1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 * 18 * $FreeBSD: src/sys/dev/wpi/if_wpi.c,v 1.27.2.2 2010/02/14 09:34:27 gavin Exp $ 19 */ 20 21 #define VERSION "20071127" 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 * 26 * The 3945ABG network adapter doesn't use traditional hardware as 27 * many other adaptors do. Instead at run time the eeprom is set into a known 28 * state and told to load boot firmware. The boot firmware loads an init and a 29 * main binary firmware image into SRAM on the card via DMA. 30 * Once the firmware is loaded, the driver/hw then 31 * communicate by way of circular dma rings via the the SRAM to the firmware. 32 * 33 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 34 * The 4 tx data rings allow for prioritization QoS. 35 * 36 * The rx data ring consists of 32 dma buffers. Two registers are used to 37 * indicate where in the ring the driver and the firmware are up to. The 38 * driver sets the initial read index (reg1) and the initial write index (reg2), 39 * the firmware updates the read index (reg1) on rx of a packet and fires an 40 * interrupt. The driver then processes the buffers starting at reg1 indicating 41 * to the firmware which buffers have been accessed by updating reg2. At the 42 * same time allocating new memory for the processed buffer. 43 * 44 * A similar thing happens with the tx rings. The difference is the firmware 45 * stop processing buffers once the queue is full and until confirmation 46 * of a successful transmition (tx_intr) has occurred. 47 * 48 * The command ring operates in the same manner as the tx queues. 49 * 50 * All communication direct to the card (ie eeprom) is classed as Stage1 51 * communication 52 * 53 * All communication via the firmware to the card is classed as State2. 54 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 55 * firmware. The bootstrap firmware and runtime firmware are loaded 56 * from host memory via dma to the card then told to execute. From this point 57 * on the majority of communications between the driver and the card goes 58 * via the firmware. 59 */ 60 61 #include <sys/param.h> 62 #include <sys/sysctl.h> 63 #include <sys/sockio.h> 64 #include <sys/mbuf.h> 65 #include <sys/kernel.h> 66 #include <sys/socket.h> 67 #include <sys/systm.h> 68 #include <sys/malloc.h> 69 #include <sys/queue.h> 70 #include <sys/taskqueue.h> 71 #include <sys/module.h> 72 #include <sys/bus.h> 73 #include <sys/endian.h> 74 #include <sys/linker.h> 75 #include <sys/firmware.h> 76 77 #include <sys/bus.h> 78 #include <sys/resource.h> 79 #include <sys/rman.h> 80 81 #include <bus/pci/pcireg.h> 82 #include <bus/pci/pcivar.h> 83 84 #include <net/bpf.h> 85 #include <net/if.h> 86 #include <net/if_arp.h> 87 #include <net/ifq_var.h> 88 #include <net/ethernet.h> 89 #include <net/if_dl.h> 90 #include <net/if_media.h> 91 #include <net/if_types.h> 92 93 #include <netproto/802_11/ieee80211_var.h> 94 #include <netproto/802_11/ieee80211_radiotap.h> 95 #include <netproto/802_11/ieee80211_regdomain.h> 96 #include <netproto/802_11/ieee80211_ratectl.h> 97 98 #include <netinet/in.h> 99 #include <netinet/in_systm.h> 100 #include <netinet/in_var.h> 101 #include <netinet/ip.h> 102 #include <netinet/if_ether.h> 103 104 /* XXX: move elsewhere */ 105 #define abs(x) (((x) < 0) ? -(x) : (x)) 106 107 #include "if_wpireg.h" 108 #include "if_wpivar.h" 109 110 #define WPI_DEBUG 111 112 #ifdef WPI_DEBUG 113 #define DPRINTF(x) do { if (wpi_debug != 0) kprintf x; } while (0) 114 #define DPRINTFN(n, x) do { if (wpi_debug & n) kprintf x; } while (0) 115 #define WPI_DEBUG_SET (wpi_debug != 0) 116 117 enum { 118 WPI_DEBUG_UNUSED = 0x00000001, /* Unused */ 119 WPI_DEBUG_HW = 0x00000002, /* Stage 1 (eeprom) debugging */ 120 WPI_DEBUG_TX = 0x00000004, /* Stage 2 TX intrp debugging*/ 121 WPI_DEBUG_RX = 0x00000008, /* Stage 2 RX intrp debugging */ 122 WPI_DEBUG_CMD = 0x00000010, /* Stage 2 CMD intrp debugging*/ 123 WPI_DEBUG_FIRMWARE = 0x00000020, /* firmware(9) loading debug */ 124 WPI_DEBUG_DMA = 0x00000040, /* DMA (de)allocations/syncs */ 125 WPI_DEBUG_SCANNING = 0x00000080, /* Stage 2 Scanning debugging */ 126 WPI_DEBUG_NOTIFY = 0x00000100, /* State 2 Noftif intr debug */ 127 WPI_DEBUG_TEMP = 0x00000200, /* TXPower/Temp Calibration */ 128 WPI_DEBUG_OPS = 0x00000400, /* wpi_ops taskq debug */ 129 WPI_DEBUG_WATCHDOG = 0x00000800, /* Watch dog debug */ 130 WPI_DEBUG_ANY = 0xffffffff 131 }; 132 133 static int wpi_debug = 1; 134 SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level"); 135 TUNABLE_INT("debug.wpi", &wpi_debug); 136 137 #else 138 #define DPRINTF(x) 139 #define DPRINTFN(n, x) 140 #define WPI_DEBUG_SET 0 141 #endif 142 143 struct wpi_ident { 144 uint16_t vendor; 145 uint16_t device; 146 uint16_t subdevice; 147 const char *name; 148 }; 149 150 static const struct wpi_ident wpi_ident_table[] = { 151 /* The below entries support ABG regardless of the subid */ 152 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 153 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 154 /* The below entries only support BG */ 155 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 156 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 157 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 158 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 159 { 0, 0, 0, NULL } 160 }; 161 162 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 163 const char name[IFNAMSIZ], int unit, int opmode, 164 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 165 const uint8_t mac[IEEE80211_ADDR_LEN]); 166 static void wpi_vap_delete(struct ieee80211vap *); 167 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 168 void **, bus_size_t, bus_size_t, int); 169 static void wpi_dma_contig_free(struct wpi_dma_info *); 170 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 171 static int wpi_alloc_shared(struct wpi_softc *); 172 static void wpi_free_shared(struct wpi_softc *); 173 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 174 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 175 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *); 176 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 177 int, int); 178 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 179 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *, 181 const uint8_t mac[IEEE80211_ADDR_LEN]); 182 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 183 static void wpi_mem_lock(struct wpi_softc *); 184 static void wpi_mem_unlock(struct wpi_softc *); 185 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t); 186 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t); 187 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t, 188 const uint32_t *, int); 189 static uint16_t wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 190 static int wpi_alloc_fwmem(struct wpi_softc *); 191 static void wpi_free_fwmem(struct wpi_softc *); 192 static int wpi_load_firmware(struct wpi_softc *); 193 static void wpi_unload_firmware(struct wpi_softc *); 194 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int); 195 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *, 196 struct wpi_rx_data *); 197 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *); 198 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *); 199 static void wpi_notif_intr(struct wpi_softc *); 200 static void wpi_intr(void *); 201 static uint8_t wpi_plcp_signal(int); 202 static void wpi_watchdog_callout(void *); 203 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 204 struct ieee80211_node *, int); 205 static void wpi_start(struct ifnet *, struct ifaltq_subque *); 206 static void wpi_start_locked(struct ifnet *); 207 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 208 const struct ieee80211_bpf_params *); 209 static void wpi_scan_start(struct ieee80211com *); 210 static void wpi_scan_end(struct ieee80211com *); 211 static void wpi_set_channel(struct ieee80211com *); 212 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 213 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 214 static int wpi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); 215 static void wpi_read_eeprom(struct wpi_softc *, 216 uint8_t macaddr[IEEE80211_ADDR_LEN]); 217 static void wpi_read_eeprom_channels(struct wpi_softc *, int); 218 static void wpi_read_eeprom_group(struct wpi_softc *, int); 219 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int); 220 static int wpi_wme_update(struct ieee80211com *); 221 static int wpi_mrr_setup(struct wpi_softc *); 222 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 223 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *); 224 #if 0 225 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 226 #endif 227 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 228 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 229 static int wpi_scan(struct wpi_softc *); 230 static int wpi_config(struct wpi_softc *); 231 static void wpi_stop_master(struct wpi_softc *); 232 static int wpi_power_up(struct wpi_softc *); 233 static int wpi_reset(struct wpi_softc *); 234 static void wpi_hwreset_task(void *, int); 235 static void wpi_rfreset_task(void *, int); 236 static void wpi_hw_config(struct wpi_softc *); 237 static void wpi_init(void *); 238 static void wpi_init_locked(struct wpi_softc *, int); 239 static void wpi_stop(struct wpi_softc *); 240 static void wpi_stop_locked(struct wpi_softc *); 241 242 static void wpi_newassoc(struct ieee80211_node *, int); 243 static int wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *, 244 int); 245 static void wpi_calib_timeout_callout(void *); 246 static void wpi_power_calibration(struct wpi_softc *, int); 247 static int wpi_get_power_index(struct wpi_softc *, 248 struct wpi_power_group *, struct ieee80211_channel *, int); 249 #ifdef WPI_DEBUG 250 static const char *wpi_cmd_str(int); 251 #endif 252 static int wpi_probe(device_t); 253 static int wpi_attach(device_t); 254 static int wpi_detach(device_t); 255 static int wpi_shutdown(device_t); 256 static int wpi_suspend(device_t); 257 static int wpi_resume(device_t); 258 259 260 static device_method_t wpi_methods[] = { 261 /* Device interface */ 262 DEVMETHOD(device_probe, wpi_probe), 263 DEVMETHOD(device_attach, wpi_attach), 264 DEVMETHOD(device_detach, wpi_detach), 265 DEVMETHOD(device_shutdown, wpi_shutdown), 266 DEVMETHOD(device_suspend, wpi_suspend), 267 DEVMETHOD(device_resume, wpi_resume), 268 269 DEVMETHOD_END 270 }; 271 272 static driver_t wpi_driver = { 273 "wpi", 274 wpi_methods, 275 sizeof (struct wpi_softc) 276 }; 277 278 static devclass_t wpi_devclass; 279 280 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL); 281 282 static const uint8_t wpi_ridx_to_plcp[] = { 283 /* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */ 284 /* R1-R4 (ral/ural is R4-R1) */ 285 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 286 /* CCK: device-dependent */ 287 10, 20, 55, 110 288 }; 289 static const uint8_t wpi_ridx_to_rate[] = { 290 12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */ 291 2, 4, 11, 22 /*CCK */ 292 }; 293 294 295 static int 296 wpi_probe(device_t dev) 297 { 298 const struct wpi_ident *ident; 299 300 wlan_serialize_enter(); 301 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 302 if (pci_get_vendor(dev) == ident->vendor && 303 pci_get_device(dev) == ident->device) { 304 device_set_desc(dev, ident->name); 305 wlan_serialize_exit(); 306 return 0; 307 } 308 } 309 wlan_serialize_exit(); 310 return ENXIO; 311 } 312 313 /** 314 * Load the firmare image from disk to the allocated dma buffer. 315 * we also maintain the reference to the firmware pointer as there 316 * is times where we may need to reload the firmware but we are not 317 * in a context that can access the filesystem (ie taskq cause by restart) 318 * 319 * @return 0 on success, an errno on failure 320 */ 321 static int 322 wpi_load_firmware(struct wpi_softc *sc) 323 { 324 const struct firmware *fp; 325 struct wpi_dma_info *dma = &sc->fw_dma; 326 const struct wpi_firmware_hdr *hdr; 327 const uint8_t *itext, *idata, *rtext, *rdata, *btext; 328 uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz; 329 int error; 330 331 DPRINTFN(WPI_DEBUG_FIRMWARE, 332 ("Attempting Loading Firmware from wpi_fw module\n")); 333 334 wlan_assert_serialized(); 335 wlan_serialize_exit(); 336 if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) { 337 device_printf(sc->sc_dev, 338 "could not load firmware image 'wpifw_fw'\n"); 339 error = ENOENT; 340 wlan_serialize_enter(); 341 goto fail; 342 } 343 wlan_serialize_enter(); 344 345 fp = sc->fw_fp; 346 347 /* Validate the firmware is minimum a particular version */ 348 if (fp->version < WPI_FW_MINVERSION) { 349 device_printf(sc->sc_dev, 350 "firmware version is too old. Need %d, got %d\n", 351 WPI_FW_MINVERSION, 352 fp->version); 353 error = ENXIO; 354 goto fail; 355 } 356 357 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 358 device_printf(sc->sc_dev, 359 "firmware file too short: %zu bytes\n", fp->datasize); 360 error = ENXIO; 361 goto fail; 362 } 363 364 hdr = (const struct wpi_firmware_hdr *)fp->data; 365 366 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 367 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 368 369 rtextsz = le32toh(hdr->rtextsz); 370 rdatasz = le32toh(hdr->rdatasz); 371 itextsz = le32toh(hdr->itextsz); 372 idatasz = le32toh(hdr->idatasz); 373 btextsz = le32toh(hdr->btextsz); 374 375 /* check that all firmware segments are present */ 376 if (fp->datasize < sizeof (struct wpi_firmware_hdr) + 377 rtextsz + rdatasz + itextsz + idatasz + btextsz) { 378 device_printf(sc->sc_dev, 379 "firmware file too short: %zu bytes\n", fp->datasize); 380 error = ENXIO; /* XXX appropriate error code? */ 381 goto fail; 382 } 383 384 /* get pointers to firmware segments */ 385 rtext = (const uint8_t *)(hdr + 1); 386 rdata = rtext + rtextsz; 387 itext = rdata + rdatasz; 388 idata = itext + itextsz; 389 btext = idata + idatasz; 390 391 DPRINTFN(WPI_DEBUG_FIRMWARE, 392 ("Firmware Version: Major %d, Minor %d, Driver %d, \n" 393 "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n", 394 (le32toh(hdr->version) & 0xff000000) >> 