32(WPI_TX_NEED_ACK);
1944 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1945 			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1946 			tx->rts_ntries = 7;
1947 		}
1948 	}
1949 	/* pick a rate */
1950 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1951 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1952 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1953 		/* tell h/w to set timestamp in probe responses */
1954 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1955 			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1956 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1957 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1958 			tx->timeout = htole16(3);
1959 		else
1960 			tx->timeout = htole16(2);
1961 		rate = tp->mgmtrate;
1962 	} else if (ismcast) {
1963 		rate = tp->mcastrate;
1964 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1965 		rate = tp->ucastrate;
1966 	} else {
1967 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1968 		rate = ni->ni_txrate;
1969 	}
1970 	tx->rate = wpi_plcp_signal(rate);
1971 
1972 	/* be very persistant at sending frames out */
1973 #if 0
1974 	tx->data_ntries = tp->maxretry;
1975 #else
1976 	tx->data_ntries = 30;		/* XXX way too high */
1977 #endif
1978 
1979 	if (ieee80211_radiotap_active_vap(vap)) {
1980 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1981 		tap->wt_flags = 0;
1982 		tap->wt_rate = rate;
1983 		tap->wt_hwqueue = ac;
1984 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1985 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1986 
1987 		ieee80211_radiotap_tx(vap, m0);
1988 	}
1989 
1990 	/* save and trim IEEE802.11 header */
1991 	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1992 	m_adj(m0, hdrlen);
1993 
1994 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs,
1995 	    1, &nsegs, BUS_DMA_NOWAIT);
1996 	if (error != 0 && error != EFBIG) {
1997 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1998 		    error);
1999 		m_freem(m0);
2000 		return error;
2001 	}
2002 	if (error != 0) {
2003 		/* XXX use m_collapse */
2004 		mnew = m_defrag(m0, MB_DONTWAIT);
2005 		if (mnew == NULL) {
2006 			device_printf(sc->sc_dev,
2007 			    "could not defragment mbuf\n");
2008 			m_freem(m0);
2009 			return ENOBUFS;
2010 		}
2011 		m0 = mnew;
2012 
2013 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
2014 		    m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
2015 		if (error != 0) {
2016 			device_printf(sc->sc_dev,
2017 			    "could not map mbuf (error %d)\n", error);
2018 			m_freem(m0);
2019 			return error;
2020 		}
2021 	}
2022 
2023 	data->m = m0;
2024 	data->ni = ni;
2025 
2026 	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2027 	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
2028 
2029 	/* first scatter/gather segment is used by the tx data command */
2030 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2031 	    (1 + nsegs) << 24);
2032 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2033 	    ring->cur * sizeof (struct wpi_tx_cmd));
2034 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2035 	for (i = 1; i <= nsegs; i++) {
2036 		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2037 		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2038 	}
2039 
2040 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2041 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2042 	    BUS_DMASYNC_PREWRITE);
2043 
2044 	ring->queued++;
2045 
2046 	/* kick ring */
2047 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2048 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2049 
2050 	return 0;
2051 }
2052 
2053 /**
2054  * Process data waiting to be sent on the IFNET output queue
2055  */
2056 static void
2057 wpi_start(struct ifnet *ifp)
2058 {
2059 	struct wpi_softc *sc = ifp->if_softc;
2060 
2061 	WPI_LOCK(sc);
2062 	wpi_start_locked(ifp);
2063 	WPI_UNLOCK(sc);
2064 }
2065 
2066 static void
2067 wpi_start_locked(struct ifnet *ifp)
2068 {
2069 	struct wpi_softc *sc = ifp->if_softc;
2070 	struct ieee80211_node *ni;
2071 	struct mbuf *m;
2072 	int ac;
2073 
2074 	WPI_LOCK_ASSERT(sc);
2075 
2076 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2077 		ifq_purge(&ifp->if_snd);
2078 		return;
2079 	}
2080 
2081 	for (;;) {
2082 		IF_DEQUEUE(&ifp->if_snd, m);
2083 		if (m == NULL)
2084 			break;
2085 		ac = M_WME_GETAC(m);
2086 		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2087 			/* there is no place left in this ring */
2088 			ifq_prepend(&ifp->if_snd, m);
2089 			ifp->if_flags |= IFF_OACTIVE;
2090 			break;
2091 		}
2092 		ni = ieee80211_ref_node((struct ieee80211_node *)m->m_pkthdr.rcvif);
2093 		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2094 			ieee80211_free_node(ni);
2095 			ifp->if_oerrors++;
2096 			break;
2097 		}
2098 		sc->sc_tx_timer = 5;
2099 	}
2100 }
2101 
2102 static int
2103 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2104 	const struct ieee80211_bpf_params *params)
2105 {
2106 	struct ieee80211com *ic = ni->ni_ic;
2107 	struct ifnet *ifp = ic->ic_ifp;
2108 	struct wpi_softc *sc = ifp->if_softc;
2109 
2110 	/* prevent management frames from being sent if we're not ready */
2111 	if (!(ifp->if_flags & IFF_RUNNING)) {
2112 		m_freem(m);
2113 		ieee80211_free_node(ni);
2114 		return ENETDOWN;
2115 	}
2116 	WPI_LOCK(sc);
2117 
2118 	/* management frames go into ring 0 */
2119 	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2120 		ifp->if_flags |= IFF_OACTIVE;
2121 		m_freem(m);
2122 		WPI_UNLOCK(sc);
2123 		ieee80211_free_node(ni);
2124 		return ENOBUFS;		/* XXX */
2125 	}
2126 
2127 	ifp->if_opackets++;
2128 	if (wpi_tx_data(sc, m, ni, 0) != 0)
2129 		goto bad;
2130 	sc->sc_tx_timer = 5;
2131 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2132 
2133 	WPI_UNLOCK(sc);
2134 	return 0;
2135 bad:
2136 	ifp->if_oerrors++;
2137 	WPI_UNLOCK(sc);
2138 	ieee80211_free_node(ni);
2139 	return EIO;		/* XXX */
2140 }
2141 
2142 static int
2143 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred)
2144 {
2145 	struct wpi_softc *sc = ifp->if_softc;
2146 	struct ieee80211com *ic = ifp->if_l2com;
2147 	struct ifreq *ifr = (struct ifreq *) data;
2148 	int error = 0, startall = 0;
2149 
2150 	switch (cmd) {
2151 	case SIOCSIFFLAGS:
2152 		WPI_LOCK(sc);
2153 		if ((ifp->if_flags & IFF_UP)) {
2154 			if (!(ifp->if_flags & IFF_RUNNING)) {
2155 				wpi_init_locked(sc, 0);
2156 				startall = 1;
2157 			}
2158 		} else if ((ifp->if_flags & IFF_RUNNING) ||
2159 			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2160 			wpi_stop_locked(sc);
2161 		WPI_UNLOCK(sc);
2162 		if (startall)
2163 			ieee80211_start_all(ic);
2164 		break;
2165 	case SIOCGIFMEDIA:
2166 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2167 		break;
2168 	case SIOCGIFADDR:
2169 		error = ether_ioctl(ifp, cmd, data);
2170 		break;
2171 	default:
2172 		error = EINVAL;
2173 		break;
2174 	}
2175 	return error;
2176 }
2177 
2178 /*
2179  * Extract various information from EEPROM.
