1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 * 18 * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $ 19 */ 20 21 #define VERSION "20071127" 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 * 26 * The 3945ABG network adapter doesn't use traditional hardware as 27 * many other adaptors do. Instead at run time the eeprom is set into a known 28 * state and told to load boot firmware. The boot firmware loads an init and a 29 * main binary firmware image into SRAM on the card via DMA. 30 * Once the firmware is loaded, the driver/hw then 31 * communicate by way of circular dma rings via the the SRAM to the firmware. 32 * 33 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 34 * The 4 tx data rings allow for prioritization QoS. 35 * 36 * The rx data ring consists of 32 dma buffers. Two registers are used to 37 * indicate where in the ring the driver and the firmware are up to. The 38 * driver sets the initial read index (reg1) and the initial write index (reg2), 39 * the firmware updates the read index (reg1) on rx of a packet and fires an 40 * interrupt. The driver then processes the buffers starting at reg1 indicating 41 * to the firmware which buffers have been accessed by updating reg2. At the 42 * same time allocating new memory for the processed buffer. 43 * 44 * A similar thing happens with the tx rings. The difference is the firmware 45 * stop processing buffers once the queue is full and until confirmation 46 * of a successful transmition (tx_intr) has occurred. 47 * 48 * The command ring operates in the same manner as the tx queues. 49 * 50 * All communication direct to the card (ie eeprom) is classed as Stage1 51 * communication 52 * 53 * All communication via the firmware to the card is classed as State2. 54 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 55 * firmware. The bootstrap firmware and runtime firmware are loaded 56 * from host memory via dma to the card then told to execute. From this point 57 * on the majority of communications between the driver and the card goes 58 * via the firmware. 59 */ 60 61 #include <sys/param.h> 62 #include <sys/sysctl.h> 63 #include <sys/sockio.h> 64 #include <sys/mbuf.h> 65 #include <sys/kernel.h> 66 #include <sys/socket.h> 67 #include <sys/systm.h> 68 #include <sys/malloc.h> 69 #include <sys/queue.h> 70 #include <sys/taskqueue.h> 71 #include <sys/module.h> 72 #include <sys/bus.h> 73 #include <sys/endian.h> 74 #include <sys/linker.h> 75 #include <sys/firmware.h> 76 77 #include <sys/bus.h> 78 #include <sys/resource.h> 79 #include <sys/rman.h> 80 81 #include <bus/pci/pcireg.h> 82 #include <bus/pci/pcivar.h> 83 84 #include <net/bpf.h> 85 #include <net/if.h> 86 #include <net/if_arp.h> 87 #include <net/ifq_var.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <netproto/802_11/ieee80211_var.h> 94 #include <netproto/802_11/ieee80211_radiotap.h> 95 #include <netproto/802_11/ieee80211_regdomain.h> 96 #include <netproto/802_11/ieee80211_ratectl.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_systm.h> 100 #include <netinet/in_var.h> 101 #include <netinet/ip.h> 102 #include <netinet/if_ether.h> 103 104 /* XXX: move elsewhere */ 105 #define abs(x) (((x) < 0) ? -(x) : (x)) 106 107 #include "if_wpireg.h" 108 #include "if_wpivar.h" 109 110 #define WPI_DEBUG 111 112 #ifdef WPI_DEBUG 113 #define DPRINTF(x) do { if (wpi_debug != 0) kprintf x; } while (0) 114 #define DPRINTFN(n, x) do { if (wpi_debug & n) kprintf x; } while (0) 115 #define WPI_DEBUG_SET (wpi_debug != 0) 116 117 enum { 118 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 119 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 120 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 121 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 122 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 123 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 124 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 125 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 126 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 127 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 128 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 129 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 130 WPI_DEBUG_ANY = 0xffffffff 131 }; 132 133 static int wpi_debug = 1; 134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 135 TUNABLE_INT("debug.wpi", &wpi_debug); 136 137 #else 138 #define DPRINTF(x) 139 #define DPRINTFN(n, x) 140 #define WPI_DEBUG_SET 0 141 #endif 142 143 struct wpi_ident { 144 uint16_t vendor; 145 uint16_t device; 146 uint16_t subdevice; 147 const char *name; 148 }; 149 150 static const struct wpi_ident wpi_ident_table[] = { 151 /* The below entries support ABG regardless of the subid */ 152 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 153 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 154 /* The below entries only support BG */ 155 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 156 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 157 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 158 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 159 { 0, 0, 0, NULL } 160 }; 161 162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 163 const char name[IFNAMSIZ], int unit, int opmode, 164 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 165 const uint8_t mac[IEEE80211_ADDR_LEN]); 166 static void wpi_vap_delete(struct ieee80211vap *); 167 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 168 void **, bus_size_t, bus_size_t, int); 169 static void wpi_dma_contig_free(struct wpi_dma_info *); 170 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 171 static int wpi_alloc_shared(struct wpi_softc *); 172 static void wpi_free_shared(struct wpi_softc *); 173 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 174 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 175 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 176 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 177 int, int); 178 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 179 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *, 181 const uint8_t mac[IEEE80211_ADDR_LEN]); 182 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 183 static void wpi_mem_lock(struct wpi_softc *); 184 static void wpi_mem_unlock(struct wpi_softc *); 185 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 186 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 187 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 188 const uint32_t *, int); 189 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 190 static int wpi_alloc_fwmem(struct wpi_softc *); 191 static void wpi_free_fwmem(struct wpi_softc *); 192 static int wpi_load_firmware(struct wpi_softc *); 193 static void wpi_unload_firmware(struct wpi_softc *); 194 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 195 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 196 struct wpi_rx_data *); 197 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 198 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 199 static void wpi_notif_intr(struct wpi_softc *); 200 static void wpi_intr(void *); 201 static uint8_t wpi_plcp_signal(int); 202 static void wpi_watchdog(void *); 203 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 204 struct ieee80211_node *, int); 205 static void wpi_start(struct ifnet *); 206 static void wpi_start_locked(struct ifnet *); 207 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 208 const struct ieee80211_bpf_params *); 209 static void wpi_scan_start(struct ieee80211com *); 210 static void wpi_scan_end(struct ieee80211com *); 211 static void wpi_set_channel(struct ieee80211com *); 212 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 213 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 214 static int wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); 215 static void wpi_read_eeprom(struct wpi_softc *, 216 uint8_t macaddr[IEEE80211_ADDR_LEN]); 217 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 218 static void wpi_read_eeprom_group(struct wpi_softc *, int); 219 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 220 static int wpi_wme_update(struct ieee80211com *); 221 static int wpi_mrr_setup(struct wpi_softc *); 222 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 223 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 224 #if 0 225 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 226 #endif 227 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 228 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 229 static int wpi_scan(struct wpi_softc *); 230 static int wpi_config(struct wpi_softc *); 231 static void wpi_stop_master(struct wpi_softc *); 232 static int wpi_power_up(struct wpi_softc *); 233 static int wpi_reset(struct wpi_softc *); 234 static void wpi_hwreset(void *, int); 235 static void wpi_rfreset(void *, int); 236 static void wpi_hw_config(struct wpi_softc *); 237 static void wpi_init(void *); 238 static void wpi_init_locked(struct wpi_softc *, int); 239 static void wpi_stop(struct wpi_softc *); 240 static void wpi_stop_locked(struct wpi_softc *); 241 242 static void wpi_newassoc(struct ieee80211_node *, int); 243 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 244 int); 245 static void wpi_calib_timeout(void *); 246 static void wpi_power_calibration(struct wpi_softc *, int); 247 static int wpi_get_power_index(struct wpi_softc *, 248 struct wpi_power_group *, struct ieee80211_channel *, int); 249 #ifdef WPI_DEBUG 250 static const char *wpi_cmd_str(int); 251 #endif 252 static int wpi_probe(device_t); 253 static int wpi_attach(device_t); 254 static int wpi_detach(device_t); 255 static int wpi_shutdown(device_t); 256 static int wpi_suspend(device_t); 257 static int wpi_resume(device_t); 258 259 260 static device_method_t wpi_methods[] = { 261 /* Device interface */ 262 DEVMETHOD(device_probe, wpi_probe), 263 DEVMETHOD(device_attach, wpi_attach), 264 DEVMETHOD(device_detach, wpi_detach), 265 DEVMETHOD(device_shutdown, wpi_shutdown), 266 DEVMETHOD(device_suspend, wpi_suspend), 267 DEVMETHOD(device_resume, wpi_resume), 268 269 { 0, 0 } 270 }; 271 272 static driver_t wpi_driver = { 273 "wpi", 274 wpi_methods, 275 sizeof (struct wpi_softc) 276 }; 277 278 static devclass_t wpi_devclass; 279 280 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 281 282 static const uint8_t wpi_ridx_to_plcp[] = { 283 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 284 /* R1-R4 (ral/ural is R4-R1) */ 285 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 286 /* CCK: device-dependent */ 287 10, 20, 55, 110 288 }; 289 static const uint8_t wpi_ridx_to_rate[] = { 290 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 291 2, 4, 11, 22 /*CCK */ 292 }; 293 294 295 static int 296 wpi_probe(device_t dev) 297 { 298 const struct wpi_ident *ident; 299 300 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 301 if (pci_get_vendor(dev) == ident->vendor && 302 pci_get_device(dev) == ident->device) { 303 device_set_desc(dev, ident->name); 304 return 0; 305 } 306 } 307 return ENXIO; 308 } 309 310 /** 311 * Load the firmare image from disk to the allocated dma buffer. 312 * we also maintain the reference to the firmware pointer as there 313 * is times where we may need to reload the firmware but we are not 314 * in a context that can access the filesystem (ie taskq cause by restart) 315 * 316 * @return 0 on success, an errno on failure 317 */ 318 static int 319 wpi_load_firmware(struct wpi_softc *sc) 320 { 321 const struct firmware *fp; 322 struct wpi_dma_info *dma = &sc->fw_dma; 323 const struct wpi_firmware_hdr *hdr; 324 #if 0 325 struct ifnet *ifp; 326 #endif 327 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 328 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 329 int error; 330 331 #if 0 332 ifp = sc->sc_ifp; 333 #endif 334 DPRINTFN(WPI_DEBUG_FIRMWARE, 335 ("Attempting Loading Firmware from wpi_fw module\n")); 336 337 WPI_UNLOCK(sc); 338 339 #if 0 340 lwkt_serialize_exit(ifp->if_serializer); 341 #endif 342 343 #if 0 344 if ((img = firmware_image_load("", dma->tag)) == NULL) { 345 error = ENOENT; 346 lwkt_serialize_enter(ifp->if_serializer); 347 goto fail; 348 } 349 #endif 350 351 352 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 353 device_printf(sc->sc_dev, 354 "could not load firmware image 'wpifw_fw'\n"); 355 error = ENOENT; 356 WPI_LOCK(sc); 357 #if 0 358 lwkt_serialize_enter(ifp->if_serializer); 359 #endif 360 goto fail; 361 } 362 363 fp = sc->fw_fp; 364 365 #if 0 366 lwkt_serialize_enter(ifp->if_serializer); 367 #endif 368 WPI_LOCK(sc); 369 370 371 /* Validate the firmware is minimum a particular version */ 372 if (fp->version < WPI_FW_MINVERSION) { 373 device_printf(sc->sc_dev, 374 "firmware version is too old. Need %d, got %d\n", 375 WPI_FW_MINVERSION, 376 fp->version); 377 error = ENXIO; 378 goto fail; 379 } 380 #if 0 381 #endif 382 383 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 384 device_printf(sc->sc_dev, 385 "firmware file too short: %zu bytes\n", fp->datasize); 386 error = ENXIO; 387 goto fail; 388 } 389 390 hdr = (const struct wpi_firmware_hdr *)fp->data; 391 392 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 393 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 394 395 rtextsz = le32toh(hdr->rtextsz); 396 rdatasz = le32toh(hdr->rdatasz); 397 itextsz = le32toh(hdr->itextsz); 398 idatasz = le32toh(hdr->idatasz); 399 btextsz = le32toh(hdr->btextsz); 400 401 /* check that all firmware segments are present */ 402 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 403 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 404 device_printf(sc->sc_dev, 405 "firmware file too short: %zu bytes\n", fp->datasize); 406 error = ENXIO; /* XXX appropriate error code? */ 407 goto fail; 408 } 409 410 /* get pointers to firmware segments */ 411 rtext = (const uint8_t *)(hdr + 1); 412 rdata = rtext + rtextsz; 413 itext = rdata + rdatasz; 414 idata = itext + itextsz; 415 btext = idata + idatasz; 416 417 DPRINTFN(WPI_DEBUG_FIRMWARE, 418 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 