24, 395 (le32toh(hdr->version) & 0x00ff0000) >> 16, 396 (le32toh(hdr->version) & 0x0000ffff), 397 rtextsz, rdatasz, 398 itextsz, idatasz, btextsz)); 399 400 DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext)); 401 DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata)); 402 DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext)); 403 DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata)); 404 DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext)); 405 406 /* sanity checks */ 407 if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ || 408 rdatasz > WPI_FW_MAIN_DATA_MAXSZ || 409 itextsz > WPI_FW_INIT_TEXT_MAXSZ || 410 idatasz > WPI_FW_INIT_DATA_MAXSZ || 411 btextsz > WPI_FW_BOOT_TEXT_MAXSZ || 412 (btextsz & 3) != 0) { 413 device_printf(sc->sc_dev, "firmware invalid\n"); 414 error = EINVAL; 415 goto fail; 416 } 417 418 /* copy initialization images into pre-allocated DMA-safe memory */ 419 memcpy(dma->vaddr, idata, idatasz); 420 memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz); 421 422 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 423 424 /* tell adapter where to find initialization images */ 425 wpi_mem_lock(sc); 426 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 427 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz); 428 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 429 dma->paddr + WPI_FW_INIT_DATA_MAXSZ); 430 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz); 431 wpi_mem_unlock(sc); 432 433 /* load firmware boot code */ 434 if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) { 435 device_printf(sc->sc_dev, "Failed to load microcode\n"); 436 goto fail; 437 } 438 439 /* now press "execute" */ 440 WPI_WRITE(sc, WPI_RESET, 0); 441 442 /* wait at most one second for the first alive notification */ 443 if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) { 444 device_printf(sc->sc_dev, 445 "timeout waiting for adapter to initialize\n"); 446 goto fail; 447 } 448 449 /* copy runtime images into pre-allocated DMA-sage memory */ 450 memcpy(dma->vaddr, rdata, rdatasz); 451 memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz); 452 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 453 454 /* tell adapter where to find runtime images */ 455 wpi_mem_lock(sc); 456 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr); 457 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz); 458 wpi_mem_write(sc, WPI_MEM_TEXT_BASE, 459 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ); 460 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz); 461 wpi_mem_unlock(sc); 462 463 /* wait at most one second for the first alive notification */ 464 if ((error = zsleep(sc, &wlan_global_serializer, 0, "wpiinit", hz)) != 0) { 465 device_printf(sc->sc_dev, 466 "timeout waiting for adapter to initialize2\n"); 467 goto fail; 468 } 469 470 DPRINTFN(WPI_DEBUG_FIRMWARE, 471 ("Firmware loaded to driver successfully\n")); 472 return error; 473 fail: 474 wpi_unload_firmware(sc); 475 return error; 476 } 477 478 /** 479 * Free the referenced firmware image 480 */ 481 static void 482 wpi_unload_firmware(struct wpi_softc *sc) 483 { 484 if (sc->fw_fp) { 485 wlan_assert_serialized(); 486 wlan_serialize_exit(); 487 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 488 wlan_serialize_enter(); 489 sc->fw_fp = NULL; 490 } 491 } 492 493 static int 494 wpi_attach(device_t dev) 495 { 496 struct wpi_softc *sc; 497 struct ifnet *ifp; 498 struct ieee80211com *ic; 499 int ac, error, supportsa = 1; 500 uint32_t tmp; 501 const struct wpi_ident *ident; 502 uint8_t macaddr[IEEE80211_ADDR_LEN]; 503 504 wlan_serialize_enter(); 505 sc = device_get_softc(dev); 506 sc->sc_dev = dev; 507 508 if (bootverbose || WPI_DEBUG_SET) 509 device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION); 510 511 /* 512 * Some card's only support 802.11b/g not a, check to see if 513 * this is one such card. A 0x0 in the subdevice table indicates 514 * the entire subdevice range is to be ignored. 515 */ 516 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 517 if (ident->subdevice && 518 pci_get_subdevice(dev) == ident->subdevice) { 519 supportsa = 0; 520 break; 521 } 522 } 523 524 /* Create the tasks that can be queued */ 525 TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset_task, sc); 526 TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset_task, sc); 527 528 callout_init(&sc->calib_to_callout); 529 callout_init(&sc->watchdog_to_callout); 530 531 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 532 device_printf(dev, "chip is in D%d power mode " 533 "-- setting to D0\n", pci_get_powerstate(dev)); 534 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 535 } 536 537 /* disable the retry timeout register */ 538 pci_write_config(dev, 0x41, 0, 1); 539 540 /* enable bus-mastering */ 541 pci_enable_busmaster(dev); 542 543 sc->mem_rid = PCIR_BAR(0); 544 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 545 RF_ACTIVE); 546 if (sc->mem == NULL) { 547 device_printf(dev, "could not allocate memory resource\n"); 548 error = ENOMEM; 549 goto fail; 550 } 551 552 sc->sc_st = rman_get_bustag(sc->mem); 553 sc->sc_sh = rman_get_bushandle(sc->mem); 554 555 sc->irq_rid = 0; 556 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 557 RF_ACTIVE | RF_SHAREABLE); 558 if (sc->irq == NULL) { 559 device_printf(dev, "could not allocate interrupt resource\n"); 560 error = ENOMEM; 561 goto fail; 562 } 563 564 /* 565 * Allocate DMA memory for firmware transfers. 566 */ 567 if ((error = wpi_alloc_fwmem(sc)) != 0) { 568 kprintf(": could not allocate firmware memory\n"); 569 error = ENOMEM; 570 goto fail; 571 } 572 573 /* 574 * Put adapter into a known state. 575 */ 576 if ((error = wpi_reset(sc)) != 0) { 577 device_printf(dev, "could not reset adapter\n"); 578 goto fail; 579 } 580 581 wpi_mem_lock(sc); 582 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 583 if (bootverbose || WPI_DEBUG_SET) 584 device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp); 585 586 wpi_mem_unlock(sc); 587 588 /* Allocate shared page */ 589 if ((error = wpi_alloc_shared(sc)) != 0) { 590 device_printf(dev, "could not allocate shared page\n"); 591 goto fail; 592 } 593 594 /* tx data queues - 4 for QoS purposes */ 595 for (ac = 0; ac < WME_NUM_AC; ac++) { 596 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac); 597 if (error != 0) { 598 device_printf(dev, "could not allocate Tx ring %d\n",ac); 599 goto fail; 600 } 601 } 602 603 /* command queue to talk to the card's firmware */ 604 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4); 605 if (error != 0) { 606 device_printf(dev, "could not allocate command ring\n"); 607 goto fail; 608 } 609 610 /* receive data queue */ 611 error = wpi_alloc_rx_ring(sc, &sc->rxq); 612 if (error != 0) { 613 device_printf(dev, "could not allocate Rx ring\n"); 614 goto fail; 615 } 616 617 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 618 if (ifp == NULL) { 619 device_printf(dev, "can not if_alloc()\n"); 620 error = ENOMEM; 621 goto fail; 622 } 623 ic = ifp->if_l2com; 624 625 ic->ic_ifp = ifp; 626 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 627 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 628 629 /* set device capabilities */ 630 ic->ic_caps = 631 IEEE80211_C_STA /* station mode supported */ 632 | IEEE80211_C_MONITOR /* monitor mode supported */ 633 | IEEE80211_C_TXPMGT /* tx power management */ 634 | IEEE80211_C_SHSLOT /* short slot time supported */ 635 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 636 | IEEE80211_C_WPA /* 802.11i */ 637 /* XXX looks like WME is partly supported? */ 638 #if 0 639 | IEEE80211_C_IBSS /* IBSS mode support */ 640 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 641 | IEEE80211_C_WME /* 802.11e */ 642 | IEEE80211_C_HOSTAP /* Host access point mode */ 643 #endif 644 ; 645 646 /* 647 * Read in the eeprom and also setup the channels for 648 * net80211. We don't set the rates as net80211 does this for us 649 */ 650 wpi_read_eeprom(sc, macaddr); 651 652 if (bootverbose || WPI_DEBUG_SET) { 653 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain); 654 device_printf(sc->sc_dev, "Hardware Type: %c\n", 655 sc->type > 1 ? 'B': '?'); 656 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 657 ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?'); 658 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 659 supportsa ? "does" : "does not"); 660 661 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check 662 what sc->rev really represents - benjsc 20070615 */ 663 } 664 665 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 666 ifp->if_softc = sc; 667 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 668 ifp->if_init = wpi_init; 669 ifp->if_ioctl = wpi_ioctl; 670 ifp->if_start = wpi_start; 671 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN); 672 #ifdef notyet 673 ifq_set_ready(&ifp->if_snd); 674 #endif 675 676 ieee80211_ifattach(ic, macaddr); 677 /* override default methods */ 678 ic->ic_node_alloc = wpi_node_alloc; 679 ic->ic_newassoc = wpi_newassoc; 680 ic->ic_raw_xmit = wpi_raw_xmit; 681 ic->ic_wme.wme_update = wpi_wme_update; 682 ic->ic_scan_start = wpi_scan_start; 683 ic->ic_scan_end = wpi_scan_end; 684 ic->ic_set_channel = wpi_set_channel; 685 ic->ic_scan_curchan = wpi_scan_curchan; 686 ic->ic_scan_mindwell = wpi_scan_mindwell; 687 688 ic->ic_vap_create = wpi_vap_create; 689 ic->ic_vap_delete = wpi_vap_delete; 690 691 ieee80211_radiotap_attach(ic, 692 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 693 WPI_TX_RADIOTAP_PRESENT, 694 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 695 WPI_RX_RADIOTAP_PRESENT); 696 697 /* 698 * Hook our interrupt after all initialization is complete. 699 */ 700 error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE, 701 wpi_intr, sc, &sc->sc_ih, &wlan_global_serializer); 702 if (error != 0) { 703 device_printf(dev, "could not set up interrupt\n"); 704 goto fail; 705 } 706 707 if (bootverbose) 708 ieee80211_announce(ic); 709 #ifdef XXX_DEBUG 710 ieee80211_announce_channels(ic); 711 #endif 712 wlan_serialize_exit(); 713 return 0; 714 715 fail: 716 wlan_serialize_exit(); 717 wpi_detach(dev); 718 return ENXIO; 719 } 720 721 static int 722 wpi_detach(device_t dev) 723 { 724 struct wpi_softc *sc; 725 struct ifnet *ifp; 726 struct ieee80211com *ic; 727 int ac; 728 729 wlan_serialize_enter(); 730 sc = device_get_softc(dev); 731 ifp = sc->sc_ifp; 732 if (ifp != NULL) { 733 ic = ifp->if_l2com; 734 735 ieee80211_draintask(ic, &sc->sc_restarttask); 736 ieee80211_draintask(ic, &sc->sc_radiotask); 737 wpi_stop(sc); 738 callout_stop(&sc->watchdog_to_callout); 739 callout_stop(&sc->calib_to_callout); 740 ieee80211_ifdetach(ic); 741 } 742 743 if (sc->txq[0].data_dmat) { 744 for (ac = 0; ac < WME_NUM_AC; ac++) 745 wpi_free_tx_ring(sc, &sc->txq[ac]); 746 747 wpi_free_tx_ring(sc, &sc->cmdq); 748 wpi_free_rx_ring(sc, &sc->rxq); 749 wpi_free_shared(sc); 750 } 751 752 if (sc->fw_fp != NULL) { 753 wpi_unload_firmware(sc); 754 } 755 756 if (sc->fw_dma.tag) 757 wpi_free_fwmem(sc); 758 759 if (sc->irq != NULL) { 760 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 761 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 762 } 763 764 if (sc->mem != NULL) 765 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 766 767 if (ifp != NULL) 768 if_free(ifp); 769 770 wlan_serialize_exit(); 771 return 0; 772 } 773 774 static struct ieee80211vap * 775 wpi_vap_create(struct ieee80211com *ic, 776 const char name[IFNAMSIZ], int unit, int opmode, int flags, 777 const uint8_t bssid[IEEE80211_ADDR_LEN], 778 const uint8_t mac[IEEE80211_ADDR_LEN]) 779 { 780 struct wpi_vap *wvp; 781 struct ieee80211vap *vap; 782 783 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 784 return NULL; 785 wvp = (struct wpi_vap *) kmalloc(sizeof(struct wpi_vap), 786 M_80211_VAP, M_INTWAIT | M_ZERO); 787 if (wvp == NULL) 788 return NULL; 789 vap = &wvp->vap; 790 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 791 /* override with driver methods */ 792 wvp->newstate = vap->iv_newstate; 793 vap->iv_newstate = wpi_newstate; 794 795 ieee80211_ratectl_init(vap); 796 797 /* complete setup */ 798 ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status); 799 ic->ic_opmode = opmode; 800 return vap; 801 } 802 803 static void 804 wpi_vap_delete(struct ieee80211vap *vap) 805 { 806 struct wpi_vap *wvp = WPI_VAP(vap); 807 808 ieee80211_ratectl_deinit(vap); 809 ieee80211_vap_detach(vap); 810 kfree(wvp, M_80211_VAP); 811 } 812 813 static void 814 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 815 { 816 if (error != 0) 817 return; 818 819 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 820 821 *(bus_addr_t *)arg = segs[0].ds_addr; 822 } 823 824 /* 825 * Allocates a contiguous block of dma memory of the requested size and 826 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217, 827 * allocations greater than 4096 may fail. Hence if the requested alignment is 828 * greater we allocate 'alignment' size extra memory and shift the vaddr and 829 * paddr after the dma load. This bypasses the problem at the cost of a little 830 * more memory. 831 */ 832 static int 833 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 834 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 835 { 836 int error; 837 bus_size_t align; 838 bus_size_t reqsize; 839 840 DPRINTFN(WPI_DEBUG_DMA, 841 ("Size: %zd - alignment %zd\n", size, alignment)); 842 843 dma->size = size; 844 dma->tag = NULL; 845 846 if (alignment > 4096) { 847 align = PAGE_SIZE; 848 reqsize = size + alignment; 849 } else { 850 align = alignment; 851 reqsize = size; 852 } 853 error = bus_dma_tag_create(dma->tag, align, 854 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 855 NULL, NULL, reqsize, 856 1, reqsize, flags, 857 &dma->tag); 858 if (error != 0) { 859 device_printf(sc->sc_dev, 860 "could not create shared page DMA tag\n"); 861 goto fail; 862 } 863 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start, 864 flags | BUS_DMA_ZERO, &dma->map); 865 if (error != 0) { 866 device_printf(sc->sc_dev, 867 "could not allocate shared page DMA memory\n"); 868 goto fail; 869 } 870 871 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start, 872 reqsize, wpi_dma_map_addr, &dma->paddr_start, flags); 873 874 /* Save the original pointers so we can free all the memory */ 875 dma->paddr = dma->paddr_start; 876 dma->vaddr = dma->vaddr_start; 877 878 /* 879 * Check the alignment and increment by 4096 until we get the 880 * requested alignment. Fail if can't obtain the alignment 881 * we requested. 