2180  */
2181 static void
2182 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2183 {
2184 	int i;
2185 
2186 	/* read the hardware capabilities, revision and SKU type */
2187 	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2188 	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2189 	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2190 
2191 	/* read the regulatory domain */
2192 	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2193 
2194 	/* read in the hw MAC address */
2195 	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2196 
2197 	/* read the list of authorized channels */
2198 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2199 		wpi_read_eeprom_channels(sc,i);
2200 
2201 	/* read the power level calibration info for each group */
2202 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2203 		wpi_read_eeprom_group(sc,i);
2204 }
2205 
2206 /*
2207  * Send a command to the firmware.
2208  */
2209 static int
2210 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2211 {
2212 	struct wpi_tx_ring *ring = &sc->cmdq;
2213 	struct wpi_tx_desc *desc;
2214 	struct wpi_tx_cmd *cmd;
2215 
2216 #ifdef WPI_DEBUG
2217 	if (!async) {
2218 		WPI_LOCK_ASSERT(sc);
2219 	}
2220 #endif
2221 
2222 	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2223 		    async));
2224 
2225 	if (sc->flags & WPI_FLAG_BUSY) {
2226 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2227 		    __func__, code);
2228 		return EAGAIN;
2229 	}
2230 	sc->flags|= WPI_FLAG_BUSY;
2231 
2232 	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2233 	    code, size));
2234 
2235 	desc = &ring->desc[ring->cur];
2236 	cmd = &ring->cmd[ring->cur];
2237 
2238 	cmd->code = code;
2239 	cmd->flags = 0;
2240 	cmd->qid = ring->qid;
2241 	cmd->idx = ring->cur;
2242 	memcpy(cmd->data, buf, size);
2243 
2244 	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2245 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2246 		ring->cur * sizeof (struct wpi_tx_cmd));
2247 	desc->segs[0].len  = htole32(4 + size);
2248 
2249 	/* kick cmd ring */
2250 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2251 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2252 
2253 	if (async) {
2254 		sc->flags &= ~ WPI_FLAG_BUSY;
2255 		return 0;
2256 	}
2257 
2258 	return lksleep(cmd, &sc->sc_lock, 0, "wpicmd", hz);
2259 }
2260 
2261 static int
2262 wpi_wme_update(struct ieee80211com *ic)
2263 {
2264 #define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2265 #define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2266 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2267 	const struct wmeParams *wmep;
2268 	struct wpi_wme_setup wme;
2269 	int ac;
2270 
2271 	/* don't override default WME values if WME is not actually enabled */
2272 	if (!(ic->ic_flags & IEEE80211_F_WME))
2273 		return 0;
2274 
2275 	wme.flags = 0;
2276 	for (ac = 0; ac < WME_NUM_AC; ac++) {
2277 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2278 		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2279 		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2280 		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2281 		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2282 
2283 		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2284 		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2285 		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2286 	}
2287 	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2288 #undef WPI_USEC
2289 #undef WPI_EXP2
2290 }
2291 
2292 /*
2293  * Configure h/w multi-rate retries.
2294  */
2295 static int
2296 wpi_mrr_setup(struct wpi_softc *sc)
2297 {
2298 	struct ifnet *ifp = sc->sc_ifp;
2299 	struct ieee80211com *ic = ifp->if_l2com;
2300 	struct wpi_mrr_setup mrr;
2301 	int i, error;
2302 
2303 	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2304 
2305 	/* CCK rates (not used with 802.11a) */
2306 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2307 		mrr.rates[i].flags = 0;
2308 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2309 		/* fallback to the immediate lower CCK rate (if any) */
2310 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2311 		/* try one time at this rate before falling back to "next" */
2312 		mrr.rates[i].ntries = 1;
2313 	}
2314 
2315 	/* OFDM rates (not used with 802.11b) */
2316 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2317 		mrr.rates[i].flags = 0;
2318 		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2319 		/* fallback to the immediate lower OFDM rate (if any) */
2320 		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2321 		mrr.rates[i].next = (i == WPI_OFDM6) ?
2322 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2323 			WPI_OFDM6 : WPI_CCK2) :
2324 		    i - 1;
2325 		/* try one time at this rate before falling back to "next" */
2326 		mrr.rates[i].ntries = 1;
2327 	}
2328 
2329 	/* setup MRR for control frames */
2330 	mrr.which = htole32(WPI_MRR_CTL);
2331 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2332 	if (error != 0) {
2333 		device_printf(sc->sc_dev,
2334 		    "could not setup MRR for control frames\n");
2335 		return error;
2336 	}
2337 
2338 	/* setup MRR for data frames */
2339 	mrr.which = htole32(WPI_MRR_DATA);
2340 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2341 	if (error != 0) {
2342 		device_printf(sc->sc_dev,
2343 		    "could not setup MRR for data frames\n");
2344 		return error;
2345 	}
2346 
2347 	return 0;
2348 }
2349 
2350 static void
2351 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2352 {
2353 	struct wpi_cmd_led led;
2354 
2355 	led.which = which;
2356 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2357 	led.off = off;
2358 	led.on = on;
2359 
2360 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2361 }
2362 
2363 static void
2364 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2365 {
2366 	struct wpi_cmd_tsf tsf;
2367 	uint64_t val, mod;
2368 
2369 	memset(&tsf, 0, sizeof tsf);
2370 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2371 	tsf.bintval = htole16(ni->ni_intval);
2372 	tsf.lintval = htole16(10);
2373 
2374 	/* compute remaining time until next beacon */
2375 	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2376 	mod = le64toh(tsf.tstamp) % val;
2377 	tsf.binitval = htole32((uint32_t)(val - mod));
2378 
2379 	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2380 		device_printf(sc->sc_dev, "could not enable TSF\n");
2381 }
2382 
2383 #if 0
2384 /*
2385  * Build a beacon frame that the firmware will broadcast periodically in
2386  * IBSS or HostAP modes.
