1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 * 18 * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $ 19 */ 20 21 #define VERSION "20071127" 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 * 26 * The 3945ABG network adapter doesn't use traditional hardware as 27 * many other adaptors do. Instead at run time the eeprom is set into a known 28 * state and told to load boot firmware. The boot firmware loads an init and a 29 * main binary firmware image into SRAM on the card via DMA. 30 * Once the firmware is loaded, the driver/hw then 31 * communicate by way of circular dma rings via the the SRAM to the firmware. 32 * 33 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 34 * The 4 tx data rings allow for prioritization QoS. 35 * 36 * The rx data ring consists of 32 dma buffers. Two registers are used to 37 * indicate where in the ring the driver and the firmware are up to. The 38 * driver sets the initial read index (reg1) and the initial write index (reg2), 39 * the firmware updates the read index (reg1) on rx of a packet and fires an 40 * interrupt. The driver then processes the buffers starting at reg1 indicating 41 * to the firmware which buffers have been accessed by updating reg2. At the 42 * same time allocating new memory for the processed buffer. 43 * 44 * A similar thing happens with the tx rings. The difference is the firmware 45 * stop processing buffers once the queue is full and until confirmation 46 * of a successful transmition (tx_intr) has occurred. 47 * 48 * The command ring operates in the same manner as the tx queues. 49 * 50 * All communication direct to the card (ie eeprom) is classed as Stage1 51 * communication 52 * 53 * All communication via the firmware to the card is classed as State2. 54 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 55 * firmware. The bootstrap firmware and runtime firmware are loaded 56 * from host memory via dma to the card then told to execute. From this point 57 * on the majority of communications between the driver and the card goes 58 * via the firmware. 59 */ 60 61 #include <sys/param.h> 62 #include <sys/sysctl.h> 63 #include <sys/sockio.h> 64 #include <sys/mbuf.h> 65 #include <sys/kernel.h> 66 #include <sys/socket.h> 67 #include <sys/systm.h> 68 #include <sys/malloc.h> 69 #include <sys/queue.h> 70 #include <sys/taskqueue.h> 71 #include <sys/module.h> 72 #include <sys/bus.h> 73 #include <sys/endian.h> 74 #include <sys/linker.h> 75 #include <sys/firmware.h> 76 77 #include <sys/bus.h> 78 #include <sys/resource.h> 79 #include <sys/rman.h> 80 81 #include <bus/pci/pcireg.h> 82 #include <bus/pci/pcivar.h> 83 84 #include <net/bpf.h> 85 #include <net/if.h> 86 #include <net/if_arp.h> 87 #include <net/ifq_var.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <netproto/802_11/ieee80211_var.h> 94 #include <netproto/802_11/ieee80211_radiotap.h> 95 #include <netproto/802_11/ieee80211_regdomain.h> 96 #include <netproto/802_11/ieee80211_ratectl.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_systm.h> 100 #include <netinet/in_var.h> 101 #include <netinet/ip.h> 102 #include <netinet/if_ether.h> 103 104 /* XXX: move elsewhere */ 105 #define abs(x) (((x) < 0) ? -(x) : (x)) 106 107 #include "if_wpireg.h" 108 #include "if_wpivar.h" 109 110 #define WPI_DEBUG 111 112 #ifdef WPI_DEBUG 113 #define DPRINTF(x) do { if (wpi_debug != 0) kprintf x; } while (0) 114 #define DPRINTFN(n, x) do { if (wpi_debug & n) kprintf x; } while (0) 115 #define WPI_DEBUG_SET (wpi_debug != 0) 116 117 enum { 118 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 119 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 120 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 121 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 122 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 123 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 124 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 125 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 126 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 127 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 128 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 129 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 130 WPI_DEBUG_ANY = 0xffffffff 131 }; 132 133 static int wpi_debug = 1; 134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 135 TUNABLE_INT("debug.wpi", &wpi_debug); 136 137 #else 138 #define DPRINTF(x) 139 #define DPRINTFN(n, x) 140 #define WPI_DEBUG_SET 0 141 #endif 142 143 struct wpi_ident { 144 uint16_t vendor; 145 uint16_t device; 146 uint16_t subdevice; 147 const char *name; 148 }; 149 150 static const struct wpi_ident wpi_ident_table[] = { 151 /* The below entries support ABG regardless of the subid */ 152 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 153 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 154 /* The below entries only support BG */ 155 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 156 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 157 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 158 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 159 { 0, 0, 0, NULL } 160 }; 161 162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 163 const char name[IFNAMSIZ], int unit, int opmode, 164 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 165 const uint8_t mac[IEEE80211_ADDR_LEN]); 166 static void wpi_vap_delete(struct ieee80211vap *); 167 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 168 void **, bus_size_t, bus_size_t, int); 169 static void wpi_dma_contig_free(struct wpi_dma_info *); 170 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 171 static int wpi_alloc_shared(struct wpi_softc *); 172 static void wpi_free_shared(struct wpi_softc *); 173 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 174 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 175 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 176 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 177 int, int); 178 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 179 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *, 181 const uint8_t mac[IEEE80211_ADDR_LEN]); 182 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 183 static void wpi_mem_lock(struct wpi_softc *); 184 static void wpi_mem_unlock(struct wpi_softc *); 185 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 186 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 187 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 188 const uint32_t *, int); 189 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 190 static int wpi_alloc_fwmem(struct wpi_softc *); 191 static void wpi_free_fwmem(struct wpi_softc *); 192 static int wpi_load_firmware(struct wpi_softc *); 193 static void wpi_unload_firmware(struct wpi_softc *); 194 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 195 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 196 struct wpi_rx_data *); 197 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 198 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 199 static void wpi_notif_intr(struct wpi_softc *); 200 static void wpi_intr(void *); 201 static uint8_t wpi_plcp_signal(int); 202 static void wpi_watchdog(void *); 203 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 204 struct ieee80211_node *, int); 205 static void wpi_start(struct ifnet *); 206 static void wpi_start_locked(struct ifnet *); 207 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 208 const struct ieee80211_bpf_params *); 209 static void wpi_scan_start(struct ieee80211com *); 210 static void wpi_scan_end(struct ieee80211com *); 211 static void wpi_set_channel(struct ieee80211com *); 212 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 213 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 214 static int wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); 215 static void wpi_read_eeprom(struct wpi_softc *, 216 uint8_t macaddr[IEEE80211_ADDR_LEN]); 217 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 218 static void wpi_read_eeprom_group(struct wpi_softc *, int); 219 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 220 static int wpi_wme_update(struct ieee80211com *); 221 static int wpi_mrr_setup(struct wpi_softc *); 222 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 223 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 224 #if 0 225 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 226 #endif 227 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 228 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 229 static int wpi_scan(struct wpi_softc *); 230 static int wpi_config(struct wpi_softc *); 231 static void wpi_stop_master(struct wpi_softc *); 232 static int wpi_power_up(struct wpi_softc *); 233 static int wpi_reset(struct wpi_softc *); 234 static void wpi_hwreset(void *, int); 235 static void wpi_rfreset(void *, int); 236 static void wpi_hw_config(struct wpi_softc *); 237 static void wpi_init(void *); 238 static void wpi_init_locked(struct wpi_softc *, int); 239 static void wpi_stop(struct wpi_softc *); 240 static void wpi_stop_locked(struct wpi_softc *); 241 242 static void wpi_newassoc(struct ieee80211_node *, int); 243 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 244 int); 245 static void wpi_calib_timeout(void *); 246 static void wpi_power_calibration(struct wpi_softc *, int); 247 static int wpi_get_power_index(struct wpi_softc *, 248 struct wpi_power_group *, struct ieee80211_channel *, int); 249 #ifdef WPI_DEBUG 250 static const char *wpi_cmd_str(int); 251 #endif 252 static int wpi_probe(device_t); 253 static int wpi_attach(device_t); 254 static int wpi_detach(device_t); 255 static int wpi_shutdown(device_t); 256 static int wpi_suspend(device_t); 257 static int wpi_resume(device_t); 258 259 260 static device_method_t wpi_methods[] = { 261 /* Device interface */ 262 DEVMETHOD(device_probe, wpi_probe), 263 DEVMETHOD(device_attach, wpi_attach), 264 DEVMETHOD(device_detach, wpi_detach), 265 DEVMETHOD(device_shutdown, wpi_shutdown), 266 DEVMETHOD(device_suspend, wpi_suspend), 267 DEVMETHOD(device_resume, wpi_resume), 268 269 { 0, 0 } 270 }; 271 272 static driver_t wpi_driver = { 273 "wpi", 274 wpi_methods, 275 sizeof (struct wpi_softc) 276 }; 277 278 static devclass_t wpi_devclass; 279 280 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, 0, 0); 281 282 static const uint8_t wpi_ridx_to_plcp[] = { 283 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 284 /* R1-R4 (ral/ural is R4-R1) */ 285 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 286 /* CCK: device-dependent */ 287 10, 20, 55, 110 288 }; 289 static const uint8_t wpi_ridx_to_rate[] = { 290 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 291 2, 4, 11, 22 /*CCK */ 292 }; 293 294 295 static int 296 wpi_probe(device_t dev) 297 { 298 const struct wpi_ident *ident; 299 300 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 301 if (pci_get_vendor(dev) == ident->vendor && 302 pci_get_device(dev) == ident->device) { 303 device_set_desc(dev, ident->name); 304 return 0; 305 } 306 } 307 return ENXIO; 308 } 309 310 /** 311 * Load the firmare image from disk to the allocated dma buffer. 312 * we also maintain the reference to the firmware pointer as there 313 * is times where we may need to reload the firmware but we are not 314 * in a context that can access the filesystem (ie taskq cause by restart) 315 * 316 * @return 0 on success, an errno on failure 317 */ 318 static int 319 wpi_load_firmware(struct wpi_softc *sc) 320 { 321 const struct firmware *fp; 322 struct wpi_dma_info *dma = &sc->fw_dma; 323 const struct wpi_firmware_hdr *hdr; 324 #if 0 325 struct ifnet *ifp; 326 #endif 327 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 328 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 329 int error; 330 331 #if 0 332 ifp = sc->sc_ifp; 333 #endif 334 DPRINTFN(WPI_DEBUG_FIRMWARE, 335 ("Attempting Loading Firmware from wpi_fw module\n")); 336 337 WPI_UNLOCK(sc); 338 339 #if 0 340 lwkt_serialize_exit(ifp->if_serializer); 341 #endif 342 343 #if 0 344 if ((img = firmware_image_load("", dma->tag)) == NULL) { 345 error = ENOENT; 346 lwkt_serialize_enter(ifp->if_serializer); 347 goto fail; 348 } 349 #endif 350 351 352 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 353 device_printf(sc->sc_dev, 354 "could not load firmware image 'wpifw_fw'\n"); 355 error = ENOENT; 356 WPI_LOCK(sc); 357 #if 0 358 lwkt_serialize_enter(ifp->if_serializer); 359 #endif 360 goto fail; 361 } 362 363 fp = sc->fw_fp; 364 365 #if 0 366 lwkt_serialize_enter(ifp->if_serializer); 367 #endif 368 WPI_LOCK(sc); 369 370 371 /* Validate the firmware is minimum a particular version */ 372 if (fp->version < WPI_FW_MINVERSION) { 373 device_printf(sc->sc_dev, 374 "firmware version is too old. Need %d, got %d\n", 375 WPI_FW_MINVERSION, 376 fp->version); 377 error = ENXIO; 378 goto fail; 379 } 380 #if 0 381 #endif 382 383 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 384 device_printf(sc->sc_dev, 385 "firmware file too short: %zu bytes\n", fp->datasize); 386 error = ENXIO; 387 goto fail; 388 } 389 390 hdr = (const struct wpi_firmware_hdr *)fp->data; 391 392 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 393 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 394 395 rtextsz = le32toh(hdr->rtextsz); 396 rdatasz = le32toh(hdr->rdatasz); 397 itextsz = le32toh(hdr->itextsz); 398 idatasz = le32toh(hdr->idatasz); 399 btextsz = le32toh(hdr->btextsz); 400 401 /* check that all firmware segments are present */ 402 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 403 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 404 device_printf(sc->sc_dev, 405 "firmware file too short: %zu bytes\n", fp->datasize); 406 error = ENXIO; /* XXX appropriate error code? */ 407 goto fail; 408 } 409 410 /* get pointers to firmware segments */ 411 rtext = (const uint8_t *)(hdr + 1); 412 rdata = rtext + rtextsz; 413 itext = rdata + rdatasz; 414 idata = itext + itextsz; 415 btext = idata + idatasz; 416 417 DPRINTFN(WPI_DEBUG_FIRMWARE, 418 