882 */ 883 if ((dma->paddr & (alignment -1 )) != 0) { 884 int i; 885 886 for (i = 0; i < alignment / 4096; i++) { 887 if ((dma->paddr & (alignment - 1 )) == 0) 888 break; 889 dma->paddr += 4096; 890 dma->vaddr += 4096; 891 } 892 if (i == alignment / 4096) { 893 device_printf(sc->sc_dev, 894 "alignment requirement was not satisfied\n"); 895 goto fail; 896 } 897 } 898 899 if (error != 0) { 900 device_printf(sc->sc_dev, 901 "could not load shared page DMA map\n"); 902 goto fail; 903 } 904 905 if (kvap != NULL) 906 *kvap = dma->vaddr; 907 908 return 0; 909 910 fail: 911 wpi_dma_contig_free(dma); 912 return error; 913 } 914 915 static void 916 wpi_dma_contig_free(struct wpi_dma_info *dma) 917 { 918 if (dma->tag) { 919 if (dma->map != NULL) { 920 if (dma->paddr_start != 0) { 921 bus_dmamap_sync(dma->tag, dma->map, 922 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 923 bus_dmamap_unload(dma->tag, dma->map); 924 } 925 bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map); 926 } 927 bus_dma_tag_destroy(dma->tag); 928 } 929 } 930 931 /* 932 * Allocate a shared page between host and NIC. 933 */ 934 static int 935 wpi_alloc_shared(struct wpi_softc *sc) 936 { 937 int error; 938 939 error = wpi_dma_contig_alloc(sc, &sc->shared_dma, 940 (void **)&sc->shared, sizeof (struct wpi_shared), 941 PAGE_SIZE, 942 BUS_DMA_NOWAIT); 943 944 if (error != 0) { 945 device_printf(sc->sc_dev, 946 "could not allocate shared area DMA memory\n"); 947 } 948 949 return error; 950 } 951 952 static void 953 wpi_free_shared(struct wpi_softc *sc) 954 { 955 wpi_dma_contig_free(&sc->shared_dma); 956 } 957 958 static int 959 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 960 { 961 962 int i, error; 963 964 ring->cur = 0; 965 966 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 967 (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t), 968 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 969 970 if (error != 0) { 971 device_printf(sc->sc_dev, 972 "%s: could not allocate rx ring DMA memory, error %d\n", 973 __func__, error); 974 goto fail; 975 } 976 977 error = bus_dma_tag_create(ring->data_dmat, 1, 0, 978 BUS_SPACE_MAXADDR_32BIT, 979 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 980 MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat); 981 if (error != 0) { 982 device_printf(sc->sc_dev, 983 "%s: bus_dma_tag_create_failed, error %d\n", 984 __func__, error); 985 goto fail; 986 } 987 988 /* 989 * Setup Rx buffers. 990 */ 991 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 992 struct wpi_rx_data *data = &ring->data[i]; 993 struct mbuf *m; 994 bus_addr_t paddr; 995 996 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 997 if (error != 0) { 998 device_printf(sc->sc_dev, 999 "%s: bus_dmamap_create failed, error %d\n", 1000 __func__, error); 1001 goto fail; 1002 } 1003 m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1004 if (m == NULL) { 1005 device_printf(sc->sc_dev, 1006 "%s: could not allocate rx mbuf\n", __func__); 1007 error = ENOMEM; 1008 goto fail; 1009 } 1010 /* map page */ 1011 error = bus_dmamap_load(ring->data_dmat, data->map, 1012 mtod(m, caddr_t), MJUMPAGESIZE, 1013 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1014 if (error != 0 && error != EFBIG) { 1015 device_printf(sc->sc_dev, 1016 "%s: bus_dmamap_load failed, error %d\n", 1017 __func__, error); 1018 m_freem(m); 1019 error = ENOMEM; /* XXX unique code */ 1020 goto fail; 1021 } 1022 bus_dmamap_sync(ring->data_dmat, data->map, 1023 BUS_DMASYNC_PREWRITE); 1024 1025 data->m = m; 1026 ring->desc[i] = htole32(paddr); 1027 } 1028 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1029 BUS_DMASYNC_PREWRITE); 1030 return 0; 1031 fail: 1032 wpi_free_rx_ring(sc, ring); 1033 return error; 1034 } 1035 1036 static void 1037 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1038 { 1039 int ntries; 1040 1041 wpi_mem_lock(sc); 1042 1043 WPI_WRITE(sc, WPI_RX_CONFIG, 0); 1044 1045 for (ntries = 0; ntries < 100; ntries++) { 1046 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE) 1047 break; 1048 DELAY(10); 1049 } 1050 1051 wpi_mem_unlock(sc); 1052 1053 #ifdef WPI_DEBUG 1054 if (ntries == 100 && wpi_debug > 0) 1055 device_printf(sc->sc_dev, "timeout resetting Rx ring\n"); 1056 #endif 1057 1058 ring->cur = 0; 1059 } 1060 1061 static void 1062 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring) 1063 { 1064 int i; 1065 1066 wpi_dma_contig_free(&ring->desc_dma); 1067 1068 for (i = 0; i < WPI_RX_RING_COUNT; i++) 1069 if (ring->data[i].m != NULL) 1070 m_freem(ring->data[i].m); 1071 } 1072 1073 static int 1074 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count, 1075 int qid) 1076 { 1077 struct wpi_tx_data *data; 1078 int i, error; 1079 1080 ring->qid = qid; 1081 ring->count = count; 1082 ring->queued = 0; 1083 ring->cur = 0; 1084 ring->data = NULL; 1085 1086 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1087 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc), 1088 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT); 1089 1090 if (error != 0) { 1091 device_printf(sc->sc_dev, "could not allocate tx dma memory\n"); 1092 goto fail; 1093 } 1094 1095 /* update shared page with ring's base address */ 1096 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1097 1098 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1099 count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN, 1100 BUS_DMA_NOWAIT); 1101 1102 if (error != 0) { 1103 device_printf(sc->sc_dev, 1104 "could not allocate tx command DMA memory\n"); 1105 goto fail; 1106 } 1107 1108 ring->data = kmalloc(count * sizeof (struct wpi_tx_data), M_DEVBUF, 1109 M_INTWAIT | M_ZERO); 1110 if (ring->data == NULL) { 1111 device_printf(sc->sc_dev, 1112 "could not allocate tx data slots\n"); 1113 goto fail; 1114 } 1115 1116 error = bus_dma_tag_create(ring->data_dmat, 1, 0, 1117 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1118 WPI_MAX_SCATTER - 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, 1119 &ring->data_dmat); 1120 if (error != 0) { 1121 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 1122 goto fail; 1123 } 1124 1125 for (i = 0; i < count; i++) { 1126 data = &ring->data[i]; 1127 1128 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1129 if (error != 0) { 1130 device_printf(sc->sc_dev, 1131 "could not create tx buf DMA map\n"); 1132 goto fail; 1133 } 1134 bus_dmamap_sync(ring->data_dmat, data->map, 1135 BUS_DMASYNC_PREWRITE); 1136 } 1137 1138 return 0; 1139 1140 fail: 1141 wpi_free_tx_ring(sc, ring); 1142 return error; 1143 } 1144 1145 static void 1146 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1147 { 1148 struct wpi_tx_data *data; 1149 int i, ntries; 1150 1151 wpi_mem_lock(sc); 1152 1153 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0); 1154 for (ntries = 0; ntries < 100; ntries++) { 1155 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid)) 1156 break; 1157 DELAY(10); 1158 } 1159 #ifdef WPI_DEBUG 1160 if (ntries == 100 && wpi_debug > 0) 1161 device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n", 1162 ring->qid); 1163 #endif 1164 wpi_mem_unlock(sc); 1165 1166 for (i = 0; i < ring->count; i++) { 1167 data = &ring->data[i]; 1168 1169 if (data->m != NULL) { 1170 bus_dmamap_unload(ring->data_dmat, data->map); 1171 m_freem(data->m); 1172 data->m = NULL; 1173 } 1174 } 1175 1176 ring->queued = 0; 1177 ring->cur = 0; 1178 } 1179 1180 static void 1181 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1182 { 1183 struct wpi_tx_data *data; 1184 int i; 1185 1186 wpi_dma_contig_free(&ring->desc_dma); 1187 wpi_dma_contig_free(&ring->cmd_dma); 1188 1189 if (ring->data != NULL) { 1190 for (i = 0; i < ring->count; i++) { 1191 data = &ring->data[i]; 1192 1193 if (data->m != NULL) { 1194 bus_dmamap_sync(ring->data_dmat, data->map, 1195 BUS_DMASYNC_POSTWRITE); 1196 bus_dmamap_unload(ring->data_dmat, data->map); 1197 m_freem(data->m); 1198 data->m = NULL; 1199 } 1200 } 1201 kfree(ring->data, M_DEVBUF); 1202 } 1203 1204 if (ring->data_dmat != NULL) 1205 bus_dma_tag_destroy(ring->data_dmat); 1206 } 1207 1208 static int 1209 wpi_shutdown(device_t dev) 1210 { 1211 struct wpi_softc *sc; 1212 1213 wlan_serialize_enter(); 1214 sc = device_get_softc(dev); 1215 wpi_stop_locked(sc); 1216 wpi_unload_firmware(sc); 1217 wlan_serialize_exit(); 1218 1219 return 0; 1220 } 1221 1222 static int 1223 wpi_suspend(device_t dev) 1224 { 1225 struct wpi_softc *sc; 1226 1227 wlan_serialize_enter(); 1228 sc = device_get_softc(dev); 1229 wpi_stop(sc); 1230 wlan_serialize_exit(); 1231 return 0; 1232 } 1233 1234 static int 1235 wpi_resume(device_t dev) 1236 { 1237 struct wpi_softc *sc; 1238 struct ifnet *ifp; 1239 1240 wlan_serialize_enter(); 1241 sc = device_get_softc(dev); 1242 ifp = sc->sc_ifp; 1243 pci_write_config(dev, 0x41, 0, 1); 1244 1245 if (ifp->if_flags & IFF_UP) { 1246 wpi_init(ifp->if_softc); 1247 if (ifp->if_flags & IFF_RUNNING) 1248 if_devstart(ifp); 1249 } 1250 wlan_serialize_exit(); 1251 return 0; 1252 } 1253 1254 /* ARGSUSED */ 1255 static struct ieee80211_node * 1256 wpi_node_alloc(struct ieee80211vap *vap __unused, 1257 const uint8_t mac[IEEE80211_ADDR_LEN] __unused) 1258 { 1259 struct wpi_node *wn; 1260 1261 wn = kmalloc(sizeof (struct wpi_node), M_80211_NODE, M_INTWAIT | M_ZERO); 1262 1263 return &wn->ni; 1264 } 1265 1266 /** 1267 * Called by net80211 when ever there is a change to 80211 state machine 1268 */ 1269 static int 1270 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1271 { 1272 struct wpi_vap *wvp = WPI_VAP(vap); 1273 struct ieee80211com *ic = vap->iv_ic; 1274 struct ifnet *ifp = ic->ic_ifp; 1275 struct wpi_softc *sc = ifp->if_softc; 1276 int error; 1277 1278 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, 1279 ieee80211_state_name[vap->iv_state], 1280 ieee80211_state_name[nstate], sc->flags)); 1281 1282 if (nstate == IEEE80211_S_AUTH) { 1283 /* The node must be registered in the firmware before auth */ 1284 error = wpi_auth(sc, vap); 1285 if (error != 0) { 1286 device_printf(sc->sc_dev, 1287 "%s: could not move to auth state, error %d\n", 1288 __func__, error); 1289 } 1290 } 1291 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1292 error = wpi_run(sc, vap); 1293 if (error != 0) { 1294 device_printf(sc->sc_dev, 1295 "%s: could not move to run state, error %d\n", 1296 __func__, error); 1297 } 1298 } 1299 if (nstate == IEEE80211_S_RUN) { 1300 /* RUN -> RUN transition; just restart the timers */ 1301 wpi_calib_timeout_callout(sc); 1302 /* XXX split out rate control timer */ 1303 } 1304 return wvp->newstate(vap, nstate, arg); 1305 } 1306 1307 /* 1308 * Grab exclusive access to NIC memory. 1309 */ 1310 static void 1311 wpi_mem_lock(struct wpi_softc *sc) 1312 { 1313 int ntries; 1314 uint32_t tmp; 1315 1316 tmp = WPI_READ(sc, WPI_GPIO_CTL); 1317 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC); 1318 1319 /* spin until we actually get the lock */ 1320 for (ntries = 0; ntries < 100; ntries++) { 1321 if ((WPI_READ(sc, WPI_GPIO_CTL) & 1322 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK) 1323 break; 1324 DELAY(10); 1325 } 1326 if (ntries == 100) 1327 device_printf(sc->sc_dev, "could not lock memory\n"); 1328 } 1329 1330 /* 1331 * Release lock on NIC memory. 1332 */ 1333 static void 1334 wpi_mem_unlock(struct wpi_softc *sc) 1335 { 1336 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL); 1337 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC); 1338 } 1339 1340 static uint32_t 1341 wpi_mem_read(struct wpi_softc *sc, uint16_t addr) 1342 { 1343 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr); 1344 return WPI_READ(sc, WPI_READ_MEM_DATA); 1345 } 1346 1347 static void 1348 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data) 1349 { 1350 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr); 1351 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data); 1352 } 1353 1354 static void 1355 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr, 1356 const uint32_t *data, int wlen) 1357 { 1358 for (; wlen > 0; wlen--, data++, addr+=4) 1359 wpi_mem_write(sc, addr, *data); 1360 } 1361 1362 /* 1363 * Read data from the EEPROM. We access EEPROM through the MAC instead of 1364 * using the traditional bit-bang method. Data is read up until len bytes have 1365 * been obtained. 1366 */ 1367 static uint16_t 1368 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len) 1369 { 1370 int ntries; 1371 uint32_t val; 1372 uint8_t *out = data; 1373 1374 wpi_mem_lock(sc); 1375 1376 for (; len > 0; len -= 2, addr++) { 1377 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2); 1378 1379 for (ntries = 0; ntries < 10; ntries++) { 1380 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY) 1381 break; 1382 DELAY(5); 1383 } 1384 1385 if (ntries == 10) { 1386 device_printf(sc->sc_dev, "could not read EEPROM\n"); 1387 return ETIMEDOUT; 1388 } 1389 1390 *out++= val >> 16; 1391 if (len > 1) 1392 *out ++= val >> 24; 1393 } 1394 1395 wpi_mem_unlock(sc); 1396 1397 return 0; 1398 } 1399 1400 /* 1401 * The firmware text and data segments are transferred to the NIC using DMA. 1402 * The driver just copies the firmware into DMA-safe memory and tells the NIC 1403 * where to find it. Once the NIC has copied the firmware into its internal 1404 * memory, we can free our local copy in the driver. 