2387  */
2388 static int
2389 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2390 {
2391 	struct ifnet *ifp = sc->sc_ifp;
2392 	struct ieee80211com *ic = ifp->if_l2com;
2393 	struct wpi_tx_ring *ring = &sc->cmdq;
2394 	struct wpi_tx_desc *desc;
2395 	struct wpi_tx_data *data;
2396 	struct wpi_tx_cmd *cmd;
2397 	struct wpi_cmd_beacon *bcn;
2398 	struct ieee80211_beacon_offsets bo;
2399 	struct mbuf *m0;
2400 	bus_addr_t physaddr;
2401 	int error;
2402 
2403 	desc = &ring->desc[ring->cur];
2404 	data = &ring->data[ring->cur];
2405 
2406 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2407 	if (m0 == NULL) {
2408 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2409 		return ENOMEM;
2410 	}
2411 
2412 	cmd = &ring->cmd[ring->cur];
2413 	cmd->code = WPI_CMD_SET_BEACON;
2414 	cmd->flags = 0;
2415 	cmd->qid = ring->qid;
2416 	cmd->idx = ring->cur;
2417 
2418 	bcn = (struct wpi_cmd_beacon *)cmd->data;
2419 	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2420 	bcn->id = WPI_ID_BROADCAST;
2421 	bcn->ofdm_mask = 0xff;
2422 	bcn->cck_mask = 0x0f;
2423 	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2424 	bcn->len = htole16(m0->m_pkthdr.len);
2425 	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2426 		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2427 	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2428 
2429 	/* save and trim IEEE802.11 header */
2430 	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2431 	m_adj(m0, sizeof (struct ieee80211_frame));
2432 
2433 	/* assume beacon frame is contiguous */
2434 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2435 	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2436 	if (error != 0) {
2437 		device_printf(sc->sc_dev, "could not map beacon\n");
2438 		m_freem(m0);
2439 		return error;
2440 	}
2441 
2442 	data->m = m0;
2443 
2444 	/* first scatter/gather segment is used by the beacon command */
2445 	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2446 	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2447 		ring->cur * sizeof (struct wpi_tx_cmd));
2448 	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2449 	desc->segs[1].addr = htole32(physaddr);
2450 	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2451 
2452 	/* kick cmd ring */
2453 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2454 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2455 
2456 	return 0;
2457 }
2458 #endif
2459 
2460 static int
2461 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2462 {
2463 	struct ieee80211com *ic = vap->iv_ic;
2464 	struct ieee80211_node *ni;
2465 	struct wpi_node_info node;
2466 	int error;
2467 
2468 
2469 	/* update adapter's configuration */
2470 	sc->config.associd = 0;
2471 	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2472 	ni = ieee80211_ref_node(vap->iv_bss);
2473 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2474 	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2475 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2476 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2477 		    WPI_CONFIG_24GHZ);
2478 	}
2479 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2480 		sc->config.cck_mask  = 0;
2481 		sc->config.ofdm_mask = 0x15;
2482 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2483 		sc->config.cck_mask  = 0x03;
2484 		sc->config.ofdm_mask = 0;
2485 	} else {
2486 		/* XXX assume 802.11b/g */
2487 		sc->config.cck_mask  = 0x0f;
2488 		sc->config.ofdm_mask = 0x15;
2489 	}
2490 
2491 	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2492 		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2493 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2494 		sizeof (struct wpi_config), 1);
2495 	if (error != 0) {
2496 		device_printf(sc->sc_dev, "could not configure\n");
2497 		ieee80211_free_node(ni);
2498 		return error;
2499 	}
2500 
2501 	/* configuration has changed, set Tx power accordingly */
2502 	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2503 		device_printf(sc->sc_dev, "could not set Tx power\n");
2504 		ieee80211_free_node(ni);
2505 		return error;
2506 	}
2507 
2508 	/* add default node */
2509 	memset(&node, 0, sizeof node);
2510 	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2511 	ieee80211_free_node(ni);
2512 	node.id = WPI_ID_BSS;
2513 	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2514 	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2515 	node.action = htole32(WPI_ACTION_SET_RATE);
2516 	node.antenna = WPI_ANTENNA_BOTH;
2517 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2518 	if (error != 0)
2519 		device_printf(sc->sc_dev, "could not add BSS node\n");
2520 
2521 	return (error);
2522 }
2523 
2524 static int
2525 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2526 {
2527 	struct ieee80211com *ic = vap->iv_ic;
2528 	struct ieee80211_node *ni;
2529 	int error;
2530 
2531 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2532 		/* link LED blinks while monitoring */
2533 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2534 		return 0;
2535 	}
2536 
2537 	ni = ieee80211_ref_node(vap->iv_bss);
2538 	wpi_enable_tsf(sc, ni);
2539 
2540 	/* update adapter's configuration */
2541 	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2542 	/* short preamble/slot time are negotiated when associating */
2543 	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2544 	    WPI_CONFIG_SHSLOT);
2545 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2546 		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2547 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2548 		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2549 	sc->config.filter |= htole32(WPI_FILTER_BSS);
2550 
2551 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2552 
2553 	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2554 		    sc->config.flags));
2555 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2556 		    wpi_config), 1);
2557 	if (error != 0) {
2558 		device_printf(sc->sc_dev, "could not update configuration\n");
2559 		ieee80211_free_node(ni);
2560 		return error;
2561 	}
2562 
2563 	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2564 	ieee80211_free_node(ni);
2565 	if (error != 0) {
2566 		device_printf(sc->sc_dev, "could set txpower\n");
2567 		return error;
2568 	}
2569 
2570 	/* link LED always on while associated */
2571 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2572 
2573 	/* start automatic rate control timer */
2574 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2575 
2576 	return (error);
2577 }
2578 
2579 /*
2580  * Send a scan request to the firmware.  Since this command is huge, we map it
2581  * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2582  * much of this code is similar to that in wpi_cmd but because we must manually
2583  * construct the probe & channels, we duplicate what's needed here. XXX In the
2584  * future, this function should be modified to use wpi_cmd to help cleanup the
2585  * code base.
2586  */
2587 static int
2588 wpi_scan(struct wpi_softc *sc)
2589 {
2590 	struct ifnet *ifp = sc->sc_ifp;
2591 	struct ieee80211com *ic = ifp->if_l2com;
2592 	struct ieee80211_scan_state *ss = ic->ic_scan;
2593 	struct wpi_tx_ring *ring = &sc->cmdq;
2594 	struct wpi_tx_desc *desc;
2595 	struct wpi_tx_data *data;
2596 	struct wpi_tx_cmd *cmd;
2597 	struct wpi_scan_hdr *hdr;
2598 	struct wpi_scan_chan *chan;
2599 	struct ieee80211_frame *wh;
2600 	struct ieee80211_rateset *rs;
2601 	struct ieee80211_channel *c;
2602 	enum ieee80211_phymode mode;
2603 	uint8_t *frm;
2604 	int nrates, pktlen, error, i, nssid;
2605 	bus_addr_t physaddr;
2606 
2607 	desc = &ring->desc[ring->cur];
2608 	data = &ring->data[ring->cur];
2609 
2610 	data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2611 	if (data->m == NULL) {
2612 		device_printf(sc->sc_dev,
2613 		    "could not allocate mbuf for scan command\n");
2614 		return ENOMEM;
2615 	}
2616 
2617 	cmd = mtod(data->m, struct wpi_tx_cmd *);
2618 	cmd->code = WPI_CMD_SCAN;
2619 	cmd->flags = 0;
2620 	cmd->qid = ring->qid;
2621 	cmd->idx = ring->cur;
2622 
2623 	hdr = (struct wpi_scan_hdr *)cmd->data;
2624 	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2625 
2626 	/*
2627 	 * Move to the next channel if no packets are received within 5 msecs
2628 	 * after sending the probe request (this helps to reduce the duration
2629 	 * of active scans).