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 419 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 420 (le32toh(hdr->version) & 0xff000000) >> 24, 421 (le32toh(hdr->version) & 0x00ff0000) >> 16, 422 (le32toh(hdr->version) & 0x0000ffff), 423 rtextsz, rdatasz, 424 itextsz, idatasz, btextsz)); 425 426 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 427 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 428 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 429 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 430 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 431 432 /* sanity checks */ 433 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 434 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 435 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 436 idatasz > WPI_FW_INIT_DATA_MAXSZ || 437 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 438 (btextsz & 3) != 0) { 439 device_printf(sc->sc_dev, "firmware invalid\n"); 440 error = EINVAL; 441 goto fail; 442 } 443 444 /* copy initialization images into pre-allocated DMA-safe memory */ 445 memcpy(dma->vaddr, idata, idatasz); 446 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 447 448 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 449 450 /* tell adapter where to find initialization images */ 451 wpi_mem_lock(sc); 452 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 453 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 454 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 455 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 456 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 457 wpi_mem_unlock(sc); 458 459 /* load firmware boot code */ 460 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 461 device_printf(sc->sc_dev, "Failed to load microcode\n"); 462 goto fail; 463 } 464 465 /* now press "execute" */ 466 WPI_WRITE(sc, WPI_RESET, 0); 467 468 /* wait at most one second for the first alive notification */ 469 if ((error = lksleep(sc, &sc->sc_lock, 0, "wpiinit", hz)) != 0) { 470 device_printf(sc->sc_dev, 471 "timeout waiting for adapter to initialize\n"); 472 goto fail; 473 } 474 475 /* copy runtime images into pre-allocated DMA-sage memory */ 476 memcpy(dma->vaddr, rdata, rdatasz); 477 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 478 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 479 480 /* tell adapter where to find runtime images */ 481 wpi_mem_lock(sc); 482 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 483 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 484 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 485 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 486 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 487 wpi_mem_unlock(sc); 488 489 /* wait at most one second for the first alive notification */ 490 if ((error = lksleep(sc, &sc->sc_lock, 0, "wpiinit", hz)) != 0) { 491 device_printf(sc->sc_dev, 492 "timeout waiting for adapter to initialize2\n"); 493 goto fail; 494 } 495 496 DPRINTFN(WPI_DEBUG_FIRMWARE, 497 ("Firmware loaded to driver successfully\n")); 498 /* 499 sc->sc_fw_image = img; 500 */ 501 return error; 502 fail: 503 wpi_unload_firmware(sc); 504 return error; 505 } 506 507 /** 508 * Free the referenced firmware image 509 */ 510 static void 511 wpi_unload_firmware(struct wpi_softc *sc) 512 { 513 struct ifnet *ifp; 514 ifp = sc->sc_ifp; 515 516 if (sc->fw_fp) { 517 WPI_UNLOCK(sc); 518 #if 0 519 lwkt_serialize_exit(ifp->if_serializer); 520 #endif 521 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 522 #if 0 523 firmware_image_unload(sc->sc_fw_image); 524 #endif 525 #if 0 526 lwkt_serialize_enter(ifp->if_serializer); 527 #endif 528 WPI_LOCK(sc); 529 sc->fw_fp = NULL; 530 } 531 } 532 533 static int 534 wpi_attach(device_t dev) 535 { 536 struct wpi_softc *sc = device_get_softc(dev); 537 struct ifnet *ifp; 538 struct ieee80211com *ic; 539 int ac, error, supportsa = 1; 540 uint32_t tmp; 541 const struct wpi_ident *ident; 542 uint8_t macaddr[IEEE80211_ADDR_LEN]; 543 544 sc->sc_dev = dev; 545 546 if (bootverbose || WPI_DEBUG_SET) 547 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 548 549 /* 550 * Some card's only support 802.11b/g not a, check to see if 551 * this is one such card. A 0x0 in the subdevice table indicates 552 * the entire subdevice range is to be ignored. 553 */ 554 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 555 if (ident->subdevice && 556 pci_get_subdevice(dev) == ident->subdevice) { 557 supportsa = 0; 558 break; 559 } 560 } 561 562 /* Create the tasks that can be queued */ 563 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc); 564 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc); 565 566 WPI_LOCK_INIT(sc); 567 568 callout_init(&sc->calib_to); 569 callout_init(&sc->watchdog_to); 570 571 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 572 device_printf(dev, "chip is in D%d power mode " 573 "-- setting to D0\n", pci_get_powerstate(dev)); 574 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 575 } 576 577 /* disable the retry timeout register */ 578 pci_write_config(dev, 0x41, 0, 1); 579 580 /* enable bus-mastering */ 581 pci_enable_busmaster(dev); 582 583 sc->mem_rid = PCIR_BAR(0); 584 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 585 RF_ACTIVE); 586 if (sc->mem == NULL) { 587 device_printf(dev, "could not allocate memory resource\n"); 588 error = ENOMEM; 589 goto fail; 590 } 591 592 sc->sc_st = rman_get_bustag(sc->mem); 593 sc->sc_sh = rman_get_bushandle(sc->mem); 594 595 sc->irq_rid = 0; 596 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 597 RF_ACTIVE | RF_SHAREABLE); 598 if (sc->irq == NULL) { 599 device_printf(dev, "could not allocate interrupt resource\n"); 600 error = ENOMEM; 601 goto fail; 602 } 603 604 /* 605 * Allocate DMA memory for firmware transfers. 606 */ 607 if ((error = wpi_alloc_fwmem(sc)) != 0) { 608 kprintf(": could not allocate firmware memory\n"); 609 error = ENOMEM; 610 goto fail; 611 } 612 613 /* 614 * Put adapter into a known state. 615 */ 616 if ((error = wpi_reset(sc)) != 0) { 617 device_printf(dev, "could not reset adapter\n"); 618 goto fail; 619 } 620 621 wpi_mem_lock(sc); 622 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 623 if (bootverbose || WPI_DEBUG_SET) 624 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 625 626 wpi_mem_unlock(sc); 627 628 /* Allocate shared page */ 629 if ((error = wpi_alloc_shared(sc)) != 0) { 630 device_printf(dev, "could not allocate shared page\n"); 631 goto fail; 632 } 633 634 /* tx data queues - 4 for QoS purposes */ 635 for (ac = 0; ac < WME_NUM_AC; ac++) { 636 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 637 if (error != 0) { 638 device_printf(dev, "could not allocate Tx ring %d\n",ac); 639 goto fail; 640 } 641 } 642 643 /* command queue to talk to the card's firmware */ 644 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 645 if (error != 0) { 646 device_printf(dev, "could not allocate command ring\n"); 647 goto fail; 648 } 649 650 /* receive data queue */ 651 error = wpi_alloc_rx_ring(sc, &sc->rxq); 652 if (error != 0) { 653 device_printf(dev, "could not allocate Rx ring\n"); 654 goto fail; 655 } 656 657 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 658 if (ifp == NULL) { 659 device_printf(dev, "can not if_alloc()\n"); 660 error = ENOMEM; 661 goto fail; 662 } 663 ic = ifp->if_l2com; 664 665 ic->ic_ifp = ifp; 666 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 667 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 668 669 /* set device capabilities */ 670 ic->ic_caps = 671 IEEE80211_C_STA /* station mode supported */ 672 | IEEE80211_C_MONITOR /* monitor mode supported */ 673 | IEEE80211_C_TXPMGT /* tx power management */ 674 | IEEE80211_C_SHSLOT /* short slot time supported */ 675 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 676 | IEEE80211_C_WPA /* 802.11i */ 677 /* XXX looks like WME is partly supported? */ 678 #if 0 679 | IEEE80211_C_IBSS /* IBSS mode support */ 680 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 681 | IEEE80211_C_WME /* 802.11e */ 682 | IEEE80211_C_HOSTAP /* Host access point mode */ 683 #endif 684 ; 685 686 /* 687 * Read in the eeprom and also setup the channels for 688 * net80211. We don't set the rates as net80211 does this for us 689 */ 690 wpi_read_eeprom(sc, macaddr); 691 692 if (bootverbose || WPI_DEBUG_SET) { 693 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 694 device_printf(sc->sc_dev, "Hardware Type: %c\n", 695 sc->type > 1 ? 'B': '?'); 696 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 697 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 698 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 699 supportsa ? "does" : "does not"); 700 701 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 702 what sc->rev really represents - benjsc 20070615 */ 703 } 704 705 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 706 ifp->if_softc = sc; 707 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 708 ifp->if_init = wpi_init; 709 ifp->if_ioctl = wpi_ioctl; 710 ifp->if_start = wpi_start; 711 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN); 712 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 713 ifq_set_ready(&ifp->if_snd); 714 715 ieee80211_ifattach(ic, macaddr); 716 /* override default methods */ 717 ic->ic_node_alloc = wpi_node_alloc; 718 ic->ic_newassoc = wpi_newassoc; 719 ic->ic_raw_xmit = wpi_raw_xmit; 720 ic->ic_wme.wme_update = wpi_wme_update; 721 ic->ic_scan_start = wpi_scan_start; 722 ic->ic_scan_end = wpi_scan_end; 723 ic->ic_set_channel = wpi_set_channel; 724 ic->ic_scan_curchan = wpi_scan_curchan; 725 ic->ic_scan_mindwell = wpi_scan_mindwell; 726 727 ic->ic_vap_create = wpi_vap_create; 728 ic->ic_vap_delete = wpi_vap_delete; 729 730 ieee80211_radiotap_attach(ic, 731 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 732 WPI_TX_RADIOTAP_PRESENT, 733 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 734 WPI_RX_RADIOTAP_PRESENT); 735 736 /* 737 * Hook our interrupt after all initialization is complete. 738 */ 739 error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE, 740 wpi_intr, sc, &sc->sc_ih, ifp->if_serializer); 741 if (error != 0) { 742 device_printf(dev, "could not set up interrupt\n"); 743 goto fail; 744 } 745 746 if (bootverbose) 747 ieee80211_announce(ic); 748 #ifdef XXX_DEBUG 749 ieee80211_announce_channels(ic); 750 #endif 751 return 0; 752 753 fail: wpi_detach(dev); 754 return ENXIO; 755 } 756 757 static int 758 wpi_detach(device_t dev) 759 { 760 struct wpi_softc *sc = device_get_softc(dev); 761 struct ifnet *ifp = sc->sc_ifp; 762 struct ieee80211com *ic; 763 int ac; 764 765 if (ifp != NULL) { 766 ic = ifp->if_l2com; 767 768 ieee80211_draintask(ic, &sc->sc_restarttask); 769 ieee80211_draintask(ic, &sc->sc_radiotask); 770 wpi_stop(sc); 771 callout_stop(&sc->watchdog_to); 772 callout_stop(&sc->calib_to); 773 ieee80211_ifdetach(ic); 774 } 775 776 WPI_LOCK(sc); 777 if (sc->txq[0].data_dmat) { 778 for (ac = 0; ac < WME_NUM_AC; ac++) 779 wpi_free_tx_ring(sc, &sc->txq[ac]); 780 781 wpi_free_tx_ring(sc, &sc->cmdq); 782 wpi_free_rx_ring(sc, &sc->rxq); 783 wpi_free_shared(sc); 784 } 785 786 if (sc->fw_fp != NULL) { 787 wpi_unload_firmware(sc); 788 } 789 790 if (sc->fw_dma.tag) 791 wpi_free_fwmem(sc); 792 WPI_UNLOCK(sc); 793 794 if (sc->irq != NULL) { 795 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 796 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 797 } 798 799 if (sc->mem != NULL) 800 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 801 802 if (ifp != NULL) 803 if_free(ifp); 804 805 WPI_LOCK_DESTROY(sc); 806 807 return 0; 808 } 809 810 static struct ieee80211vap * 811 wpi_vap_create(struct ieee80211com *ic, 812 const char name[IFNAMSIZ], int unit, int opmode, int flags, 813 const uint8_t bssid[IEEE80211_ADDR_LEN], 814 const uint8_t mac[IEEE80211_ADDR_LEN]) 815 { 816 struct wpi_vap *wvp; 817 struct ieee80211vap *vap; 818 819 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 820 return NULL; 821 wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap), 822 M_80211_VAP, M_NOWAIT | M_ZERO); 823 if (wvp == NULL) 824 return NULL; 825 vap = &wvp->vap; 826 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 827 /* override with driver methods */ 828 wvp->newstate = vap->iv_newstate; 829 vap->iv_newstate = wpi_newstate; 830 831 ieee80211_ratectl_init(vap); 832 833 /* complete setup */ 834 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 835 ic->ic_opmode = opmode; 836 return vap; 837 } 838 839 static void 840 wpi_vap_delete(struct ieee80211vap *vap) 841 { 842 struct wpi_vap *wvp = WPI_VAP(vap); 843 844 ieee80211_ratectl_deinit(vap); 845 ieee80211_vap_detach(vap); 846 kfree(wvp, M_80211_VAP); 847 } 848 849 static void 850 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 851 { 852 if (error != 0) 853 return; 854 855 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 856 857 *(bus_addr_t *)arg = segs[0].ds_addr; 858 } 859 860 /* 861 * Allocates a contiguous block of dma memory of the requested size and 862 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 863 * allocations greater than 4096 may fail. Hence if the requested alignment is 864 * greater we allocate 'alignment' size extra memory and shift the vaddr and 865 * paddr after the dma load. This bypasses the problem at the cost of a little 866 * more memory. 