419 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 420 (le32toh(hdr->version) & 0xff000000) >> 24, 421 (le32toh(hdr->version) & 0x00ff0000) >> 16, 422 (le32toh(hdr->version) & 0x0000ffff), 423 rtextsz, rdatasz, 424 itextsz, idatasz, btextsz)); 425 426 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 427 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 428 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 429 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 430 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 431 432 /* sanity checks */ 433 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 434 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 435 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 436 idatasz > WPI_FW_INIT_DATA_MAXSZ || 437 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 438 (btextsz & 3) != 0) { 439 device_printf(sc->sc_dev, "firmware invalid\n"); 440 error = EINVAL; 441 goto fail; 442 } 443 444 /* copy initialization images into pre-allocated DMA-safe memory */ 445 memcpy(dma->vaddr, idata, idatasz); 446 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 447 448 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 449 450 /* tell adapter where to find initialization images */ 451 wpi_mem_lock(sc); 452 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 453 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 454 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 455 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 456 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 457 wpi_mem_unlock(sc); 458 459 /* load firmware boot code */ 460 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 461 device_printf(sc->sc_dev, "Failed to load microcode\n"); 462 goto fail; 463 } 464 465 /* now press "execute" */ 466 WPI_WRITE(sc, WPI_RESET, 0); 467 468 /* wait at most one second for the first alive notification */ 469 if ((error = lksleep(sc, &sc->sc_lock, 0, "wpiinit", hz)) != 0) { 470 device_printf(sc->sc_dev, 471 "timeout waiting for adapter to initialize\n"); 472 goto fail; 473 } 474 475 /* copy runtime images into pre-allocated DMA-sage memory */ 476 memcpy(dma->vaddr, rdata, rdatasz); 477 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 478 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 479 480 /* tell adapter where to find runtime images */ 481 wpi_mem_lock(sc); 482 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 483 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 484 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 485 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 486 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 487 wpi_mem_unlock(sc); 488 489 /* wait at most one second for the first alive notification */ 490 if ((error = lksleep(sc, &sc->sc_lock, 0, "wpiinit", hz)) != 0) { 491 device_printf(sc->sc_dev, 492 "timeout waiting for adapter to initialize2\n"); 493 goto fail; 494 } 495 496 DPRINTFN(WPI_DEBUG_FIRMWARE, 497 ("Firmware loaded to driver successfully\n")); 498 /* 499 sc->sc_fw_image = img; 500 */ 501 return error; 502 fail: 503 wpi_unload_firmware(sc); 504 return error; 505 } 506 507 /** 508 * Free the referenced firmware image 509 */ 510 static void 511 wpi_unload_firmware(struct wpi_softc *sc) 512 { 513 struct ifnet *ifp; 514 ifp = sc->sc_ifp; 515 516 if (sc->fw_fp) { 517 WPI_UNLOCK(sc); 518 #if 0 519 lwkt_serialize_exit(ifp->if_serializer); 520 #endif 521 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 522 #if 0 523 firmware_image_unload(sc->sc_fw_image); 524 #endif 525 #if 0 526 lwkt_serialize_enter(ifp->if_serializer); 527 #endif 528 WPI_LOCK(sc); 529 sc->fw_fp = NULL; 530 } 531 } 532 533 static int 534 wpi_attach(device_t dev) 535 { 536 struct wpi_softc *sc = device_get_softc(dev); 537 struct ifnet *ifp; 538 struct ieee80211com *ic; 539 int ac, error, supportsa = 1; 540 uint32_t tmp; 541 const struct wpi_ident *ident; 542 uint8_t macaddr[IEEE80211_ADDR_LEN]; 543 544 sc->sc_dev = dev; 545 546 if (bootverbose || WPI_DEBUG_SET) 547 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 548 549 /* 550 * Some card's only support 802.11b/g not a, check to see if 551 * this is one such card. A 0x0 in the subdevice table indicates 552 * the entire subdevice range is to be ignored. 553 */ 554 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 555 if (ident->subdevice && 556 pci_get_subdevice(dev) == ident->subdevice) { 557 supportsa = 0; 558 break; 559 } 560 } 561 562 /* Create the tasks that can be queued */ 563 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc); 564 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc); 565 566 WPI_LOCK_INIT(sc); 567 568 callout_init(&sc->calib_to); 569 callout_init(&sc->watchdog_to); 570 571 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 572 device_printf(dev, "chip is in D%d power mode " 573 "-- setting to D0\n", pci_get_powerstate(dev)); 574 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 575 } 576 577 /* disable the retry timeout register */ 578 pci_write_config(dev, 0x41, 0, 1); 579 580 /* enable bus-mastering */ 581 pci_enable_busmaster(dev); 582 583 sc->mem_rid = PCIR_BAR(0); 584 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 585 RF_ACTIVE); 586 if (sc->mem == NULL) { 587 device_printf(dev, "could not allocate memory resource\n"); 588 error = ENOMEM; 589 goto fail; 590 } 591 592 sc->sc_st = rman_get_bustag(sc->mem); 593 sc->sc_sh = rman_get_bushandle(sc->mem); 594 595 sc->irq_rid = 0; 596 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 597 RF_ACTIVE | RF_SHAREABLE); 598 if (sc->irq == NULL) { 599 device_printf(dev, "could not allocate interrupt resource\n"); 600 error = ENOMEM; 601 goto fail; 602 } 603 604 /* 605 * Allocate DMA memory for firmware transfers. 606 */ 607 if ((error = wpi_alloc_fwmem(sc)) != 0) { 608 kprintf(": could not allocate firmware memory\n"); 609 error = ENOMEM; 610 goto fail; 611 } 612 613 /* 614 * Put adapter into a known state. 615 */ 616 if ((error = wpi_reset(sc)) != 0) { 617 device_printf(dev, "could not reset adapter\n"); 618 goto fail; 619 } 620 621 wpi_mem_lock(sc); 622 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 623 if (bootverbose || WPI_DEBUG_SET) 624 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 625 626 wpi_mem_unlock(sc); 627 628 /* Allocate shared page */ 629 if ((error = wpi_alloc_shared(sc)) != 0) { 630 device_printf(dev, "could not allocate shared page\n"); 631 goto fail; 632 } 633 634 /* tx data queues - 4 for QoS purposes */ 635 for (ac = 0; ac < WME_NUM_AC; ac++) { 636 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 637 if (error != 0) { 638 device_printf(dev, "could not allocate Tx ring %d\n",ac); 639 goto fail; 640 } 641 } 642 643 /* command queue to talk to the card's firmware */ 644 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 645 if (error != 0) { 646 device_printf(dev, "could not allocate command ring\n"); 647 goto fail; 648 } 649 650 /* receive data queue */ 651 error = wpi_alloc_rx_ring(sc, &sc->rxq); 652 if (error != 0) { 653 device_printf(dev, "could not allocate Rx ring\n"); 654 goto fail; 655 } 656 657 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 658 if (ifp == NULL) { 659 device_printf(dev, "can not if_alloc()\n"); 660 error = ENOMEM; 661 goto fail; 662 } 663 ic = ifp->if_l2com; 664 665 ic->ic_ifp = ifp; 666 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 667 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 668 669 /* set device capabilities */ 670 ic->ic_caps = 671 IEEE80211_C_STA /* station mode supported */ 672 | IEEE80211_C_MONITOR /* monitor mode supported */ 673 | IEEE80211_C_TXPMGT /* tx power management */ 674 | IEEE80211_C_SHSLOT /* short slot time supported */ 675 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 676 | IEEE80211_C_WPA /* 802.11i */ 677 /* XXX looks like WME is partly supported? */ 678 #if 0 679 | IEEE80211_C_IBSS /* IBSS mode support */ 680 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 681 | IEEE80211_C_WME /* 802.11e */ 682 | IEEE80211_C_HOSTAP /* Host access point mode */ 683 #endif 684 ; 685 686 /* 687 * Read in the eeprom and also setup the channels for 688 * net80211. We don't set the rates as net80211 does this for us 689 */ 690 wpi_read_eeprom(sc, macaddr); 691 692 if (bootverbose || WPI_DEBUG_SET) { 693 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 694 device_printf(sc->sc_dev, "Hardware Type: %c\n", 695 sc->type > 1 ? 'B': '?'); 696 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 697 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 698 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 699 supportsa ? "does" : "does not"); 700 701 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 702 what sc->rev really represents - benjsc 20070615 */ 703 } 704 705 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 706 ifp->if_softc = sc; 707 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 708 ifp->if_init = wpi_init; 709 ifp->if_ioctl = wpi_ioctl; 710 ifp->if_start = wpi_start; 711 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN); 712 ifq_set_ready(&ifp->if_snd); 713 714 ieee80211_ifattach(ic, macaddr); 715 /* override default methods */ 716 ic->ic_node_alloc = wpi_node_alloc; 717 ic->ic_newassoc = wpi_newassoc; 718 ic->ic_raw_xmit = wpi_raw_xmit; 719 ic->ic_wme.wme_update = wpi_wme_update; 720 ic->ic_scan_start = wpi_scan_start; 721 ic->ic_scan_end = wpi_scan_end; 722 ic->ic_set_channel = wpi_set_channel; 723 ic->ic_scan_curchan = wpi_scan_curchan; 724 ic->ic_scan_mindwell = wpi_scan_mindwell; 725 726 ic->ic_vap_create = wpi_vap_create; 727 ic->ic_vap_delete = wpi_vap_delete; 728 729 ieee80211_radiotap_attach(ic, 730 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 731 WPI_TX_RADIOTAP_PRESENT, 732 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 733 WPI_RX_RADIOTAP_PRESENT); 734 735 /* 736 * Hook our interrupt after all initialization is complete. 737 */ 738 error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE, 739 wpi_intr, sc, &sc->sc_ih, ifp->if_serializer); 740 if (error != 0) { 741 device_printf(dev, "could not set up interrupt\n"); 742 goto fail; 743 } 744 745 if (bootverbose) 746 ieee80211_announce(ic); 747 #ifdef XXX_DEBUG 748 ieee80211_announce_channels(ic); 749 #endif 750 return 0; 751 752 fail: wpi_detach(dev); 753 return ENXIO; 754 } 755 756 static int 757 wpi_detach(device_t dev) 758 { 759 struct wpi_softc *sc = device_get_softc(dev); 760 struct ifnet *ifp = sc->sc_ifp; 761 struct ieee80211com *ic; 762 int ac; 763 764 if (ifp != NULL) { 765 ic = ifp->if_l2com; 766 767 ieee80211_draintask(ic, &sc->sc_restarttask); 768 ieee80211_draintask(ic, &sc->sc_radiotask); 769 wpi_stop(sc); 770 callout_stop(&sc->watchdog_to); 771 callout_stop(&sc->calib_to); 772 ieee80211_ifdetach(ic); 773 } 774 775 WPI_LOCK(sc); 776 if (sc->txq[0].data_dmat) { 777 for (ac = 0; ac < WME_NUM_AC; ac++) 778 wpi_free_tx_ring(sc, &sc->txq[ac]); 779 780 wpi_free_tx_ring(sc, &sc->cmdq); 781 wpi_free_rx_ring(sc, &sc->rxq); 782 wpi_free_shared(sc); 783 } 784 785 if (sc->fw_fp != NULL) { 786 wpi_unload_firmware(sc); 787 } 788 789 if (sc->fw_dma.tag) 790 wpi_free_fwmem(sc); 791 WPI_UNLOCK(sc); 792 793 if (sc->irq != NULL) { 794 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 795 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 796 } 797 798 if (sc->mem != NULL) 799 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 800 801 if (ifp != NULL) 802 if_free(ifp); 803 804 WPI_LOCK_DESTROY(sc); 805 806 return 0; 807 } 808 809 static struct ieee80211vap * 810 wpi_vap_create(struct ieee80211com *ic, 811 const char name[IFNAMSIZ], int unit, int opmode, int flags, 812 const uint8_t bssid[IEEE80211_ADDR_LEN], 813 const uint8_t mac[IEEE80211_ADDR_LEN]) 814 { 815 struct wpi_vap *wvp; 816 struct ieee80211vap *vap; 817 818 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 819 return NULL; 820 wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap), 821 M_80211_VAP, M_INTWAIT | M_ZERO); 822 if (wvp == NULL) 823 return NULL; 824 vap = &wvp->vap; 825 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 826 /* override with driver methods */ 827 wvp->newstate = vap->iv_newstate; 828 vap->iv_newstate = wpi_newstate; 829 830 ieee80211_ratectl_init(vap); 831 832 /* complete setup */ 833 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 834 ic->ic_opmode = opmode; 835 return vap; 836 } 837 838 static void 839 wpi_vap_delete(struct ieee80211vap *vap) 840 { 841 struct wpi_vap *wvp = WPI_VAP(vap); 842 843 ieee80211_ratectl_deinit(vap); 844 ieee80211_vap_detach(vap); 845 kfree(wvp, M_80211_VAP); 846 } 847 848 static void 849 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 850 { 851 if (error != 0) 852 return; 853 854 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 855 856 *(bus_addr_t *)arg = segs[0].ds_addr; 857 } 858 859 /* 860 * Allocates a contiguous block of dma memory of the requested size and 861 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 862 * allocations greater than 4096 may fail. Hence if the requested alignment is 863 * greater we allocate 'alignment' size extra memory and shift the vaddr and 864 * paddr after the dma load. This bypasses the problem at the cost of a little 865 * more memory. 866 */ 867 static int 868 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 869 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 870 { 871 int error; 872 bus_size_t align; 873 bus_size_t reqsize; 874 875 DPRINTFN(WPI_DEBUG_DMA, 876 ("Size: %zd - alignment %zd\n", size, alignment)); 877 878 dma->size = size; 879 dma->tag = NULL; 880 881 if (alignment > 4096) { 882 align = PAGE_SIZE; 883 reqsize = size + alignment; 884 } else { 885 align = alignment; 886 reqsize = size; 887 } 888 error = bus_dma_tag_create(dma->tag, align, 889 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 890 NULL, NULL, reqsize, 891 1, reqsize, flags, 892 &dma->tag); 893 if (error != 0) { 894 device_printf(sc->sc_dev, 895 "could not create shared page DMA tag\n"); 896 goto fail; 897 } 898 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 899 flags | BUS_DMA_ZERO, &dma->map); 900 if (error != 0) { 901 device_printf(sc->sc_dev, 902 "could not allocate shared page DMA memory\n"); 903 goto fail; 904 } 905 906 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 907 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 908 909 /* Save the original pointers so we can free all the memory */ 910 dma->paddr = dma->paddr_start; 911 dma->vaddr = dma->vaddr_start; 912 913 /* 914 * Check the alignment and increment by 4096 until we get the 915 * requested alignment. Fail if can't obtain the alignment 916 * we requested. 