2630 	 */
2631 	hdr->quiet = htole16(5);
2632 	hdr->threshold = htole16(1);
2633 
2634 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2635 		/* send probe requests at 6Mbps */
2636 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2637 
2638 		/* Enable crc checking */
2639 		hdr->promotion = htole16(1);
2640 	} else {
2641 		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2642 		/* send probe requests at 1Mbps */
2643 		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2644 	}
2645 	hdr->tx.id = WPI_ID_BROADCAST;
2646 	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2647 	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2648 
2649 	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2650 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2651 	for (i = 0; i < nssid; i++) {
2652 		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2653 		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2654 		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2655 		    hdr->scan_essids[i].esslen);
2656 #ifdef WPI_DEBUG
2657 		if (wpi_debug & WPI_DEBUG_SCANNING) {
2658 			kprintf("Scanning Essid: ");
2659 			ieee80211_print_essid(hdr->scan_essids[i].essid,
2660 			    hdr->scan_essids[i].esslen);
2661 			kprintf("\n");
2662 		}
2663 #endif
2664 	}
2665 
2666 	/*
2667 	 * Build a probe request frame.  Most of the following code is a
2668 	 * copy & paste of what is done in net80211.
2669 	 */
2670 	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2671 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2672 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2673 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2674 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2675 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2676 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2677 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2678 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2679 
2680 	frm = (uint8_t *)(wh + 1);
2681 
2682 	/* add essid IE, the hardware will fill this in for us */
2683 	*frm++ = IEEE80211_ELEMID_SSID;
2684 	*frm++ = 0;
2685 
2686 	mode = ieee80211_chan2mode(ic->ic_curchan);
2687 	rs = &ic->ic_sup_rates[mode];
2688 
2689 	/* add supported rates IE */
2690 	*frm++ = IEEE80211_ELEMID_RATES;
2691 	nrates = rs->rs_nrates;
2692 	if (nrates > IEEE80211_RATE_SIZE)
2693 		nrates = IEEE80211_RATE_SIZE;
2694 	*frm++ = nrates;
2695 	memcpy(frm, rs->rs_rates, nrates);
2696 	frm += nrates;
2697 
2698 	/* add supported xrates IE */
2699 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2700 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2701 		*frm++ = IEEE80211_ELEMID_XRATES;
2702 		*frm++ = nrates;
2703 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2704 		frm += nrates;
2705 	}
2706 
2707 	/* setup length of probe request */
2708 	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2709 
2710 	/*
2711 	 * Construct information about the channel that we
2712 	 * want to scan. The firmware expects this to be directly
2713 	 * after the scan probe request
2714 	 */
2715 	c = ic->ic_curchan;
2716 	chan = (struct wpi_scan_chan *)frm;
2717 	chan->chan = ieee80211_chan2ieee(ic, c);
2718 	chan->flags = 0;
2719 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2720 		chan->flags |= WPI_CHAN_ACTIVE;
2721 		if (nssid != 0)
2722 			chan->flags |= WPI_CHAN_DIRECT;
2723 	}
2724 	chan->gain_dsp = 0x6e; /* Default level */
2725 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2726 		chan->active = htole16(10);
2727 		chan->passive = htole16(ss->ss_maxdwell);
2728 		chan->gain_radio = 0x3b;
2729 	} else {
2730 		chan->active = htole16(20);
2731 		chan->passive = htole16(ss->ss_maxdwell);
2732 		chan->gain_radio = 0x28;
2733 	}
2734 
2735 	DPRINTFN(WPI_DEBUG_SCANNING,
2736 	    ("Scanning %u Passive: %d\n",
2737 	     chan->chan,
2738 	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2739 
2740 	hdr->nchan++;
2741 	chan++;
2742 
2743 	frm += sizeof (struct wpi_scan_chan);
2744 #if 0
2745 	// XXX All Channels....
2746 	for (c  = &ic->ic_channels[1];
2747 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2748 		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2749 			continue;
2750 
2751 		chan->chan = ieee80211_chan2ieee(ic, c);
2752 		chan->flags = 0;
2753 		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2754 		    chan->flags |= WPI_CHAN_ACTIVE;
2755 		    if (ic->ic_des_ssid[0].len != 0)
2756 			chan->flags |= WPI_CHAN_DIRECT;
2757 		}
2758 		chan->gain_dsp = 0x6e; /* Default level */
2759 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2760 			chan->active = htole16(10);
2761 			chan->passive = htole16(110);
2762 			chan->gain_radio = 0x3b;
2763 		} else {
2764 			chan->active = htole16(20);
2765 			chan->passive = htole16(120);
2766 			chan->gain_radio = 0x28;
2767 		}
2768 
2769 		DPRINTFN(WPI_DEBUG_SCANNING,
2770 			 ("Scanning %u Passive: %d\n",
2771 			  chan->chan,
2772 			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2773 
2774 		hdr->nchan++;
2775 		chan++;
2776 
2777 		frm += sizeof (struct wpi_scan_chan);
2778 	}
2779 #endif
2780 
2781 	hdr->len = htole16(frm - (uint8_t *)hdr);
2782 	pktlen = frm - (uint8_t *)cmd;
2783 
2784 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2785 	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2786 	if (error != 0) {
2787 		device_printf(sc->sc_dev, "could not map scan command\n");
2788 		m_freem(data->m);
2789 		data->m = NULL;
2790 		return error;
2791 	}
2792 
2793 	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2794 	desc->segs[0].addr = htole32(physaddr);
2795 	desc->segs[0].len  = htole32(pktlen);
2796 
2797 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2798 	    BUS_DMASYNC_PREWRITE);
2799 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2800 
2801 	/* kick cmd ring */
2802 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2803 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2804 
2805 	sc->sc_scan_timer = 5;
2806 	return 0;	/* will be notified async. of failure/success */
2807 }
2808 
2809 /**
2810  * Configure the card to listen to a particular channel, this transisions the
2811  * card in to being able to receive frames from remote devices.