867 */ 868 static int 869 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 870 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 871 { 872 int error; 873 bus_size_t align; 874 bus_size_t reqsize; 875 876 DPRINTFN(WPI_DEBUG_DMA, 877 ("Size: %zd - alignment %zd\n", size, alignment)); 878 879 dma->size = size; 880 dma->tag = NULL; 881 882 if (alignment > 4096) { 883 align = PAGE_SIZE; 884 reqsize = size + alignment; 885 } else { 886 align = alignment; 887 reqsize = size; 888 } 889 error = bus_dma_tag_create(dma->tag, align, 890 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 891 NULL, NULL, reqsize, 892 1, reqsize, flags, 893 &dma->tag); 894 if (error != 0) { 895 device_printf(sc->sc_dev, 896 "could not create shared page DMA tag\n"); 897 goto fail; 898 } 899 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 900 flags | BUS_DMA_ZERO, &dma->map); 901 if (error != 0) { 902 device_printf(sc->sc_dev, 903 "could not allocate shared page DMA memory\n"); 904 goto fail; 905 } 906 907 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 908 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 909 910 /* Save the original pointers so we can free all the memory */ 911 dma->paddr = dma->paddr_start; 912 dma->vaddr = dma->vaddr_start; 913 914 /* 915 * Check the alignment and increment by 4096 until we get the 916 * requested alignment. Fail if can't obtain the alignment 917 * we requested. 918 */ 919 if ((dma->paddr & (alignment -1 )) != 0) { 920 int i; 921 922 for (i = 0; i < alignment / 4096; i++) { 923 if ((dma->paddr & (alignment - 1 )) == 0) 924 break; 925 dma->paddr += 4096; 926 dma->vaddr += 4096; 927 } 928 if (i == alignment / 4096) { 929 device_printf(sc->sc_dev, 930 "alignment requirement was not satisfied\n"); 931 goto fail; 932 } 933 } 934 935 if (error != 0) { 936 device_printf(sc->sc_dev, 937 "could not load shared page DMA map\n"); 938 goto fail; 939 } 940 941 if (kvap != NULL) 942 *kvap = dma->vaddr; 943 944 return 0; 945 946 fail: 947 wpi_dma_contig_free(dma); 948 return error; 949 } 950 951 static void 952 wpi_dma_contig_free(struct wpi_dma_info *dma) 953 { 954 if (dma->tag) { 955 if (dma->map != NULL) { 956 if (dma->paddr_start != 0) { 957 bus_dmamap_sync(dma->tag, dma->map, 958 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 959 bus_dmamap_unload(dma->tag, dma->map); 960 } 961 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 962 } 963 bus_dma_tag_destroy(dma->tag); 964 } 965 } 966 967 /* 968 * Allocate a shared page between host and NIC. 969 */ 970 static int 971 wpi_alloc_shared(struct wpi_softc *sc) 972 { 973 int error; 974 975 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 976 (void **)&sc->shared, sizeof (struct wpi_shared), 977 PAGE_SIZE, 978 BUS_DMA_NOWAIT); 979 980 if (error != 0) { 981 device_printf(sc->sc_dev, 982 "could not allocate shared area DMA memory\n"); 983 } 984 985 return error; 986 } 987 988 static void 989 wpi_free_shared(struct wpi_softc *sc) 990 { 991 wpi_dma_contig_free(&sc->shared_dma); 992 } 993 994 static int 995 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 996 { 997 998 int i, error; 999 1000 ring->cur = 0; 1001 1002 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1003 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 1004 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1005 1006 if (error != 0) { 1007 device_printf(sc->sc_dev, 1008 "%s: could not allocate rx ring DMA memory, error %d\n", 1009 __func__, error); 1010 goto fail; 1011 } 1012 1013 error = bus_dma_tag_create(ring->data_dmat, 1, 0, 1014 BUS_SPACE_MAXADDR_32BIT, 1015 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, 1016 MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat); 1017 if (error != 0) { 1018 device_printf(sc->sc_dev, 1019 "%s: bus_dma_tag_create_failed, error %d\n", 1020 __func__, error); 1021 goto fail; 1022 } 1023 1024 /* 1025 * Setup Rx buffers. 1026 */ 1027 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1028 struct wpi_rx_data *data = &ring->data[i]; 1029 struct mbuf *m; 1030 bus_addr_t paddr; 1031 1032 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1033 if (error != 0) { 1034 device_printf(sc->sc_dev, 1035 "%s: bus_dmamap_create failed, error %d\n", 1036 __func__, error); 1037 goto fail; 1038 } 1039 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1040 if (m == NULL) { 1041 device_printf(sc->sc_dev, 1042 "%s: could not allocate rx mbuf\n", __func__); 1043 error = ENOMEM; 1044 goto fail; 1045 } 1046 /* map page */ 1047 error = bus_dmamap_load(ring->data_dmat, data->map, 1048 mtod(m, caddr_t), MCLBYTES, 1049 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1050 if (error != 0 && error != EFBIG) { 1051 device_printf(sc->sc_dev, 1052 "%s: bus_dmamap_load failed, error %d\n", 1053 __func__, error); 1054 m_freem(m); 1055 error = ENOMEM; /* XXX unique code */ 1056 goto fail; 1057 } 1058 bus_dmamap_sync(ring->data_dmat, data->map, 1059 BUS_DMASYNC_PREWRITE); 1060 1061 data->m = m; 1062 ring->desc[i] = htole32(paddr); 1063 } 1064 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1065 BUS_DMASYNC_PREWRITE); 1066 return 0; 1067 fail: 1068 wpi_free_rx_ring(sc, ring); 1069 return error; 1070 } 1071 1072 static void 1073 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1074 { 1075 int ntries; 1076 1077 wpi_mem_lock(sc); 1078 1079 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1080 1081 for (ntries = 0; ntries < 100; ntries++) { 1082 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1083 break; 1084 DELAY(10); 1085 } 1086 1087 wpi_mem_unlock(sc); 1088 1089 #ifdef WPI_DEBUG 1090 if (ntries == 100 && wpi_debug > 0) 1091 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1092 #endif 1093 1094 ring->cur = 0; 1095 } 1096 1097 static void 1098 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1099 { 1100 int i; 1101 1102 wpi_dma_contig_free(&ring->desc_dma); 1103 1104 for (i = 0; i < WPI_RX_RING_COUNT; i++) 1105 if (ring->data[i].m != NULL) 1106 m_freem(ring->data[i].m); 1107 } 1108 1109 static int 1110 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1111 int qid) 1112 { 1113 struct wpi_tx_data *data; 1114 int i, error; 1115 1116 ring->qid = qid; 1117 ring->count = count; 1118 ring->queued = 0; 1119 ring->cur = 0; 1120 ring->data = NULL; 1121 1122 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1123 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1124 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1125 1126 if (error != 0) { 1127 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1128 goto fail; 1129 } 1130 1131 /* update shared page with ring's base address */ 1132 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1133 1134 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1135 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1136 BUS_DMA_NOWAIT); 1137 1138 if (error != 0) { 1139 device_printf(sc->sc_dev, 1140 "could not allocate tx command DMA memory\n"); 1141 goto fail; 1142 } 1143 1144 ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1145 M_NOWAIT | M_ZERO); 1146 if (ring->data == NULL) { 1147 device_printf(sc->sc_dev, 1148 "could not allocate tx data slots\n"); 1149 goto fail; 1150 } 1151 1152 error = bus_dma_tag_create(ring->data_dmat, 1, 0, 1153 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1154 WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, 1155 &ring->data_dmat); 1156 if (error != 0) { 1157 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1158 goto fail; 1159 } 1160 1161 for (i = 0; i < count; i++) { 1162 data = &ring->data[i]; 1163 1164 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1165 if (error != 0) { 1166 device_printf(sc->sc_dev, 1167 "could not create tx buf DMA map\n"); 1168 goto fail; 1169 } 1170 bus_dmamap_sync(ring->data_dmat, data->map, 1171 BUS_DMASYNC_PREWRITE); 1172 } 1173 1174 return 0; 1175 1176 fail: 1177 wpi_free_tx_ring(sc, ring); 1178 return error; 1179 } 1180 1181 static void 1182 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1183 { 1184 struct wpi_tx_data *data; 1185 int i, ntries; 1186 1187 wpi_mem_lock(sc); 1188 1189 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1190 for (ntries = 0; ntries < 100; ntries++) { 1191 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1192 break; 1193 DELAY(10); 1194 } 1195 #ifdef WPI_DEBUG 1196 if (ntries == 100 && wpi_debug > 0) 1197 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1198 ring->qid); 1199 #endif 1200 wpi_mem_unlock(sc); 1201 1202 for (i = 0; i < ring->count; i++) { 1203 data = &ring->data[i]; 1204 1205 if (data->m != NULL) { 1206 bus_dmamap_unload(ring->data_dmat, data->map); 1207 m_freem(data->m); 1208 data->m = NULL; 1209 } 1210 } 1211 1212 ring->queued = 0; 1213 ring->cur = 0; 1214 } 1215 1216 static void 1217 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1218 { 1219 struct wpi_tx_data *data; 1220 int i; 1221 1222 wpi_dma_contig_free(&ring->desc_dma); 1223 wpi_dma_contig_free(&ring->cmd_dma); 1224 1225 if (ring->data != NULL) { 1226 for (i = 0; i < ring->count; i++) { 1227 data = &ring->data[i]; 1228 1229 if (data->m != NULL) { 1230 bus_dmamap_sync(ring->data_dmat, data->map, 1231 BUS_DMASYNC_POSTWRITE); 1232 bus_dmamap_unload(ring->data_dmat, data->map); 1233 m_freem(data->m); 1234 data->m = NULL; 1235 } 1236 } 1237 kfree(ring->data, M_DEVBUF); 1238 } 1239 1240 if (ring->data_dmat != NULL) 1241 bus_dma_tag_destroy(ring->data_dmat); 1242 } 1243 1244 static int 1245 wpi_shutdown(device_t dev) 1246 { 1247 struct wpi_softc *sc = device_get_softc(dev); 1248 1249 WPI_LOCK(sc); 1250 wpi_stop_locked(sc); 1251 wpi_unload_firmware(sc); 1252 WPI_UNLOCK(sc); 1253 1254 return 0; 1255 } 1256 1257 static int 1258 wpi_suspend(device_t dev) 1259 { 1260 struct wpi_softc *sc = device_get_softc(dev); 1261 1262 wpi_stop(sc); 1263 return 0; 1264 } 1265 1266 static int 1267 wpi_resume(device_t dev) 1268 { 1269 struct wpi_softc *sc = device_get_softc(dev); 1270 struct ifnet *ifp = sc->sc_ifp; 1271 1272 pci_write_config(dev, 0x41, 0, 1); 1273 1274 if (ifp->if_flags & IFF_UP) { 1275 wpi_init(ifp->if_softc); 1276 if (ifp->if_flags & IFF_RUNNING) 1277 wpi_start(ifp); 1278 } 1279 return 0; 1280 } 1281 1282 /* ARGSUSED */ 1283 static struct ieee80211_node * 1284 wpi_node_alloc(struct ieee80211vap *vap __unused, 1285 const uint8_t mac[IEEE80211_ADDR_LEN] __unused) 1286 { 1287 struct wpi_node *wn; 1288 1289 wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO); 1290 1291 return &wn->ni; 1292 } 1293 1294 /** 1295 * Called by net80211 when ever there is a change to 80211 state machine 1296 */ 1297 static int 1298 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1299 { 1300 struct wpi_vap *wvp = WPI_VAP(vap); 1301 struct ieee80211com *ic = vap->iv_ic; 1302 struct ifnet *ifp = ic->ic_ifp; 1303 struct wpi_softc *sc = ifp->if_softc; 1304 int error; 1305 1306 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1307 ieee80211_state_name[vap->iv_state], 1308 ieee80211_state_name[nstate], sc->flags)); 1309 1310 IEEE80211_UNLOCK(ic); 1311 WPI_LOCK(sc); 1312 if (nstate == IEEE80211_S_AUTH) { 1313 /* The node must be registered in the firmware before auth */ 1314 error = wpi_auth(sc, vap); 1315 if (error != 0) { 1316 device_printf(sc->sc_dev, 1317 "%s: could not move to auth state, error %d\n", 1318 __func__, error); 1319 } 1320 } 1321 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1322 error = wpi_run(sc, vap); 1323 if (error != 0) { 1324 device_printf(sc->sc_dev, 1325 "%s: could not move to run state, error %d\n", 1326 __func__, error); 1327 } 1328 } 1329 if (nstate == IEEE80211_S_RUN) { 1330 /* RUN -> RUN transition; just restart the timers */ 1331 wpi_calib_timeout(sc); 1332 /* XXX split out rate control timer */ 1333 } 1334 WPI_UNLOCK(sc); 1335 IEEE80211_LOCK(ic); 1336 return wvp->newstate(vap, nstate, arg); 1337 } 1338 1339 /* 1340 * Grab exclusive access to NIC memory. 1341 */ 1342 static void 1343 wpi_mem_lock(struct wpi_softc *sc) 1344 { 1345 int ntries; 1346 uint32_t tmp; 1347 1348 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1349 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1350 1351 /* spin until we actually get the lock */ 1352 for (ntries = 0; ntries < 100; ntries++) { 1353 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1354 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1355 break; 1356 DELAY(10); 1357 } 1358 if (ntries == 100) 1359 device_printf(sc->sc_dev, "could not lock memory\n"); 1360 } 1361 1362 /* 1363 * Release lock on NIC memory. 1364 */ 1365 static void 1366 wpi_mem_unlock(struct wpi_softc *sc) 1367 { 1368 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1369 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1370 } 1371 1372 static uint32_t 1373 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1374 { 1375 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1376 return WPI_READ(sc, WPI_READ_MEM_DATA); 1377 } 1378 1379 static void 1380 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1381 { 1382 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1383 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1384 } 1385 1386 static void 1387 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1388 const uint32_t *data, int wlen) 1389 { 1390 for (; wlen > 0; wlen--, data++, addr+=4) 1391 wpi_mem_write(sc, addr, *data); 1392 } 1393 1394 /* 1395 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1396 * using the traditional bit-bang method. Data is read up until len bytes have 1397 * been obtained. 1398 */ 1399 static uint16_t 1400 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1401 { 1402 int ntries; 1403 uint32_t val; 1404 uint8_t *out = data; 1405 1406 wpi_mem_lock(sc); 1407 1408 for (; len > 0; len -= 2, addr++) { 1409 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1410 1411 for (ntries = 0; ntries < 10; ntries++) { 1412 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1413 break; 1414 DELAY(5); 1415 } 1416 1417 if (ntries == 10) { 1418 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1419 return ETIMEDOUT; 1420 } 1421 1422 *out++= val >> 16; 1423 if (len > 1) 1424 *out ++= val >> 24; 1425 } 1426 1427 wpi_mem_unlock(sc); 1428 1429 return 0; 1430 } 1431 1432 /* 1433 * The firmware text and data segments are transferred to the NIC using DMA. 1434 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1435 * where to find it. Once the NIC has copied the firmware into its internal 1436 * memory, we can free our local copy in the driver. 