1405 */ 1406 static int 1407 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size) 1408 { 1409 int error, ntries; 1410 1411 DPRINTFN(WPI_DEBUG_HW,("Loading microcode size 0x%x\n", size)); 1412 1413 size /= sizeof(uint32_t); 1414 1415 wpi_mem_lock(sc); 1416 1417 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, 1418 (const uint32_t *)fw, size); 1419 1420 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0); 1421 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT); 1422 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size); 1423 1424 /* run microcode */ 1425 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN); 1426 1427 /* wait while the adapter is busy copying the firmware */ 1428 for (error = 0, ntries = 0; ntries < 1000; ntries++) { 1429 uint32_t status = WPI_READ(sc, WPI_TX_STATUS); 1430 DPRINTFN(WPI_DEBUG_HW, 1431 ("firmware status=0x%x, val=0x%x, result=0x%x\n", status, 1432 WPI_TX_IDLE(6), status & WPI_TX_IDLE(6))); 1433 if (status & WPI_TX_IDLE(6)) { 1434 DPRINTFN(WPI_DEBUG_HW, 1435 ("Status Match! - ntries = %d\n", ntries)); 1436 break; 1437 } 1438 DELAY(10); 1439 } 1440 if (ntries == 1000) { 1441 device_printf(sc->sc_dev, "timeout transferring firmware\n"); 1442 error = ETIMEDOUT; 1443 } 1444 1445 /* start the microcode executing */ 1446 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE); 1447 1448 wpi_mem_unlock(sc); 1449 1450 return (error); 1451 } 1452 1453 static void 1454 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1455 struct wpi_rx_data *data) 1456 { 1457 struct ifnet *ifp = sc->sc_ifp; 1458 struct ieee80211com *ic = ifp->if_l2com; 1459 struct wpi_rx_ring *ring = &sc->rxq; 1460 struct wpi_rx_stat *stat; 1461 struct wpi_rx_head *head; 1462 struct wpi_rx_tail *tail; 1463 struct ieee80211_node *ni; 1464 struct mbuf *m, *mnew; 1465 bus_addr_t paddr; 1466 int error; 1467 1468 stat = (struct wpi_rx_stat *)(desc + 1); 1469 1470 if (stat->len > WPI_STAT_MAXLEN) { 1471 device_printf(sc->sc_dev, "invalid rx statistic header\n"); 1472 IFNET_STAT_INC(ifp, ierrors, 1); 1473 return; 1474 } 1475 1476 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1477 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len)); 1478 1479 DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d " 1480 "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len), 1481 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan, 1482 (uintmax_t)le64toh(tail->tstamp))); 1483 1484 /* discard Rx frames with bad CRC early */ 1485 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1486 DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__, 1487 le32toh(tail->flags))); 1488 IFNET_STAT_INC(ifp, ierrors, 1); 1489 return; 1490 } 1491 if (le16toh(head->len) < sizeof (struct ieee80211_frame)) { 1492 DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__, 1493 le16toh(head->len))); 1494 IFNET_STAT_INC(ifp, ierrors, 1); 1495 return; 1496 } 1497 1498 /* XXX don't need mbuf, just dma buffer */ 1499 mnew = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1500 if (mnew == NULL) { 1501 DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n", 1502 __func__)); 1503 IFNET_STAT_INC(ifp, ierrors, 1); 1504 return; 1505 } 1506 error = bus_dmamap_load(ring->data_dmat, data->map, 1507 mtod(mnew, caddr_t), MJUMPAGESIZE, 1508 wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1509 if (error != 0 && error != EFBIG) { 1510 device_printf(sc->sc_dev, 1511 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1512 m_freem(mnew); 1513 IFNET_STAT_INC(ifp, ierrors, 1); 1514 return; 1515 } 1516 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1517 1518 /* finalize mbuf and swap in new one */ 1519 m = data->m; 1520 m->m_pkthdr.rcvif = ifp; 1521 m->m_data = (caddr_t)(head + 1); 1522 m->m_pkthdr.len = m->m_len = le16toh(head->len); 1523 1524 data->m = mnew; 1525 /* update Rx descriptor */ 1526 ring->desc[ring->cur] = htole32(paddr); 1527 1528 if (ieee80211_radiotap_active(ic)) { 1529 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 1530 1531 tap->wr_flags = 0; 1532 tap->wr_chan_freq = 1533 htole16(ic->ic_channels[head->chan].ic_freq); 1534 tap->wr_chan_flags = 1535 htole16(ic->ic_channels[head->chan].ic_flags); 1536 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET); 1537 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise); 1538 tap->wr_tsft = tail->tstamp; 1539 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 1540 switch (head->rate) { 1541 /* CCK rates */ 1542 case 10: tap->wr_rate = 2; break; 1543 case 20: tap->wr_rate = 4; break; 1544 case 55: tap->wr_rate = 11; break; 1545 case 110: tap->wr_rate = 22; break; 1546 /* OFDM rates */ 1547 case 0xd: tap->wr_rate = 12; break; 1548 case 0xf: tap->wr_rate = 18; break; 1549 case 0x5: tap->wr_rate = 24; break; 1550 case 0x7: tap->wr_rate = 36; break; 1551 case 0x9: tap->wr_rate = 48; break; 1552 case 0xb: tap->wr_rate = 72; break; 1553 case 0x1: tap->wr_rate = 96; break; 1554 case 0x3: tap->wr_rate = 108; break; 1555 /* unknown rate: should not happen */ 1556 default: tap->wr_rate = 0; 1557 } 1558 if (le16toh(head->flags) & 0x4) 1559 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1560 } 1561 1562 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1563 if (ni != NULL) { 1564 (void) ieee80211_input(ni, m, stat->rssi, 0); 1565 ieee80211_free_node(ni); 1566 } else 1567 (void) ieee80211_input_all(ic, m, stat->rssi, 0); 1568 } 1569 1570 static void 1571 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1572 { 1573 struct ifnet *ifp = sc->sc_ifp; 1574 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 1575 struct wpi_tx_data *txdata = &ring->data[desc->idx]; 1576 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 1577 struct ieee80211_node *ni = txdata->ni; 1578 struct ieee80211vap *vap = ni->ni_vap; 1579 int retrycnt = 0; 1580 1581 DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d " 1582 "rate=%x duration=%d status=%x\n", desc->qid, desc->idx, 1583 stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration), 1584 le32toh(stat->status))); 1585 1586 /* 1587 * Update rate control statistics for the node. 1588 * XXX we should not count mgmt frames since they're always sent at 1589 * the lowest available bit-rate. 1590 * XXX frames w/o ACK shouldn't be used either 1591 */ 1592 if (stat->ntries > 0) { 1593 DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries)); 1594 retrycnt = 1; 1595 } 1596 ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS, 1597 &retrycnt, NULL); 1598 1599 /* XXX oerrors should only count errors !maxtries */ 1600 if ((le32toh(stat->status) & 0xff) != 1) 1601 IFNET_STAT_INC(ifp, oerrors, 1); 1602 else 1603 IFNET_STAT_INC(ifp, opackets, 1); 1604 1605 bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE); 1606 bus_dmamap_unload(ring->data_dmat, txdata->map); 1607 /* XXX handle M_TXCB? */ 1608 m_freem(txdata->m); 1609 txdata->m = NULL; 1610 ieee80211_free_node(txdata->ni); 1611 txdata->ni = NULL; 1612 1613 ring->queued--; 1614 1615 sc->sc_tx_timer = 0; 1616 ifq_clr_oactive(&ifp->if_snd); 1617 wpi_start_locked(ifp); 1618 } 1619 1620 static void 1621 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc) 1622 { 1623 struct wpi_tx_ring *ring = &sc->cmdq; 1624 struct wpi_tx_data *data; 1625 1626 DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x " 1627 "type=%s len=%d\n", desc->qid, desc->idx, 1628 desc->flags, wpi_cmd_str(desc->type), 1629 le32toh(desc->len))); 1630 1631 if ((desc->qid & 7) != 4) 1632 return; /* not a command ack */ 1633 1634 data = &ring->data[desc->idx]; 1635 1636 /* if the command was mapped in a mbuf, free it */ 1637 if (data->m != NULL) { 1638 bus_dmamap_unload(ring->data_dmat, data->map); 1639 m_freem(data->m); 1640 data->m = NULL; 1641 } 1642 1643 sc->flags &= ~WPI_FLAG_BUSY; 1644 wakeup(&ring->cmd[desc->idx]); 1645 } 1646 1647 static void 1648 wpi_notif_intr(struct wpi_softc *sc) 1649 { 1650 struct ifnet *ifp = sc->sc_ifp; 1651 struct ieee80211com *ic = ifp->if_l2com; 1652 struct wpi_rx_desc *desc; 1653 struct wpi_rx_data *data; 1654 uint32_t hw; 1655 1656 hw = le32toh(sc->shared->next); 1657 while (sc->rxq.cur != hw) { 1658 data = &sc->rxq.data[sc->rxq.cur]; 1659 desc = (void *)data->m->m_ext.ext_buf; 1660 1661 DPRINTFN(WPI_DEBUG_NOTIFY, 1662 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n", 1663 desc->qid, 1664 desc->idx, 1665 desc->flags, 1666 desc->type, 1667 le32toh(desc->len))); 1668 1669 if (!(desc->qid & 0x80)) /* reply to a command */ 1670 wpi_cmd_intr(sc, desc); 1671 1672 switch (desc->type) { 1673 case WPI_RX_DONE: 1674 /* a 802.11 frame was received */ 1675 wpi_rx_intr(sc, desc, data); 1676 break; 1677 1678 case WPI_TX_DONE: 1679 /* a 802.11 frame has been transmitted */ 1680 wpi_tx_intr(sc, desc); 1681 break; 1682 1683 case WPI_UC_READY: 1684 { 1685 struct wpi_ucode_info *uc = 1686 (struct wpi_ucode_info *)(desc + 1); 1687 1688 /* the microcontroller is ready */ 1689 DPRINTF(("microcode alive notification version %x " 1690 "alive %x\n", le32toh(uc->version), 1691 le32toh(uc->valid))); 1692 1693 if (le32toh(uc->valid) != 1) { 1694 device_printf(sc->sc_dev, 1695 "microcontroller initialization failed\n"); 1696 wpi_stop_locked(sc); 1697 } 1698 break; 1699 } 1700 case WPI_STATE_CHANGED: 1701 { 1702 uint32_t *status = (uint32_t *)(desc + 1); 1703 1704 /* enabled/disabled notification */ 1705 DPRINTF(("state changed to %x\n", le32toh(*status))); 1706 1707 if (le32toh(*status) & 1) { 1708 device_printf(sc->sc_dev, 1709 "Radio transmitter is switched off\n"); 1710 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 1711 ifp->if_flags &= ~IFF_RUNNING; 1712 /* Disable firmware commands */ 1713 WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD); 1714 } 1715 break; 1716 } 1717 case WPI_START_SCAN: 1718 { 1719 #ifdef WPI_DEBUG 1720 struct wpi_start_scan *scan = 1721 (struct wpi_start_scan *)(desc + 1); 1722 #endif 1723 1724 DPRINTFN(WPI_DEBUG_SCANNING, 1725 ("scanning channel %d status %x\n", 1726 scan->chan, le32toh(scan->status))); 1727 break; 1728 } 1729 case WPI_STOP_SCAN: 1730 { 1731 #ifdef WPI_DEBUG 1732 struct wpi_stop_scan *scan = 1733 (struct wpi_stop_scan *)(desc + 1); 1734 #endif 1735 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1736 1737 DPRINTFN(WPI_DEBUG_SCANNING, 1738 ("scan finished nchan=%d status=%d chan=%d\n", 1739 scan->nchan, scan->status, scan->chan)); 1740 1741 sc->sc_scan_timer = 0; 1742 ieee80211_scan_next(vap); 1743 break; 1744 } 1745 case WPI_MISSED_BEACON: 1746 { 1747 struct wpi_missed_beacon *beacon = 1748 (struct wpi_missed_beacon *)(desc + 1); 1749 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1750 1751 if (le32toh(beacon->consecutive) >= 1752 vap->iv_bmissthreshold) { 1753 DPRINTF(("Beacon miss: %u >= %u\n", 1754 le32toh(beacon->consecutive), 1755 vap->iv_bmissthreshold)); 1756 ieee80211_beacon_miss(ic); 1757 } 1758 break; 1759 } 1760 } 1761 1762 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 1763 } 1764 1765 /* tell the firmware what we have processed */ 1766 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 1767 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7); 1768 } 1769 1770 static void 1771 wpi_intr(void *arg) 1772 { 1773 struct wpi_softc *sc = arg; 1774 uint32_t r; 1775 1776 r = WPI_READ(sc, WPI_INTR); 1777 if (r == 0 || r == 0xffffffff) { 1778 return; 1779 } 1780 1781 /* disable interrupts */ 1782 WPI_WRITE(sc, WPI_MASK, 0); 1783 /* ack interrupts */ 1784 WPI_WRITE(sc, WPI_INTR, r); 1785 1786 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) { 1787 struct ifnet *ifp = sc->sc_ifp; 1788 struct ieee80211com *ic = ifp->if_l2com; 1789 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1790 1791 device_printf(sc->sc_dev, "fatal firmware error\n"); 1792 DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" : 1793 "(Hardware Error)")); 1794 if (vap != NULL) 1795 ieee80211_cancel_scan(vap); 1796 ieee80211_runtask(ic, &sc->sc_restarttask); 1797 sc->flags &= ~WPI_FLAG_BUSY; 1798 return; 1799 } 1800 1801 if (r & WPI_RX_INTR) 1802 wpi_notif_intr(sc); 1803 1804 if (r & WPI_ALIVE_INTR) /* firmware initialized */ 1805 wakeup(sc); 1806 1807 /* re-enable interrupts */ 1808 if (sc->sc_ifp->if_flags & IFF_UP) 1809 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 1810 1811 } 1812 1813 static uint8_t 1814 wpi_plcp_signal(int rate) 1815 { 1816 switch (rate) { 1817 /* CCK rates (returned values are device-dependent) */ 1818 case 2: return 10; 1819 case 4: return 20; 1820 case 11: return 55; 1821 case 22: return 110; 1822 1823 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1824 /* R1-R4 (ral/ural is R4-R1) */ 1825 case 12: return 0xd; 1826 case 18: return 0xf; 1827 case 24: return 0x5; 1828 case 36: return 0x7; 1829 case 48: return 0x9; 1830 case 72: return 0xb; 1831 case 96: return 0x1; 1832 case 108: return 0x3; 1833 1834 /* unsupported rates (should not get there) */ 1835 default: return 0; 1836 } 1837 } 1838 1839 /* quickly determine if a given rate is CCK or OFDM */ 1840 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1841 1842 /* 1843 * Construct the data packet for a transmit buffer and acutally put 1844 * the buffer onto the transmit ring, kicking the card to process the 1845 * the buffer. 