2812  */
2813 static int
2814 wpi_config(struct wpi_softc *sc)
2815 {
2816 	struct ifnet *ifp = sc->sc_ifp;
2817 	struct ieee80211com *ic = ifp->if_l2com;
2818 	struct wpi_power power;
2819 	struct wpi_bluetooth bluetooth;
2820 	struct wpi_node_info node;
2821 	int error;
2822 
2823 	/* set power mode */
2824 	memset(&power, 0, sizeof power);
2825 	power.flags = htole32(WPI_POWER_CAM|0x8);
2826 	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2827 	if (error != 0) {
2828 		device_printf(sc->sc_dev, "could not set power mode\n");
2829 		return error;
2830 	}
2831 
2832 	/* configure bluetooth coexistence */
2833 	memset(&bluetooth, 0, sizeof bluetooth);
2834 	bluetooth.flags = 3;
2835 	bluetooth.lead = 0xaa;
2836 	bluetooth.kill = 1;
2837 	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2838 	    0);
2839 	if (error != 0) {
2840 		device_printf(sc->sc_dev,
2841 		    "could not configure bluetooth coexistence\n");
2842 		return error;
2843 	}
2844 
2845 	/* configure adapter */
2846 	memset(&sc->config, 0, sizeof (struct wpi_config));
2847 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2848 	/*set default channel*/
2849 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2850 	sc->config.flags = htole32(WPI_CONFIG_TSF);
2851 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2852 		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2853 		    WPI_CONFIG_24GHZ);
2854 	}
2855 	sc->config.filter = 0;
2856 	switch (ic->ic_opmode) {
2857 	case IEEE80211_M_STA:
2858 	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2859 		sc->config.mode = WPI_MODE_STA;
2860 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2861 		break;
2862 	case IEEE80211_M_IBSS:
2863 	case IEEE80211_M_AHDEMO:
2864 		sc->config.mode = WPI_MODE_IBSS;
2865 		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2866 					     WPI_FILTER_MULTICAST);
2867 		break;
2868 	case IEEE80211_M_HOSTAP:
2869 		sc->config.mode = WPI_MODE_HOSTAP;
2870 		break;
2871 	case IEEE80211_M_MONITOR:
2872 		sc->config.mode = WPI_MODE_MONITOR;
2873 		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2874 			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2875 		break;
2876 	default:
2877 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2878 		return EINVAL;
2879 	}
2880 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2881 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2882 	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2883 		sizeof (struct wpi_config), 0);
2884 	if (error != 0) {
2885 		device_printf(sc->sc_dev, "configure command failed\n");
2886 		return error;
2887 	}
2888 
2889 	/* configuration has changed, set Tx power accordingly */
2890 	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2891 	    device_printf(sc->sc_dev, "could not set Tx power\n");
2892 	    return error;
2893 	}
2894 
2895 	/* add broadcast node */
2896 	memset(&node, 0, sizeof node);
2897 	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2898 	node.id = WPI_ID_BROADCAST;
2899 	node.rate = wpi_plcp_signal(2);
2900 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2901 	if (error != 0) {
2902 		device_printf(sc->sc_dev, "could not add broadcast node\n");
2903 		return error;
2904 	}
2905 
2906 	/* Setup rate scalling */
2907 	error = wpi_mrr_setup(sc);
2908 	if (error != 0) {
2909 		device_printf(sc->sc_dev, "could not setup MRR\n");
2910 		return error;
2911 	}
2912 
2913 	return 0;
2914 }
2915 
2916 static void
2917 wpi_stop_master(struct wpi_softc *sc)
2918 {
2919 	uint32_t tmp;
2920 	int ntries;
2921 
2922 	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2923 
2924 	tmp = WPI_READ(sc, WPI_RESET);
2925 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2926 
2927 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2928 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2929 		return;	/* already asleep */
2930 
2931 	for (ntries = 0; ntries < 100; ntries++) {
2932 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2933 			break;
2934 		DELAY(10);
2935 	}
2936 	if (ntries == 100) {
2937 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2938 	}
2939 }
2940 
2941 static int
2942 wpi_power_up(struct wpi_softc *sc)
2943 {
2944 	uint32_t tmp;
2945 	int ntries;
2946 
2947 	wpi_mem_lock(sc);
2948 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2949 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2950 	wpi_mem_unlock(sc);
2951 
2952 	for (ntries = 0; ntries < 5000; ntries++) {
2953 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2954 			break;
2955 		DELAY(10);
2956 	}
2957 	if (ntries == 5000) {
2958 		device_printf(sc->sc_dev,
2959 		    "timeout waiting for NIC to power up\n");
2960 		return ETIMEDOUT;
2961 	}
2962 	return 0;
2963 }
2964 
2965 static int
2966 wpi_reset(struct wpi_softc *sc)
2967 {
2968 	uint32_t tmp;
2969 	int ntries;
2970 
2971 	DPRINTFN(WPI_DEBUG_HW,
2972 	    ("Resetting the card - clearing any uploaded firmware\n"));
2973 
2974 	/* clear any pending interrupts */
2975 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2976 
2977 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2978 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2979 
2980 	tmp = WPI_READ(sc, WPI_CHICKEN);
2981 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2982 
2983 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2984 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2985 
2986 	/* wait for clock stabilization */
2987 	for (ntries = 0; ntries < 25000; ntries++) {
2988 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2989 			break;
2990 		DELAY(10);
2991 	}
2992 	if (ntries == 25000) {
2993 		device_printf(sc->sc_dev,
2994 		    "timeout waiting for clock stabilization\n");
2995 		return ETIMEDOUT;
2996 	}
2997 
2998 	/* initialize EEPROM */
2999 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3000 
3001 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3002 		device_printf(sc->sc_dev, "EEPROM not found\n");
3003 		return EIO;
3004 	}
3005 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3006 
3007 	return 0;
3008 }
3009 
3010 static void
3011 wpi_hw_config(struct wpi_softc *sc)
3012 {
3013 	uint32_t rev, hw;
3014 
3015 	/* voodoo from the Linux "driver".. */
3016 	hw = WPI_READ(sc, WPI_HWCONFIG);
3017 
3018 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
3019 	if ((rev & 0xc0) == 0x40)
3020 		hw |= WPI_HW_ALM_MB;
3021 	else if (!(rev & 0x80))
3022 		hw |= WPI_HW_ALM_MM;
3023 
3024 	if (sc->cap == 0x80)
3025 		hw |= WPI_HW_SKU_MRC;
3026 
3027 	hw &= ~WPI_HW_REV_D;
3028 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3029 		hw |= WPI_HW_REV_D;
3030 
3031 	if (sc->type > 1)
3032 		hw |= WPI_HW_TYPE_B;
3033 
3034 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3035 }
3036 
3037 static void
3038 wpi_rfkill_resume(struct wpi_softc *sc)
3039 {
3040 	struct ifnet *ifp = sc->sc_ifp;
3041 	struct ieee80211com *ic = ifp->if_l2com;
3042 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3043 	int ntries;
3044 
3045 	/* enable firmware again */
3046 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3047 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3048 
3049 	/* wait for thermal sensors to calibrate */
3050 	for (ntries = 0; ntries < 1000; ntries++) {
3051 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3052 			break;
3053 		DELAY(10);
3054 	}
3055 
3056 	if (ntries == 1000) {
3057 		device_printf(sc->sc_dev,
3058 		    "timeout waiting for thermal calibration\n");
3059 		return;
3060 	}
3061 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3062 
3063 	if (wpi_config(sc) != 0) {
3064 		device_printf(sc->sc_dev, "device config failed\n");
3065 		return;
3066 	}
3067 
3068 	ifp->if_flags &= ~IFF_OACTIVE;
3069 	ifp->if_flags |= IFF_RUNNING;
3070 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3071 
3072 	if (vap != NULL) {
3073 		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3074 			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3075 				ieee80211_beacon_miss(ic);
3076 				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3077 			} else
3078 				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3079 		} else {
3080 			ieee80211_scan_next(vap);
3081 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3082 		}
3083 	}
3084 
3085 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3086 }
3087 
3088 static void
3089 wpi_init_locked(struct wpi_softc *sc, int force)
3090 {
3091 	struct ifnet *ifp = sc->sc_ifp;
3092 	uint32_t tmp;
3093 	int ntries, qid;
3094 
3095 	wpi_stop_locked(sc);
3096 	(void)wpi_reset(sc);
3097 
3098 	wpi_mem_lock(sc);
3099 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3100 	DELAY(20);
3101 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3102 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3103 	wpi_mem_unlock(sc);
3104 
3105 	(void)wpi_power_up(sc);
3106 	wpi_hw_config(sc);
3107 
3108 	/* init Rx ring */
3109 	wpi_mem_lock(sc);
3110 	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3111 	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3112 	    offsetof(struct wpi_shared, next));
3113 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3114 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3115 	wpi_mem_unlock(sc);
3116 
3117 	/* init Tx rings */
3118 	wpi_mem_lock(sc);
3119 	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3120 	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3121 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3122 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3123 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3124 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3125 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3126 
3127 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3128 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3129 
3130 	for (qid = 0; qid < 6; qid++) {
3131 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3132 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3133 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3134 	}
3135 	wpi_mem_unlock(sc);
3136 
3137 	/* clear "radio off" and "disable command" bits (reversed logic) */
3138 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3139 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3140 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3141 
3142 	/* clear any pending interrupts */
3143 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3144 
3145 	/* enable interrupts */
3146 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3147 
3148 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3149 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3150 
3151 	if ((wpi_load_firmware(sc)) != 0) {
3152 	    device_printf(sc->sc_dev,
3153 		"A problem occurred loading the firmware to the driver\n");
3154 	    return;
3155 	}
3156 
3157 	/* At this point the firmware is up and running. If the hardware
3158 	 * RF switch is turned off thermal calibration will fail, though
3159 	 * the card is still happy to continue to accept commands, catch
3160 	 * this case and schedule a task to watch for it to be turned on.