917 */ 918 if ((dma->paddr & (alignment -1 )) != 0) { 919 int i; 920 921 for (i = 0; i < alignment / 4096; i++) { 922 if ((dma->paddr & (alignment - 1 )) == 0) 923 break; 924 dma->paddr += 4096; 925 dma->vaddr += 4096; 926 } 927 if (i == alignment / 4096) { 928 device_printf(sc->sc_dev, 929 "alignment requirement was not satisfied\n"); 930 goto fail; 931 } 932 } 933 934 if (error != 0) { 935 device_printf(sc->sc_dev, 936 "could not load shared page DMA map\n"); 937 goto fail; 938 } 939 940 if (kvap != NULL) 941 *kvap = dma->vaddr; 942 943 return 0; 944 945 fail: 946 wpi_dma_contig_free(dma); 947 return error; 948 } 949 950 static void 951 wpi_dma_contig_free(struct wpi_dma_info *dma) 952 { 953 if (dma->tag) { 954 if (dma->map != NULL) { 955 if (dma->paddr_start != 0) { 956 bus_dmamap_sync(dma->tag, dma->map, 957 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 958 bus_dmamap_unload(dma->tag, dma->map); 959 } 960 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 961 } 962 bus_dma_tag_destroy(dma->tag); 963 } 964 } 965 966 /* 967 * Allocate a shared page between host and NIC. 968 */ 969 static int 970 wpi_alloc_shared(struct wpi_softc *sc) 971 { 972 int error; 973 974 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 975 (void **)&sc->shared, sizeof (struct wpi_shared), 976 PAGE_SIZE, 977 BUS_DMA_NOWAIT); 978 979 if (error != 0) { 980 device_printf(sc->sc_dev, 981 "could not allocate shared area DMA memory\n"); 982 } 983 984 return error; 985 } 986 987 static void 988 wpi_free_shared(struct wpi_softc *sc) 989 { 990 wpi_dma_contig_free(&sc->shared_dma); 991 } 992 993 static int 994 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 995 { 996 997 int i, error; 998 999 ring->cur = 0; 1000 1001 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1002 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 1003 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1004 1005 if (error != 0) { 1006 device_printf(sc->sc_dev, 1007 "%s: could not allocate rx ring DMA memory, error %d\n", 1008 __func__, error); 1009 goto fail; 1010 } 1011 1012 error = bus_dma_tag_create(ring->data_dmat, 1, 0, 1013 BUS_SPACE_MAXADDR_32BIT, 1014 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, 1015 MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat); 1016 if (error != 0) { 1017 device_printf(sc->sc_dev, 1018 "%s: bus_dma_tag_create_failed, error %d\n", 1019 __func__, error); 1020 goto fail; 1021 } 1022 1023 /* 1024 * Setup Rx buffers. 1025 */ 1026 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1027 struct wpi_rx_data *data = &ring->data[i]; 1028 struct mbuf *m; 1029 bus_addr_t paddr; 1030 1031 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1032 if (error != 0) { 1033 device_printf(sc->sc_dev, 1034 "%s: bus_dmamap_create failed, error %d\n", 1035 __func__, error); 1036 goto fail; 1037 } 1038 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 1039 if (m == NULL) { 1040 device_printf(sc->sc_dev, 1041 "%s: could not allocate rx mbuf\n", __func__); 1042 error = ENOMEM; 1043 goto fail; 1044 } 1045 /* map page */ 1046 error = bus_dmamap_load(ring->data_dmat, data->map, 1047 mtod(m, caddr_t), MCLBYTES, 1048 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1049 if (error != 0 && error != EFBIG) { 1050 device_printf(sc->sc_dev, 1051 "%s: bus_dmamap_load failed, error %d\n", 1052 __func__, error); 1053 m_freem(m); 1054 error = ENOMEM; /* XXX unique code */ 1055 goto fail; 1056 } 1057 bus_dmamap_sync(ring->data_dmat, data->map, 1058 BUS_DMASYNC_PREWRITE); 1059 1060 data->m = m; 1061 ring->desc[i] = htole32(paddr); 1062 } 1063 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1064 BUS_DMASYNC_PREWRITE); 1065 return 0; 1066 fail: 1067 wpi_free_rx_ring(sc, ring); 1068 return error; 1069 } 1070 1071 static void 1072 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1073 { 1074 int ntries; 1075 1076 wpi_mem_lock(sc); 1077 1078 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1079 1080 for (ntries = 0; ntries < 100; ntries++) { 1081 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1082 break; 1083 DELAY(10); 1084 } 1085 1086 wpi_mem_unlock(sc); 1087 1088 #ifdef WPI_DEBUG 1089 if (ntries == 100 && wpi_debug > 0) 1090 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1091 #endif 1092 1093 ring->cur = 0; 1094 } 1095 1096 static void 1097 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1098 { 1099 int i; 1100 1101 wpi_dma_contig_free(&ring->desc_dma); 1102 1103 for (i = 0; i < WPI_RX_RING_COUNT; i++) 1104 if (ring->data[i].m != NULL) 1105 m_freem(ring->data[i].m); 1106 } 1107 1108 static int 1109 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1110 int qid) 1111 { 1112 struct wpi_tx_data *data; 1113 int i, error; 1114 1115 ring->qid = qid; 1116 ring->count = count; 1117 ring->queued = 0; 1118 ring->cur = 0; 1119 ring->data = NULL; 1120 1121 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1122 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1123 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1124 1125 if (error != 0) { 1126 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1127 goto fail; 1128 } 1129 1130 /* update shared page with ring's base address */ 1131 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1132 1133 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1134 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1135 BUS_DMA_NOWAIT); 1136 1137 if (error != 0) { 1138 device_printf(sc->sc_dev, 1139 "could not allocate tx command DMA memory\n"); 1140 goto fail; 1141 } 1142 1143 ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1144 M_INTWAIT | M_ZERO); 1145 if (ring->data == NULL) { 1146 device_printf(sc->sc_dev, 1147 "could not allocate tx data slots\n"); 1148 goto fail; 1149 } 1150 1151 error = bus_dma_tag_create(ring->data_dmat, 1, 0, 1152 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1153 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, 1154 &ring->data_dmat); 1155 if (error != 0) { 1156 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1157 goto fail; 1158 } 1159 1160 for (i = 0; i < count; i++) { 1161 data = &ring->data[i]; 1162 1163 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1164 if (error != 0) { 1165 device_printf(sc->sc_dev, 1166 "could not create tx buf DMA map\n"); 1167 goto fail; 1168 } 1169 bus_dmamap_sync(ring->data_dmat, data->map, 1170 BUS_DMASYNC_PREWRITE); 1171 } 1172 1173 return 0; 1174 1175 fail: 1176 wpi_free_tx_ring(sc, ring); 1177 return error; 1178 } 1179 1180 static void 1181 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1182 { 1183 struct wpi_tx_data *data; 1184 int i, ntries; 1185 1186 wpi_mem_lock(sc); 1187 1188 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1189 for (ntries = 0; ntries < 100; ntries++) { 1190 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1191 break; 1192 DELAY(10); 1193 } 1194 #ifdef WPI_DEBUG 1195 if (ntries == 100 && wpi_debug > 0) 1196 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1197 ring->qid); 1198 #endif 1199 wpi_mem_unlock(sc); 1200 1201 for (i = 0; i < ring->count; i++) { 1202 data = &ring->data[i]; 1203 1204 if (data->m != NULL) { 1205 bus_dmamap_unload(ring->data_dmat, data->map); 1206 m_freem(data->m); 1207 data->m = NULL; 1208 } 1209 } 1210 1211 ring->queued = 0; 1212 ring->cur = 0; 1213 } 1214 1215 static void 1216 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1217 { 1218 struct wpi_tx_data *data; 1219 int i; 1220 1221 wpi_dma_contig_free(&ring->desc_dma); 1222 wpi_dma_contig_free(&ring->cmd_dma); 1223 1224 if (ring->data != NULL) { 1225 for (i = 0; i < ring->count; i++) { 1226 data = &ring->data[i]; 1227 1228 if (data->m != NULL) { 1229 bus_dmamap_sync(ring->data_dmat, data->map, 1230 BUS_DMASYNC_POSTWRITE); 1231 bus_dmamap_unload(ring->data_dmat, data->map); 1232 m_freem(data->m); 1233 data->m = NULL; 1234 } 1235 } 1236 kfree(ring->data, M_DEVBUF); 1237 } 1238 1239 if (ring->data_dmat != NULL) 1240 bus_dma_tag_destroy(ring->data_dmat); 1241 } 1242 1243 static int 1244 wpi_shutdown(device_t dev) 1245 { 1246 struct wpi_softc *sc = device_get_softc(dev); 1247 1248 WPI_LOCK(sc); 1249 wpi_stop_locked(sc); 1250 wpi_unload_firmware(sc); 1251 WPI_UNLOCK(sc); 1252 1253 return 0; 1254 } 1255 1256 static int 1257 wpi_suspend(device_t dev) 1258 { 1259 struct wpi_softc *sc = device_get_softc(dev); 1260 1261 wpi_stop(sc); 1262 return 0; 1263 } 1264 1265 static int 1266 wpi_resume(device_t dev) 1267 { 1268 struct wpi_softc *sc = device_get_softc(dev); 1269 struct ifnet *ifp = sc->sc_ifp; 1270 1271 pci_write_config(dev, 0x41, 0, 1); 1272 1273 if (ifp->if_flags & IFF_UP) { 1274 wpi_init(ifp->if_softc); 1275 if (ifp->if_flags & IFF_RUNNING) 1276 wpi_start(ifp); 1277 } 1278 return 0; 1279 } 1280 1281 /* ARGSUSED */ 1282 static struct ieee80211_node * 1283 wpi_node_alloc(struct ieee80211vap *vap __unused, 1284 const uint8_t mac[IEEE80211_ADDR_LEN] __unused) 1285 { 1286 struct wpi_node *wn; 1287 1288 wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO); 1289 1290 return &wn->ni; 1291 } 1292 1293 /** 1294 * Called by net80211 when ever there is a change to 80211 state machine 1295 */ 1296 static int 1297 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1298 { 1299 struct wpi_vap *wvp = WPI_VAP(vap); 1300 struct ieee80211com *ic = vap->iv_ic; 1301 struct ifnet *ifp = ic->ic_ifp; 1302 struct wpi_softc *sc = ifp->if_softc; 1303 int error; 1304 1305 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1306 ieee80211_state_name[vap->iv_state], 1307 ieee80211_state_name[nstate], sc->flags)); 1308 1309 IEEE80211_UNLOCK(ic); 1310 WPI_LOCK(sc); 1311 if (nstate == IEEE80211_S_AUTH) { 1312 /* The node must be registered in the firmware before auth */ 1313 error = wpi_auth(sc, vap); 1314 if (error != 0) { 1315 device_printf(sc->sc_dev, 1316 "%s: could not move to auth state, error %d\n", 1317 __func__, error); 1318 } 1319 } 1320 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1321 error = wpi_run(sc, vap); 1322 if (error != 0) { 1323 device_printf(sc->sc_dev, 1324 "%s: could not move to run state, error %d\n", 1325 __func__, error); 1326 } 1327 } 1328 if (nstate == IEEE80211_S_RUN) { 1329 /* RUN -> RUN transition; just restart the timers */ 1330 wpi_calib_timeout(sc); 1331 /* XXX split out rate control timer */ 1332 } 1333 WPI_UNLOCK(sc); 1334 IEEE80211_LOCK(ic); 1335 return wvp->newstate(vap, nstate, arg); 1336 } 1337 1338 /* 1339 * Grab exclusive access to NIC memory. 1340 */ 1341 static void 1342 wpi_mem_lock(struct wpi_softc *sc) 1343 { 1344 int ntries; 1345 uint32_t tmp; 1346 1347 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1348 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1349 1350 /* spin until we actually get the lock */ 1351 for (ntries = 0; ntries < 100; ntries++) { 1352 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1353 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1354 break; 1355 DELAY(10); 1356 } 1357 if (ntries == 100) 1358 device_printf(sc->sc_dev, "could not lock memory\n"); 1359 } 1360 1361 /* 1362 * Release lock on NIC memory. 1363 */ 1364 static void 1365 wpi_mem_unlock(struct wpi_softc *sc) 1366 { 1367 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1368 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1369 } 1370 1371 static uint32_t 1372 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1373 { 1374 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1375 return WPI_READ(sc, WPI_READ_MEM_DATA); 1376 } 1377 1378 static void 1379 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1380 { 1381 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1382 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1383 } 1384 1385 static void 1386 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1387 const uint32_t *data, int wlen) 1388 { 1389 for (; wlen > 0; wlen--, data++, addr+=4) 1390 wpi_mem_write(sc, addr, *data); 1391 } 1392 1393 /* 1394 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1395 * using the traditional bit-bang method. Data is read up until len bytes have 1396 * been obtained. 1397 */ 1398 static uint16_t 1399 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1400 { 1401 int ntries; 1402 uint32_t val; 1403 uint8_t *out = data; 1404 1405 wpi_mem_lock(sc); 1406 1407 for (; len > 0; len -= 2, addr++) { 1408 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1409 1410 for (ntries = 0; ntries < 10; ntries++) { 1411 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1412 break; 1413 DELAY(5); 1414 } 1415 1416 if (ntries == 10) { 1417 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1418 return ETIMEDOUT; 1419 } 1420 1421 *out++= val >> 16; 1422 if (len > 1) 1423 *out ++= val >> 24; 1424 } 1425 1426 wpi_mem_unlock(sc); 1427 1428 return 0; 1429 } 1430 1431 /* 1432 * The firmware text and data segments are transferred to the NIC using DMA. 1433 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1434 * where to find it. Once the NIC has copied the firmware into its internal 1435 * memory, we can free our local copy in the driver. 