1846 */ 1847 static int 1848 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1849 int ac) 1850 { 1851 struct ieee80211vap *vap = ni->ni_vap; 1852 struct ifnet *ifp = sc->sc_ifp; 1853 struct ieee80211com *ic = ifp->if_l2com; 1854 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 1855 struct wpi_tx_ring *ring = &sc->txq[ac]; 1856 struct wpi_tx_desc *desc; 1857 struct wpi_tx_data *data; 1858 struct wpi_tx_cmd *cmd; 1859 struct wpi_cmd_data *tx; 1860 struct ieee80211_frame *wh; 1861 const struct ieee80211_txparam *tp; 1862 struct ieee80211_key *k; 1863 struct mbuf *mnew; 1864 int i, error, nsegs, rate, hdrlen, ismcast; 1865 bus_dma_segment_t segs[WPI_MAX_SCATTER]; 1866 1867 desc = &ring->desc[ring->cur]; 1868 data = &ring->data[ring->cur]; 1869 1870 wh = mtod(m0, struct ieee80211_frame *); 1871 1872 hdrlen = ieee80211_hdrsize(wh); 1873 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 1874 1875 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1876 k = ieee80211_crypto_encap(ni, m0); 1877 if (k == NULL) { 1878 m_freem(m0); 1879 return ENOBUFS; 1880 } 1881 /* packet header may have moved, reset our local pointer */ 1882 wh = mtod(m0, struct ieee80211_frame *); 1883 } 1884 1885 cmd = &ring->cmd[ring->cur]; 1886 cmd->code = WPI_CMD_TX_DATA; 1887 cmd->flags = 0; 1888 cmd->qid = ring->qid; 1889 cmd->idx = ring->cur; 1890 1891 tx = (struct wpi_cmd_data *)cmd->data; 1892 tx->flags = htole32(WPI_TX_AUTO_SEQ); 1893 tx->timeout = htole16(0); 1894 tx->ofdm_mask = 0xff; 1895 tx->cck_mask = 0x0f; 1896 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 1897 tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS; 1898 tx->len = htole16(m0->m_pkthdr.len); 1899 1900 if (!ismcast) { 1901 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 || 1902 !cap->cap_wmeParams[ac].wmep_noackPolicy) 1903 tx->flags |= htole32(WPI_TX_NEED_ACK); 1904 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 1905 tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP); 1906 tx->rts_ntries = 7; 1907 } 1908 } 1909 /* pick a rate */ 1910 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 1911 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { 1912 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1913 /* tell h/w to set timestamp in probe responses */ 1914 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1915 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP); 1916 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 1917 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 1918 tx->timeout = htole16(3); 1919 else 1920 tx->timeout = htole16(2); 1921 rate = tp->mgmtrate; 1922 } else if (ismcast) { 1923 rate = tp->mcastrate; 1924 } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1925 rate = tp->ucastrate; 1926 } else { 1927 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1928 rate = ni->ni_txrate; 1929 } 1930 tx->rate = wpi_plcp_signal(rate); 1931 1932 /* be very persistant at sending frames out */ 1933 #if 0 1934 tx->data_ntries = tp->maxretry; 1935 #else 1936 tx->data_ntries = 30; /* XXX way too high */ 1937 #endif 1938 1939 if (ieee80211_radiotap_active_vap(vap)) { 1940 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 1941 tap->wt_flags = 0; 1942 tap->wt_rate = rate; 1943 tap->wt_hwqueue = ac; 1944 if (wh->i_fc[1] & IEEE80211_FC1_WEP) 1945 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 1946 1947 ieee80211_radiotap_tx(vap, m0); 1948 } 1949 1950 /* save and trim IEEE802.11 header */ 1951 m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh); 1952 m_adj(m0, hdrlen); 1953 1954 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, m0, segs, 1955 1, &nsegs, BUS_DMA_NOWAIT); 1956 if (error != 0 && error != EFBIG) { 1957 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1958 error); 1959 m_freem(m0); 1960 return error; 1961 } 1962 if (error != 0) { 1963 /* XXX use m_collapse */ 1964 mnew = m_defrag(m0, MB_DONTWAIT); 1965 if (mnew == NULL) { 1966 device_printf(sc->sc_dev, 1967 "could not defragment mbuf\n"); 1968 m_freem(m0); 1969 return ENOBUFS; 1970 } 1971 m0 = mnew; 1972 1973 error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map, 1974 m0, segs, 1, &nsegs, BUS_DMA_NOWAIT); 1975 if (error != 0) { 1976 device_printf(sc->sc_dev, 1977 "could not map mbuf (error %d)\n", error); 1978 m_freem(m0); 1979 return error; 1980 } 1981 } 1982 1983 data->m = m0; 1984 data->ni = ni; 1985 1986 DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", 1987 ring->qid, ring->cur, m0->m_pkthdr.len, nsegs)); 1988 1989 /* first scatter/gather segment is used by the tx data command */ 1990 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 1991 (1 + nsegs) << 24); 1992 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 1993 ring->cur * sizeof (struct wpi_tx_cmd)); 1994 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data)); 1995 for (i = 1; i <= nsegs; i++) { 1996 desc->segs[i].addr = htole32(segs[i - 1].ds_addr); 1997 desc->segs[i].len = htole32(segs[i - 1].ds_len); 1998 } 1999 2000 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2001 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2002 BUS_DMASYNC_PREWRITE); 2003 2004 ring->queued++; 2005 2006 /* kick ring */ 2007 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 2008 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2009 2010 return 0; 2011 } 2012 2013 /** 2014 * Process data waiting to be sent on the IFNET output queue 2015 */ 2016 static void 2017 wpi_start(struct ifnet *ifp, struct ifaltq_subque *ifsq) 2018 { 2019 ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq); 2020 wpi_start_locked(ifp); 2021 } 2022 2023 static void 2024 wpi_start_locked(struct ifnet *ifp) 2025 { 2026 struct wpi_softc *sc = ifp->if_softc; 2027 struct ieee80211_node *ni; 2028 struct mbuf *m; 2029 int ac; 2030 2031 if ((ifp->if_flags & IFF_RUNNING) == 0) { 2032 ifq_purge(&ifp->if_snd); 2033 return; 2034 } 2035 2036 for (;;) { 2037 m = ifq_dequeue(&ifp->if_snd); 2038 if (m == NULL) 2039 break; 2040 ac = M_WME_GETAC(m); 2041 if (sc->txq[ac].queued > sc->txq[ac].count - 8) { 2042 /* there is no place left in this ring */ 2043 /* 2044 * XXX: we CANNOT do it this way. If something 2045 * is prepended already, this is going to blow. 2046 */ 2047 ifq_set_oactive(&ifp->if_snd); 2048 ifq_prepend(&ifp->if_snd, m); 2049 break; 2050 } 2051 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2052 if (wpi_tx_data(sc, m, ni, ac) != 0) { 2053 ieee80211_free_node(ni); 2054 IFNET_STAT_INC(ifp, oerrors, 1); 2055 break; 2056 } 2057 sc->sc_tx_timer = 5; 2058 } 2059 } 2060 2061 static int 2062 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2063 const struct ieee80211_bpf_params *params) 2064 { 2065 struct ieee80211com *ic = ni->ni_ic; 2066 struct ifnet *ifp = ic->ic_ifp; 2067 struct wpi_softc *sc = ifp->if_softc; 2068 2069 /* prevent management frames from being sent if we're not ready */ 2070 if (!(ifp->if_flags & IFF_RUNNING)) { 2071 m_freem(m); 2072 ieee80211_free_node(ni); 2073 return ENETDOWN; 2074 } 2075 2076 /* management frames go into ring 0 */ 2077 if (sc->txq[0].queued > sc->txq[0].count - 8) { 2078 ifq_set_oactive(&ifp->if_snd); 2079 m_freem(m); 2080 ieee80211_free_node(ni); 2081 return ENOBUFS; /* XXX */ 2082 } 2083 2084 IFNET_STAT_INC(ifp, opackets, 1); 2085 if (wpi_tx_data(sc, m, ni, 0) != 0) 2086 goto bad; 2087 sc->sc_tx_timer = 5; 2088 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc); 2089 2090 return 0; 2091 bad: 2092 IFNET_STAT_INC(ifp, oerrors, 1); 2093 ieee80211_free_node(ni); 2094 return EIO; /* XXX */ 2095 } 2096 2097 static int 2098 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cred) 2099 { 2100 struct wpi_softc *sc = ifp->if_softc; 2101 struct ieee80211com *ic = ifp->if_l2com; 2102 struct ifreq *ifr = (struct ifreq *) data; 2103 int error = 0, startall = 0; 2104 2105 switch (cmd) { 2106 case SIOCSIFFLAGS: 2107 if ((ifp->if_flags & IFF_UP)) { 2108 if (!(ifp->if_flags & IFF_RUNNING)) { 2109 wpi_init_locked(sc, 0); 2110 startall = 1; 2111 } 2112 } else if ((ifp->if_flags & IFF_RUNNING) || 2113 (sc->flags & WPI_FLAG_HW_RADIO_OFF)) 2114 wpi_stop_locked(sc); 2115 if (startall) 2116 ieee80211_start_all(ic); 2117 break; 2118 case SIOCGIFMEDIA: 2119 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 2120 break; 2121 case SIOCGIFADDR: 2122 error = ether_ioctl(ifp, cmd, data); 2123 break; 2124 default: 2125 error = EINVAL; 2126 break; 2127 } 2128 return error; 2129 } 2130 2131 /* 2132 * Extract various information from EEPROM. 2133 */ 2134 static void 2135 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2136 { 2137 int i; 2138 2139 /* read the hardware capabilities, revision and SKU type */ 2140 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1); 2141 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2); 2142 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1); 2143 2144 /* read the regulatory domain */ 2145 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4); 2146 2147 /* read in the hw MAC address */ 2148 wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6); 2149 2150 /* read the list of authorized channels */ 2151 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 2152 wpi_read_eeprom_channels(sc,i); 2153 2154 /* read the power level calibration info for each group */ 2155 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 2156 wpi_read_eeprom_group(sc,i); 2157 } 2158 2159 /* 2160 * Send a command to the firmware. 2161 */ 2162 static int 2163 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async) 2164 { 2165 struct wpi_tx_ring *ring = &sc->cmdq; 2166 struct wpi_tx_desc *desc; 2167 struct wpi_tx_cmd *cmd; 2168 2169 #ifdef WPI_DEBUG 2170 if (!async) { 2171 wlan_assert_serialized(); 2172 } 2173 #endif 2174 2175 DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size, 2176 async)); 2177 2178 if (sc->flags & WPI_FLAG_BUSY) { 2179 device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", 2180 __func__, code); 2181 return EAGAIN; 2182 } 2183 sc->flags|= WPI_FLAG_BUSY; 2184 2185 KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes", 2186 code, size)); 2187 2188 desc = &ring->desc[ring->cur]; 2189 cmd = &ring->cmd[ring->cur]; 2190 2191 cmd->code = code; 2192 cmd->flags = 0; 2193 cmd->qid = ring->qid; 2194 cmd->idx = ring->cur; 2195 memcpy(cmd->data, buf, size); 2196 2197 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24); 2198 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2199 ring->cur * sizeof (struct wpi_tx_cmd)); 2200 desc->segs[0].len = htole32(4 + size); 2201 2202 /* kick cmd ring */ 2203 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2204 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2205 2206 if (async) { 2207 sc->flags &= ~ WPI_FLAG_BUSY; 2208 return 0; 2209 } 2210 2211 return zsleep(cmd, &wlan_global_serializer, 0, "wpicmd", hz); 2212 } 2213 2214 static int 2215 wpi_wme_update(struct ieee80211com *ic) 2216 { 2217 #define WPI_EXP2(v) htole16((1 << (v)) - 1) 2218 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) 2219 struct wpi_softc *sc = ic->ic_ifp->if_softc; 2220 const struct wmeParams *wmep; 2221 struct wpi_wme_setup wme; 2222 int ac; 2223 2224 /* don't override default WME values if WME is not actually enabled */ 2225 if (!(ic->ic_flags & IEEE80211_F_WME)) 2226 return 0; 2227 2228 wme.flags = 0; 2229 for (ac = 0; ac < WME_NUM_AC; ac++) { 2230 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 2231 wme.ac[ac].aifsn = wmep->wmep_aifsn; 2232 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin); 2233 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax); 2234 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit); 2235 2236 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 2237 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin, 2238 wme.ac[ac].cwmax, wme.ac[ac].txop)); 2239 } 2240 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1); 2241 #undef WPI_USEC 2242 #undef WPI_EXP2 2243 } 2244 2245 /* 2246 * Configure h/w multi-rate retries. 2247 */ 2248 static int 2249 wpi_mrr_setup(struct wpi_softc *sc) 2250 { 2251 struct ifnet *ifp = sc->sc_ifp; 2252 struct ieee80211com *ic = ifp->if_l2com; 2253 struct wpi_mrr_setup mrr; 2254 int i, error; 2255 2256 memset(&mrr, 0, sizeof (struct wpi_mrr_setup)); 2257 2258 /* CCK rates (not used with 802.11a) */ 2259 for (i = WPI_CCK1; i <= WPI_CCK11; i++) { 2260 mrr.rates[i].flags = 0; 2261 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2262 /* fallback to the immediate lower CCK rate (if any) */ 2263 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1; 2264 /* try one time at this rate before falling back to "next" */ 2265 mrr.rates[i].ntries = 1; 2266 } 2267 2268 /* OFDM rates (not used with 802.11b) */ 2269 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) { 2270 mrr.rates[i].flags = 0; 2271 mrr.rates[i].signal = wpi_ridx_to_plcp[i]; 2272 /* fallback to the immediate lower OFDM rate (if any) */ 2273 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */ 2274 mrr.rates[i].next = (i == WPI_OFDM6) ? 2275 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 2276 WPI_OFDM6 : WPI_CCK2) : 2277 i - 1; 2278 /* try one time at this rate before falling back to "next" */ 2279 mrr.rates[i].ntries = 1; 2280 } 2281 2282 /* setup MRR for control frames */ 2283 mrr.which = htole32(WPI_MRR_CTL); 2284 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2285 if (error != 0) { 2286 device_printf(sc->sc_dev, 2287 "could not setup MRR for control frames\n"); 2288 return error; 2289 } 2290 2291 /* setup MRR for data frames */ 2292 mrr.which = htole32(WPI_MRR_DATA); 2293 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 2294 if (error != 0) { 2295 device_printf(sc->sc_dev, 2296 "could not setup MRR for data frames\n"); 2297 return error; 2298 } 2299 2300 return 0; 2301 } 2302 2303 static void 2304 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 2305 { 2306 struct wpi_cmd_led led; 2307 2308 led.which = which; 2309 led.unit = htole32(100000); /* on/off in unit of 100ms */ 2310 led.off = off; 2311 led.on = on; 2312 2313 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 2314 } 2315 2316 static void 2317 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni) 2318 { 2319 struct wpi_cmd_tsf tsf; 2320 uint64_t val, mod; 2321 2322 memset(&tsf, 0, sizeof tsf); 2323 memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8); 2324 tsf.bintval = htole16(ni->ni_intval); 2325 tsf.lintval = htole16(10); 2326 2327 /* compute remaining time until next beacon */ 2328 val = (uint64_t)ni->ni_intval * 1024; /* msec -> usec */ 2329 mod = le64toh(tsf.tstamp) % val; 2330 tsf.binitval = htole32((uint32_t)(val - mod)); 2331 2332 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0) 2333 device_printf(sc->sc_dev, "could not enable TSF\n"); 2334 } 2335 2336 #if 0 2337 /* 2338 * Build a beacon frame that the firmware will broadcast periodically in 2339 * IBSS or HostAP modes. 