1437 */ 1438 static int 1439 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1440 { 1441 int error, ntries; 1442 1443 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1444 1445 size /= sizeof(uint32_t); 1446 1447 wpi_mem_lock(sc); 1448 1449 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1450 (const uint32_t *)fw, size); 1451 1452 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1453 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1454 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1455 1456 /* run microcode */ 1457 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1458 1459 /* wait while the adapter is busy copying the firmware */ 1460 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1461 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1462 DPRINTFN(WPI_DEBUG_HW, 1463 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1464 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1465 if (status & WPI_TX_IDLE(6)) { 1466 DPRINTFN(WPI_DEBUG_HW, 1467 ("Status Match! - ntries = %d\n", ntries)); 1468 break; 1469 } 1470 DELAY(10); 1471 } 1472 if (ntries == 1000) { 1473 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1474 error = ETIMEDOUT; 1475 } 1476 1477 /* start the microcode executing */ 1478 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1479 1480 wpi_mem_unlock(sc); 1481 1482 return (error); 1483 } 1484 1485 static void 1486 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1487 struct wpi_rx_data *data) 1488 { 1489 struct ifnet *ifp = sc->sc_ifp; 1490 struct ieee80211com *ic = ifp->if_l2com; 1491 struct wpi_rx_ring *ring = &sc->rxq; 1492 struct wpi_rx_stat *stat; 1493 struct wpi_rx_head *head; 1494 struct wpi_rx_tail *tail; 1495 struct ieee80211_node *ni; 1496 struct mbuf *m, *mnew; 1497 bus_addr_t paddr; 1498 int error; 1499 1500 stat = (struct wpi_rx_stat *)(desc + 1); 1501 1502 if (stat->len > WPI_STAT_MAXLEN) { 1503 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1504 ifp->if_ierrors++; 1505 return; 1506 } 1507 1508 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1509 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1510 1511 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1512 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1513 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1514 (uintmax_t)le64toh(tail->tstamp))); 1515 1516 /* discard Rx frames with bad CRC early */ 1517 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1518 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1519 le32toh(tail->flags))); 1520 ifp->if_ierrors++; 1521 return; 1522 } 1523 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1524 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1525 le16toh(head->len))); 1526 ifp->if_ierrors++; 1527 return; 1528 } 1529 1530 /* XXX don't need mbuf, just dma buffer */ 1531 mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1532 if (mnew == NULL) { 1533 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1534 __func__)); 1535 ifp->if_ierrors++; 1536 return; 1537 } 1538 error = bus_dmamap_load(ring->data_dmat, data->map, 1539 mtod(mnew, caddr_t), MCLBYTES, 1540 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1541 if (error != 0 && error != EFBIG) { 1542 device_printf(sc->sc_dev, 1543 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1544 m_freem(mnew); 1545 ifp->if_ierrors++; 1546 return; 1547 } 1548 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1549 1550 /* finalize mbuf and swap in new one */ 1551 m = data->m; 1552 m->m_pkthdr.rcvif = ifp; 1553 m->m_data = (caddr_t)(head + 1); 1554 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1555 1556 data->m = mnew; 1557 /* update Rx descriptor */ 1558 ring->desc[ring->cur] = htole32(paddr); 1559 1560 if (ieee80211_radiotap_active(ic)) { 1561 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1562 1563 tap->wr_flags = 0; 1564 tap->wr_chan_freq = 1565 htole16(ic->ic_channels[head->chan].ic_freq); 1566 tap->wr_chan_flags = 1567 htole16(ic->ic_channels[head->chan].ic_flags); 1568 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1569 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1570 tap->wr_tsft = tail->tstamp; 1571 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1572 switch (head->rate) { 1573 /* CCK rates */ 1574 case 10: tap->wr_rate = 2; break; 1575 case 20: tap->wr_rate = 4; break; 1576 case 55: tap->wr_rate = 11; break; 1577 case 110: tap->wr_rate = 22; break; 1578 /* OFDM rates */ 1579 case 0xd: tap->wr_rate = 12; break; 1580 case 0xf: tap->wr_rate = 18; break; 1581 case 0x5: tap->wr_rate = 24; break; 1582 case 0x7: tap->wr_rate = 36; break; 1583 case 0x9: tap->wr_rate = 48; break; 1584 case 0xb: tap->wr_rate = 72; break; 1585 case 0x1: tap->wr_rate = 96; break; 1586 case 0x3: tap->wr_rate = 108; break; 1587 /* unknown rate: should not happen */ 1588 default: tap->wr_rate = 0; 1589 } 1590 if (le16toh(head->flags) & 0x4) 1591 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1592 } 1593 1594 WPI_UNLOCK(sc); 1595 1596 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1597 if (ni != NULL) { 1598 (void) ieee80211_input(ni, m, stat->rssi, 0); 1599 ieee80211_free_node(ni); 1600 } else 1601 (void) ieee80211_input_all(ic, m, stat->rssi, 0); 1602 1603 WPI_LOCK(sc); 1604 } 1605 1606 static void 1607 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1608 { 1609 struct ifnet *ifp = sc->sc_ifp; 1610 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1611 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1612 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1613 struct ieee80211_node *ni = txdata->ni; 1614 struct ieee80211vap *vap = ni->ni_vap; 1615 int retrycnt = 0; 1616 1617 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1618 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1619 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1620 le32toh(stat->status))); 1621 1622 /* 1623 * Update rate control statistics for the node. 1624 * XXX we should not count mgmt frames since they're always sent at 1625 * the lowest available bit-rate. 1626 * XXX frames w/o ACK shouldn't be used either 1627 */ 1628 if (stat->ntries > 0) { 1629 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1630 retrycnt = 1; 1631 } 1632 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, 1633 &retrycnt, NULL); 1634 1635 /* XXX oerrors should only count errors !maxtries */ 1636 if ((le32toh(stat->status) & 0xff) != 1) 1637 ifp->if_oerrors++; 1638 else 1639 ifp->if_opackets++; 1640 1641 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1642 bus_dmamap_unload(ring->data_dmat, txdata->map); 1643 /* XXX handle M_TXCB? */ 1644 m_freem(txdata->m); 1645 txdata->m = NULL; 1646 ieee80211_free_node(txdata->ni); 1647 txdata->ni = NULL; 1648 1649 ring->queued--; 1650 1651 sc->sc_tx_timer = 0; 1652 ifp->if_flags &= ~IFF_OACTIVE; 1653 wpi_start_locked(ifp); 1654 } 1655 1656 static void 1657 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1658 { 1659 struct wpi_tx_ring *ring = &sc->cmdq; 1660 struct wpi_tx_data *data; 1661 1662 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1663 "type=%s len=%d\n", desc->qid, desc->idx, 1664 desc->flags, wpi_cmd_str(desc->type), 1665 le32toh(desc->len))); 1666 1667 if ((desc->qid & 7) != 4) 1668 return; /* not a command ack */ 1669 1670 data = &ring->data[desc->idx]; 1671 1672 /* if the command was mapped in a mbuf, free it */ 1673 if (data->m != NULL) { 1674 bus_dmamap_unload(ring->data_dmat, data->map); 1675 m_freem(data->m); 1676 data->m = NULL; 1677 } 1678 1679 sc->flags &= ~WPI_FLAG_BUSY; 1680 wakeup(&ring->cmd[desc->idx]); 1681 } 1682 1683 static void 1684 wpi_notif_intr(struct wpi_softc *sc) 1685 { 1686 struct ifnet *ifp = sc->sc_ifp; 1687 struct ieee80211com *ic = ifp->if_l2com; 1688 struct wpi_rx_desc *desc; 1689 struct wpi_rx_data *data; 1690 uint32_t hw; 1691 1692 hw = le32toh(sc->shared->next); 1693 while (sc->rxq.cur != hw) { 1694 data = &sc->rxq.data[sc->rxq.cur]; 1695 desc = (void *)data->m->m_ext.ext_buf; 1696 1697 DPRINTFN(WPI_DEBUG_NOTIFY, 1698 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1699 desc->qid, 1700 desc->idx, 1701 desc->flags, 1702 desc->type, 1703 le32toh(desc->len))); 1704 1705 if (!(desc->qid & 0x80)) /* reply to a command */ 1706 wpi_cmd_intr(sc, desc); 1707 1708 switch (desc->type) { 1709 case WPI_RX_DONE: 1710 /* a 802.11 frame was received */ 1711 wpi_rx_intr(sc, desc, data); 1712 break; 1713 1714 case WPI_TX_DONE: 1715 /* a 802.11 frame has been transmitted */ 1716 wpi_tx_intr(sc, desc); 1717 break; 1718 1719 case WPI_UC_READY: 1720 { 1721 struct wpi_ucode_info *uc = 1722 (struct wpi_ucode_info *)(desc + 1); 1723 1724 /* the microcontroller is ready */ 1725 DPRINTF(("microcode alive notification version %x " 1726 "alive %x\n", le32toh(uc->version), 1727 le32toh(uc->valid))); 1728 1729 if (le32toh(uc->valid) != 1) { 1730 device_printf(sc->sc_dev, 1731 "microcontroller initialization failed\n"); 1732 wpi_stop_locked(sc); 1733 } 1734 break; 1735 } 1736 case WPI_STATE_CHANGED: 1737 { 1738 uint32_t *status = (uint32_t *)(desc + 1); 1739 1740 /* enabled/disabled notification */ 1741 DPRINTF(("state changed to %x\n", le32toh(*status))); 1742 1743 if (le32toh(*status) & 1) { 1744 device_printf(sc->sc_dev, 1745 "Radio transmitter is switched off\n"); 1746 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1747 ifp->if_flags &= ~IFF_RUNNING; 1748 /* Disable firmware commands */ 1749 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1750 } 1751 break; 1752 } 1753 case WPI_START_SCAN: 1754 { 1755 #ifdef WPI_DEBUG 1756 struct wpi_start_scan *scan = 1757 (struct wpi_start_scan *)(desc + 1); 1758 #endif 1759 1760 DPRINTFN(WPI_DEBUG_SCANNING, 1761 ("scanning channel %d status %x\n", 1762 scan->chan, le32toh(scan->status))); 1763 break; 1764 } 1765 case WPI_STOP_SCAN: 1766 { 1767 #ifdef WPI_DEBUG 1768 struct wpi_stop_scan *scan = 1769 (struct wpi_stop_scan *)(desc + 1); 1770 #endif 1771 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1772 1773 DPRINTFN(WPI_DEBUG_SCANNING, 1774 ("scan finished nchan=%d status=%d chan=%d\n", 1775 scan->nchan, scan->status, scan->chan)); 1776 1777 sc->sc_scan_timer = 0; 1778 ieee80211_scan_next(vap); 1779 break; 1780 } 1781 case WPI_MISSED_BEACON: 1782 { 1783 struct wpi_missed_beacon *beacon = 1784 (struct wpi_missed_beacon *)(desc + 1); 1785 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1786 1787 if (le32toh(beacon->consecutive) >= 1788 vap->iv_bmissthreshold) { 1789 DPRINTF(("Beacon miss: %u >= %u\n", 1790 le32toh(beacon->consecutive), 1791 vap->iv_bmissthreshold)); 1792 ieee80211_beacon_miss(ic); 1793 } 1794 break; 1795 } 1796 } 1797 1798 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1799 } 1800 1801 /* tell the firmware what we have processed */ 1802 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1803 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1804 } 1805 1806 static void 1807 wpi_intr(void *arg) 1808 { 1809 struct wpi_softc *sc = arg; 1810 uint32_t r; 1811 1812 WPI_LOCK(sc); 1813 1814 r = WPI_READ(sc, WPI_INTR); 1815 if (r == 0 || r == 0xffffffff) { 1816 WPI_UNLOCK(sc); 1817 return; 1818 } 1819 1820 /* disable interrupts */ 1821 WPI_WRITE(sc, WPI_MASK, 0); 1822 /* ack interrupts */ 1823 WPI_WRITE(sc, WPI_INTR, r); 1824 1825 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1826 struct ifnet *ifp = sc->sc_ifp; 1827 struct ieee80211com *ic = ifp->if_l2com; 1828 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1829 1830 device_printf(sc->sc_dev, "fatal firmware error\n"); 1831 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1832 "(Hardware Error)")); 1833 if (vap != NULL) 1834 ieee80211_cancel_scan(vap); 1835 ieee80211_runtask(ic, &sc->sc_restarttask); 1836 sc->flags &= ~WPI_FLAG_BUSY; 1837 WPI_UNLOCK(sc); 1838 return; 1839 } 1840 1841 if (r & WPI_RX_INTR) 1842 wpi_notif_intr(sc); 1843 1844 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1845 wakeup(sc); 1846 1847 /* re-enable interrupts */ 1848 if (sc->sc_ifp->if_flags & IFF_UP) 1849 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1850 1851 WPI_UNLOCK(sc); 1852 } 1853 1854 static uint8_t 1855 wpi_plcp_signal(int rate) 1856 { 1857 switch (rate) { 1858 /* CCK rates (returned values are device-dependent) */ 1859 case 2: return 10; 1860 case 4: return 20; 1861 case 11: return 55; 1862 case 22: return 110; 1863 1864 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1865 /* R1-R4 (ral/ural is R4-R1) */ 1866 case 12: return 0xd; 1867 case 18: return 0xf; 1868 case 24: return 0x5; 1869 case 36: return 0x7; 1870 case 48: return 0x9; 1871 case 72: return 0xb; 1872 case 96: return 0x1; 1873 case 108: return 0x3; 1874 1875 /* unsupported rates (should not get there) */ 1876 default: return 0; 1877 } 1878 } 1879 1880 /* quickly determine if a given rate is CCK or OFDM */ 1881 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1882 1883 /* 1884 * Construct the data packet for a transmit buffer and acutally put 1885 * the buffer onto the transmit ring, kicking the card to process the 1886 * the buffer. 