1436 */ 1437 static int 1438 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1439 { 1440 int error, ntries; 1441 1442 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1443 1444 size /= sizeof(uint32_t); 1445 1446 wpi_mem_lock(sc); 1447 1448 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1449 (const uint32_t *)fw, size); 1450 1451 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1452 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1453 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1454 1455 /* run microcode */ 1456 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1457 1458 /* wait while the adapter is busy copying the firmware */ 1459 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1460 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1461 DPRINTFN(WPI_DEBUG_HW, 1462 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1463 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1464 if (status & WPI_TX_IDLE(6)) { 1465 DPRINTFN(WPI_DEBUG_HW, 1466 ("Status Match! - ntries = %d\n", ntries)); 1467 break; 1468 } 1469 DELAY(10); 1470 } 1471 if (ntries == 1000) { 1472 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1473 error = ETIMEDOUT; 1474 } 1475 1476 /* start the microcode executing */ 1477 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1478 1479 wpi_mem_unlock(sc); 1480 1481 return (error); 1482 } 1483 1484 static void 1485 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1486 struct wpi_rx_data *data) 1487 { 1488 struct ifnet *ifp = sc->sc_ifp; 1489 struct ieee80211com *ic = ifp->if_l2com; 1490 struct wpi_rx_ring *ring = &sc->rxq; 1491 struct wpi_rx_stat *stat; 1492 struct wpi_rx_head *head; 1493 struct wpi_rx_tail *tail; 1494 struct ieee80211_node *ni; 1495 struct mbuf *m, *mnew; 1496 bus_addr_t paddr; 1497 int error; 1498 1499 stat = (struct wpi_rx_stat *)(desc + 1); 1500 1501 if (stat->len > WPI_STAT_MAXLEN) { 1502 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1503 ifp->if_ierrors++; 1504 return; 1505 } 1506 1507 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1508 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1509 1510 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1511 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1512 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1513 (uintmax_t)le64toh(tail->tstamp))); 1514 1515 /* discard Rx frames with bad CRC early */ 1516 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1517 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1518 le32toh(tail->flags))); 1519 ifp->if_ierrors++; 1520 return; 1521 } 1522 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1523 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1524 le16toh(head->len))); 1525 ifp->if_ierrors++; 1526 return; 1527 } 1528 1529 /* XXX don't need mbuf, just dma buffer */ 1530 mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 1531 if (mnew == NULL) { 1532 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1533 __func__)); 1534 ifp->if_ierrors++; 1535 return; 1536 } 1537 error = bus_dmamap_load(ring->data_dmat, data->map, 1538 mtod(mnew, caddr_t), MCLBYTES, 1539 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1540 if (error != 0 && error != EFBIG) { 1541 device_printf(sc->sc_dev, 1542 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1543 m_freem(mnew); 1544 ifp->if_ierrors++; 1545 return; 1546 } 1547 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1548 1549 /* finalize mbuf and swap in new one */ 1550 m = data->m; 1551 m->m_pkthdr.rcvif = ifp; 1552 m->m_data = (caddr_t)(head + 1); 1553 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1554 1555 data->m = mnew; 1556 /* update Rx descriptor */ 1557 ring->desc[ring->cur] = htole32(paddr); 1558 1559 if (ieee80211_radiotap_active(ic)) { 1560 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1561 1562 tap->wr_flags = 0; 1563 tap->wr_chan_freq = 1564 htole16(ic->ic_channels[head->chan].ic_freq); 1565 tap->wr_chan_flags = 1566 htole16(ic->ic_channels[head->chan].ic_flags); 1567 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1568 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1569 tap->wr_tsft = tail->tstamp; 1570 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1571 switch (head->rate) { 1572 /* CCK rates */ 1573 case 10: tap->wr_rate = 2; break; 1574 case 20: tap->wr_rate = 4; break; 1575 case 55: tap->wr_rate = 11; break; 1576 case 110: tap->wr_rate = 22; break; 1577 /* OFDM rates */ 1578 case 0xd: tap->wr_rate = 12; break; 1579 case 0xf: tap->wr_rate = 18; break; 1580 case 0x5: tap->wr_rate = 24; break; 1581 case 0x7: tap->wr_rate = 36; break; 1582 case 0x9: tap->wr_rate = 48; break; 1583 case 0xb: tap->wr_rate = 72; break; 1584 case 0x1: tap->wr_rate = 96; break; 1585 case 0x3: tap->wr_rate = 108; break; 1586 /* unknown rate: should not happen */ 1587 default: tap->wr_rate = 0; 1588 } 1589 if (le16toh(head->flags) & 0x4) 1590 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1591 } 1592 1593 WPI_UNLOCK(sc); 1594 1595 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1596 if (ni != NULL) { 1597 (void) ieee80211_input(ni, m, stat->rssi, 0); 1598 ieee80211_free_node(ni); 1599 } else 1600 (void) ieee80211_input_all(ic, m, stat->rssi, 0); 1601 1602 WPI_LOCK(sc); 1603 } 1604 1605 static void 1606 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1607 { 1608 struct ifnet *ifp = sc->sc_ifp; 1609 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1610 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1611 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1612 struct ieee80211_node *ni = txdata->ni; 1613 struct ieee80211vap *vap = ni->ni_vap; 1614 int retrycnt = 0; 1615 1616 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1617 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1618 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1619 le32toh(stat->status))); 1620 1621 /* 1622 * Update rate control statistics for the node. 1623 * XXX we should not count mgmt frames since they're always sent at 1624 * the lowest available bit-rate. 1625 * XXX frames w/o ACK shouldn't be used either 1626 */ 1627 if (stat->ntries > 0) { 1628 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1629 retrycnt = 1; 1630 } 1631 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, 1632 &retrycnt, NULL); 1633 1634 /* XXX oerrors should only count errors !maxtries */ 1635 if ((le32toh(stat->status) & 0xff) != 1) 1636 ifp->if_oerrors++; 1637 else 1638 ifp->if_opackets++; 1639 1640 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1641 bus_dmamap_unload(ring->data_dmat, txdata->map); 1642 /* XXX handle M_TXCB? */ 1643 m_freem(txdata->m); 1644 txdata->m = NULL; 1645 ieee80211_free_node(txdata->ni); 1646 txdata->ni = NULL; 1647 1648 ring->queued--; 1649 1650 sc->sc_tx_timer = 0; 1651 ifp->if_flags &= ~IFF_OACTIVE; 1652 wpi_start_locked(ifp); 1653 } 1654 1655 static void 1656 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1657 { 1658 struct wpi_tx_ring *ring = &sc->cmdq; 1659 struct wpi_tx_data *data; 1660 1661 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1662 "type=%s len=%d\n", desc->qid, desc->idx, 1663 desc->flags, wpi_cmd_str(desc->type), 1664 le32toh(desc->len))); 1665 1666 if ((desc->qid & 7) != 4) 1667 return; /* not a command ack */ 1668 1669 data = &ring->data[desc->idx]; 1670 1671 /* if the command was mapped in a mbuf, free it */ 1672 if (data->m != NULL) { 1673 bus_dmamap_unload(ring->data_dmat, data->map); 1674 m_freem(data->m); 1675 data->m = NULL; 1676 } 1677 1678 sc->flags &= ~WPI_FLAG_BUSY; 1679 wakeup(&ring->cmd[desc->idx]); 1680 } 1681 1682 static void 1683 wpi_notif_intr(struct wpi_softc *sc) 1684 { 1685 struct ifnet *ifp = sc->sc_ifp; 1686 struct ieee80211com *ic = ifp->if_l2com; 1687 struct wpi_rx_desc *desc; 1688 struct wpi_rx_data *data; 1689 uint32_t hw; 1690 1691 hw = le32toh(sc->shared->next); 1692 while (sc->rxq.cur != hw) { 1693 data = &sc->rxq.data[sc->rxq.cur]; 1694 desc = (void *)data->m->m_ext.ext_buf; 1695 1696 DPRINTFN(WPI_DEBUG_NOTIFY, 1697 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1698 desc->qid, 1699 desc->idx, 1700 desc->flags, 1701 desc->type, 1702 le32toh(desc->len))); 1703 1704 if (!(desc->qid & 0x80)) /* reply to a command */ 1705 wpi_cmd_intr(sc, desc); 1706 1707 switch (desc->type) { 1708 case WPI_RX_DONE: 1709 /* a 802.11 frame was received */ 1710 wpi_rx_intr(sc, desc, data); 1711 break; 1712 1713 case WPI_TX_DONE: 1714 /* a 802.11 frame has been transmitted */ 1715 wpi_tx_intr(sc, desc); 1716 break; 1717 1718 case WPI_UC_READY: 1719 { 1720 struct wpi_ucode_info *uc = 1721 (struct wpi_ucode_info *)(desc + 1); 1722 1723 /* the microcontroller is ready */ 1724 DPRINTF(("microcode alive notification version %x " 1725 "alive %x\n", le32toh(uc->version), 1726 le32toh(uc->valid))); 1727 1728 if (le32toh(uc->valid) != 1) { 1729 device_printf(sc->sc_dev, 1730 "microcontroller initialization failed\n"); 1731 wpi_stop_locked(sc); 1732 } 1733 break; 1734 } 1735 case WPI_STATE_CHANGED: 1736 { 1737 uint32_t *status = (uint32_t *)(desc + 1); 1738 1739 /* enabled/disabled notification */ 1740 DPRINTF(("state changed to %x\n", le32toh(*status))); 1741 1742 if (le32toh(*status) & 1) { 1743 device_printf(sc->sc_dev, 1744 "Radio transmitter is switched off\n"); 1745 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1746 ifp->if_flags &= ~IFF_RUNNING; 1747 /* Disable firmware commands */ 1748 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1749 } 1750 break; 1751 } 1752 case WPI_START_SCAN: 1753 { 1754 #ifdef WPI_DEBUG 1755 struct wpi_start_scan *scan = 1756 (struct wpi_start_scan *)(desc + 1); 1757 #endif 1758 1759 DPRINTFN(WPI_DEBUG_SCANNING, 1760 ("scanning channel %d status %x\n", 1761 scan->chan, le32toh(scan->status))); 1762 break; 1763 } 1764 case WPI_STOP_SCAN: 1765 { 1766 #ifdef WPI_DEBUG 1767 struct wpi_stop_scan *scan = 1768 (struct wpi_stop_scan *)(desc + 1); 1769 #endif 1770 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1771 1772 DPRINTFN(WPI_DEBUG_SCANNING, 1773 ("scan finished nchan=%d status=%d chan=%d\n", 1774 scan->nchan, scan->status, scan->chan)); 1775 1776 sc->sc_scan_timer = 0; 1777 ieee80211_scan_next(vap); 1778 break; 1779 } 1780 case WPI_MISSED_BEACON: 1781 { 1782 struct wpi_missed_beacon *beacon = 1783 (struct wpi_missed_beacon *)(desc + 1); 1784 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1785 1786 if (le32toh(beacon->consecutive) >= 1787 vap->iv_bmissthreshold) { 1788 DPRINTF(("Beacon miss: %u >= %u\n", 1789 le32toh(beacon->consecutive), 1790 vap->iv_bmissthreshold)); 1791 ieee80211_beacon_miss(ic); 1792 } 1793 break; 1794 } 1795 } 1796 1797 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1798 } 1799 1800 /* tell the firmware what we have processed */ 1801 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1802 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1803 } 1804 1805 static void 1806 wpi_intr(void *arg) 1807 { 1808 struct wpi_softc *sc = arg; 1809 uint32_t r; 1810 1811 WPI_LOCK(sc); 1812 1813 r = WPI_READ(sc, WPI_INTR); 1814 if (r == 0 || r == 0xffffffff) { 1815 WPI_UNLOCK(sc); 1816 return; 1817 } 1818 1819 /* disable interrupts */ 1820 WPI_WRITE(sc, WPI_MASK, 0); 1821 /* ack interrupts */ 1822 WPI_WRITE(sc, WPI_INTR, r); 1823 1824 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1825 struct ifnet *ifp = sc->sc_ifp; 1826 struct ieee80211com *ic = ifp->if_l2com; 1827 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1828 1829 device_printf(sc->sc_dev, "fatal firmware error\n"); 1830 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1831 "(Hardware Error)")); 1832 if (vap != NULL) 1833 ieee80211_cancel_scan(vap); 1834 ieee80211_runtask(ic, &sc->sc_restarttask); 1835 sc->flags &= ~WPI_FLAG_BUSY; 1836 WPI_UNLOCK(sc); 1837 return; 1838 } 1839 1840 if (r & WPI_RX_INTR) 1841 wpi_notif_intr(sc); 1842 1843 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1844 wakeup(sc); 1845 1846 /* re-enable interrupts */ 1847 if (sc->sc_ifp->if_flags & IFF_UP) 1848 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1849 1850 WPI_UNLOCK(sc); 1851 } 1852 1853 static uint8_t 1854 wpi_plcp_signal(int rate) 1855 { 1856 switch (rate) { 1857 /* CCK rates (returned values are device-dependent) */ 1858 case 2: return 10; 1859 case 4: return 20; 1860 case 11: return 55; 1861 case 22: return 110; 1862 1863 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1864 /* R1-R4 (ral/ural is R4-R1) */ 1865 case 12: return 0xd; 1866 case 18: return 0xf; 1867 case 24: return 0x5; 1868 case 36: return 0x7; 1869 case 48: return 0x9; 1870 case 72: return 0xb; 1871 case 96: return 0x1; 1872 case 108: return 0x3; 1873 1874 /* unsupported rates (should not get there) */ 1875 default: return 0; 1876 } 1877 } 1878 1879 /* quickly determine if a given rate is CCK or OFDM */ 1880 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1881 1882 /* 1883 * Construct the data packet for a transmit buffer and acutally put 1884 * the buffer onto the transmit ring, kicking the card to process the 1885 * the buffer. 