2340 */ 2341 static int 2342 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 2343 { 2344 struct ifnet *ifp = sc->sc_ifp; 2345 struct ieee80211com *ic = ifp->if_l2com; 2346 struct wpi_tx_ring *ring = &sc->cmdq; 2347 struct wpi_tx_desc *desc; 2348 struct wpi_tx_data *data; 2349 struct wpi_tx_cmd *cmd; 2350 struct wpi_cmd_beacon *bcn; 2351 struct ieee80211_beacon_offsets bo; 2352 struct mbuf *m0; 2353 bus_addr_t physaddr; 2354 int error; 2355 2356 desc = &ring->desc[ring->cur]; 2357 data = &ring->data[ring->cur]; 2358 2359 m0 = ieee80211_beacon_alloc(ic, ni, &bo); 2360 if (m0 == NULL) { 2361 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2362 return ENOMEM; 2363 } 2364 2365 cmd = &ring->cmd[ring->cur]; 2366 cmd->code = WPI_CMD_SET_BEACON; 2367 cmd->flags = 0; 2368 cmd->qid = ring->qid; 2369 cmd->idx = ring->cur; 2370 2371 bcn = (struct wpi_cmd_beacon *)cmd->data; 2372 memset(bcn, 0, sizeof (struct wpi_cmd_beacon)); 2373 bcn->id = WPI_ID_BROADCAST; 2374 bcn->ofdm_mask = 0xff; 2375 bcn->cck_mask = 0x0f; 2376 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE); 2377 bcn->len = htole16(m0->m_pkthdr.len); 2378 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2379 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2380 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP); 2381 2382 /* save and trim IEEE802.11 header */ 2383 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh); 2384 m_adj(m0, sizeof (struct ieee80211_frame)); 2385 2386 /* assume beacon frame is contiguous */ 2387 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *), 2388 m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0); 2389 if (error != 0) { 2390 device_printf(sc->sc_dev, "could not map beacon\n"); 2391 m_freem(m0); 2392 return error; 2393 } 2394 2395 data->m = m0; 2396 2397 /* first scatter/gather segment is used by the beacon command */ 2398 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24); 2399 desc->segs[0].addr = htole32(ring->cmd_dma.paddr + 2400 ring->cur * sizeof (struct wpi_tx_cmd)); 2401 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon)); 2402 desc->segs[1].addr = htole32(physaddr); 2403 desc->segs[1].len = htole32(m0->m_pkthdr.len); 2404 2405 /* kick cmd ring */ 2406 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2407 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2408 2409 return 0; 2410 } 2411 #endif 2412 2413 static int 2414 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 2415 { 2416 struct ieee80211com *ic = vap->iv_ic; 2417 struct ieee80211_node *ni; 2418 struct wpi_node_info node; 2419 int error; 2420 2421 2422 /* update adapter's configuration */ 2423 sc->config.associd = 0; 2424 sc->config.filter &= ~htole32(WPI_FILTER_BSS); 2425 ni = ieee80211_ref_node(vap->iv_bss); 2426 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); 2427 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); 2428 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { 2429 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2430 WPI_CONFIG_24GHZ); 2431 } 2432 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 2433 sc->config.cck_mask = 0; 2434 sc->config.ofdm_mask = 0x15; 2435 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 2436 sc->config.cck_mask = 0x03; 2437 sc->config.ofdm_mask = 0; 2438 } else { 2439 /* XXX assume 802.11b/g */ 2440 sc->config.cck_mask = 0x0f; 2441 sc->config.ofdm_mask = 0x15; 2442 } 2443 2444 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, 2445 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); 2446 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2447 sizeof (struct wpi_config), 1); 2448 if (error != 0) { 2449 device_printf(sc->sc_dev, "could not configure\n"); 2450 ieee80211_free_node(ni); 2451 return error; 2452 } 2453 2454 /* configuration has changed, set Tx power accordingly */ 2455 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) { 2456 device_printf(sc->sc_dev, "could not set Tx power\n"); 2457 ieee80211_free_node(ni); 2458 return error; 2459 } 2460 2461 /* add default node */ 2462 memset(&node, 0, sizeof node); 2463 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid); 2464 ieee80211_free_node(ni); 2465 node.id = WPI_ID_BSS; 2466 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2467 wpi_plcp_signal(12) : wpi_plcp_signal(2); 2468 node.action = htole32(WPI_ACTION_SET_RATE); 2469 node.antenna = WPI_ANTENNA_BOTH; 2470 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 2471 if (error != 0) 2472 device_printf(sc->sc_dev, "could not add BSS node\n"); 2473 2474 return (error); 2475 } 2476 2477 static int 2478 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 2479 { 2480 struct ieee80211com *ic = vap->iv_ic; 2481 struct ieee80211_node *ni; 2482 int error; 2483 2484 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 2485 /* link LED blinks while monitoring */ 2486 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 2487 return 0; 2488 } 2489 2490 ni = ieee80211_ref_node(vap->iv_bss); 2491 wpi_enable_tsf(sc, ni); 2492 2493 /* update adapter's configuration */ 2494 sc->config.associd = htole16(ni->ni_associd & ~0xc000); 2495 /* short preamble/slot time are negotiated when associating */ 2496 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE | 2497 WPI_CONFIG_SHSLOT); 2498 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2499 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT); 2500 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2501 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE); 2502 sc->config.filter |= htole32(WPI_FILTER_BSS); 2503 2504 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */ 2505 2506 DPRINTF(("config chan %d flags %x\n", sc->config.chan, 2507 sc->config.flags)); 2508 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct 2509 wpi_config), 1); 2510 if (error != 0) { 2511 device_printf(sc->sc_dev, "could not update configuration\n"); 2512 ieee80211_free_node(ni); 2513 return error; 2514 } 2515 2516 error = wpi_set_txpower(sc, ni->ni_chan, 1); 2517 ieee80211_free_node(ni); 2518 if (error != 0) { 2519 device_printf(sc->sc_dev, "could set txpower\n"); 2520 return error; 2521 } 2522 2523 /* link LED always on while associated */ 2524 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 2525 2526 /* start automatic rate control timer */ 2527 callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc); 2528 2529 return (error); 2530 } 2531 2532 /* 2533 * Send a scan request to the firmware. Since this command is huge, we map it 2534 * into a mbufcluster instead of using the pre-allocated set of commands. Note, 2535 * much of this code is similar to that in wpi_cmd but because we must manually 2536 * construct the probe & channels, we duplicate what's needed here. XXX In the 2537 * future, this function should be modified to use wpi_cmd to help cleanup the 2538 * code base. 2539 */ 2540 static int 2541 wpi_scan(struct wpi_softc *sc) 2542 { 2543 struct ifnet *ifp = sc->sc_ifp; 2544 struct ieee80211com *ic = ifp->if_l2com; 2545 struct ieee80211_scan_state *ss = ic->ic_scan; 2546 struct wpi_tx_ring *ring = &sc->cmdq; 2547 struct wpi_tx_desc *desc; 2548 struct wpi_tx_data *data; 2549 struct wpi_tx_cmd *cmd; 2550 struct wpi_scan_hdr *hdr; 2551 struct wpi_scan_chan *chan; 2552 struct ieee80211_frame *wh; 2553 struct ieee80211_rateset *rs; 2554 struct ieee80211_channel *c; 2555 enum ieee80211_phymode mode; 2556 uint8_t *frm; 2557 int nrates, pktlen, error, i, nssid; 2558 bus_addr_t physaddr; 2559 2560 desc = &ring->desc[ring->cur]; 2561 data = &ring->data[ring->cur]; 2562 2563 data->m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 2564 if (data->m == NULL) { 2565 device_printf(sc->sc_dev, 2566 "could not allocate mbuf for scan command\n"); 2567 return ENOMEM; 2568 } 2569 2570 cmd = mtod(data->m, struct wpi_tx_cmd *); 2571 cmd->code = WPI_CMD_SCAN; 2572 cmd->flags = 0; 2573 cmd->qid = ring->qid; 2574 cmd->idx = ring->cur; 2575 2576 hdr = (struct wpi_scan_hdr *)cmd->data; 2577 memset(hdr, 0, sizeof(struct wpi_scan_hdr)); 2578 2579 /* 2580 * Move to the next channel if no packets are received within 5 msecs 2581 * after sending the probe request (this helps to reduce the duration 2582 * of active scans). 2583 */ 2584 hdr->quiet = htole16(5); 2585 hdr->threshold = htole16(1); 2586 2587 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 2588 /* send probe requests at 6Mbps */ 2589 hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6]; 2590 2591 /* Enable crc checking */ 2592 hdr->promotion = htole16(1); 2593 } else { 2594 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO); 2595 /* send probe requests at 1Mbps */ 2596 hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1]; 2597 } 2598 hdr->tx.id = WPI_ID_BROADCAST; 2599 hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE); 2600 hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ); 2601 2602 memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids)); 2603 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 2604 for (i = 0; i < nssid; i++) { 2605 hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID; 2606 hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32); 2607 memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid, 2608 hdr->scan_essids[i].esslen); 2609 #ifdef WPI_DEBUG 2610 if (wpi_debug & WPI_DEBUG_SCANNING) { 2611 kprintf("Scanning Essid: "); 2612 ieee80211_print_essid(hdr->scan_essids[i].essid, 2613 hdr->scan_essids[i].esslen); 2614 kprintf("\n"); 2615 } 2616 #endif 2617 } 2618 2619 /* 2620 * Build a probe request frame. Most of the following code is a 2621 * copy & paste of what is done in net80211. 2622 */ 2623 wh = (struct ieee80211_frame *)&hdr->scan_essids[4]; 2624 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2625 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 2626 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2627 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2628 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 2629 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 2630 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ 2631 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ 2632 2633 frm = (uint8_t *)(wh + 1); 2634 2635 /* add essid IE, the hardware will fill this in for us */ 2636 *frm++ = IEEE80211_ELEMID_SSID; 2637 *frm++ = 0; 2638 2639 mode = ieee80211_chan2mode(ic->ic_curchan); 2640 rs = &ic->ic_sup_rates[mode]; 2641 2642 /* add supported rates IE */ 2643 *frm++ = IEEE80211_ELEMID_RATES; 2644 nrates = rs->rs_nrates; 2645 if (nrates > IEEE80211_RATE_SIZE) 2646 nrates = IEEE80211_RATE_SIZE; 2647 *frm++ = nrates; 2648 memcpy(frm, rs->rs_rates, nrates); 2649 frm += nrates; 2650 2651 /* add supported xrates IE */ 2652 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2653 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2654 *frm++ = IEEE80211_ELEMID_XRATES; 2655 *frm++ = nrates; 2656 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2657 frm += nrates; 2658 } 2659 2660 /* setup length of probe request */ 2661 hdr->tx.len = htole16(frm - (uint8_t *)wh); 2662 2663 /* 2664 * Construct information about the channel that we 2665 * want to scan. The firmware expects this to be directly 2666 * after the scan probe request 2667 */ 2668 c = ic->ic_curchan; 2669 chan = (struct wpi_scan_chan *)frm; 2670 chan->chan = ieee80211_chan2ieee(ic, c); 2671 chan->flags = 0; 2672 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2673 chan->flags |= WPI_CHAN_ACTIVE; 2674 if (nssid != 0) 2675 chan->flags |= WPI_CHAN_DIRECT; 2676 } 2677 chan->gain_dsp = 0x6e; /* Default level */ 2678 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2679 chan->active = htole16(10); 2680 chan->passive = htole16(ss->ss_maxdwell); 2681 chan->gain_radio = 0x3b; 2682 } else { 2683 chan->active = htole16(20); 2684 chan->passive = htole16(ss->ss_maxdwell); 2685 chan->gain_radio = 0x28; 2686 } 2687 2688 DPRINTFN(WPI_DEBUG_SCANNING, 2689 ("Scanning %u Passive: %d\n", 2690 chan->chan, 2691 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2692 2693 hdr->nchan++; 2694 chan++; 2695 2696 frm += sizeof (struct wpi_scan_chan); 2697 #if 0 2698 // XXX All Channels.... 2699 for (c = &ic->ic_channels[1]; 2700 c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { 2701 if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags) 2702 continue; 2703 2704 chan->chan = ieee80211_chan2ieee(ic, c); 2705 chan->flags = 0; 2706 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 2707 chan->flags |= WPI_CHAN_ACTIVE; 2708 if (ic->ic_des_ssid[0].len != 0) 2709 chan->flags |= WPI_CHAN_DIRECT; 2710 } 2711 chan->gain_dsp = 0x6e; /* Default level */ 2712 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2713 chan->active = htole16(10); 2714 chan->passive = htole16(110); 2715 chan->gain_radio = 0x3b; 2716 } else { 2717 chan->active = htole16(20); 2718 chan->passive = htole16(120); 2719 chan->gain_radio = 0x28; 2720 } 2721 2722 DPRINTFN(WPI_DEBUG_SCANNING, 2723 ("Scanning %u Passive: %d\n", 2724 chan->chan, 2725 c->ic_flags & IEEE80211_CHAN_PASSIVE)); 2726 2727 hdr->nchan++; 2728 chan++; 2729 2730 frm += sizeof (struct wpi_scan_chan); 2731 } 2732 #endif 2733 2734 hdr->len = htole16(frm - (uint8_t *)hdr); 2735 pktlen = frm - (uint8_t *)cmd; 2736 2737 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen, 2738 wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT); 2739 if (error != 0) { 2740 device_printf(sc->sc_dev, "could not map scan command\n"); 2741 m_freem(data->m); 2742 data->m = NULL; 2743 return error; 2744 } 2745 2746 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24); 2747 desc->segs[0].addr = htole32(physaddr); 2748 desc->segs[0].len = htole32(pktlen); 2749 2750 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2751 BUS_DMASYNC_PREWRITE); 2752 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2753 2754 /* kick cmd ring */ 2755 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT; 2756 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur); 2757 2758 sc->sc_scan_timer = 5; 2759 return 0; /* will be notified async. of failure/success */ 2760 } 2761 2762 /** 2763 * Configure the card to listen to a particular channel, this transisions the 2764 * card in to being able to receive frames from remote devices. 