3161 	 */
3162 	wpi_mem_lock(sc);
3163 	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3164 	wpi_mem_unlock(sc);
3165 
3166 	if (!(tmp & 0x1)) {
3167 		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3168 		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3169 		goto out;
3170 	}
3171 
3172 	/* wait for thermal sensors to calibrate */
3173 	for (ntries = 0; ntries < 1000; ntries++) {
3174 		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3175 			break;
3176 		DELAY(10);
3177 	}
3178 
3179 	if (ntries == 1000) {
3180 		device_printf(sc->sc_dev,
3181 		    "timeout waiting for thermal sensors calibration\n");
3182 		return;
3183 	}
3184 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3185 
3186 	if (wpi_config(sc) != 0) {
3187 		device_printf(sc->sc_dev, "device config failed\n");
3188 		return;
3189 	}
3190 
3191 	ifp->if_flags &= ~IFF_OACTIVE;
3192 	ifp->if_flags |= IFF_RUNNING;
3193 out:
3194 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3195 }
3196 
3197 static void
3198 wpi_init(void *arg)
3199 {
3200 	struct wpi_softc *sc = arg;
3201 	struct ifnet *ifp = sc->sc_ifp;
3202 	struct ieee80211com *ic = ifp->if_l2com;
3203 
3204 	WPI_LOCK(sc);
3205 	wpi_init_locked(sc, 0);
3206 	WPI_UNLOCK(sc);
3207 
3208 	if (ifp->if_flags & IFF_RUNNING)
3209 		ieee80211_start_all(ic);		/* start all vaps */
3210 }
3211 
3212 static void
3213 wpi_stop_locked(struct wpi_softc *sc)
3214 {
3215 	struct ifnet *ifp = sc->sc_ifp;
3216 	uint32_t tmp;
3217 	int ac;
3218 
3219 	sc->sc_tx_timer = 0;
3220 	sc->sc_scan_timer = 0;
3221 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3222 	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3223 	callout_stop(&sc->watchdog_to);
3224 	callout_stop(&sc->calib_to);
3225 
3226 
3227 	/* disable interrupts */
3228 	WPI_WRITE(sc, WPI_MASK, 0);
3229 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3230 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3231 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3232 
3233 	wpi_mem_lock(sc);
3234 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3235 	wpi_mem_unlock(sc);
3236 
3237 	/* reset all Tx rings */
3238 	for (ac = 0; ac < 4; ac++)
3239 		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3240 	wpi_reset_tx_ring(sc, &sc->cmdq);
3241 
3242 	/* reset Rx ring */
3243 	wpi_reset_rx_ring(sc, &sc->rxq);
3244 
3245 	wpi_mem_lock(sc);
3246 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3247 	wpi_mem_unlock(sc);
3248 
3249 	DELAY(5);
3250 
3251 	wpi_stop_master(sc);
3252 
3253 	tmp = WPI_READ(sc, WPI_RESET);
3254 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3255 	sc->flags &= ~WPI_FLAG_BUSY;
3256 }
3257 
3258 static void
3259 wpi_stop(struct wpi_softc *sc)
3260 {
3261 	WPI_LOCK(sc);
3262 	wpi_stop_locked(sc);
3263 	WPI_UNLOCK(sc);
3264 }
3265 
3266 static void
3267 wpi_newassoc(struct ieee80211_node *ni, int isnew)
3268 {
3269 	/* XXX move */
3270 	ieee80211_ratectl_node_init(ni);
3271 }
3272 
3273 static void
3274 wpi_calib_timeout(void *arg)
3275 {
3276 	struct wpi_softc *sc = arg;
3277 	struct ifnet *ifp = sc->sc_ifp;
3278 	struct ieee80211com *ic = ifp->if_l2com;
3279 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3280 	int temp;
3281 
3282 	if (vap->iv_state != IEEE80211_S_RUN)
3283 		return;
3284 
3285 	/* update sensor data */
3286 	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3287 	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3288 
3289 	wpi_power_calibration(sc, temp);
3290 
3291 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3292 }
3293 
3294 /*
3295  * This function is called periodically (every 60 seconds) to adjust output
3296  * power to temperature changes.
3297  */
3298 static void
3299 wpi_power_calibration(struct wpi_softc *sc, int temp)
3300 {
3301 	struct ifnet *ifp = sc->sc_ifp;
3302 	struct ieee80211com *ic = ifp->if_l2com;
3303 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3304 
3305 	/* sanity-check read value */
3306 	if (temp < -260 || temp > 25) {
3307 		/* this can't be correct, ignore */
3308 		DPRINTFN(WPI_DEBUG_TEMP,
3309 		    ("out-of-range temperature reported: %d\n", temp));
3310 		return;
3311 	}
3312 
3313 	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3314 
3315 	/* adjust Tx power if need be */
3316 	if (abs(temp - sc->temp) <= 6)
3317 		return;
3318 
3319 	sc->temp = temp;
3320 
3321 	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3322 		/* just warn, too bad for the automatic calibration... */
3323 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3324 	}
3325 }
3326 
3327 /**
3328  * Read the eeprom to find out what channels are valid for the given
3329  * band and update net80211 with what we find.