1887 */ 1888 static int 1889 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1890 int ac) 1891 { 1892 struct ieee80211vap *vap = ni->ni_vap; 1893 struct ifnet *ifp = sc->sc_ifp; 1894 struct ieee80211com *ic = ifp->if_l2com; 1895 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1896 struct wpi_tx_ring *ring = &sc->txq[ac]; 1897 struct wpi_tx_desc *desc; 1898 struct wpi_tx_data *data; 1899 struct wpi_tx_cmd *cmd; 1900 struct wpi_cmd_data *tx; 1901 struct ieee80211_frame *wh; 1902 const struct ieee80211_txparam *tp; 1903 struct ieee80211_key *k; 1904 struct mbuf *mnew; 1905 int i, error, nsegs, rate, hdrlen, ismcast; 1906 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1907 1908 desc = &ring->desc[ring->cur]; 1909 data = &ring->data[ring->cur]; 1910 1911 wh = mtod(m0, struct ieee80211_frame *); 1912 1913 hdrlen = ieee80211_hdrsize(wh); 1914 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1915 1916 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1917 k = ieee80211_crypto_encap(ni, m0); 1918 if (k == NULL) { 1919 m_freem(m0); 1920 return ENOBUFS; 1921 } 1922 /* packet header may have moved, reset our local pointer */ 1923 wh = mtod(m0, struct ieee80211_frame *); 1924 } 1925 1926 cmd = &ring->cmd[ring->cur]; 1927 cmd->code = WPI_CMD_TX_DATA; 1928 cmd->flags = 0; 1929 cmd->qid = ring->qid; 1930 cmd->idx = ring->cur; 1931 1932 tx = (struct wpi_cmd_data *)cmd->data; 1933 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1934 tx->timeout = htole16(0); 1935 tx->ofdm_mask = 0xff; 1936 tx->cck_mask = 0x0f; 1937 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1938 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1939 tx->len = htole16(m0->m_pkthdr.len); 1940 1941 if (!ismcast) { 1942 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1943 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1944 tx->flags |= htole32(WPI_TX_NEED_ACK); 1945 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1946 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1947 tx->rts_ntries = 7; 1948 } 1949 } 1950 /* pick a rate */ 1951 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1952 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1953 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1954 /* tell h/w to set timestamp in probe responses */ 1955 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1956 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1957 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1958 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1959 tx->timeout = htole16(3); 1960 else 1961 tx->timeout = htole16(2); 1962 rate = tp->mgmtrate; 1963 } else if (ismcast) { 1964 rate = tp->mcastrate; 1965 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1966 rate = tp->ucastrate; 1967 } else { 1968 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1969 rate = ni->ni_txrate; 1970 } 1971 tx->rate = wpi_plcp_signal(rate); 1972 1973 /* be very persistant at sending frames out */ 1974 #if 0 1975 tx->data_ntries = tp->maxretry; 1976 #else 1977 tx->data_ntries = 30; /* XXX way too high */ 1978 #endif 1979 1980 if (ieee80211_radiotap_active_vap(vap)) { 1981 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1982 tap->wt_flags = 0; 1983 tap->wt_rate = rate; 1984 tap->wt_hwqueue = ac; 1985 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1986 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1987 1988 ieee80211_radiotap_tx(vap, m0); 1989 } 1990 1991 /* save and trim IEEE802.11 header */ 1992 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1993 m_adj(m0, hdrlen); 1994 1995 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs, 1996 1, &nsegs, BUS_DMA_NOWAIT); 1997 if (error != 0 && error != EFBIG) { 1998 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1999 error); 2000 m_freem(m0); 2001 return error; 2002 } 2003 if (error != 0) { 2004 /* XXX use m_collapse */ 2005 mnew = m_defrag(m0, MB_DONTWAIT); 2006 if (mnew == NULL) { 2007 device_printf(sc->sc_dev, 2008 "could not defragment mbuf\n"); 2009 m_freem(m0); 2010 return ENOBUFS; 2011 } 2012 m0 = mnew; 2013 2014 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, 2015 m0, segs, 1, &nsegs, BUS_DMA_NOWAIT); 2016 if (error != 0) { 2017 device_printf(sc->sc_dev, 2018 "could not map mbuf (error %d)\n", error); 2019 m_freem(m0); 2020 return error; 2021 } 2022 } 2023 2024 data->m = m0; 2025 data->ni = ni; 2026 2027 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 2028 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 2029 2030 /* first scatter/gather segment is used by the tx data command */ 2031 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2032 (1 + nsegs) << 24); 2033 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2034 ring->cur * sizeof (struct wpi_tx_cmd)); 2035 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 2036 for (i = 1; i <= nsegs; i++) { 2037 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 2038 desc->segs[i].len = htole32(segs[i - 1].ds_len); 2039 } 2040 2041 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2042 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2043 BUS_DMASYNC_PREWRITE); 2044 2045 ring->queued++; 2046 2047 /* kick ring */ 2048 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2049 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2050 2051 return 0; 2052 } 2053 2054 /** 2055 * Process data waiting to be sent on the IFNET output queue 2056 */ 2057 static void 2058 wpi_start(struct ifnet *ifp) 2059 { 2060 struct wpi_softc *sc = ifp->if_softc; 2061 2062 WPI_LOCK(sc); 2063 wpi_start_locked(ifp); 2064 WPI_UNLOCK(sc); 2065 } 2066 2067 static void 2068 wpi_start_locked(struct ifnet *ifp) 2069 { 2070 struct wpi_softc *sc = ifp->if_softc; 2071 struct ieee80211_node *ni; 2072 struct mbuf *m; 2073 int ac; 2074 2075 WPI_LOCK_ASSERT(sc); 2076 2077 if ((ifp->if_flags & IFF_RUNNING) == 0) { 2078 ifq_purge(&ifp->if_snd); 2079 return; 2080 } 2081 2082 for (;;) { 2083 IF_DEQUEUE(&ifp->if_snd, m); 2084 if (m == NULL) 2085 break; 2086 ac = M_WME_GETAC(m); 2087 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2088 /* there is no place left in this ring */ 2089 ifq_prepend(&ifp->if_snd, m); 2090 ifp->if_flags |= IFF_OACTIVE; 2091 break; 2092 } 2093 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2094 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2095 ieee80211_free_node(ni); 2096 ifp->if_oerrors++; 2097 break; 2098 } 2099 sc->sc_tx_timer = 5; 2100 } 2101 } 2102 2103 static int 2104 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2105 const struct ieee80211_bpf_params *params) 2106 { 2107 struct ieee80211com *ic = ni->ni_ic; 2108 struct ifnet *ifp = ic->ic_ifp; 2109 struct wpi_softc *sc = ifp->if_softc; 2110 2111 /* prevent management frames from being sent if we're not ready */ 2112 if (!(ifp->if_flags & IFF_RUNNING)) { 2113 m_freem(m); 2114 ieee80211_free_node(ni); 2115 return ENETDOWN; 2116 } 2117 WPI_LOCK(sc); 2118 2119 /* management frames go into ring 0 */ 2120 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2121 ifp->if_flags |= IFF_OACTIVE; 2122 m_freem(m); 2123 WPI_UNLOCK(sc); 2124 ieee80211_free_node(ni); 2125 return ENOBUFS; /* XXX */ 2126 } 2127 2128 ifp->if_opackets++; 2129 if (wpi_tx_data(sc, m, ni, 0) != 0) 2130 goto bad; 2131 sc->sc_tx_timer = 5; 2132 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 2133 2134 WPI_UNLOCK(sc); 2135 return 0; 2136 bad: 2137 ifp->if_oerrors++; 2138 WPI_UNLOCK(sc); 2139 ieee80211_free_node(ni); 2140 return EIO; /* XXX */ 2141 } 2142 2143 static int 2144 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred) 2145 { 2146 struct wpi_softc *sc = ifp->if_softc; 2147 struct ieee80211com *ic = ifp->if_l2com; 2148 struct ifreq *ifr = (struct ifreq *) data; 2149 int error = 0, startall = 0; 2150 2151 switch (cmd) { 2152 case SIOCSIFFLAGS: 2153 WPI_LOCK(sc); 2154 if ((ifp->if_flags & IFF_UP)) { 2155 if (!(ifp->if_flags & IFF_RUNNING)) { 2156 wpi_init_locked(sc, 0); 2157 startall = 1; 2158 } 2159 } else if ((ifp->if_flags & IFF_RUNNING) || 2160 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2161 wpi_stop_locked(sc); 2162 WPI_UNLOCK(sc); 2163 if (startall) 2164 ieee80211_start_all(ic); 2165 break; 2166 case SIOCGIFMEDIA: 2167 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2168 break; 2169 case SIOCGIFADDR: 2170 error = ether_ioctl(ifp, cmd, data); 2171 break; 2172 default: 2173 error = EINVAL; 2174 break; 2175 } 2176 return error; 2177 } 2178 2179 /* 2180 * Extract various information from EEPROM. 2181 */ 2182 static void 2183 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2184 { 2185 int i; 2186 2187 /* read the hardware capabilities, revision and SKU type */ 2188 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2189 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2190 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2191 2192 /* read the regulatory domain */ 2193 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2194 2195 /* read in the hw MAC address */ 2196 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2197 2198 /* read the list of authorized channels */ 2199 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2200 wpi_read_eeprom_channels(sc,i); 2201 2202 /* read the power level calibration info for each group */ 2203 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2204 wpi_read_eeprom_group(sc,i); 2205 } 2206 2207 /* 2208 * Send a command to the firmware. 2209 */ 2210 static int 2211 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2212 { 2213 struct wpi_tx_ring *ring = &sc->cmdq; 2214 struct wpi_tx_desc *desc; 2215 struct wpi_tx_cmd *cmd; 2216 2217 #ifdef WPI_DEBUG 2218 if (!async) { 2219 WPI_LOCK_ASSERT(sc); 2220 } 2221 #endif 2222 2223 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2224 async)); 2225 2226 if (sc->flags & WPI_FLAG_BUSY) { 2227 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2228 __func__, code); 2229 return EAGAIN; 2230 } 2231 sc->flags|= WPI_FLAG_BUSY; 2232 2233 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2234 code, size)); 2235 2236 desc = &ring->desc[ring->cur]; 2237 cmd = &ring->cmd[ring->cur]; 2238 2239 cmd->code = code; 2240 cmd->flags = 0; 2241 cmd->qid = ring->qid; 2242 cmd->idx = ring->cur; 2243 memcpy(cmd->data, buf, size); 2244 2245 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2246 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2247 ring->cur * sizeof (struct wpi_tx_cmd)); 2248 desc->segs[0].len = htole32(4 + size); 2249 2250 /* kick cmd ring */ 2251 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2252 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2253 2254 if (async) { 2255 sc->flags &= ~ WPI_FLAG_BUSY; 2256 return 0; 2257 } 2258 2259 return lksleep(cmd, &sc->sc_lock, 0, "wpicmd", hz); 2260 } 2261 2262 static int 2263 wpi_wme_update(struct ieee80211com *ic) 2264 { 2265 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2266 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2267 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2268 const struct wmeParams *wmep; 2269 struct wpi_wme_setup wme; 2270 int ac; 2271 2272 /* don't override default WME values if WME is not actually enabled */ 2273 if (!(ic->ic_flags & IEEE80211_F_WME)) 2274 return 0; 2275 2276 wme.flags = 0; 2277 for (ac = 0; ac < WME_NUM_AC; ac++) { 2278 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2279 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2280 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2281 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2282 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2283 2284 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2285 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2286 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2287 } 2288 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2289 #undef WPI_USEC 2290 #undef WPI_EXP2 2291 } 2292 2293 /* 2294 * Configure h/w multi-rate retries. 2295 */ 2296 static int 2297 wpi_mrr_setup(struct wpi_softc *sc) 2298 { 2299 struct ifnet *ifp = sc->sc_ifp; 2300 struct ieee80211com *ic = ifp->if_l2com; 2301 struct wpi_mrr_setup mrr; 2302 int i, error; 2303 2304 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2305 2306 /* CCK rates (not used with 802.11a) */ 2307 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2308 mrr.rates[i].flags = 0; 2309 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2310 /* fallback to the immediate lower CCK rate (if any) */ 2311 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2312 /* try one time at this rate before falling back to "next" */ 2313 mrr.rates[i].ntries = 1; 2314 } 2315 2316 /* OFDM rates (not used with 802.11b) */ 2317 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2318 mrr.rates[i].flags = 0; 2319 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2320 /* fallback to the immediate lower OFDM rate (if any) */ 2321 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2322 mrr.rates[i].next = (i == WPI_OFDM6) ? 2323 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2324 WPI_OFDM6 : WPI_CCK2) : 2325 i - 1; 2326 /* try one time at this rate before falling back to "next" */ 2327 mrr.rates[i].ntries = 1; 2328 } 2329 2330 /* setup MRR for control frames */ 2331 mrr.which = htole32(WPI_MRR_CTL); 2332 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2333 if (error != 0) { 2334 device_printf(sc->sc_dev, 2335 "could not setup MRR for control frames\n"); 2336 return error; 2337 } 2338 2339 /* setup MRR for data frames */ 2340 mrr.which = htole32(WPI_MRR_DATA); 2341 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2342 if (error != 0) { 2343 device_printf(sc->sc_dev, 2344 "could not setup MRR for data frames\n"); 2345 return error; 2346 } 2347 2348 return 0; 2349 } 2350 2351 static void 2352 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2353 { 2354 struct wpi_cmd_led led; 2355 2356 led.which = which; 2357 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2358 led.off = off; 2359 led.on = on; 2360 2361 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2362 } 2363 2364 static void 2365 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2366 { 2367 struct wpi_cmd_tsf tsf; 2368 uint64_t val, mod; 2369 2370 memset(&tsf, 0, sizeof tsf); 2371 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2372 tsf.bintval = htole16(ni->ni_intval); 2373 tsf.lintval = htole16(10); 2374 2375 /* compute remaining time until next beacon */ 2376 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2377 mod = le64toh(tsf.tstamp) % val; 2378 tsf.binitval = htole32((uint32_t)(val - mod)); 2379 2380 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2381 device_printf(sc->sc_dev, "could not enable TSF\n"); 2382 } 2383 2384 #if 0 2385 /* 2386 * Build a beacon frame that the firmware will broadcast periodically in 2387 * IBSS or HostAP modes. 