2765 */ 2766 static int 2767 wpi_config(struct wpi_softc *sc) 2768 { 2769 struct ifnet *ifp = sc->sc_ifp; 2770 struct ieee80211com *ic = ifp->if_l2com; 2771 struct wpi_power power; 2772 struct wpi_bluetooth bluetooth; 2773 struct wpi_node_info node; 2774 int error; 2775 2776 /* set power mode */ 2777 memset(&power, 0, sizeof power); 2778 power.flags = htole32(WPI_POWER_CAM|0x8); 2779 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0); 2780 if (error != 0) { 2781 device_printf(sc->sc_dev, "could not set power mode\n"); 2782 return error; 2783 } 2784 2785 /* configure bluetooth coexistence */ 2786 memset(&bluetooth, 0, sizeof bluetooth); 2787 bluetooth.flags = 3; 2788 bluetooth.lead = 0xaa; 2789 bluetooth.kill = 1; 2790 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 2791 0); 2792 if (error != 0) { 2793 device_printf(sc->sc_dev, 2794 "could not configure bluetooth coexistence\n"); 2795 return error; 2796 } 2797 2798 /* configure adapter */ 2799 memset(&sc->config, 0, sizeof (struct wpi_config)); 2800 IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp)); 2801 /*set default channel*/ 2802 sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan)); 2803 sc->config.flags = htole32(WPI_CONFIG_TSF); 2804 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 2805 sc->config.flags |= htole32(WPI_CONFIG_AUTO | 2806 WPI_CONFIG_24GHZ); 2807 } 2808 sc->config.filter = 0; 2809 switch (ic->ic_opmode) { 2810 case IEEE80211_M_STA: 2811 case IEEE80211_M_WDS: /* No know setup, use STA for now */ 2812 sc->config.mode = WPI_MODE_STA; 2813 sc->config.filter |= htole32(WPI_FILTER_MULTICAST); 2814 break; 2815 case IEEE80211_M_IBSS: 2816 case IEEE80211_M_AHDEMO: 2817 sc->config.mode = WPI_MODE_IBSS; 2818 sc->config.filter |= htole32(WPI_FILTER_BEACON | 2819 WPI_FILTER_MULTICAST); 2820 break; 2821 case IEEE80211_M_HOSTAP: 2822 sc->config.mode = WPI_MODE_HOSTAP; 2823 break; 2824 case IEEE80211_M_MONITOR: 2825 sc->config.mode = WPI_MODE_MONITOR; 2826 sc->config.filter |= htole32(WPI_FILTER_MULTICAST | 2827 WPI_FILTER_CTL | WPI_FILTER_PROMISC); 2828 break; 2829 default: 2830 device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode); 2831 return EINVAL; 2832 } 2833 sc->config.cck_mask = 0x0f; /* not yet negotiated */ 2834 sc->config.ofdm_mask = 0xff; /* not yet negotiated */ 2835 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, 2836 sizeof (struct wpi_config), 0); 2837 if (error != 0) { 2838 device_printf(sc->sc_dev, "configure command failed\n"); 2839 return error; 2840 } 2841 2842 /* configuration has changed, set Tx power accordingly */ 2843 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) { 2844 device_printf(sc->sc_dev, "could not set Tx power\n"); 2845 return error; 2846 } 2847 2848 /* add broadcast node */ 2849 memset(&node, 0, sizeof node); 2850 IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr); 2851 node.id = WPI_ID_BROADCAST; 2852 node.rate = wpi_plcp_signal(2); 2853 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0); 2854 if (error != 0) { 2855 device_printf(sc->sc_dev, "could not add broadcast node\n"); 2856 return error; 2857 } 2858 2859 /* Setup rate scalling */ 2860 error = wpi_mrr_setup(sc); 2861 if (error != 0) { 2862 device_printf(sc->sc_dev, "could not setup MRR\n"); 2863 return error; 2864 } 2865 2866 return 0; 2867 } 2868 2869 static void 2870 wpi_stop_master(struct wpi_softc *sc) 2871 { 2872 uint32_t tmp; 2873 int ntries; 2874 2875 DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n")); 2876 2877 tmp = WPI_READ(sc, WPI_RESET); 2878 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET); 2879 2880 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2881 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP) 2882 return; /* already asleep */ 2883 2884 for (ntries = 0; ntries < 100; ntries++) { 2885 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED) 2886 break; 2887 DELAY(10); 2888 } 2889 if (ntries == 100) { 2890 device_printf(sc->sc_dev, "timeout waiting for master\n"); 2891 } 2892 } 2893 2894 static int 2895 wpi_power_up(struct wpi_softc *sc) 2896 { 2897 uint32_t tmp; 2898 int ntries; 2899 2900 wpi_mem_lock(sc); 2901 tmp = wpi_mem_read(sc, WPI_MEM_POWER); 2902 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000); 2903 wpi_mem_unlock(sc); 2904 2905 for (ntries = 0; ntries < 5000; ntries++) { 2906 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED) 2907 break; 2908 DELAY(10); 2909 } 2910 if (ntries == 5000) { 2911 device_printf(sc->sc_dev, 2912 "timeout waiting for NIC to power up\n"); 2913 return ETIMEDOUT; 2914 } 2915 return 0; 2916 } 2917 2918 static int 2919 wpi_reset(struct wpi_softc *sc) 2920 { 2921 uint32_t tmp; 2922 int ntries; 2923 2924 DPRINTFN(WPI_DEBUG_HW, 2925 ("Resetting the card - clearing any uploaded firmware\n")); 2926 2927 /* clear any pending interrupts */ 2928 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 2929 2930 tmp = WPI_READ(sc, WPI_PLL_CTL); 2931 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT); 2932 2933 tmp = WPI_READ(sc, WPI_CHICKEN); 2934 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS); 2935 2936 tmp = WPI_READ(sc, WPI_GPIO_CTL); 2937 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT); 2938 2939 /* wait for clock stabilization */ 2940 for (ntries = 0; ntries < 25000; ntries++) { 2941 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK) 2942 break; 2943 DELAY(10); 2944 } 2945 if (ntries == 25000) { 2946 device_printf(sc->sc_dev, 2947 "timeout waiting for clock stabilization\n"); 2948 return ETIMEDOUT; 2949 } 2950 2951 /* initialize EEPROM */ 2952 tmp = WPI_READ(sc, WPI_EEPROM_STATUS); 2953 2954 if ((tmp & WPI_EEPROM_VERSION) == 0) { 2955 device_printf(sc->sc_dev, "EEPROM not found\n"); 2956 return EIO; 2957 } 2958 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED); 2959 2960 return 0; 2961 } 2962 2963 static void 2964 wpi_hw_config(struct wpi_softc *sc) 2965 { 2966 uint32_t rev, hw; 2967 2968 /* voodoo from the Linux "driver".. */ 2969 hw = WPI_READ(sc, WPI_HWCONFIG); 2970 2971 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 2972 if ((rev & 0xc0) == 0x40) 2973 hw |= WPI_HW_ALM_MB; 2974 else if (!(rev & 0x80)) 2975 hw |= WPI_HW_ALM_MM; 2976 2977 if (sc->cap == 0x80) 2978 hw |= WPI_HW_SKU_MRC; 2979 2980 hw &= ~WPI_HW_REV_D; 2981 if ((le16toh(sc->rev) & 0xf0) == 0xd0) 2982 hw |= WPI_HW_REV_D; 2983 2984 if (sc->type > 1) 2985 hw |= WPI_HW_TYPE_B; 2986 2987 WPI_WRITE(sc, WPI_HWCONFIG, hw); 2988 } 2989 2990 static void 2991 wpi_rfkill_resume(struct wpi_softc *sc) 2992 { 2993 struct ifnet *ifp = sc->sc_ifp; 2994 struct ieee80211com *ic = ifp->if_l2com; 2995 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2996 int ntries; 2997 2998 /* enable firmware again */ 2999 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3000 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3001 3002 /* wait for thermal sensors to calibrate */ 3003 for (ntries = 0; ntries < 1000; ntries++) { 3004 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3005 break; 3006 DELAY(10); 3007 } 3008 3009 if (ntries == 1000) { 3010 device_printf(sc->sc_dev, 3011 "timeout waiting for thermal calibration\n"); 3012 return; 3013 } 3014 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3015 3016 if (wpi_config(sc) != 0) { 3017 device_printf(sc->sc_dev, "device config failed\n"); 3018 return; 3019 } 3020 3021 ifq_clr_oactive(&ifp->if_snd); 3022 ifp->if_flags |= IFF_RUNNING; 3023 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3024 3025 if (vap != NULL) { 3026 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3027 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 3028 ieee80211_beacon_miss(ic); 3029 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 3030 } else 3031 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 3032 } else { 3033 ieee80211_scan_next(vap); 3034 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3035 } 3036 } 3037 3038 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc); 3039 } 3040 3041 static void 3042 wpi_init_locked(struct wpi_softc *sc, int force) 3043 { 3044 struct ifnet *ifp = sc->sc_ifp; 3045 uint32_t tmp; 3046 int ntries, qid; 3047 3048 wpi_stop_locked(sc); 3049 (void)wpi_reset(sc); 3050 3051 wpi_mem_lock(sc); 3052 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00); 3053 DELAY(20); 3054 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV); 3055 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800); 3056 wpi_mem_unlock(sc); 3057 3058 (void)wpi_power_up(sc); 3059 wpi_hw_config(sc); 3060 3061 /* init Rx ring */ 3062 wpi_mem_lock(sc); 3063 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr); 3064 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr + 3065 offsetof(struct wpi_shared, next)); 3066 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7); 3067 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010); 3068 wpi_mem_unlock(sc); 3069 3070 /* init Tx rings */ 3071 wpi_mem_lock(sc); 3072 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */ 3073 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */ 3074 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */ 3075 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000); 3076 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002); 3077 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4); 3078 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5); 3079 3080 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr); 3081 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5); 3082 3083 for (qid = 0; qid < 6; qid++) { 3084 WPI_WRITE(sc, WPI_TX_CTL(qid), 0); 3085 WPI_WRITE(sc, WPI_TX_BASE(qid), 0); 3086 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008); 3087 } 3088 wpi_mem_unlock(sc); 3089 3090 /* clear "radio off" and "disable command" bits (reversed logic) */ 3091 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3092 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD); 3093 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3094 3095 /* clear any pending interrupts */ 3096 WPI_WRITE(sc, WPI_INTR, 0xffffffff); 3097 3098 /* enable interrupts */ 3099 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK); 3100 3101 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3102 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF); 3103 3104 if ((wpi_load_firmware(sc)) != 0) { 3105 device_printf(sc->sc_dev, 3106 "A problem occurred loading the firmware to the driver\n"); 3107 return; 3108 } 3109 3110 /* At this point the firmware is up and running. If the hardware 3111 * RF switch is turned off thermal calibration will fail, though 3112 * the card is still happy to continue to accept commands, catch 3113 * this case and schedule a task to watch for it to be turned on. 3114 */ 3115 wpi_mem_lock(sc); 3116 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3117 wpi_mem_unlock(sc); 3118 3119 if (!(tmp & 0x1)) { 3120 sc->flags |= WPI_FLAG_HW_RADIO_OFF; 3121 device_printf(sc->sc_dev,"Radio Transmitter is switched off\n"); 3122 goto out; 3123 } 3124 3125 /* wait for thermal sensors to calibrate */ 3126 for (ntries = 0; ntries < 1000; ntries++) { 3127 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0) 3128 break; 3129 DELAY(10); 3130 } 3131 3132 if (ntries == 1000) { 3133 device_printf(sc->sc_dev, 3134 "timeout waiting for thermal sensors calibration\n"); 3135 return; 3136 } 3137 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp)); 3138 3139 if (wpi_config(sc) != 0) { 3140 device_printf(sc->sc_dev, "device config failed\n"); 3141 return; 3142 } 3143 3144 ifq_clr_oactive(&ifp->if_snd); 3145 ifp->if_flags |= IFF_RUNNING; 3146 out: 3147 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc); 3148 } 3149 3150 static void 3151 wpi_init(void *arg) 3152 { 3153 struct wpi_softc *sc = arg; 3154 struct ifnet *ifp = sc->sc_ifp; 3155 struct ieee80211com *ic = ifp->if_l2com; 3156 3157 wpi_init_locked(sc, 0); 3158 3159 if (ifp->if_flags & IFF_RUNNING) 3160 ieee80211_start_all(ic); /* start all vaps */ 3161 } 3162 3163 static void 3164 wpi_stop_locked(struct wpi_softc *sc) 3165 { 3166 struct ifnet *ifp = sc->sc_ifp; 3167 uint32_t tmp; 3168 int ac; 3169 3170 sc->sc_tx_timer = 0; 3171 sc->sc_scan_timer = 0; 3172 ifp->if_flags &= ~IFF_RUNNING; 3173 ifq_clr_oactive(&ifp->if_snd); 3174 sc->flags &= ~WPI_FLAG_HW_RADIO_OFF; 3175 callout_stop(&sc->watchdog_to_callout); 3176 callout_stop(&sc->calib_to_callout); 3177 3178 3179 /* disable interrupts */ 3180 WPI_WRITE(sc, WPI_MASK, 0); 3181 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK); 3182 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff); 3183 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000); 3184 3185 wpi_mem_lock(sc); 3186 wpi_mem_write(sc, WPI_MEM_MODE, 0); 3187 wpi_mem_unlock(sc); 3188 3189 /* reset all Tx rings */ 3190 for (ac = 0; ac < 4; ac++) 3191 wpi_reset_tx_ring(sc, &sc->txq[ac]); 3192 wpi_reset_tx_ring(sc, &sc->cmdq); 3193 3194 /* reset Rx ring */ 3195 wpi_reset_rx_ring(sc, &sc->rxq); 3196 3197 wpi_mem_lock(sc); 3198 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200); 3199 wpi_mem_unlock(sc); 3200 3201 DELAY(5); 3202 3203 wpi_stop_master(sc); 3204 3205 tmp = WPI_READ(sc, WPI_RESET); 3206 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET); 3207 sc->flags &= ~WPI_FLAG_BUSY; 3208 } 3209 3210 static void 3211 wpi_stop(struct wpi_softc *sc) 3212 { 3213 wpi_stop_locked(sc); 3214 } 3215 3216 static void 3217 wpi_newassoc(struct ieee80211_node *ni, int isnew) 3218 { 3219 /* XXX move */ 3220 ieee80211_ratectl_node_init(ni); 3221 } 3222 3223 static void 3224 wpi_calib_timeout_callout(void *arg) 3225 { 3226 struct wpi_softc *sc = arg; 3227 struct ifnet *ifp = sc->sc_ifp; 3228 struct ieee80211com *ic = ifp->if_l2com; 3229 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3230 int temp; 3231 3232 if (vap->iv_state != IEEE80211_S_RUN) 3233 return; 3234 3235 /* update sensor data */ 3236 temp = (int)WPI_READ(sc, WPI_TEMPERATURE); 3237 DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp)); 3238 3239 wpi_power_calibration(sc, temp); 3240 3241 callout_reset(&sc->calib_to_callout, 60*hz, wpi_calib_timeout_callout, sc); 3242 } 3243 3244 /* 3245 * This function is called periodically (every 60 seconds) to adjust output 3246 * power to temperature changes. 