1886 */ 1887 static int 1888 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1889 int ac) 1890 { 1891 struct ieee80211vap *vap = ni->ni_vap; 1892 struct ifnet *ifp = sc->sc_ifp; 1893 struct ieee80211com *ic = ifp->if_l2com; 1894 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1895 struct wpi_tx_ring *ring = &sc->txq[ac]; 1896 struct wpi_tx_desc *desc; 1897 struct wpi_tx_data *data; 1898 struct wpi_tx_cmd *cmd; 1899 struct wpi_cmd_data *tx; 1900 struct ieee80211_frame *wh; 1901 const struct ieee80211_txparam *tp; 1902 struct ieee80211_key *k; 1903 struct mbuf *mnew; 1904 int i, error, nsegs, rate, hdrlen, ismcast; 1905 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1906 1907 desc = &ring->desc[ring->cur]; 1908 data = &ring->data[ring->cur]; 1909 1910 wh = mtod(m0, struct ieee80211_frame *); 1911 1912 hdrlen = ieee80211_hdrsize(wh); 1913 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1914 1915 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1916 k = ieee80211_crypto_encap(ni, m0); 1917 if (k == NULL) { 1918 m_freem(m0); 1919 return ENOBUFS; 1920 } 1921 /* packet header may have moved, reset our local pointer */ 1922 wh = mtod(m0, struct ieee80211_frame *); 1923 } 1924 1925 cmd = &ring->cmd[ring->cur]; 1926 cmd->code = WPI_CMD_TX_DATA; 1927 cmd->flags = 0; 1928 cmd->qid = ring->qid; 1929 cmd->idx = ring->cur; 1930 1931 tx = (struct wpi_cmd_data *)cmd->data; 1932 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1933 tx->timeout = htole16(0); 1934 tx->ofdm_mask = 0xff; 1935 tx->cck_mask = 0x0f; 1936 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1937 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1938 tx->len = htole16(m0->m_pkthdr.len); 1939 1940 if (!ismcast) { 1941 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1942 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1943 tx->flags |= htole32(WPI_TX_NEED_ACK); 1944 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1945 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1946 tx->rts_ntries = 7; 1947 } 1948 } 1949 /* pick a rate */ 1950 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1951 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1952 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1953 /* tell h/w to set timestamp in probe responses */ 1954 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1955 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1956 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1957 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1958 tx->timeout = htole16(3); 1959 else 1960 tx->timeout = htole16(2); 1961 rate = tp->mgmtrate; 1962 } else if (ismcast) { 1963 rate = tp->mcastrate; 1964 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1965 rate = tp->ucastrate; 1966 } else { 1967 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1968 rate = ni->ni_txrate; 1969 } 1970 tx->rate = wpi_plcp_signal(rate); 1971 1972 /* be very persistant at sending frames out */ 1973 #if 0 1974 tx->data_ntries = tp->maxretry; 1975 #else 1976 tx->data_ntries = 30; /* XXX way too high */ 1977 #endif 1978 1979 if (ieee80211_radiotap_active_vap(vap)) { 1980 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1981 tap->wt_flags = 0; 1982 tap->wt_rate = rate; 1983 tap->wt_hwqueue = ac; 1984 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1985 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1986 1987 ieee80211_radiotap_tx(vap, m0); 1988 } 1989 1990 /* save and trim IEEE802.11 header */ 1991 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1992 m_adj(m0, hdrlen); 1993 1994 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs, 1995 1, &nsegs, BUS_DMA_NOWAIT); 1996 if (error != 0 && error != EFBIG) { 1997 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1998 error); 1999 m_freem(m0); 2000 return error; 2001 } 2002 if (error != 0) { 2003 /* XXX use m_collapse */ 2004 mnew = m_defrag(m0, MB_DONTWAIT); 2005 if (mnew == NULL) { 2006 device_printf(sc->sc_dev, 2007 "could not defragment mbuf\n"); 2008 m_freem(m0); 2009 return ENOBUFS; 2010 } 2011 m0 = mnew; 2012 2013 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, 2014 m0, segs, 1, &nsegs, BUS_DMA_NOWAIT); 2015 if (error != 0) { 2016 device_printf(sc->sc_dev, 2017 "could not map mbuf (error %d)\n", error); 2018 m_freem(m0); 2019 return error; 2020 } 2021 } 2022 2023 data->m = m0; 2024 data->ni = ni; 2025 2026 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 2027 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 2028 2029 /* first scatter/gather segment is used by the tx data command */ 2030 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2031 (1 + nsegs) << 24); 2032 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2033 ring->cur * sizeof (struct wpi_tx_cmd)); 2034 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 2035 for (i = 1; i <= nsegs; i++) { 2036 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 2037 desc->segs[i].len = htole32(segs[i - 1].ds_len); 2038 } 2039 2040 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2041 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2042 BUS_DMASYNC_PREWRITE); 2043 2044 ring->queued++; 2045 2046 /* kick ring */ 2047 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2048 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2049 2050 return 0; 2051 } 2052 2053 /** 2054 * Process data waiting to be sent on the IFNET output queue 2055 */ 2056 static void 2057 wpi_start(struct ifnet *ifp) 2058 { 2059 struct wpi_softc *sc = ifp->if_softc; 2060 2061 WPI_LOCK(sc); 2062 wpi_start_locked(ifp); 2063 WPI_UNLOCK(sc); 2064 } 2065 2066 static void 2067 wpi_start_locked(struct ifnet *ifp) 2068 { 2069 struct wpi_softc *sc = ifp->if_softc; 2070 struct ieee80211_node *ni; 2071 struct mbuf *m; 2072 int ac; 2073 2074 WPI_LOCK_ASSERT(sc); 2075 2076 if ((ifp->if_flags & IFF_RUNNING) == 0) { 2077 ifq_purge(&ifp->if_snd); 2078 return; 2079 } 2080 2081 for (;;) { 2082 IF_DEQUEUE(&ifp->if_snd, m); 2083 if (m == NULL) 2084 break; 2085 ac = M_WME_GETAC(m); 2086 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2087 /* there is no place left in this ring */ 2088 ifq_prepend(&ifp->if_snd, m); 2089 ifp->if_flags |= IFF_OACTIVE; 2090 break; 2091 } 2092 ni = ieee80211_ref_node((struct ieee80211_node *)m->m_pkthdr.rcvif); 2093 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2094 ieee80211_free_node(ni); 2095 ifp->if_oerrors++; 2096 break; 2097 } 2098 sc->sc_tx_timer = 5; 2099 } 2100 } 2101 2102 static int 2103 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2104 const struct ieee80211_bpf_params *params) 2105 { 2106 struct ieee80211com *ic = ni->ni_ic; 2107 struct ifnet *ifp = ic->ic_ifp; 2108 struct wpi_softc *sc = ifp->if_softc; 2109 2110 /* prevent management frames from being sent if we're not ready */ 2111 if (!(ifp->if_flags & IFF_RUNNING)) { 2112 m_freem(m); 2113 ieee80211_free_node(ni); 2114 return ENETDOWN; 2115 } 2116 WPI_LOCK(sc); 2117 2118 /* management frames go into ring 0 */ 2119 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2120 ifp->if_flags |= IFF_OACTIVE; 2121 m_freem(m); 2122 WPI_UNLOCK(sc); 2123 ieee80211_free_node(ni); 2124 return ENOBUFS; /* XXX */ 2125 } 2126 2127 ifp->if_opackets++; 2128 if (wpi_tx_data(sc, m, ni, 0) != 0) 2129 goto bad; 2130 sc->sc_tx_timer = 5; 2131 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2132 2133 WPI_UNLOCK(sc); 2134 return 0; 2135 bad: 2136 ifp->if_oerrors++; 2137 WPI_UNLOCK(sc); 2138 ieee80211_free_node(ni); 2139 return EIO; /* XXX */ 2140 } 2141 2142 static int 2143 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred) 2144 { 2145 struct wpi_softc *sc = ifp->if_softc; 2146 struct ieee80211com *ic = ifp->if_l2com; 2147 struct ifreq *ifr = (struct ifreq *) data; 2148 int error = 0, startall = 0; 2149 2150 switch (cmd) { 2151 case SIOCSIFFLAGS: 2152 WPI_LOCK(sc); 2153 if ((ifp->if_flags & IFF_UP)) { 2154 if (!(ifp->if_flags & IFF_RUNNING)) { 2155 wpi_init_locked(sc, 0); 2156 startall = 1; 2157 } 2158 } else if ((ifp->if_flags & IFF_RUNNING) || 2159 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2160 wpi_stop_locked(sc); 2161 WPI_UNLOCK(sc); 2162 if (startall) 2163 ieee80211_start_all(ic); 2164 break; 2165 case SIOCGIFMEDIA: 2166 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2167 break; 2168 case SIOCGIFADDR: 2169 error = ether_ioctl(ifp, cmd, data); 2170 break; 2171 default: 2172 error = EINVAL; 2173 break; 2174 } 2175 return error; 2176 } 2177 2178 /* 2179 * Extract various information from EEPROM. 2180 */ 2181 static void 2182 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2183 { 2184 int i; 2185 2186 /* read the hardware capabilities, revision and SKU type */ 2187 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2188 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2189 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2190 2191 /* read the regulatory domain */ 2192 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2193 2194 /* read in the hw MAC address */ 2195 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2196 2197 /* read the list of authorized channels */ 2198 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2199 wpi_read_eeprom_channels(sc,i); 2200 2201 /* read the power level calibration info for each group */ 2202 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2203 wpi_read_eeprom_group(sc,i); 2204 } 2205 2206 /* 2207 * Send a command to the firmware. 2208 */ 2209 static int 2210 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2211 { 2212 struct wpi_tx_ring *ring = &sc->cmdq; 2213 struct wpi_tx_desc *desc; 2214 struct wpi_tx_cmd *cmd; 2215 2216 #ifdef WPI_DEBUG 2217 if (!async) { 2218 WPI_LOCK_ASSERT(sc); 2219 } 2220 #endif 2221 2222 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2223 async)); 2224 2225 if (sc->flags & WPI_FLAG_BUSY) { 2226 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2227 __func__, code); 2228 return EAGAIN; 2229 } 2230 sc->flags|= WPI_FLAG_BUSY; 2231 2232 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2233 code, size)); 2234 2235 desc = &ring->desc[ring->cur]; 2236 cmd = &ring->cmd[ring->cur]; 2237 2238 cmd->code = code; 2239 cmd->flags = 0; 2240 cmd->qid = ring->qid; 2241 cmd->idx = ring->cur; 2242 memcpy(cmd->data, buf, size); 2243 2244 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2245 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2246 ring->cur * sizeof (struct wpi_tx_cmd)); 2247 desc->segs[0].len = htole32(4 + size); 2248 2249 /* kick cmd ring */ 2250 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2251 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2252 2253 if (async) { 2254 sc->flags &= ~ WPI_FLAG_BUSY; 2255 return 0; 2256 } 2257 2258 return lksleep(cmd, &sc->sc_lock, 0, "wpicmd", hz); 2259 } 2260 2261 static int 2262 wpi_wme_update(struct ieee80211com *ic) 2263 { 2264 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2265 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2266 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2267 const struct wmeParams *wmep; 2268 struct wpi_wme_setup wme; 2269 int ac; 2270 2271 /* don't override default WME values if WME is not actually enabled */ 2272 if (!(ic->ic_flags & IEEE80211_F_WME)) 2273 return 0; 2274 2275 wme.flags = 0; 2276 for (ac = 0; ac < WME_NUM_AC; ac++) { 2277 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2278 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2279 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2280 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2281 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2282 2283 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2284 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2285 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2286 } 2287 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2288 #undef WPI_USEC 2289 #undef WPI_EXP2 2290 } 2291 2292 /* 2293 * Configure h/w multi-rate retries. 2294 */ 2295 static int 2296 wpi_mrr_setup(struct wpi_softc *sc) 2297 { 2298 struct ifnet *ifp = sc->sc_ifp; 2299 struct ieee80211com *ic = ifp->if_l2com; 2300 struct wpi_mrr_setup mrr; 2301 int i, error; 2302 2303 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2304 2305 /* CCK rates (not used with 802.11a) */ 2306 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2307 mrr.rates[i].flags = 0; 2308 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2309 /* fallback to the immediate lower CCK rate (if any) */ 2310 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2311 /* try one time at this rate before falling back to "next" */ 2312 mrr.rates[i].ntries = 1; 2313 } 2314 2315 /* OFDM rates (not used with 802.11b) */ 2316 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2317 mrr.rates[i].flags = 0; 2318 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2319 /* fallback to the immediate lower OFDM rate (if any) */ 2320 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2321 mrr.rates[i].next = (i == WPI_OFDM6) ? 2322 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2323 WPI_OFDM6 : WPI_CCK2) : 2324 i - 1; 2325 /* try one time at this rate before falling back to "next" */ 2326 mrr.rates[i].ntries = 1; 2327 } 2328 2329 /* setup MRR for control frames */ 2330 mrr.which = htole32(WPI_MRR_CTL); 2331 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2332 if (error != 0) { 2333 device_printf(sc->sc_dev, 2334 "could not setup MRR for control frames\n"); 2335 return error; 2336 } 2337 2338 /* setup MRR for data frames */ 2339 mrr.which = htole32(WPI_MRR_DATA); 2340 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2341 if (error != 0) { 2342 device_printf(sc->sc_dev, 2343 "could not setup MRR for data frames\n"); 2344 return error; 2345 } 2346 2347 return 0; 2348 } 2349 2350 static void 2351 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2352 { 2353 struct wpi_cmd_led led; 2354 2355 led.which = which; 2356 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2357 led.off = off; 2358 led.on = on; 2359 2360 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2361 } 2362 2363 static void 2364 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2365 { 2366 struct wpi_cmd_tsf tsf; 2367 uint64_t val, mod; 2368 2369 memset(&tsf, 0, sizeof tsf); 2370 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2371 tsf.bintval = htole16(ni->ni_intval); 2372 tsf.lintval = htole16(10); 2373 2374 /* compute remaining time until next beacon */ 2375 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2376 mod = le64toh(tsf.tstamp) % val; 2377 tsf.binitval = htole32((uint32_t)(val - mod)); 2378 2379 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2380 device_printf(sc->sc_dev, "could not enable TSF\n"); 2381 } 2382 2383 #if 0 2384 /* 2385 * Build a beacon frame that the firmware will broadcast periodically in 2386 * IBSS or HostAP modes. 