2388 */ 2389 static int 2390 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2391 { 2392 struct ifnet *ifp = sc->sc_ifp; 2393 struct ieee80211com *ic = ifp->if_l2com; 2394 struct wpi_tx_ring *ring = &sc->cmdq; 2395 struct wpi_tx_desc *desc; 2396 struct wpi_tx_data *data; 2397 struct wpi_tx_cmd *cmd; 2398 struct wpi_cmd_beacon *bcn; 2399 struct ieee80211_beacon_offsets bo; 2400 struct mbuf *m0; 2401 bus_addr_t physaddr; 2402 int error; 2403 2404 desc = &ring->desc[ring->cur]; 2405 data = &ring->data[ring->cur]; 2406 2407 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2408 if (m0 == NULL) { 2409 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2410 return ENOMEM; 2411 } 2412 2413 cmd = &ring->cmd[ring->cur]; 2414 cmd->code = WPI_CMD_SET_BEACON; 2415 cmd->flags = 0; 2416 cmd->qid = ring->qid; 2417 cmd->idx = ring->cur; 2418 2419 bcn = (struct wpi_cmd_beacon *)cmd->data; 2420 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2421 bcn->id = WPI_ID_BROADCAST; 2422 bcn->ofdm_mask = 0xff; 2423 bcn->cck_mask = 0x0f; 2424 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2425 bcn->len = htole16(m0->m_pkthdr.len); 2426 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2427 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2428 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2429 2430 /* save and trim IEEE802.11 header */ 2431 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2432 m_adj(m0, sizeof (struct ieee80211_frame)); 2433 2434 /* assume beacon frame is contiguous */ 2435 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2436 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2437 if (error != 0) { 2438 device_printf(sc->sc_dev, "could not map beacon\n"); 2439 m_freem(m0); 2440 return error; 2441 } 2442 2443 data->m = m0; 2444 2445 /* first scatter/gather segment is used by the beacon command */ 2446 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2447 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2448 ring->cur * sizeof (struct wpi_tx_cmd)); 2449 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2450 desc->segs[1].addr = htole32(physaddr); 2451 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2452 2453 /* kick cmd ring */ 2454 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2455 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2456 2457 return 0; 2458 } 2459 #endif 2460 2461 static int 2462 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2463 { 2464 struct ieee80211com *ic = vap->iv_ic; 2465 struct ieee80211_node *ni = vap->iv_bss; 2466 struct wpi_node_info node; 2467 int error; 2468 2469 2470 /* update adapter's configuration */ 2471 sc->config.associd = 0; 2472 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2473 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2474 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2475 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2476 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2477 WPI_CONFIG_24GHZ); 2478 } 2479 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2480 sc->config.cck_mask = 0; 2481 sc->config.ofdm_mask = 0x15; 2482 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2483 sc->config.cck_mask = 0x03; 2484 sc->config.ofdm_mask = 0; 2485 } else { 2486 /* XXX assume 802.11b/g */ 2487 sc->config.cck_mask = 0x0f; 2488 sc->config.ofdm_mask = 0x15; 2489 } 2490 2491 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2492 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2493 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2494 sizeof (struct wpi_config), 1); 2495 if (error != 0) { 2496 device_printf(sc->sc_dev, "could not configure\n"); 2497 return error; 2498 } 2499 2500 /* configuration has changed, set Tx power accordingly */ 2501 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2502 device_printf(sc->sc_dev, "could not set Tx power\n"); 2503 return error; 2504 } 2505 2506 /* add default node */ 2507 memset(&node, 0, sizeof node); 2508 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2509 node.id = WPI_ID_BSS; 2510 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2511 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2512 node.action = htole32(WPI_ACTION_SET_RATE); 2513 node.antenna = WPI_ANTENNA_BOTH; 2514 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2515 if (error != 0) 2516 device_printf(sc->sc_dev, "could not add BSS node\n"); 2517 2518 return (error); 2519 } 2520 2521 static int 2522 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2523 { 2524 struct ieee80211com *ic = vap->iv_ic; 2525 struct ieee80211_node *ni = vap->iv_bss; 2526 int error; 2527 2528 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2529 /* link LED blinks while monitoring */ 2530 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2531 return 0; 2532 } 2533 2534 wpi_enable_tsf(sc, ni); 2535 2536 /* update adapter's configuration */ 2537 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2538 /* short preamble/slot time are negotiated when associating */ 2539 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2540 WPI_CONFIG_SHSLOT); 2541 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2542 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2543 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2544 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2545 sc->config.filter |= htole32(WPI_FILTER_BSS); 2546 2547 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2548 2549 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2550 sc->config.flags)); 2551 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2552 wpi_config), 1); 2553 if (error != 0) { 2554 device_printf(sc->sc_dev, "could not update configuration\n"); 2555 return error; 2556 } 2557 2558 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2559 if (error != 0) { 2560 device_printf(sc->sc_dev, "could set txpower\n"); 2561 return error; 2562 } 2563 2564 /* link LED always on while associated */ 2565 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2566 2567 /* start automatic rate control timer */ 2568 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 2569 2570 return (error); 2571 } 2572 2573 /* 2574 * Send a scan request to the firmware. Since this command is huge, we map it 2575 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2576 * much of this code is similar to that in wpi_cmd but because we must manually 2577 * construct the probe & channels, we duplicate what's needed here. XXX In the 2578 * future, this function should be modified to use wpi_cmd to help cleanup the 2579 * code base. 2580 */ 2581 static int 2582 wpi_scan(struct wpi_softc *sc) 2583 { 2584 struct ifnet *ifp = sc->sc_ifp; 2585 struct ieee80211com *ic = ifp->if_l2com; 2586 struct ieee80211_scan_state *ss = ic->ic_scan; 2587 struct wpi_tx_ring *ring = &sc->cmdq; 2588 struct wpi_tx_desc *desc; 2589 struct wpi_tx_data *data; 2590 struct wpi_tx_cmd *cmd; 2591 struct wpi_scan_hdr *hdr; 2592 struct wpi_scan_chan *chan; 2593 struct ieee80211_frame *wh; 2594 struct ieee80211_rateset *rs; 2595 struct ieee80211_channel *c; 2596 enum ieee80211_phymode mode; 2597 uint8_t *frm; 2598 int nrates, pktlen, error, i, nssid; 2599 bus_addr_t physaddr; 2600 2601 desc = &ring->desc[ring->cur]; 2602 data = &ring->data[ring->cur]; 2603 2604 data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2605 if (data->m == NULL) { 2606 device_printf(sc->sc_dev, 2607 "could not allocate mbuf for scan command\n"); 2608 return ENOMEM; 2609 } 2610 2611 cmd = mtod(data->m, struct wpi_tx_cmd *); 2612 cmd->code = WPI_CMD_SCAN; 2613 cmd->flags = 0; 2614 cmd->qid = ring->qid; 2615 cmd->idx = ring->cur; 2616 2617 hdr = (struct wpi_scan_hdr *)cmd->data; 2618 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2619 2620 /* 2621 * Move to the next channel if no packets are received within 5 msecs 2622 * after sending the probe request (this helps to reduce the duration 2623 * of active scans). 2624 */ 2625 hdr->quiet = htole16(5); 2626 hdr->threshold = htole16(1); 2627 2628 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2629 /* send probe requests at 6Mbps */ 2630 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2631 2632 /* Enable crc checking */ 2633 hdr->promotion = htole16(1); 2634 } else { 2635 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2636 /* send probe requests at 1Mbps */ 2637 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2638 } 2639 hdr->tx.id = WPI_ID_BROADCAST; 2640 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2641 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2642 2643 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2644 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2645 for (i = 0; i < nssid; i++) { 2646 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2647 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2648 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2649 hdr->scan_essids[i].esslen); 2650 #ifdef WPI_DEBUG 2651 if (wpi_debug & WPI_DEBUG_SCANNING) { 2652 kprintf("Scanning Essid: "); 2653 ieee80211_print_essid(hdr->scan_essids[i].essid, 2654 hdr->scan_essids[i].esslen); 2655 kprintf("\n"); 2656 } 2657 #endif 2658 } 2659 2660 /* 2661 * Build a probe request frame. Most of the following code is a 2662 * copy & paste of what is done in net80211. 2663 */ 2664 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2665 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2666 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2667 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2668 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2669 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2670 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2671 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2672 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2673 2674 frm = (uint8_t *)(wh + 1); 2675 2676 /* add essid IE, the hardware will fill this in for us */ 2677 *frm++ = IEEE80211_ELEMID_SSID; 2678 *frm++ = 0; 2679 2680 mode = ieee80211_chan2mode(ic->ic_curchan); 2681 rs = &ic->ic_sup_rates[mode]; 2682 2683 /* add supported rates IE */ 2684 *frm++ = IEEE80211_ELEMID_RATES; 2685 nrates = rs->rs_nrates; 2686 if (nrates > IEEE80211_RATE_SIZE) 2687 nrates = IEEE80211_RATE_SIZE; 2688 *frm++ = nrates; 2689 memcpy(frm, rs->rs_rates, nrates); 2690 frm += nrates; 2691 2692 /* add supported xrates IE */ 2693 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2694 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2695 *frm++ = IEEE80211_ELEMID_XRATES; 2696 *frm++ = nrates; 2697 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2698 frm += nrates; 2699 } 2700 2701 /* setup length of probe request */ 2702 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2703 2704 /* 2705 * Construct information about the channel that we 2706 * want to scan. The firmware expects this to be directly 2707 * after the scan probe request 2708 */ 2709 c = ic->ic_curchan; 2710 chan = (struct wpi_scan_chan *)frm; 2711 chan->chan = ieee80211_chan2ieee(ic, c); 2712 chan->flags = 0; 2713 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2714 chan->flags |= WPI_CHAN_ACTIVE; 2715 if (nssid != 0) 2716 chan->flags |= WPI_CHAN_DIRECT; 2717 } 2718 chan->gain_dsp = 0x6e; /* Default level */ 2719 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2720 chan->active = htole16(10); 2721 chan->passive = htole16(ss->ss_maxdwell); 2722 chan->gain_radio = 0x3b; 2723 } else { 2724 chan->active = htole16(20); 2725 chan->passive = htole16(ss->ss_maxdwell); 2726 chan->gain_radio = 0x28; 2727 } 2728 2729 DPRINTFN(WPI_DEBUG_SCANNING, 2730 ("Scanning %u Passive: %d\n", 2731 chan->chan, 2732 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2733 2734 hdr->nchan++; 2735 chan++; 2736 2737 frm += sizeof (struct wpi_scan_chan); 2738 #if 0 2739 // XXX All Channels.... 2740 for (c = &ic->ic_channels[1]; 2741 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2742 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2743 continue; 2744 2745 chan->chan = ieee80211_chan2ieee(ic, c); 2746 chan->flags = 0; 2747 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2748 chan->flags |= WPI_CHAN_ACTIVE; 2749 if (ic->ic_des_ssid[0].len != 0) 2750 chan->flags |= WPI_CHAN_DIRECT; 2751 } 2752 chan->gain_dsp = 0x6e; /* Default level */ 2753 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2754 chan->active = htole16(10); 2755 chan->passive = htole16(110); 2756 chan->gain_radio = 0x3b; 2757 } else { 2758 chan->active = htole16(20); 2759 chan->passive = htole16(120); 2760 chan->gain_radio = 0x28; 2761 } 2762 2763 DPRINTFN(WPI_DEBUG_SCANNING, 2764 ("Scanning %u Passive: %d\n", 2765 chan->chan, 2766 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2767 2768 hdr->nchan++; 2769 chan++; 2770 2771 frm += sizeof (struct wpi_scan_chan); 2772 } 2773 #endif 2774 2775 hdr->len = htole16(frm - (uint8_t *)hdr); 2776 pktlen = frm - (uint8_t *)cmd; 2777 2778 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2779 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2780 if (error != 0) { 2781 device_printf(sc->sc_dev, "could not map scan command\n"); 2782 m_freem(data->m); 2783 data->m = NULL; 2784 return error; 2785 } 2786 2787 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2788 desc->segs[0].addr = htole32(physaddr); 2789 desc->segs[0].len = htole32(pktlen); 2790 2791 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2792 BUS_DMASYNC_PREWRITE); 2793 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2794 2795 /* kick cmd ring */ 2796 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2797 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2798 2799 sc->sc_scan_timer = 5; 2800 return 0; /* will be notified async. of failure/success */ 2801 } 2802 2803 /** 2804 * Configure the card to listen to a particular channel, this transisions the 2805 * card in to being able to receive frames from remote devices. 