3247 */ 3248 static void 3249 wpi_power_calibration(struct wpi_softc *sc, int temp) 3250 { 3251 struct ifnet *ifp = sc->sc_ifp; 3252 struct ieee80211com *ic = ifp->if_l2com; 3253 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3254 3255 /* sanity-check read value */ 3256 if (temp < -260 || temp > 25) { 3257 /* this can't be correct, ignore */ 3258 DPRINTFN(WPI_DEBUG_TEMP, 3259 ("out-of-range temperature reported: %d\n", temp)); 3260 return; 3261 } 3262 3263 DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp)); 3264 3265 /* adjust Tx power if need be */ 3266 if (abs(temp - sc->temp) <= 6) 3267 return; 3268 3269 sc->temp = temp; 3270 3271 if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) { 3272 /* just warn, too bad for the automatic calibration... */ 3273 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3274 } 3275 } 3276 3277 /** 3278 * Read the eeprom to find out what channels are valid for the given 3279 * band and update net80211 with what we find. 3280 */ 3281 static void 3282 wpi_read_eeprom_channels(struct wpi_softc *sc, int n) 3283 { 3284 struct ifnet *ifp = sc->sc_ifp; 3285 struct ieee80211com *ic = ifp->if_l2com; 3286 const struct wpi_chan_band *band = &wpi_bands[n]; 3287 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND]; 3288 struct ieee80211_channel *c; 3289 int chan, i, passive; 3290 3291 wpi_read_prom_data(sc, band->addr, channels, 3292 band->nchan * sizeof (struct wpi_eeprom_chan)); 3293 3294 for (i = 0; i < band->nchan; i++) { 3295 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 3296 DPRINTFN(WPI_DEBUG_HW, 3297 ("Channel Not Valid: %d, band %d\n", 3298 band->chan[i],n)); 3299 continue; 3300 } 3301 3302 passive = 0; 3303 chan = band->chan[i]; 3304 c = &ic->ic_channels[ic->ic_nchans++]; 3305 3306 /* is active scan allowed on this channel? */ 3307 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) { 3308 passive = IEEE80211_CHAN_PASSIVE; 3309 } 3310 3311 if (n == 0) { /* 2GHz band */ 3312 c->ic_ieee = chan; 3313 c->ic_freq = ieee80211_ieee2mhz(chan, 3314 IEEE80211_CHAN_2GHZ); 3315 c->ic_flags = IEEE80211_CHAN_B | passive; 3316 3317 c = &ic->ic_channels[ic->ic_nchans++]; 3318 c->ic_ieee = chan; 3319 c->ic_freq = ieee80211_ieee2mhz(chan, 3320 IEEE80211_CHAN_2GHZ); 3321 c->ic_flags = IEEE80211_CHAN_G | passive; 3322 3323 } else { /* 5GHz band */ 3324 /* 3325 * Some 3945ABG adapters support channels 7, 8, 11 3326 * and 12 in the 2GHz *and* 5GHz bands. 3327 * Because of limitations in our net80211(9) stack, 3328 * we can't support these channels in 5GHz band. 3329 * XXX not true; just need to map to proper frequency 3330 */ 3331 if (chan <= 14) 3332 continue; 3333 3334 c->ic_ieee = chan; 3335 c->ic_freq = ieee80211_ieee2mhz(chan, 3336 IEEE80211_CHAN_5GHZ); 3337 c->ic_flags = IEEE80211_CHAN_A | passive; 3338 } 3339 3340 /* save maximum allowed power for this channel */ 3341 sc->maxpwr[chan] = channels[i].maxpwr; 3342 3343 #if 0 3344 // XXX We can probably use this an get rid of maxpwr - ben 20070617 3345 ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr; 3346 //ic->ic_channels[chan].ic_minpower... 3347 //ic->ic_channels[chan].ic_maxregtxpower... 3348 #endif 3349 3350 DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d" 3351 " passive=%d, offset %d\n", chan, c->ic_freq, 3352 channels[i].flags, sc->maxpwr[chan], 3353 (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0, 3354 ic->ic_nchans)); 3355 } 3356 } 3357 3358 static void 3359 wpi_read_eeprom_group(struct wpi_softc *sc, int n) 3360 { 3361 struct wpi_power_group *group = &sc->groups[n]; 3362 struct wpi_eeprom_group rgroup; 3363 int i; 3364 3365 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup, 3366 sizeof rgroup); 3367 3368 /* save power group information */ 3369 group->chan = rgroup.chan; 3370 group->maxpwr = rgroup.maxpwr; 3371 /* temperature at which the samples were taken */ 3372 group->temp = (int16_t)le16toh(rgroup.temp); 3373 3374 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n, 3375 group->chan, group->maxpwr, group->temp)); 3376 3377 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 3378 group->samples[i].index = rgroup.samples[i].index; 3379 group->samples[i].power = rgroup.samples[i].power; 3380 3381 DPRINTF(("\tsample %d: index=%d power=%d\n", i, 3382 group->samples[i].index, group->samples[i].power)); 3383 } 3384 } 3385 3386 /* 3387 * Update Tx power to match what is defined for channel `c'. 3388 */ 3389 static int 3390 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async) 3391 { 3392 struct ifnet *ifp = sc->sc_ifp; 3393 struct ieee80211com *ic = ifp->if_l2com; 3394 struct wpi_power_group *group; 3395 struct wpi_cmd_txpower txpower; 3396 u_int chan; 3397 int i; 3398 3399 /* get channel number */ 3400 chan = ieee80211_chan2ieee(ic, c); 3401 3402 /* find the power group to which this channel belongs */ 3403 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3404 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3405 if (chan <= group->chan) 3406 break; 3407 } else 3408 group = &sc->groups[0]; 3409 3410 memset(&txpower, 0, sizeof txpower); 3411 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1; 3412 txpower.channel = htole16(chan); 3413 3414 /* set Tx power for all OFDM and CCK rates */ 3415 for (i = 0; i <= 11 ; i++) { 3416 /* retrieve Tx power for this channel/rate combination */ 3417 int idx = wpi_get_power_index(sc, group, c, 3418 wpi_ridx_to_rate[i]); 3419 3420 txpower.rates[i].rate = wpi_ridx_to_plcp[i]; 3421 3422 if (IEEE80211_IS_CHAN_5GHZ(c)) { 3423 txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx]; 3424 txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx]; 3425 } else { 3426 txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx]; 3427 txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx]; 3428 } 3429 DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n", 3430 chan, wpi_ridx_to_rate[i], idx)); 3431 } 3432 3433 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async); 3434 } 3435 3436 /* 3437 * Determine Tx power index for a given channel/rate combination. 3438 * This takes into account the regulatory information from EEPROM and the 3439 * current temperature. 3440 */ 3441 static int 3442 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3443 struct ieee80211_channel *c, int rate) 3444 { 3445 /* fixed-point arithmetic division using a n-bit fractional part */ 3446 #define fdivround(a, b, n) \ 3447 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3448 3449 /* linear interpolation */ 3450 #define interpolate(x, x1, y1, x2, y2, n) \ 3451 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3452 3453 struct ifnet *ifp = sc->sc_ifp; 3454 struct ieee80211com *ic = ifp->if_l2com; 3455 struct wpi_power_sample *sample; 3456 int pwr, idx; 3457 u_int chan; 3458 3459 /* get channel number */ 3460 chan = ieee80211_chan2ieee(ic, c); 3461 3462 /* default power is group's maximum power - 3dB */ 3463 pwr = group->maxpwr / 2; 3464 3465 /* decrease power for highest OFDM rates to reduce distortion */ 3466 switch (rate) { 3467 case 72: /* 36Mb/s */ 3468 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5; 3469 break; 3470 case 96: /* 48Mb/s */ 3471 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10; 3472 break; 3473 case 108: /* 54Mb/s */ 3474 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12; 3475 break; 3476 } 3477 3478 /* never exceed channel's maximum allowed Tx power */ 3479 pwr = min(pwr, sc->maxpwr[chan]); 3480 3481 /* retrieve power index into gain tables from samples */ 3482 for (sample = group->samples; sample < &group->samples[3]; sample++) 3483 if (pwr > sample[1].power) 3484 break; 3485 /* fixed-point linear interpolation using a 19-bit fractional part */ 3486 idx = interpolate(pwr, sample[0].power, sample[0].index, 3487 sample[1].power, sample[1].index, 19); 3488 3489 /* 3490 * Adjust power index based on current temperature 3491 * - if colder than factory-calibrated: decreate output power 3492 * - if warmer than factory-calibrated: increase output power 3493 */ 3494 idx -= (sc->temp - group->temp) * 11 / 100; 3495 3496 /* decrease power for CCK rates (-5dB) */ 3497 if (!WPI_RATE_IS_OFDM(rate)) 3498 idx += 10; 3499 3500 /* keep power index in a valid range */ 3501 if (idx < 0) 3502 return 0; 3503 if (idx > WPI_MAX_PWR_INDEX) 3504 return WPI_MAX_PWR_INDEX; 3505 return idx; 3506 3507 #undef interpolate 3508 #undef fdivround 3509 } 3510 3511 /** 3512 * Called by net80211 framework to indicate that a scan 3513 * is starting. This function doesn't actually do the scan, 3514 * wpi_scan_curchan starts things off. This function is more 3515 * of an early warning from the framework we should get ready 3516 * for the scan. 3517 */ 3518 static void 3519 wpi_scan_start(struct ieee80211com *ic) 3520 { 3521 struct ifnet *ifp = ic->ic_ifp; 3522 struct wpi_softc *sc = ifp->if_softc; 3523 3524 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 3525 } 3526 3527 /** 3528 * Called by the net80211 framework, indicates that the 3529 * scan has ended. If there is a scan in progress on the card 3530 * then it should be aborted. 3531 */ 3532 static void 3533 wpi_scan_end(struct ieee80211com *ic) 3534 { 3535 /* XXX ignore */ 3536 } 3537 3538 /** 3539 * Called by the net80211 framework to indicate to the driver 3540 * that the channel should be changed 3541 */ 3542 static void 3543 wpi_set_channel(struct ieee80211com *ic) 3544 { 3545 struct ifnet *ifp = ic->ic_ifp; 3546 struct wpi_softc *sc = ifp->if_softc; 3547 int error; 3548 3549 /* 3550 * Only need to set the channel in Monitor mode. AP scanning and auth 3551 * are already taken care of by their respective firmware commands. 3552 */ 3553 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 3554 error = wpi_config(sc); 3555 if (error != 0) 3556 device_printf(sc->sc_dev, 3557 "error %d settting channel\n", error); 3558 } 3559 } 3560 3561 /** 3562 * Called by net80211 to indicate that we need to scan the current 3563 * channel. The channel is previously be set via the wpi_set_channel 3564 * callback. 3565 */ 3566 static void 3567 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 3568 { 3569 struct ieee80211vap *vap = ss->ss_vap; 3570 struct ifnet *ifp = vap->iv_ic->ic_ifp; 3571 struct wpi_softc *sc = ifp->if_softc; 3572 3573 if (wpi_scan(sc)) 3574 ieee80211_cancel_scan(vap); 3575 } 3576 3577 /** 3578 * Called by the net80211 framework to indicate 3579 * the minimum dwell time has been met, terminate the scan. 3580 * We don't actually terminate the scan as the firmware will notify 3581 * us when it's finished and we have no way to interrupt it. 3582 */ 3583 static void 3584 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 3585 { 3586 /* NB: don't try to abort scan; wait for firmware to finish */ 3587 } 3588 3589 static void 3590 wpi_hwreset_task(void *arg, int pending) 3591 { 3592 struct wpi_softc *sc; 3593 3594 wlan_serialize_enter(); 3595 sc = arg; 3596 wpi_init_locked(sc, 0); 3597 wlan_serialize_exit(); 3598 } 3599 3600 static void 3601 wpi_rfreset_task(void *arg, int pending) 3602 { 3603 struct wpi_softc *sc; 3604 3605 wlan_serialize_enter(); 3606 sc = arg; 3607 wpi_rfkill_resume(sc); 3608 wlan_serialize_exit(); 3609 } 3610 3611 /* 3612 * Allocate DMA-safe memory for firmware transfer. 3613 */ 3614 static int 3615 wpi_alloc_fwmem(struct wpi_softc *sc) 3616 { 3617 /* allocate enough contiguous space to store text and data */ 3618 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 3619 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1, 3620 BUS_DMA_NOWAIT); 3621 } 3622 3623 static void 3624 wpi_free_fwmem(struct wpi_softc *sc) 3625 { 3626 wpi_dma_contig_free(&sc->fw_dma); 3627 } 3628 3629 /** 3630 * Called every second, wpi_watchdog_callout used by the watch dog timer 3631 * to check that the card is still alive 3632 */ 3633 static void 3634 wpi_watchdog_callout(void *arg) 3635 { 3636 struct wpi_softc *sc; 3637 struct ifnet *ifp; 3638 struct ieee80211com *ic; 3639 uint32_t tmp; 3640 3641 wlan_serialize_enter(); 3642 sc = arg; 3643 ifp = sc->sc_ifp; 3644 ic = ifp->if_l2com; 3645 DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n")); 3646 3647 if (sc->flags & WPI_FLAG_HW_RADIO_OFF) { 3648 /* No need to lock firmware memory */ 3649 tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF); 3650 3651 if ((tmp & 0x1) == 0) { 3652 /* Radio kill switch is still off */ 3653 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc); 3654 wlan_serialize_exit(); 3655 return; 3656 } 3657 3658 device_printf(sc->sc_dev, "Hardware Switch Enabled\n"); 3659 ieee80211_runtask(ic, &sc->sc_radiotask); 3660 wlan_serialize_exit(); 3661 return; 3662 } 3663 3664 if (sc->sc_tx_timer > 0) { 3665 if (--sc->sc_tx_timer == 0) { 3666 device_printf(sc->sc_dev,"device timeout\n"); 3667 IFNET_STAT_INC(ifp, oerrors, 1); 3668 wlan_serialize_exit(); 3669 ieee80211_runtask(ic, &sc->sc_restarttask); 3670 wlan_serialize_enter(); 3671 } 3672 } 3673 if (sc->sc_scan_timer > 0) { 3674 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3675 if (--sc->sc_scan_timer == 0 && vap != NULL) { 3676 device_printf(sc->sc_dev,"scan timeout\n"); 3677 ieee80211_cancel_scan(vap); 3678 wlan_serialize_exit(); 3679 ieee80211_runtask(ic, &sc->sc_restarttask); 3680 wlan_serialize_enter(); 3681 } 3682 } 3683 3684 if (ifp->if_flags & IFF_RUNNING) 3685 callout_reset(&sc->watchdog_to_callout, hz, wpi_watchdog_callout, sc); 3686 3687 wlan_serialize_exit(); 3688 } 3689 3690 #ifdef WPI_DEBUG 3691 static const char *wpi_cmd_str(int cmd) 3692 { 3693 switch (cmd) { 3694 case WPI_DISABLE_CMD: return "WPI_DISABLE_CMD"; 3695 case WPI_CMD_CONFIGURE: return "WPI_CMD_CONFIGURE"; 3696 case WPI_CMD_ASSOCIATE: return "WPI_CMD_ASSOCIATE"; 3697 case WPI_CMD_SET_WME: return "WPI_CMD_SET_WME"; 3698 case WPI_CMD_TSF: return "WPI_CMD_TSF"; 3699 case WPI_CMD_ADD_NODE: return "WPI_CMD_ADD_NODE"; 3700 case WPI_CMD_TX_DATA: return "WPI_CMD_TX_DATA"; 3701 case WPI_CMD_MRR_SETUP: return "WPI_CMD_MRR_SETUP"; 3702 case WPI_CMD_SET_LED: return "WPI_CMD_SET_LED"; 3703 case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE"; 3704 case WPI_CMD_SCAN: return "WPI_CMD_SCAN"; 3705 case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON"; 3706 case WPI_CMD_TXPOWER: return "WPI_CMD_TXPOWER"; 3707 case WPI_CMD_BLUETOOTH: return "WPI_CMD_BLUETOOTH"; 3708 3709 default: 3710 KASSERT(1, ("Unknown Command: %d", cmd)); 3711 return "UNKNOWN CMD"; /* Make the compiler happy */ 3712 } 3713 } 3714 #endif 3715 3716 MODULE_DEPEND(wpi, pci, 1, 1, 1); 3717 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 3718 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 3719 MODULE_DEPEND(wpi, wlan_amrr, 1, 1, 1); 3720