2387 */ 2388 static int 2389 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2390 { 2391 struct ifnet *ifp = sc->sc_ifp; 2392 struct ieee80211com *ic = ifp->if_l2com; 2393 struct wpi_tx_ring *ring = &sc->cmdq; 2394 struct wpi_tx_desc *desc; 2395 struct wpi_tx_data *data; 2396 struct wpi_tx_cmd *cmd; 2397 struct wpi_cmd_beacon *bcn; 2398 struct ieee80211_beacon_offsets bo; 2399 struct mbuf *m0; 2400 bus_addr_t physaddr; 2401 int error; 2402 2403 desc = &ring->desc[ring->cur]; 2404 data = &ring->data[ring->cur]; 2405 2406 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2407 if (m0 == NULL) { 2408 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2409 return ENOMEM; 2410 } 2411 2412 cmd = &ring->cmd[ring->cur]; 2413 cmd->code = WPI_CMD_SET_BEACON; 2414 cmd->flags = 0; 2415 cmd->qid = ring->qid; 2416 cmd->idx = ring->cur; 2417 2418 bcn = (struct wpi_cmd_beacon *)cmd->data; 2419 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2420 bcn->id = WPI_ID_BROADCAST; 2421 bcn->ofdm_mask = 0xff; 2422 bcn->cck_mask = 0x0f; 2423 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2424 bcn->len = htole16(m0->m_pkthdr.len); 2425 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2426 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2427 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2428 2429 /* save and trim IEEE802.11 header */ 2430 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2431 m_adj(m0, sizeof (struct ieee80211_frame)); 2432 2433 /* assume beacon frame is contiguous */ 2434 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2435 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2436 if (error != 0) { 2437 device_printf(sc->sc_dev, "could not map beacon\n"); 2438 m_freem(m0); 2439 return error; 2440 } 2441 2442 data->m = m0; 2443 2444 /* first scatter/gather segment is used by the beacon command */ 2445 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2446 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2447 ring->cur * sizeof (struct wpi_tx_cmd)); 2448 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2449 desc->segs[1].addr = htole32(physaddr); 2450 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2451 2452 /* kick cmd ring */ 2453 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2454 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2455 2456 return 0; 2457 } 2458 #endif 2459 2460 static int 2461 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2462 { 2463 struct ieee80211com *ic = vap->iv_ic; 2464 struct ieee80211_node *ni; 2465 struct wpi_node_info node; 2466 int error; 2467 2468 2469 /* update adapter's configuration */ 2470 sc->config.associd = 0; 2471 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2472 ni = ieee80211_ref_node(vap->iv_bss); 2473 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2474 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2475 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2476 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2477 WPI_CONFIG_24GHZ); 2478 } 2479 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2480 sc->config.cck_mask = 0; 2481 sc->config.ofdm_mask = 0x15; 2482 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2483 sc->config.cck_mask = 0x03; 2484 sc->config.ofdm_mask = 0; 2485 } else { 2486 /* XXX assume 802.11b/g */ 2487 sc->config.cck_mask = 0x0f; 2488 sc->config.ofdm_mask = 0x15; 2489 } 2490 2491 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2492 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2493 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2494 sizeof (struct wpi_config), 1); 2495 if (error != 0) { 2496 device_printf(sc->sc_dev, "could not configure\n"); 2497 ieee80211_free_node(ni); 2498 return error; 2499 } 2500 2501 /* configuration has changed, set Tx power accordingly */ 2502 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2503 device_printf(sc->sc_dev, "could not set Tx power\n"); 2504 ieee80211_free_node(ni); 2505 return error; 2506 } 2507 2508 /* add default node */ 2509 memset(&node, 0, sizeof node); 2510 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2511 ieee80211_free_node(ni); 2512 node.id = WPI_ID_BSS; 2513 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2514 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2515 node.action = htole32(WPI_ACTION_SET_RATE); 2516 node.antenna = WPI_ANTENNA_BOTH; 2517 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2518 if (error != 0) 2519 device_printf(sc->sc_dev, "could not add BSS node\n"); 2520 2521 return (error); 2522 } 2523 2524 static int 2525 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2526 { 2527 struct ieee80211com *ic = vap->iv_ic; 2528 struct ieee80211_node *ni; 2529 int error; 2530 2531 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2532 /* link LED blinks while monitoring */ 2533 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2534 return 0; 2535 } 2536 2537 ni = ieee80211_ref_node(vap->iv_bss); 2538 wpi_enable_tsf(sc, ni); 2539 2540 /* update adapter's configuration */ 2541 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2542 /* short preamble/slot time are negotiated when associating */ 2543 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2544 WPI_CONFIG_SHSLOT); 2545 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2546 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2547 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2548 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2549 sc->config.filter |= htole32(WPI_FILTER_BSS); 2550 2551 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2552 2553 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2554 sc->config.flags)); 2555 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2556 wpi_config), 1); 2557 if (error != 0) { 2558 device_printf(sc->sc_dev, "could not update configuration\n"); 2559 ieee80211_free_node(ni); 2560 return error; 2561 } 2562 2563 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2564 ieee80211_free_node(ni); 2565 if (error != 0) { 2566 device_printf(sc->sc_dev, "could set txpower\n"); 2567 return error; 2568 } 2569 2570 /* link LED always on while associated */ 2571 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2572 2573 /* start automatic rate control timer */ 2574 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2575 2576 return (error); 2577 } 2578 2579 /* 2580 * Send a scan request to the firmware. Since this command is huge, we map it 2581 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2582 * much of this code is similar to that in wpi_cmd but because we must manually 2583 * construct the probe & channels, we duplicate what's needed here. XXX In the 2584 * future, this function should be modified to use wpi_cmd to help cleanup the 2585 * code base. 2586 */ 2587 static int 2588 wpi_scan(struct wpi_softc *sc) 2589 { 2590 struct ifnet *ifp = sc->sc_ifp; 2591 struct ieee80211com *ic = ifp->if_l2com; 2592 struct ieee80211_scan_state *ss = ic->ic_scan; 2593 struct wpi_tx_ring *ring = &sc->cmdq; 2594 struct wpi_tx_desc *desc; 2595 struct wpi_tx_data *data; 2596 struct wpi_tx_cmd *cmd; 2597 struct wpi_scan_hdr *hdr; 2598 struct wpi_scan_chan *chan; 2599 struct ieee80211_frame *wh; 2600 struct ieee80211_rateset *rs; 2601 struct ieee80211_channel *c; 2602 enum ieee80211_phymode mode; 2603 uint8_t *frm; 2604 int nrates, pktlen, error, i, nssid; 2605 bus_addr_t physaddr; 2606 2607 desc = &ring->desc[ring->cur]; 2608 data = &ring->data[ring->cur]; 2609 2610 data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); 2611 if (data->m == NULL) { 2612 device_printf(sc->sc_dev, 2613 "could not allocate mbuf for scan command\n"); 2614 return ENOMEM; 2615 } 2616 2617 cmd = mtod(data->m, struct wpi_tx_cmd *); 2618 cmd->code = WPI_CMD_SCAN; 2619 cmd->flags = 0; 2620 cmd->qid = ring->qid; 2621 cmd->idx = ring->cur; 2622 2623 hdr = (struct wpi_scan_hdr *)cmd->data; 2624 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2625 2626 /* 2627 * Move to the next channel if no packets are received within 5 msecs 2628 * after sending the probe request (this helps to reduce the duration 2629 * of active scans). 2630 */ 2631 hdr->quiet = htole16(5); 2632 hdr->threshold = htole16(1); 2633 2634 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2635 /* send probe requests at 6Mbps */ 2636 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2637 2638 /* Enable crc checking */ 2639 hdr->promotion = htole16(1); 2640 } else { 2641 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2642 /* send probe requests at 1Mbps */ 2643 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2644 } 2645 hdr->tx.id = WPI_ID_BROADCAST; 2646 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2647 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2648 2649 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2650 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2651 for (i = 0; i < nssid; i++) { 2652 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2653 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2654 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2655 hdr->scan_essids[i].esslen); 2656 #ifdef WPI_DEBUG 2657 if (wpi_debug & WPI_DEBUG_SCANNING) { 2658 kprintf("Scanning Essid: "); 2659 ieee80211_print_essid(hdr->scan_essids[i].essid, 2660 hdr->scan_essids[i].esslen); 2661 kprintf("\n"); 2662 } 2663 #endif 2664 } 2665 2666 /* 2667 * Build a probe request frame. Most of the following code is a 2668 * copy & paste of what is done in net80211. 2669 */ 2670 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2671 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2672 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2673 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2674 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2675 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2676 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2677 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2678 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2679 2680 frm = (uint8_t *)(wh + 1); 2681 2682 /* add essid IE, the hardware will fill this in for us */ 2683 *frm++ = IEEE80211_ELEMID_SSID; 2684 *frm++ = 0; 2685 2686 mode = ieee80211_chan2mode(ic->ic_curchan); 2687 rs = &ic->ic_sup_rates[mode]; 2688 2689 /* add supported rates IE */ 2690 *frm++ = IEEE80211_ELEMID_RATES; 2691 nrates = rs->rs_nrates; 2692 if (nrates > IEEE80211_RATE_SIZE) 2693 nrates = IEEE80211_RATE_SIZE; 2694 *frm++ = nrates; 2695 memcpy(frm, rs->rs_rates, nrates); 2696 frm += nrates; 2697 2698 /* add supported xrates IE */ 2699 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2700 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2701 *frm++ = IEEE80211_ELEMID_XRATES; 2702 *frm++ = nrates; 2703 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2704 frm += nrates; 2705 } 2706 2707 /* setup length of probe request */ 2708 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2709 2710 /* 2711 * Construct information about the channel that we 2712 * want to scan. The firmware expects this to be directly 2713 * after the scan probe request 2714 */ 2715 c = ic->ic_curchan; 2716 chan = (struct wpi_scan_chan *)frm; 2717 chan->chan = ieee80211_chan2ieee(ic, c); 2718 chan->flags = 0; 2719 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2720 chan->flags |= WPI_CHAN_ACTIVE; 2721 if (nssid != 0) 2722 chan->flags |= WPI_CHAN_DIRECT; 2723 } 2724 chan->gain_dsp = 0x6e; /* Default level */ 2725 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2726 chan->active = htole16(10); 2727 chan->passive = htole16(ss->ss_maxdwell); 2728 chan->gain_radio = 0x3b; 2729 } else { 2730 chan->active = htole16(20); 2731 chan->passive = htole16(ss->ss_maxdwell); 2732 chan->gain_radio = 0x28; 2733 } 2734 2735 DPRINTFN(WPI_DEBUG_SCANNING, 2736 ("Scanning %u Passive: %d\n", 2737 chan->chan, 2738 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2739 2740 hdr->nchan++; 2741 chan++; 2742 2743 frm += sizeof (struct wpi_scan_chan); 2744 #if 0 2745 // XXX All Channels.... 2746 for (c = &ic->ic_channels[1]; 2747 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2748 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2749 continue; 2750 2751 chan->chan = ieee80211_chan2ieee(ic, c); 2752 chan->flags = 0; 2753 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2754 chan->flags |= WPI_CHAN_ACTIVE; 2755 if (ic->ic_des_ssid[0].len != 0) 2756 chan->flags |= WPI_CHAN_DIRECT; 2757 } 2758 chan->gain_dsp = 0x6e; /* Default level */ 2759 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2760 chan->active = htole16(10); 2761 chan->passive = htole16(110); 2762 chan->gain_radio = 0x3b; 2763 } else { 2764 chan->active = htole16(20); 2765 chan->passive = htole16(120); 2766 chan->gain_radio = 0x28; 2767 } 2768 2769 DPRINTFN(WPI_DEBUG_SCANNING, 2770 ("Scanning %u Passive: %d\n", 2771 chan->chan, 2772 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2773 2774 hdr->nchan++; 2775 chan++; 2776 2777 frm += sizeof (struct wpi_scan_chan); 2778 } 2779 #endif 2780 2781 hdr->len = htole16(frm - (uint8_t *)hdr); 2782 pktlen = frm - (uint8_t *)cmd; 2783 2784 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2785 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2786 if (error != 0) { 2787 device_printf(sc->sc_dev, "could not map scan command\n"); 2788 m_freem(data->m); 2789 data->m = NULL; 2790 return error; 2791 } 2792 2793 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2794 desc->segs[0].addr = htole32(physaddr); 2795 desc->segs[0].len = htole32(pktlen); 2796 2797 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2798 BUS_DMASYNC_PREWRITE); 2799 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2800 2801 /* kick cmd ring */ 2802 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2803 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2804 2805 sc->sc_scan_timer = 5; 2806 return 0; /* will be notified async. of failure/success */ 2807 } 2808 2809 /** 2810 * Configure the card to listen to a particular channel, this transisions the 2811 * card in to being able to receive frames from remote devices. 