3330  */
3331 static void
3332 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3333 {
3334 	struct ifnet *ifp = sc->sc_ifp;
3335 	struct ieee80211com *ic = ifp->if_l2com;
3336 	const struct wpi_chan_band *band = &wpi_bands[n];
3337 	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3338 	struct ieee80211_channel *c;
3339 	int chan, i, passive;
3340 
3341 	wpi_read_prom_data(sc, band->addr, channels,
3342 	    band->nchan * sizeof (struct wpi_eeprom_chan));
3343 
3344 	for (i = 0; i < band->nchan; i++) {
3345 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3346 			DPRINTFN(WPI_DEBUG_HW,
3347 			    ("Channel Not Valid: %d, band %d\n",
3348 			     band->chan[i],n));
3349 			continue;
3350 		}
3351 
3352 		passive = 0;
3353 		chan = band->chan[i];
3354 		c = &ic->ic_channels[ic->ic_nchans++];
3355 
3356 		/* is active scan allowed on this channel? */
3357 		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3358 			passive = IEEE80211_CHAN_PASSIVE;
3359 		}
3360 
3361 		if (n == 0) {	/* 2GHz band */
3362 			c->ic_ieee = chan;
3363 			c->ic_freq = ieee80211_ieee2mhz(chan,
3364 			    IEEE80211_CHAN_2GHZ);
3365 			c->ic_flags = IEEE80211_CHAN_B | passive;
3366 
3367 			c = &ic->ic_channels[ic->ic_nchans++];
3368 			c->ic_ieee = chan;
3369 			c->ic_freq = ieee80211_ieee2mhz(chan,
3370 			    IEEE80211_CHAN_2GHZ);
3371 			c->ic_flags = IEEE80211_CHAN_G | passive;
3372 
3373 		} else {	/* 5GHz band */
3374 			/*
3375 			 * Some 3945ABG adapters support channels 7, 8, 11
3376 			 * and 12 in the 2GHz *and* 5GHz bands.
3377 			 * Because of limitations in our net80211(9) stack,
3378 			 * we can't support these channels in 5GHz band.
3379 			 * XXX not true; just need to map to proper frequency
3380 			 */
3381 			if (chan <= 14)
3382 				continue;
3383 
3384 			c->ic_ieee = chan;
3385 			c->ic_freq = ieee80211_ieee2mhz(chan,
3386 			    IEEE80211_CHAN_5GHZ);
3387 			c->ic_flags = IEEE80211_CHAN_A | passive;
3388 		}
3389 
3390 		/* save maximum allowed power for this channel */
3391 		sc->maxpwr[chan] = channels[i].maxpwr;
3392 
3393 #if 0
3394 		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3395 		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3396 		//ic->ic_channels[chan].ic_minpower...
3397 		//ic->ic_channels[chan].ic_maxregtxpower...
3398 #endif
3399 
3400 		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3401 		    " passive=%d, offset %d\n", chan, c->ic_freq,
3402 		    channels[i].flags, sc->maxpwr[chan],
3403 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3404 		    ic->ic_nchans));
3405 	}
3406 }
3407 
3408 static void
3409 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3410 {
3411 	struct wpi_power_group *group = &sc->groups[n];
3412 	struct wpi_eeprom_group rgroup;
3413 	int i;
3414 
3415 	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3416 	    sizeof rgroup);
3417 
3418 	/* save power group information */
3419 	group->chan   = rgroup.chan;
3420 	group->maxpwr = rgroup.maxpwr;
3421 	/* temperature at which the samples were taken */
3422 	group->temp   = (int16_t)le16toh(rgroup.temp);
3423 
3424 	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3425 		    group->chan, group->maxpwr, group->temp));
3426 
3427 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3428 		group->samples[i].index = rgroup.samples[i].index;
3429 		group->samples[i].power = rgroup.samples[i].power;
3430 
3431 		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3432 			    group->samples[i].index, group->samples[i].power));
3433 	}
3434 }
3435 
3436 /*
3437  * Update Tx power to match what is defined for channel `c'.
3438  */
3439 static int
3440 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3441 {
3442 	struct ifnet *ifp = sc->sc_ifp;
3443 	struct ieee80211com *ic = ifp->if_l2com;
3444 	struct wpi_power_group *group;
3445 	struct wpi_cmd_txpower txpower;
3446 	u_int chan;
3447 	int i;
3448 
3449 	/* get channel number */
3450 	chan = ieee80211_chan2ieee(ic, c);
3451 
3452 	/* find the power group to which this channel belongs */
3453 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3454 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3455 			if (chan <= group->chan)
3456 				break;
3457 	} else
3458 		group = &sc->groups[0];
3459 
3460 	memset(&txpower, 0, sizeof txpower);
3461 	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3462 	txpower.channel = htole16(chan);
3463 
3464 	/* set Tx power for all OFDM and CCK rates */
3465 	for (i = 0; i <= 11 ; i++) {
3466 		/* retrieve Tx power for this channel/rate combination */
3467 		int idx = wpi_get_power_index(sc, group, c,
3468 		    wpi_ridx_to_rate[i]);
3469 
3470 		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3471 
3472 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3473 			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3474 			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3475 		} else {
3476 			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3477 			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3478 		}
3479 		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3480 			    chan, wpi_ridx_to_rate[i], idx));
3481 	}
3482 
3483 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3484 }
3485 
3486 /*
3487  * Determine Tx power index for a given channel/rate combination.
3488  * This takes into account the regulatory information from EEPROM and the
3489  * current temperature.
3490  */
3491 static int
3492 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3493     struct ieee80211_channel *c, int rate)
3494 {
3495 /* fixed-point arithmetic division using a n-bit fractional part */
3496 #define fdivround(a, b, n)      \
3497 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3498 
3499 /* linear interpolation */
3500 #define interpolate(x, x1, y1, x2, y2, n)       \
3501 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3502 
3503 	struct ifnet *ifp = sc->sc_ifp;
3504 	struct ieee80211com *ic = ifp->if_l2com;
3505 	struct wpi_power_sample *sample;
3506 	int pwr, idx;
3507 	u_int chan;
3508 
3509 	/* get channel number */
3510 	chan = ieee80211_chan2ieee(ic, c);
3511 
3512 	/* default power is group's maximum power - 3dB */
3513 	pwr = group->maxpwr / 2;
3514 
3515 	/* decrease power for highest OFDM rates to reduce distortion */
3516 	switch (rate) {
3517 		case 72:	/* 36Mb/s */
3518 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3519 			break;
3520 		case 96:	/* 48Mb/s */
3521 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3522 			break;
3523 		case 108:	/* 54Mb/s */
3524 			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3525 			break;
3526 	}
3527 
3528 	/* never exceed channel's maximum allowed Tx power */
3529 	pwr = min(pwr, sc->maxpwr[chan]);
3530 
3531 	/* retrieve power index into gain tables from samples */
3532 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3533 		if (pwr > sample[1].power)
3534 			break;
3535 	/* fixed-point linear interpolation using a 19-bit fractional part */
3536 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3537 	    sample[1].power, sample[1].index, 19);
3538 
3539 	/*
3540 	 *  Adjust power index based on current temperature
3541 	 *	- if colder than factory-calibrated: decreate output power
3542 	 *	- if warmer than factory-calibrated: increase output power
3543 	 */
3544 	idx -= (sc->temp - group->temp) * 11 / 100;
3545 
3546 	/* decrease power for CCK rates (-5dB) */
3547 	if (!WPI_RATE_IS_OFDM(rate))
3548 		idx += 10;
3549 
3550 	/* keep power index in a valid range */
3551 	if (idx < 0)
3552 		return 0;
3553 	if (idx > WPI_MAX_PWR_INDEX)
3554 		return WPI_MAX_PWR_INDEX;
3555 	return idx;
3556 
3557 #undef interpolate
3558 #undef fdivround
3559 }
3560 
3561 /**
3562  * Called by net80211 framework to indicate that a scan
3563  * is starting. This function doesn't actually do the scan,
3564  * wpi_scan_curchan starts things off. This function is more
3565  * of an early warning from the framework we should get ready
3566  * for the scan.