2806 */ 2807 static int 2808 wpi_config(struct wpi_softc *sc) 2809 { 2810 struct ifnet *ifp = sc->sc_ifp; 2811 struct ieee80211com *ic = ifp->if_l2com; 2812 struct wpi_power power; 2813 struct wpi_bluetooth bluetooth; 2814 struct wpi_node_info node; 2815 int error; 2816 2817 /* set power mode */ 2818 memset(&power, 0, sizeof power); 2819 power.flags = htole32(WPI_POWER_CAM|0x8); 2820 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2821 if (error != 0) { 2822 device_printf(sc->sc_dev, "could not set power mode\n"); 2823 return error; 2824 } 2825 2826 /* configure bluetooth coexistence */ 2827 memset(&bluetooth, 0, sizeof bluetooth); 2828 bluetooth.flags = 3; 2829 bluetooth.lead = 0xaa; 2830 bluetooth.kill = 1; 2831 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2832 0); 2833 if (error != 0) { 2834 device_printf(sc->sc_dev, 2835 "could not configure bluetooth coexistence\n"); 2836 return error; 2837 } 2838 2839 /* configure adapter */ 2840 memset(&sc->config, 0, sizeof (struct wpi_config)); 2841 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2842 /*set default channel*/ 2843 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2844 sc->config.flags = htole32(WPI_CONFIG_TSF); 2845 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2846 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2847 WPI_CONFIG_24GHZ); 2848 } 2849 sc->config.filter = 0; 2850 switch (ic->ic_opmode) { 2851 case IEEE80211_M_STA: 2852 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2853 sc->config.mode = WPI_MODE_STA; 2854 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2855 break; 2856 case IEEE80211_M_IBSS: 2857 case IEEE80211_M_AHDEMO: 2858 sc->config.mode = WPI_MODE_IBSS; 2859 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2860 WPI_FILTER_MULTICAST); 2861 break; 2862 case IEEE80211_M_HOSTAP: 2863 sc->config.mode = WPI_MODE_HOSTAP; 2864 break; 2865 case IEEE80211_M_MONITOR: 2866 sc->config.mode = WPI_MODE_MONITOR; 2867 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2868 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2869 break; 2870 default: 2871 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2872 return EINVAL; 2873 } 2874 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2875 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2876 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2877 sizeof (struct wpi_config), 0); 2878 if (error != 0) { 2879 device_printf(sc->sc_dev, "configure command failed\n"); 2880 return error; 2881 } 2882 2883 /* configuration has changed, set Tx power accordingly */ 2884 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2885 device_printf(sc->sc_dev, "could not set Tx power\n"); 2886 return error; 2887 } 2888 2889 /* add broadcast node */ 2890 memset(&node, 0, sizeof node); 2891 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2892 node.id = WPI_ID_BROADCAST; 2893 node.rate = wpi_plcp_signal(2); 2894 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2895 if (error != 0) { 2896 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2897 return error; 2898 } 2899 2900 /* Setup rate scalling */ 2901 error = wpi_mrr_setup(sc); 2902 if (error != 0) { 2903 device_printf(sc->sc_dev, "could not setup MRR\n"); 2904 return error; 2905 } 2906 2907 return 0; 2908 } 2909 2910 static void 2911 wpi_stop_master(struct wpi_softc *sc) 2912 { 2913 uint32_t tmp; 2914 int ntries; 2915 2916 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2917 2918 tmp = WPI_READ(sc, WPI_RESET); 2919 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2920 2921 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2922 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2923 return; /* already asleep */ 2924 2925 for (ntries = 0; ntries < 100; ntries++) { 2926 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2927 break; 2928 DELAY(10); 2929 } 2930 if (ntries == 100) { 2931 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2932 } 2933 } 2934 2935 static int 2936 wpi_power_up(struct wpi_softc *sc) 2937 { 2938 uint32_t tmp; 2939 int ntries; 2940 2941 wpi_mem_lock(sc); 2942 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2943 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2944 wpi_mem_unlock(sc); 2945 2946 for (ntries = 0; ntries < 5000; ntries++) { 2947 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2948 break; 2949 DELAY(10); 2950 } 2951 if (ntries == 5000) { 2952 device_printf(sc->sc_dev, 2953 "timeout waiting for NIC to power up\n"); 2954 return ETIMEDOUT; 2955 } 2956 return 0; 2957 } 2958 2959 static int 2960 wpi_reset(struct wpi_softc *sc) 2961 { 2962 uint32_t tmp; 2963 int ntries; 2964 2965 DPRINTFN(WPI_DEBUG_HW, 2966 ("Resetting the card - clearing any uploaded firmware\n")); 2967 2968 /* clear any pending interrupts */ 2969 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2970 2971 tmp = WPI_READ(sc, WPI_PLL_CTL); 2972 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2973 2974 tmp = WPI_READ(sc, WPI_CHICKEN); 2975 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2976 2977 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2978 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2979 2980 /* wait for clock stabilization */ 2981 for (ntries = 0; ntries < 25000; ntries++) { 2982 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2983 break; 2984 DELAY(10); 2985 } 2986 if (ntries == 25000) { 2987 device_printf(sc->sc_dev, 2988 "timeout waiting for clock stabilization\n"); 2989 return ETIMEDOUT; 2990 } 2991 2992 /* initialize EEPROM */ 2993 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2994 2995 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2996 device_printf(sc->sc_dev, "EEPROM not found\n"); 2997 return EIO; 2998 } 2999 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 3000 3001 return 0; 3002 } 3003 3004 static void 3005 wpi_hw_config(struct wpi_softc *sc) 3006 { 3007 uint32_t rev, hw; 3008 3009 /* voodoo from the Linux "driver".. */ 3010 hw = WPI_READ(sc, WPI_HWCONFIG); 3011 3012 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 3013 if ((rev & 0xc0) == 0x40) 3014 hw |= WPI_HW_ALM_MB; 3015 else if (!(rev & 0x80)) 3016 hw |= WPI_HW_ALM_MM; 3017 3018 if (sc->cap == 0x80) 3019 hw |= WPI_HW_SKU_MRC; 3020 3021 hw &= ~WPI_HW_REV_D; 3022 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 3023 hw |= WPI_HW_REV_D; 3024 3025 if (sc->type > 1) 3026 hw |= WPI_HW_TYPE_B; 3027 3028 WPI_WRITE(sc, WPI_HWCONFIG, hw); 3029 } 3030 3031 static void 3032 wpi_rfkill_resume(struct wpi_softc *sc) 3033 { 3034 struct ifnet *ifp = sc->sc_ifp; 3035 struct ieee80211com *ic = ifp->if_l2com; 3036 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3037 int ntries; 3038 3039 /* enable firmware again */ 3040 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3041 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3042 3043 /* wait for thermal sensors to calibrate */ 3044 for (ntries = 0; ntries < 1000; ntries++) { 3045 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3046 break; 3047 DELAY(10); 3048 } 3049 3050 if (ntries == 1000) { 3051 device_printf(sc->sc_dev, 3052 "timeout waiting for thermal calibration\n"); 3053 WPI_UNLOCK(sc); 3054 return; 3055 } 3056 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3057 3058 if (wpi_config(sc) != 0) { 3059 device_printf(sc->sc_dev, "device config failed\n"); 3060 WPI_UNLOCK(sc); 3061 return; 3062 } 3063 3064 ifp->if_flags &= ~IFF_OACTIVE; 3065 ifp->if_flags |= IFF_RUNNING; 3066 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3067 3068 if (vap != NULL) { 3069 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3070 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3071 ieee80211_beacon_miss(ic); 3072 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3073 } else 3074 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3075 } else { 3076 ieee80211_scan_next(vap); 3077 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3078 } 3079 } 3080 3081 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3082 } 3083 3084 static void 3085 wpi_init_locked(struct wpi_softc *sc, int force) 3086 { 3087 struct ifnet *ifp = sc->sc_ifp; 3088 uint32_t tmp; 3089 int ntries, qid; 3090 3091 wpi_stop_locked(sc); 3092 (void)wpi_reset(sc); 3093 3094 wpi_mem_lock(sc); 3095 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3096 DELAY(20); 3097 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3098 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3099 wpi_mem_unlock(sc); 3100 3101 (void)wpi_power_up(sc); 3102 wpi_hw_config(sc); 3103 3104 /* init Rx ring */ 3105 wpi_mem_lock(sc); 3106 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3107 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3108 offsetof(struct wpi_shared, next)); 3109 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3110 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3111 wpi_mem_unlock(sc); 3112 3113 /* init Tx rings */ 3114 wpi_mem_lock(sc); 3115 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3116 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3117 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3118 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3119 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3120 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3121 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3122 3123 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3124 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3125 3126 for (qid = 0; qid < 6; qid++) { 3127 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3128 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3129 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3130 } 3131 wpi_mem_unlock(sc); 3132 3133 /* clear "radio off" and "disable command" bits (reversed logic) */ 3134 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3135 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3136 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3137 3138 /* clear any pending interrupts */ 3139 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3140 3141 /* enable interrupts */ 3142 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3143 3144 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3145 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3146 3147 if ((wpi_load_firmware(sc)) != 0) { 3148 device_printf(sc->sc_dev, 3149 "A problem occurred loading the firmware to the driver\n"); 3150 return; 3151 } 3152 3153 /* At this point the firmware is up and running. If the hardware 3154 * RF switch is turned off thermal calibration will fail, though 3155 * the card is still happy to continue to accept commands, catch 3156 * this case and schedule a task to watch for it to be turned on. 3157 */ 3158 wpi_mem_lock(sc); 3159 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3160 wpi_mem_unlock(sc); 3161 3162 if (!(tmp & 0x1)) { 3163 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3164 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3165 goto out; 3166 } 3167 3168 /* wait for thermal sensors to calibrate */ 3169 for (ntries = 0; ntries < 1000; ntries++) { 3170 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3171 break; 3172 DELAY(10); 3173 } 3174 3175 if (ntries == 1000) { 3176 device_printf(sc->sc_dev, 3177 "timeout waiting for thermal sensors calibration\n"); 3178 return; 3179 } 3180 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3181 3182 if (wpi_config(sc) != 0) { 3183 device_printf(sc->sc_dev, "device config failed\n"); 3184 return; 3185 } 3186 3187 ifp->if_flags &= ~IFF_OACTIVE; 3188 ifp->if_flags |= IFF_RUNNING; 3189 out: 3190 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3191 } 3192 3193 static void 3194 wpi_init(void *arg) 3195 { 3196 struct wpi_softc *sc = arg; 3197 struct ifnet *ifp = sc->sc_ifp; 3198 struct ieee80211com *ic = ifp->if_l2com; 3199 3200 WPI_LOCK(sc); 3201 wpi_init_locked(sc, 0); 3202 WPI_UNLOCK(sc); 3203 3204 if (ifp->if_flags & IFF_RUNNING) 3205 ieee80211_start_all(ic); /* start all vaps */ 3206 } 3207 3208 static void 3209 wpi_stop_locked(struct wpi_softc *sc) 3210 { 3211 struct ifnet *ifp = sc->sc_ifp; 3212 uint32_t tmp; 3213 int ac; 3214 3215 sc->sc_tx_timer = 0; 3216 sc->sc_scan_timer = 0; 3217 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3218 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3219 callout_stop(&sc->watchdog_to); 3220 callout_stop(&sc->calib_to); 3221 3222 3223 /* disable interrupts */ 3224 WPI_WRITE(sc, WPI_MASK, 0); 3225 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3226 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3227 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3228 3229 wpi_mem_lock(sc); 3230 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3231 wpi_mem_unlock(sc); 3232 3233 /* reset all Tx rings */ 3234 for (ac = 0; ac < 4; ac++) 3235 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3236 wpi_reset_tx_ring(sc, &sc->cmdq); 3237 3238 /* reset Rx ring */ 3239 wpi_reset_rx_ring(sc, &sc->rxq); 3240 3241 wpi_mem_lock(sc); 3242 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3243 wpi_mem_unlock(sc); 3244 3245 DELAY(5); 3246 3247 wpi_stop_master(sc); 3248 3249 tmp = WPI_READ(sc, WPI_RESET); 3250 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3251 sc->flags &= ~WPI_FLAG_BUSY; 3252 } 3253 3254 static void 3255 wpi_stop(struct wpi_softc *sc) 3256 { 3257 WPI_LOCK(sc); 3258 wpi_stop_locked(sc); 3259 WPI_UNLOCK(sc); 3260 } 3261 3262 static void 3263 wpi_newassoc(struct ieee80211_node *ni, int isnew) 3264 { 3265 /* XXX move */ 3266 ieee80211_ratectl_node_init(ni); 3267 } 3268 3269 static void 3270 wpi_calib_timeout(void *arg) 3271 { 3272 struct wpi_softc *sc = arg; 3273 struct ifnet *ifp = sc->sc_ifp; 3274 struct ieee80211com *ic = ifp->if_l2com; 3275 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3276 int temp; 3277 3278 if (vap->iv_state != IEEE80211_S_RUN) 3279 return; 3280 3281 /* update sensor data */ 3282 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3283 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3284 3285 wpi_power_calibration(sc, temp); 3286 3287 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 3288 } 3289 3290 /* 3291 * This function is called periodically (every 60 seconds) to adjust output 3292 * power to temperature changes. 