2812 */ 2813 static int 2814 wpi_config(struct wpi_softc *sc) 2815 { 2816 struct ifnet *ifp = sc->sc_ifp; 2817 struct ieee80211com *ic = ifp->if_l2com; 2818 struct wpi_power power; 2819 struct wpi_bluetooth bluetooth; 2820 struct wpi_node_info node; 2821 int error; 2822 2823 /* set power mode */ 2824 memset(&power, 0, sizeof power); 2825 power.flags = htole32(WPI_POWER_CAM|0x8); 2826 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2827 if (error != 0) { 2828 device_printf(sc->sc_dev, "could not set power mode\n"); 2829 return error; 2830 } 2831 2832 /* configure bluetooth coexistence */ 2833 memset(&bluetooth, 0, sizeof bluetooth); 2834 bluetooth.flags = 3; 2835 bluetooth.lead = 0xaa; 2836 bluetooth.kill = 1; 2837 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2838 0); 2839 if (error != 0) { 2840 device_printf(sc->sc_dev, 2841 "could not configure bluetooth coexistence\n"); 2842 return error; 2843 } 2844 2845 /* configure adapter */ 2846 memset(&sc->config, 0, sizeof (struct wpi_config)); 2847 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2848 /*set default channel*/ 2849 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2850 sc->config.flags = htole32(WPI_CONFIG_TSF); 2851 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2852 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2853 WPI_CONFIG_24GHZ); 2854 } 2855 sc->config.filter = 0; 2856 switch (ic->ic_opmode) { 2857 case IEEE80211_M_STA: 2858 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2859 sc->config.mode = WPI_MODE_STA; 2860 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2861 break; 2862 case IEEE80211_M_IBSS: 2863 case IEEE80211_M_AHDEMO: 2864 sc->config.mode = WPI_MODE_IBSS; 2865 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2866 WPI_FILTER_MULTICAST); 2867 break; 2868 case IEEE80211_M_HOSTAP: 2869 sc->config.mode = WPI_MODE_HOSTAP; 2870 break; 2871 case IEEE80211_M_MONITOR: 2872 sc->config.mode = WPI_MODE_MONITOR; 2873 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2874 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2875 break; 2876 default: 2877 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2878 return EINVAL; 2879 } 2880 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2881 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2882 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2883 sizeof (struct wpi_config), 0); 2884 if (error != 0) { 2885 device_printf(sc->sc_dev, "configure command failed\n"); 2886 return error; 2887 } 2888 2889 /* configuration has changed, set Tx power accordingly */ 2890 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2891 device_printf(sc->sc_dev, "could not set Tx power\n"); 2892 return error; 2893 } 2894 2895 /* add broadcast node */ 2896 memset(&node, 0, sizeof node); 2897 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2898 node.id = WPI_ID_BROADCAST; 2899 node.rate = wpi_plcp_signal(2); 2900 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2901 if (error != 0) { 2902 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2903 return error; 2904 } 2905 2906 /* Setup rate scalling */ 2907 error = wpi_mrr_setup(sc); 2908 if (error != 0) { 2909 device_printf(sc->sc_dev, "could not setup MRR\n"); 2910 return error; 2911 } 2912 2913 return 0; 2914 } 2915 2916 static void 2917 wpi_stop_master(struct wpi_softc *sc) 2918 { 2919 uint32_t tmp; 2920 int ntries; 2921 2922 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2923 2924 tmp = WPI_READ(sc, WPI_RESET); 2925 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2926 2927 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2928 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2929 return; /* already asleep */ 2930 2931 for (ntries = 0; ntries < 100; ntries++) { 2932 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2933 break; 2934 DELAY(10); 2935 } 2936 if (ntries == 100) { 2937 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2938 } 2939 } 2940 2941 static int 2942 wpi_power_up(struct wpi_softc *sc) 2943 { 2944 uint32_t tmp; 2945 int ntries; 2946 2947 wpi_mem_lock(sc); 2948 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2949 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2950 wpi_mem_unlock(sc); 2951 2952 for (ntries = 0; ntries < 5000; ntries++) { 2953 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2954 break; 2955 DELAY(10); 2956 } 2957 if (ntries == 5000) { 2958 device_printf(sc->sc_dev, 2959 "timeout waiting for NIC to power up\n"); 2960 return ETIMEDOUT; 2961 } 2962 return 0; 2963 } 2964 2965 static int 2966 wpi_reset(struct wpi_softc *sc) 2967 { 2968 uint32_t tmp; 2969 int ntries; 2970 2971 DPRINTFN(WPI_DEBUG_HW, 2972 ("Resetting the card - clearing any uploaded firmware\n")); 2973 2974 /* clear any pending interrupts */ 2975 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2976 2977 tmp = WPI_READ(sc, WPI_PLL_CTL); 2978 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2979 2980 tmp = WPI_READ(sc, WPI_CHICKEN); 2981 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2982 2983 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2984 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2985 2986 /* wait for clock stabilization */ 2987 for (ntries = 0; ntries < 25000; ntries++) { 2988 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2989 break; 2990 DELAY(10); 2991 } 2992 if (ntries == 25000) { 2993 device_printf(sc->sc_dev, 2994 "timeout waiting for clock stabilization\n"); 2995 return ETIMEDOUT; 2996 } 2997 2998 /* initialize EEPROM */ 2999 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 3000 3001 if ((tmp & WPI_EEPROM_VERSION) == 0) { 3002 device_printf(sc->sc_dev, "EEPROM not found\n"); 3003 return EIO; 3004 } 3005 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 3006 3007 return 0; 3008 } 3009 3010 static void 3011 wpi_hw_config(struct wpi_softc *sc) 3012 { 3013 uint32_t rev, hw; 3014 3015 /* voodoo from the Linux "driver".. */ 3016 hw = WPI_READ(sc, WPI_HWCONFIG); 3017 3018 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 3019 if ((rev & 0xc0) == 0x40) 3020 hw |= WPI_HW_ALM_MB; 3021 else if (!(rev & 0x80)) 3022 hw |= WPI_HW_ALM_MM; 3023 3024 if (sc->cap == 0x80) 3025 hw |= WPI_HW_SKU_MRC; 3026 3027 hw &= ~WPI_HW_REV_D; 3028 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 3029 hw |= WPI_HW_REV_D; 3030 3031 if (sc->type > 1) 3032 hw |= WPI_HW_TYPE_B; 3033 3034 WPI_WRITE(sc, WPI_HWCONFIG, hw); 3035 } 3036 3037 static void 3038 wpi_rfkill_resume(struct wpi_softc *sc) 3039 { 3040 struct ifnet *ifp = sc->sc_ifp; 3041 struct ieee80211com *ic = ifp->if_l2com; 3042 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3043 int ntries; 3044 3045 /* enable firmware again */ 3046 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3047 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3048 3049 /* wait for thermal sensors to calibrate */ 3050 for (ntries = 0; ntries < 1000; ntries++) { 3051 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3052 break; 3053 DELAY(10); 3054 } 3055 3056 if (ntries == 1000) { 3057 device_printf(sc->sc_dev, 3058 "timeout waiting for thermal calibration\n"); 3059 return; 3060 } 3061 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3062 3063 if (wpi_config(sc) != 0) { 3064 device_printf(sc->sc_dev, "device config failed\n"); 3065 return; 3066 } 3067 3068 ifp->if_flags &= ~IFF_OACTIVE; 3069 ifp->if_flags |= IFF_RUNNING; 3070 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3071 3072 if (vap != NULL) { 3073 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3074 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3075 ieee80211_beacon_miss(ic); 3076 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3077 } else 3078 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3079 } else { 3080 ieee80211_scan_next(vap); 3081 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3082 } 3083 } 3084 3085 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3086 } 3087 3088 static void 3089 wpi_init_locked(struct wpi_softc *sc, int force) 3090 { 3091 struct ifnet *ifp = sc->sc_ifp; 3092 uint32_t tmp; 3093 int ntries, qid; 3094 3095 wpi_stop_locked(sc); 3096 (void)wpi_reset(sc); 3097 3098 wpi_mem_lock(sc); 3099 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3100 DELAY(20); 3101 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3102 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3103 wpi_mem_unlock(sc); 3104 3105 (void)wpi_power_up(sc); 3106 wpi_hw_config(sc); 3107 3108 /* init Rx ring */ 3109 wpi_mem_lock(sc); 3110 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3111 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3112 offsetof(struct wpi_shared, next)); 3113 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3114 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3115 wpi_mem_unlock(sc); 3116 3117 /* init Tx rings */ 3118 wpi_mem_lock(sc); 3119 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3120 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3121 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3122 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3123 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3124 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3125 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3126 3127 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3128 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3129 3130 for (qid = 0; qid < 6; qid++) { 3131 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3132 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3133 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3134 } 3135 wpi_mem_unlock(sc); 3136 3137 /* clear "radio off" and "disable command" bits (reversed logic) */ 3138 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3139 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3140 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3141 3142 /* clear any pending interrupts */ 3143 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3144 3145 /* enable interrupts */ 3146 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3147 3148 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3149 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3150 3151 if ((wpi_load_firmware(sc)) != 0) { 3152 device_printf(sc->sc_dev, 3153 "A problem occurred loading the firmware to the driver\n"); 3154 return; 3155 } 3156 3157 /* At this point the firmware is up and running. If the hardware 3158 * RF switch is turned off thermal calibration will fail, though 3159 * the card is still happy to continue to accept commands, catch 3160 * this case and schedule a task to watch for it to be turned on. 3161 */ 3162 wpi_mem_lock(sc); 3163 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3164 wpi_mem_unlock(sc); 3165 3166 if (!(tmp & 0x1)) { 3167 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3168 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3169 goto out; 3170 } 3171 3172 /* wait for thermal sensors to calibrate */ 3173 for (ntries = 0; ntries < 1000; ntries++) { 3174 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3175 break; 3176 DELAY(10); 3177 } 3178 3179 if (ntries == 1000) { 3180 device_printf(sc->sc_dev, 3181 "timeout waiting for thermal sensors calibration\n"); 3182 return; 3183 } 3184 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3185 3186 if (wpi_config(sc) != 0) { 3187 device_printf(sc->sc_dev, "device config failed\n"); 3188 return; 3189 } 3190 3191 ifp->if_flags &= ~IFF_OACTIVE; 3192 ifp->if_flags |= IFF_RUNNING; 3193 out: 3194 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3195 } 3196 3197 static void 3198 wpi_init(void *arg) 3199 { 3200 struct wpi_softc *sc = arg; 3201 struct ifnet *ifp = sc->sc_ifp; 3202 struct ieee80211com *ic = ifp->if_l2com; 3203 3204 WPI_LOCK(sc); 3205 wpi_init_locked(sc, 0); 3206 WPI_UNLOCK(sc); 3207 3208 if (ifp->if_flags & IFF_RUNNING) 3209 ieee80211_start_all(ic); /* start all vaps */ 3210 } 3211 3212 static void 3213 wpi_stop_locked(struct wpi_softc *sc) 3214 { 3215 struct ifnet *ifp = sc->sc_ifp; 3216 uint32_t tmp; 3217 int ac; 3218 3219 sc->sc_tx_timer = 0; 3220 sc->sc_scan_timer = 0; 3221 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3222 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3223 callout_stop(&sc->watchdog_to); 3224 callout_stop(&sc->calib_to); 3225 3226 3227 /* disable interrupts */ 3228 WPI_WRITE(sc, WPI_MASK, 0); 3229 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3230 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3231 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3232 3233 wpi_mem_lock(sc); 3234 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3235 wpi_mem_unlock(sc); 3236 3237 /* reset all Tx rings */ 3238 for (ac = 0; ac < 4; ac++) 3239 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3240 wpi_reset_tx_ring(sc, &sc->cmdq); 3241 3242 /* reset Rx ring */ 3243 wpi_reset_rx_ring(sc, &sc->rxq); 3244 3245 wpi_mem_lock(sc); 3246 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3247 wpi_mem_unlock(sc); 3248 3249 DELAY(5); 3250 3251 wpi_stop_master(sc); 3252 3253 tmp = WPI_READ(sc, WPI_RESET); 3254 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3255 sc->flags &= ~WPI_FLAG_BUSY; 3256 } 3257 3258 static void 3259 wpi_stop(struct wpi_softc *sc) 3260 { 3261 WPI_LOCK(sc); 3262 wpi_stop_locked(sc); 3263 WPI_UNLOCK(sc); 3264 } 3265 3266 static void 3267 wpi_newassoc(struct ieee80211_node *ni, int isnew) 3268 { 3269 /* XXX move */ 3270 ieee80211_ratectl_node_init(ni); 3271 } 3272 3273 static void 3274 wpi_calib_timeout(void *arg) 3275 { 3276 struct wpi_softc *sc = arg; 3277 struct ifnet *ifp = sc->sc_ifp; 3278 struct ieee80211com *ic = ifp->if_l2com; 3279 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3280 int temp; 3281 3282 if (vap->iv_state != IEEE80211_S_RUN) 3283 return; 3284 3285 /* update sensor data */ 3286 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3287 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3288 3289 wpi_power_calibration(sc, temp); 3290 3291 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3292 } 3293 3294 /* 3295 * This function is called periodically (every 60 seconds) to adjust output 3296 * power to temperature changes. 