3567  */
3568 static void
3569 wpi_scan_start(struct ieee80211com *ic)
3570 {
3571 	struct ifnet *ifp = ic->ic_ifp;
3572 	struct wpi_softc *sc = ifp->if_softc;
3573 
3574 	WPI_LOCK(sc);
3575 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3576 	WPI_UNLOCK(sc);
3577 }
3578 
3579 /**
3580  * Called by the net80211 framework, indicates that the
3581  * scan has ended. If there is a scan in progress on the card
3582  * then it should be aborted.
3583  */
3584 static void
3585 wpi_scan_end(struct ieee80211com *ic)
3586 {
3587 	/* XXX ignore */
3588 }
3589 
3590 /**
3591  * Called by the net80211 framework to indicate to the driver
3592  * that the channel should be changed
3593  */
3594 static void
3595 wpi_set_channel(struct ieee80211com *ic)
3596 {
3597 	struct ifnet *ifp = ic->ic_ifp;
3598 	struct wpi_softc *sc = ifp->if_softc;
3599 	int error;
3600 
3601 	/*
3602 	 * Only need to set the channel in Monitor mode. AP scanning and auth
3603 	 * are already taken care of by their respective firmware commands.
3604 	 */
3605 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3606 		error = wpi_config(sc);
3607 		if (error != 0)
3608 			device_printf(sc->sc_dev,
3609 			    "error %d settting channel\n", error);
3610 	}
3611 }
3612 
3613 /**
3614  * Called by net80211 to indicate that we need to scan the current
3615  * channel. The channel is previously be set via the wpi_set_channel
3616  * callback.
3617  */
3618 static void
3619 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3620 {
3621 	struct ieee80211vap *vap = ss->ss_vap;
3622 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3623 	struct wpi_softc *sc = ifp->if_softc;
3624 
3625 	WPI_LOCK(sc);
3626 	if (wpi_scan(sc))
3627 		ieee80211_cancel_scan(vap);
3628 	WPI_UNLOCK(sc);
3629 }
3630 
3631 /**
3632  * Called by the net80211 framework to indicate
3633  * the minimum dwell time has been met, terminate the scan.
3634  * We don't actually terminate the scan as the firmware will notify
3635  * us when it's finished and we have no way to interrupt it.
3636  */
3637 static void
3638 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3639 {
3640 	/* NB: don't try to abort scan; wait for firmware to finish */
3641 }
3642 
3643 static void
3644 wpi_hwreset(void *arg, int pending)
3645 {
3646 	struct wpi_softc *sc = arg;
3647 
3648 	WPI_LOCK(sc);
3649 	wpi_init_locked(sc, 0);
3650 	WPI_UNLOCK(sc);
3651 }
3652 
3653 static void
3654 wpi_rfreset(void *arg, int pending)
3655 {
3656 	struct wpi_softc *sc = arg;
3657 
3658 	WPI_LOCK(sc);
3659 	wpi_rfkill_resume(sc);
3660 	WPI_UNLOCK(sc);
3661 }
3662 
3663 /*
3664  * Allocate DMA-safe memory for firmware transfer.
3665  */
3666 static int
3667 wpi_alloc_fwmem(struct wpi_softc *sc)
3668 {
3669 	/* allocate enough contiguous space to store text and data */
3670 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3671 	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3672 	    BUS_DMA_NOWAIT);
3673 }
3674 
3675 static void
3676 wpi_free_fwmem(struct wpi_softc *sc)
3677 {
3678 	wpi_dma_contig_free(&sc->fw_dma);
3679 }
3680 
3681 /**
3682  * Called every second, wpi_watchdog used by the watch dog timer
3683  * to check that the card is still alive
3684  */
3685 static void
3686 wpi_watchdog(void *arg)
3687 {
3688 	struct wpi_softc *sc = arg;
3689 	struct ifnet *ifp = sc->sc_ifp;
3690 	struct ieee80211com *ic = ifp->if_l2com;
3691 	uint32_t tmp;
3692 
3693 	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3694 
3695 	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3696 		/* No need to lock firmware memory */
3697 		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3698 
3699 		if ((tmp & 0x1) == 0) {
3700 			/* Radio kill switch is still off */
3701 			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3702 			return;
3703 		}
3704 
3705 		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3706 		ieee80211_runtask(ic, &sc->sc_radiotask);
3707 		return;
3708 	}
3709 
3710 	if (sc->sc_tx_timer > 0) {
3711 		if (--sc->sc_tx_timer == 0) {
3712 			device_printf(sc->sc_dev,"device timeout\n");
3713 			ifp->if_oerrors++;
3714 			ieee80211_runtask(ic, &sc->sc_restarttask);
3715 		}
3716 	}
3717 	if (sc->sc_scan_timer > 0) {
3718 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3719 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3720 			device_printf(sc->sc_dev,"scan timeout\n");
3721 			ieee80211_cancel_scan(vap);
3722 			ieee80211_runtask(ic, &sc->sc_restarttask);
3723 		}
3724 	}
3725 
3726 	if (ifp->if_flags & IFF_RUNNING)
3727 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3728 }
3729 
3730 #ifdef WPI_DEBUG
3731 static const char *wpi_cmd_str(int cmd)
3732 {
3733 	switch (cmd) {
3734 	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3735 	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3736 	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3737 	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3738 	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3739 	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3740 	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3741 	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3742 	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3743 	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3744 	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3745 	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3746 	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3747 	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3748 
3749 	default:
3750 		KASSERT(1, ("Unknown Command: %d\n", cmd));
3751 		return "UNKNOWN CMD";	/* Make the compiler happy */
3752 	}
3753 }
3754 #endif
3755 
3756 MODULE_DEPEND(wpi, pci,  1, 1, 1);
3757 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3758 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3759 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1);
3760 /*
3761 MODULE_DEPEND(wpi, wpifw_fw_fw, 1, 1, 1);
3762 MODULE_DEPEND(wpi, ath_rate, 1, 1, 1);
3763 */
3764