3293 */ 3294 static void 3295 wpi_power_calibration(struct wpi_softc *sc, int temp) 3296 { 3297 struct ifnet *ifp = sc->sc_ifp; 3298 struct ieee80211com *ic = ifp->if_l2com; 3299 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3300 3301 /* sanity-check read value */ 3302 if (temp < -260 || temp > 25) { 3303 /* this can't be correct, ignore */ 3304 DPRINTFN(WPI_DEBUG_TEMP, 3305 ("out-of-range temperature reported: %d\n", temp)); 3306 return; 3307 } 3308 3309 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3310 3311 /* adjust Tx power if need be */ 3312 if (abs(temp - sc->temp) <= 6) 3313 return; 3314 3315 sc->temp = temp; 3316 3317 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3318 /* just warn, too bad for the automatic calibration... */ 3319 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3320 } 3321 } 3322 3323 /** 3324 * Read the eeprom to find out what channels are valid for the given 3325 * band and update net80211 with what we find. 3326 */ 3327 static void 3328 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3329 { 3330 struct ifnet *ifp = sc->sc_ifp; 3331 struct ieee80211com *ic = ifp->if_l2com; 3332 const struct wpi_chan_band *band = &wpi_bands[n]; 3333 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3334 struct ieee80211_channel *c; 3335 int chan, i, passive; 3336 3337 wpi_read_prom_data(sc, band->addr, channels, 3338 band->nchan * sizeof (struct wpi_eeprom_chan)); 3339 3340 for (i = 0; i < band->nchan; i++) { 3341 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3342 DPRINTFN(WPI_DEBUG_HW, 3343 ("Channel Not Valid: %d, band %d\n", 3344 band->chan[i],n)); 3345 continue; 3346 } 3347 3348 passive = 0; 3349 chan = band->chan[i]; 3350 c = &ic->ic_channels[ic->ic_nchans++]; 3351 3352 /* is active scan allowed on this channel? */ 3353 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3354 passive = IEEE80211_CHAN_PASSIVE; 3355 } 3356 3357 if (n == 0) { /* 2GHz band */ 3358 c->ic_ieee = chan; 3359 c->ic_freq = ieee80211_ieee2mhz(chan, 3360 IEEE80211_CHAN_2GHZ); 3361 c->ic_flags = IEEE80211_CHAN_B | passive; 3362 3363 c = &ic->ic_channels[ic->ic_nchans++]; 3364 c->ic_ieee = chan; 3365 c->ic_freq = ieee80211_ieee2mhz(chan, 3366 IEEE80211_CHAN_2GHZ); 3367 c->ic_flags = IEEE80211_CHAN_G | passive; 3368 3369 } else { /* 5GHz band */ 3370 /* 3371 * Some 3945ABG adapters support channels 7, 8, 11 3372 * and 12 in the 2GHz *and* 5GHz bands. 3373 * Because of limitations in our net80211(9) stack, 3374 * we can't support these channels in 5GHz band. 3375 * XXX not true; just need to map to proper frequency 3376 */ 3377 if (chan <= 14) 3378 continue; 3379 3380 c->ic_ieee = chan; 3381 c->ic_freq = ieee80211_ieee2mhz(chan, 3382 IEEE80211_CHAN_5GHZ); 3383 c->ic_flags = IEEE80211_CHAN_A | passive; 3384 } 3385 3386 /* save maximum allowed power for this channel */ 3387 sc->maxpwr[chan] = channels[i].maxpwr; 3388 3389 #if 0 3390 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3391 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3392 //ic->ic_channels[chan].ic_minpower... 3393 //ic->ic_channels[chan].ic_maxregtxpower... 3394 #endif 3395 3396 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3397 " passive=%d, offset %d\n", chan, c->ic_freq, 3398 channels[i].flags, sc->maxpwr[chan], 3399 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3400 ic->ic_nchans)); 3401 } 3402 } 3403 3404 static void 3405 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3406 { 3407 struct wpi_power_group *group = &sc->groups[n]; 3408 struct wpi_eeprom_group rgroup; 3409 int i; 3410 3411 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3412 sizeof rgroup); 3413 3414 /* save power group information */ 3415 group->chan = rgroup.chan; 3416 group->maxpwr = rgroup.maxpwr; 3417 /* temperature at which the samples were taken */ 3418 group->temp = (int16_t)le16toh(rgroup.temp); 3419 3420 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3421 group->chan, group->maxpwr, group->temp)); 3422 3423 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3424 group->samples[i].index = rgroup.samples[i].index; 3425 group->samples[i].power = rgroup.samples[i].power; 3426 3427 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3428 group->samples[i].index, group->samples[i].power)); 3429 } 3430 } 3431 3432 /* 3433 * Update Tx power to match what is defined for channel `c'. 3434 */ 3435 static int 3436 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3437 { 3438 struct ifnet *ifp = sc->sc_ifp; 3439 struct ieee80211com *ic = ifp->if_l2com; 3440 struct wpi_power_group *group; 3441 struct wpi_cmd_txpower txpower; 3442 u_int chan; 3443 int i; 3444 3445 /* get channel number */ 3446 chan = ieee80211_chan2ieee(ic, c); 3447 3448 /* find the power group to which this channel belongs */ 3449 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3450 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3451 if (chan <= group->chan) 3452 break; 3453 } else 3454 group = &sc->groups[0]; 3455 3456 memset(&txpower, 0, sizeof txpower); 3457 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3458 txpower.channel = htole16(chan); 3459 3460 /* set Tx power for all OFDM and CCK rates */ 3461 for (i = 0; i <= 11 ; i++) { 3462 /* retrieve Tx power for this channel/rate combination */ 3463 int idx = wpi_get_power_index(sc, group, c, 3464 wpi_ridx_to_rate[i]); 3465 3466 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3467 3468 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3469 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3470 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3471 } else { 3472 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3473 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3474 } 3475 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3476 chan, wpi_ridx_to_rate[i], idx)); 3477 } 3478 3479 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3480 } 3481 3482 /* 3483 * Determine Tx power index for a given channel/rate combination. 3484 * This takes into account the regulatory information from EEPROM and the 3485 * current temperature. 3486 */ 3487 static int 3488 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3489 struct ieee80211_channel *c, int rate) 3490 { 3491 /* fixed-point arithmetic division using a n-bit fractional part */ 3492 #define fdivround(a, b, n) \ 3493 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3494 3495 /* linear interpolation */ 3496 #define interpolate(x, x1, y1, x2, y2, n) \ 3497 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3498 3499 struct ifnet *ifp = sc->sc_ifp; 3500 struct ieee80211com *ic = ifp->if_l2com; 3501 struct wpi_power_sample *sample; 3502 int pwr, idx; 3503 u_int chan; 3504 3505 /* get channel number */ 3506 chan = ieee80211_chan2ieee(ic, c); 3507 3508 /* default power is group's maximum power - 3dB */ 3509 pwr = group->maxpwr / 2; 3510 3511 /* decrease power for highest OFDM rates to reduce distortion */ 3512 switch (rate) { 3513 case 72: /* 36Mb/s */ 3514 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3515 break; 3516 case 96: /* 48Mb/s */ 3517 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3518 break; 3519 case 108: /* 54Mb/s */ 3520 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3521 break; 3522 } 3523 3524 /* never exceed channel's maximum allowed Tx power */ 3525 pwr = min(pwr, sc->maxpwr[chan]); 3526 3527 /* retrieve power index into gain tables from samples */ 3528 for (sample = group->samples; sample < &group->samples[3]; sample++) 3529 if (pwr > sample[1].power) 3530 break; 3531 /* fixed-point linear interpolation using a 19-bit fractional part */ 3532 idx = interpolate(pwr, sample[0].power, sample[0].index, 3533 sample[1].power, sample[1].index, 19); 3534 3535 /* 3536 * Adjust power index based on current temperature 3537 * - if colder than factory-calibrated: decreate output power 3538 * - if warmer than factory-calibrated: increase output power 3539 */ 3540 idx -= (sc->temp - group->temp) * 11 / 100; 3541 3542 /* decrease power for CCK rates (-5dB) */ 3543 if (!WPI_RATE_IS_OFDM(rate)) 3544 idx += 10; 3545 3546 /* keep power index in a valid range */ 3547 if (idx < 0) 3548 return 0; 3549 if (idx > WPI_MAX_PWR_INDEX) 3550 return WPI_MAX_PWR_INDEX; 3551 return idx; 3552 3553 #undef interpolate 3554 #undef fdivround 3555 } 3556 3557 /** 3558 * Called by net80211 framework to indicate that a scan 3559 * is starting. This function doesn't actually do the scan, 3560 * wpi_scan_curchan starts things off. This function is more 3561 * of an early warning from the framework we should get ready 3562 * for the scan. 3563 */ 3564 static void 3565 wpi_scan_start(struct ieee80211com *ic) 3566 { 3567 struct ifnet *ifp = ic->ic_ifp; 3568 struct wpi_softc *sc = ifp->if_softc; 3569 3570 WPI_LOCK(sc); 3571 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3572 WPI_UNLOCK(sc); 3573 } 3574 3575 /** 3576 * Called by the net80211 framework, indicates that the 3577 * scan has ended. If there is a scan in progress on the card 3578 * then it should be aborted. 3579 */ 3580 static void 3581 wpi_scan_end(struct ieee80211com *ic) 3582 { 3583 /* XXX ignore */ 3584 } 3585 3586 /** 3587 * Called by the net80211 framework to indicate to the driver 3588 * that the channel should be changed 3589 */ 3590 static void 3591 wpi_set_channel(struct ieee80211com *ic) 3592 { 3593 struct ifnet *ifp = ic->ic_ifp; 3594 struct wpi_softc *sc = ifp->if_softc; 3595 int error; 3596 3597 /* 3598 * Only need to set the channel in Monitor mode. AP scanning and auth 3599 * are already taken care of by their respective firmware commands. 3600 */ 3601 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3602 error = wpi_config(sc); 3603 if (error != 0) 3604 device_printf(sc->sc_dev, 3605 "error %d settting channel\n", error); 3606 } 3607 } 3608 3609 /** 3610 * Called by net80211 to indicate that we need to scan the current 3611 * channel. The channel is previously be set via the wpi_set_channel 3612 * callback. 3613 */ 3614 static void 3615 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3616 { 3617 struct ieee80211vap *vap = ss->ss_vap; 3618 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3619 struct wpi_softc *sc = ifp->if_softc; 3620 3621 WPI_LOCK(sc); 3622 if (wpi_scan(sc)) 3623 ieee80211_cancel_scan(vap); 3624 WPI_UNLOCK(sc); 3625 } 3626 3627 /** 3628 * Called by the net80211 framework to indicate 3629 * the minimum dwell time has been met, terminate the scan. 3630 * We don't actually terminate the scan as the firmware will notify 3631 * us when it's finished and we have no way to interrupt it. 3632 */ 3633 static void 3634 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3635 { 3636 /* NB: don't try to abort scan; wait for firmware to finish */ 3637 } 3638 3639 static void 3640 wpi_hwreset(void *arg, int pending) 3641 { 3642 struct wpi_softc *sc = arg; 3643 3644 WPI_LOCK(sc); 3645 wpi_init_locked(sc, 0); 3646 WPI_UNLOCK(sc); 3647 } 3648 3649 static void 3650 wpi_rfreset(void *arg, int pending) 3651 { 3652 struct wpi_softc *sc = arg; 3653 3654 WPI_LOCK(sc); 3655 wpi_rfkill_resume(sc); 3656 WPI_UNLOCK(sc); 3657 } 3658 3659 /* 3660 * Allocate DMA-safe memory for firmware transfer. 3661 */ 3662 static int 3663 wpi_alloc_fwmem(struct wpi_softc *sc) 3664 { 3665 /* allocate enough contiguous space to store text and data */ 3666 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3667 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3668 BUS_DMA_NOWAIT); 3669 } 3670 3671 static void 3672 wpi_free_fwmem(struct wpi_softc *sc) 3673 { 3674 wpi_dma_contig_free(&sc->fw_dma); 3675 } 3676 3677 /** 3678 * Called every second, wpi_watchdog used by the watch dog timer 3679 * to check that the card is still alive 3680 */ 3681 static void 3682 wpi_watchdog(void *arg) 3683 { 3684 struct wpi_softc *sc = arg; 3685 struct ifnet *ifp = sc->sc_ifp; 3686 struct ieee80211com *ic = ifp->if_l2com; 3687 uint32_t tmp; 3688 3689 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3690 3691 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3692 /* No need to lock firmware memory */ 3693 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3694 3695 if ((tmp & 0x1) == 0) { 3696 /* Radio kill switch is still off */ 3697 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3698 return; 3699 } 3700 3701 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3702 ieee80211_runtask(ic, &sc->sc_radiotask); 3703 return; 3704 } 3705 3706 if (sc->sc_tx_timer > 0) { 3707 if (--sc->sc_tx_timer == 0) { 3708 device_printf(sc->sc_dev,"device timeout\n"); 3709 ifp->if_oerrors++; 3710 ieee80211_runtask(ic, &sc->sc_restarttask); 3711 } 3712 } 3713 if (sc->sc_scan_timer > 0) { 3714 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3715 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3716 device_printf(sc->sc_dev,"scan timeout\n"); 3717 ieee80211_cancel_scan(vap); 3718 ieee80211_runtask(ic, &sc->sc_restarttask); 3719 } 3720 } 3721 3722 if (ifp->if_flags & IFF_RUNNING) 3723 callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc); 3724 } 3725 3726 #ifdef WPI_DEBUG 3727 static const char *wpi_cmd_str(int cmd) 3728 { 3729 switch (cmd) { 3730 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3731 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3732 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3733 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3734 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3735 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3736 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3737 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3738 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3739 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3740 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3741 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3742 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3743 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3744 3745 default: 3746 KASSERT(1, ("Unknown Command: %d\n", cmd)); 3747 return "UNKNOWN CMD"; /* Make the compiler happy */ 3748 } 3749 } 3750 #endif 3751 3752 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3753 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3754 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3755 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1); 3756 /* 3757 MODULE_DEPEND(wpi, wpifw_fw_fw, 1, 1, 1); 3758 MODULE_DEPEND(wpi, ath_rate, 1, 1, 1); 3759 */ 3760