3297 */ 3298 static void 3299 wpi_power_calibration(struct wpi_softc *sc, int temp) 3300 { 3301 struct ifnet *ifp = sc->sc_ifp; 3302 struct ieee80211com *ic = ifp->if_l2com; 3303 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3304 3305 /* sanity-check read value */ 3306 if (temp < -260 || temp > 25) { 3307 /* this can't be correct, ignore */ 3308 DPRINTFN(WPI_DEBUG_TEMP, 3309 ("out-of-range temperature reported: %d\n", temp)); 3310 return; 3311 } 3312 3313 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3314 3315 /* adjust Tx power if need be */ 3316 if (abs(temp - sc->temp) <= 6) 3317 return; 3318 3319 sc->temp = temp; 3320 3321 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3322 /* just warn, too bad for the automatic calibration... */ 3323 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3324 } 3325 } 3326 3327 /** 3328 * Read the eeprom to find out what channels are valid for the given 3329 * band and update net80211 with what we find. 3330 */ 3331 static void 3332 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3333 { 3334 struct ifnet *ifp = sc->sc_ifp; 3335 struct ieee80211com *ic = ifp->if_l2com; 3336 const struct wpi_chan_band *band = &wpi_bands[n]; 3337 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3338 struct ieee80211_channel *c; 3339 int chan, i, passive; 3340 3341 wpi_read_prom_data(sc, band->addr, channels, 3342 band->nchan * sizeof (struct wpi_eeprom_chan)); 3343 3344 for (i = 0; i < band->nchan; i++) { 3345 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3346 DPRINTFN(WPI_DEBUG_HW, 3347 ("Channel Not Valid: %d, band %d\n", 3348 band->chan[i],n)); 3349 continue; 3350 } 3351 3352 passive = 0; 3353 chan = band->chan[i]; 3354 c = &ic->ic_channels[ic->ic_nchans++]; 3355 3356 /* is active scan allowed on this channel? */ 3357 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3358 passive = IEEE80211_CHAN_PASSIVE; 3359 } 3360 3361 if (n == 0) { /* 2GHz band */ 3362 c->ic_ieee = chan; 3363 c->ic_freq = ieee80211_ieee2mhz(chan, 3364 IEEE80211_CHAN_2GHZ); 3365 c->ic_flags = IEEE80211_CHAN_B | passive; 3366 3367 c = &ic->ic_channels[ic->ic_nchans++]; 3368 c->ic_ieee = chan; 3369 c->ic_freq = ieee80211_ieee2mhz(chan, 3370 IEEE80211_CHAN_2GHZ); 3371 c->ic_flags = IEEE80211_CHAN_G | passive; 3372 3373 } else { /* 5GHz band */ 3374 /* 3375 * Some 3945ABG adapters support channels 7, 8, 11 3376 * and 12 in the 2GHz *and* 5GHz bands. 3377 * Because of limitations in our net80211(9) stack, 3378 * we can't support these channels in 5GHz band. 3379 * XXX not true; just need to map to proper frequency 3380 */ 3381 if (chan <= 14) 3382 continue; 3383 3384 c->ic_ieee = chan; 3385 c->ic_freq = ieee80211_ieee2mhz(chan, 3386 IEEE80211_CHAN_5GHZ); 3387 c->ic_flags = IEEE80211_CHAN_A | passive; 3388 } 3389 3390 /* save maximum allowed power for this channel */ 3391 sc->maxpwr[chan] = channels[i].maxpwr; 3392 3393 #if 0 3394 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3395 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3396 //ic->ic_channels[chan].ic_minpower... 3397 //ic->ic_channels[chan].ic_maxregtxpower... 3398 #endif 3399 3400 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3401 " passive=%d, offset %d\n", chan, c->ic_freq, 3402 channels[i].flags, sc->maxpwr[chan], 3403 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3404 ic->ic_nchans)); 3405 } 3406 } 3407 3408 static void 3409 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3410 { 3411 struct wpi_power_group *group = &sc->groups[n]; 3412 struct wpi_eeprom_group rgroup; 3413 int i; 3414 3415 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3416 sizeof rgroup); 3417 3418 /* save power group information */ 3419 group->chan = rgroup.chan; 3420 group->maxpwr = rgroup.maxpwr; 3421 /* temperature at which the samples were taken */ 3422 group->temp = (int16_t)le16toh(rgroup.temp); 3423 3424 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3425 group->chan, group->maxpwr, group->temp)); 3426 3427 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3428 group->samples[i].index = rgroup.samples[i].index; 3429 group->samples[i].power = rgroup.samples[i].power; 3430 3431 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3432 group->samples[i].index, group->samples[i].power)); 3433 } 3434 } 3435 3436 /* 3437 * Update Tx power to match what is defined for channel `c'. 3438 */ 3439 static int 3440 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3441 { 3442 struct ifnet *ifp = sc->sc_ifp; 3443 struct ieee80211com *ic = ifp->if_l2com; 3444 struct wpi_power_group *group; 3445 struct wpi_cmd_txpower txpower; 3446 u_int chan; 3447 int i; 3448 3449 /* get channel number */ 3450 chan = ieee80211_chan2ieee(ic, c); 3451 3452 /* find the power group to which this channel belongs */ 3453 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3454 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3455 if (chan <= group->chan) 3456 break; 3457 } else 3458 group = &sc->groups[0]; 3459 3460 memset(&txpower, 0, sizeof txpower); 3461 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3462 txpower.channel = htole16(chan); 3463 3464 /* set Tx power for all OFDM and CCK rates */ 3465 for (i = 0; i <= 11 ; i++) { 3466 /* retrieve Tx power for this channel/rate combination */ 3467 int idx = wpi_get_power_index(sc, group, c, 3468 wpi_ridx_to_rate[i]); 3469 3470 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3471 3472 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3473 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3474 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3475 } else { 3476 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3477 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3478 } 3479 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3480 chan, wpi_ridx_to_rate[i], idx)); 3481 } 3482 3483 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3484 } 3485 3486 /* 3487 * Determine Tx power index for a given channel/rate combination. 3488 * This takes into account the regulatory information from EEPROM and the 3489 * current temperature. 3490 */ 3491 static int 3492 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3493 struct ieee80211_channel *c, int rate) 3494 { 3495 /* fixed-point arithmetic division using a n-bit fractional part */ 3496 #define fdivround(a, b, n) \ 3497 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3498 3499 /* linear interpolation */ 3500 #define interpolate(x, x1, y1, x2, y2, n) \ 3501 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3502 3503 struct ifnet *ifp = sc->sc_ifp; 3504 struct ieee80211com *ic = ifp->if_l2com; 3505 struct wpi_power_sample *sample; 3506 int pwr, idx; 3507 u_int chan; 3508 3509 /* get channel number */ 3510 chan = ieee80211_chan2ieee(ic, c); 3511 3512 /* default power is group's maximum power - 3dB */ 3513 pwr = group->maxpwr / 2; 3514 3515 /* decrease power for highest OFDM rates to reduce distortion */ 3516 switch (rate) { 3517 case 72: /* 36Mb/s */ 3518 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3519 break; 3520 case 96: /* 48Mb/s */ 3521 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3522 break; 3523 case 108: /* 54Mb/s */ 3524 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3525 break; 3526 } 3527 3528 /* never exceed channel's maximum allowed Tx power */ 3529 pwr = min(pwr, sc->maxpwr[chan]); 3530 3531 /* retrieve power index into gain tables from samples */ 3532 for (sample = group->samples; sample < &group->samples[3]; sample++) 3533 if (pwr > sample[1].power) 3534 break; 3535 /* fixed-point linear interpolation using a 19-bit fractional part */ 3536 idx = interpolate(pwr, sample[0].power, sample[0].index, 3537 sample[1].power, sample[1].index, 19); 3538 3539 /* 3540 * Adjust power index based on current temperature 3541 * - if colder than factory-calibrated: decreate output power 3542 * - if warmer than factory-calibrated: increase output power 3543 */ 3544 idx -= (sc->temp - group->temp) * 11 / 100; 3545 3546 /* decrease power for CCK rates (-5dB) */ 3547 if (!WPI_RATE_IS_OFDM(rate)) 3548 idx += 10; 3549 3550 /* keep power index in a valid range */ 3551 if (idx < 0) 3552 return 0; 3553 if (idx > WPI_MAX_PWR_INDEX) 3554 return WPI_MAX_PWR_INDEX; 3555 return idx; 3556 3557 #undef interpolate 3558 #undef fdivround 3559 } 3560 3561 /** 3562 * Called by net80211 framework to indicate that a scan 3563 * is starting. This function doesn't actually do the scan, 3564 * wpi_scan_curchan starts things off. This function is more 3565 * of an early warning from the framework we should get ready 3566 * for the scan. 3567 */ 3568 static void 3569 wpi_scan_start(struct ieee80211com *ic) 3570 { 3571 struct ifnet *ifp = ic->ic_ifp; 3572 struct wpi_softc *sc = ifp->if_softc; 3573 3574 WPI_LOCK(sc); 3575 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3576 WPI_UNLOCK(sc); 3577 } 3578 3579 /** 3580 * Called by the net80211 framework, indicates that the 3581 * scan has ended. If there is a scan in progress on the card 3582 * then it should be aborted. 3583 */ 3584 static void 3585 wpi_scan_end(struct ieee80211com *ic) 3586 { 3587 /* XXX ignore */ 3588 } 3589 3590 /** 3591 * Called by the net80211 framework to indicate to the driver 3592 * that the channel should be changed 3593 */ 3594 static void 3595 wpi_set_channel(struct ieee80211com *ic) 3596 { 3597 struct ifnet *ifp = ic->ic_ifp; 3598 struct wpi_softc *sc = ifp->if_softc; 3599 int error; 3600 3601 /* 3602 * Only need to set the channel in Monitor mode. AP scanning and auth 3603 * are already taken care of by their respective firmware commands. 3604 */ 3605 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3606 error = wpi_config(sc); 3607 if (error != 0) 3608 device_printf(sc->sc_dev, 3609 "error %d settting channel\n", error); 3610 } 3611 } 3612 3613 /** 3614 * Called by net80211 to indicate that we need to scan the current 3615 * channel. The channel is previously be set via the wpi_set_channel 3616 * callback. 3617 */ 3618 static void 3619 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3620 { 3621 struct ieee80211vap *vap = ss->ss_vap; 3622 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3623 struct wpi_softc *sc = ifp->if_softc; 3624 3625 WPI_LOCK(sc); 3626 if (wpi_scan(sc)) 3627 ieee80211_cancel_scan(vap); 3628 WPI_UNLOCK(sc); 3629 } 3630 3631 /** 3632 * Called by the net80211 framework to indicate 3633 * the minimum dwell time has been met, terminate the scan. 3634 * We don't actually terminate the scan as the firmware will notify 3635 * us when it's finished and we have no way to interrupt it. 3636 */ 3637 static void 3638 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3639 { 3640 /* NB: don't try to abort scan; wait for firmware to finish */ 3641 } 3642 3643 static void 3644 wpi_hwreset(void *arg, int pending) 3645 { 3646 struct wpi_softc *sc = arg; 3647 3648 WPI_LOCK(sc); 3649 wpi_init_locked(sc, 0); 3650 WPI_UNLOCK(sc); 3651 } 3652 3653 static void 3654 wpi_rfreset(void *arg, int pending) 3655 { 3656 struct wpi_softc *sc = arg; 3657 3658 WPI_LOCK(sc); 3659 wpi_rfkill_resume(sc); 3660 WPI_UNLOCK(sc); 3661 } 3662 3663 /* 3664 * Allocate DMA-safe memory for firmware transfer. 3665 */ 3666 static int 3667 wpi_alloc_fwmem(struct wpi_softc *sc) 3668 { 3669 /* allocate enough contiguous space to store text and data */ 3670 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3671 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3672 BUS_DMA_NOWAIT); 3673 } 3674 3675 static void 3676 wpi_free_fwmem(struct wpi_softc *sc) 3677 { 3678 wpi_dma_contig_free(&sc->fw_dma); 3679 } 3680 3681 /** 3682 * Called every second, wpi_watchdog used by the watch dog timer 3683 * to check that the card is still alive 3684 */ 3685 static void 3686 wpi_watchdog(void *arg) 3687 { 3688 struct wpi_softc *sc = arg; 3689 struct ifnet *ifp = sc->sc_ifp; 3690 struct ieee80211com *ic = ifp->if_l2com; 3691 uint32_t tmp; 3692 3693 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3694 3695 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3696 /* No need to lock firmware memory */ 3697 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3698 3699 if ((tmp & 0x1) == 0) { 3700 /* Radio kill switch is still off */ 3701 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3702 return; 3703 } 3704 3705 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3706 ieee80211_runtask(ic, &sc->sc_radiotask); 3707 return; 3708 } 3709 3710 if (sc->sc_tx_timer > 0) { 3711 if (--sc->sc_tx_timer == 0) { 3712 device_printf(sc->sc_dev,"device timeout\n"); 3713 ifp->if_oerrors++; 3714 ieee80211_runtask(ic, &sc->sc_restarttask); 3715 } 3716 } 3717 if (sc->sc_scan_timer > 0) { 3718 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3719 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3720 device_printf(sc->sc_dev,"scan timeout\n"); 3721 ieee80211_cancel_scan(vap); 3722 ieee80211_runtask(ic, &sc->sc_restarttask); 3723 } 3724 } 3725 3726 if (ifp->if_flags & IFF_RUNNING) 3727 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3728 } 3729 3730 #ifdef WPI_DEBUG 3731 static const char *wpi_cmd_str(int cmd) 3732 { 3733 switch (cmd) { 3734 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3735 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3736 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3737 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3738 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3739 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3740 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3741 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3742 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3743 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3744 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3745 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3746 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3747 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3748 3749 default: 3750 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3751 return "UNKNOWN CMD"; /* Make the compiler happy */ 3752 } 3753 } 3754 #endif 3755 3756 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3757 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3758 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3759 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1); 3760 /* 3761 MODULE_DEPEND(wpi, wpifw_fw_fw, 1, 1, 1); 3762 MODULE_DEPEND(wpi, ath_rate, 1, 1, 1); 3763 */ 3764