xref: /dflybsd-src/sys/dev/netif/wi/if_wi.c (revision 78195a764d5e70464a6d4f49bc08332a2a8bb4d0)
1 /*	$NetBSD: wi.c,v 1.109 2003/01/09 08:52:19 dyoung Exp $	*/
2 
3 /*
4  * Copyright (c) 1997, 1998, 1999
5  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/dev/wi/if_wi.c,v 1.166 2004/04/01 00:38:45 sam Exp $
35  * $DragonFly: src/sys/dev/netif/wi/if_wi.c,v 1.32 2005/11/22 00:24:34 dillon Exp $
36  */
37 
38 /*
39  * Lucent WaveLAN/IEEE 802.11 PCMCIA driver.
40  *
41  * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu>
42  * Electrical Engineering Department
43  * Columbia University, New York City
44  */
45 
46 /*
47  * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
48  * from Lucent. Unlike the older cards, the new ones are programmed
49  * entirely via a firmware-driven controller called the Hermes.
50  * Unfortunately, Lucent will not release the Hermes programming manual
51  * without an NDA (if at all). What they do release is an API library
52  * called the HCF (Hardware Control Functions) which is supposed to
53  * do the device-specific operations of a device driver for you. The
54  * publically available version of the HCF library (the 'HCF Light') is
55  * a) extremely gross, b) lacks certain features, particularly support
56  * for 802.11 frames, and c) is contaminated by the GNU Public License.
57  *
58  * This driver does not use the HCF or HCF Light at all. Instead, it
59  * programs the Hermes controller directly, using information gleaned
60  * from the HCF Light code and corresponding documentation.
61  *
62  * This driver supports the ISA, PCMCIA and PCI versions of the Lucent
63  * WaveLan cards (based on the Hermes chipset), as well as the newer
64  * Prism 2 chipsets with firmware from Intersil and Symbol.
65  */
66 
67 #define WI_HERMES_AUTOINC_WAR	/* Work around data write autoinc bug. */
68 #define WI_HERMES_STATS_WAR	/* Work around stats counter bug. */
69 
70 #include "opt_polling.h"
71 
72 #include <sys/param.h>
73 #include <sys/endian.h>
74 #include <sys/systm.h>
75 #include <sys/sockio.h>
76 #include <sys/mbuf.h>
77 #include <sys/proc.h>
78 #include <sys/kernel.h>
79 #include <sys/socket.h>
80 #include <sys/module.h>
81 #include <sys/bus.h>
82 #include <sys/random.h>
83 #include <sys/syslog.h>
84 #include <sys/sysctl.h>
85 #include <sys/thread2.h>
86 
87 #include <machine/bus.h>
88 #include <machine/resource.h>
89 #include <machine/atomic.h>
90 #include <sys/rman.h>
91 
92 #include <net/if.h>
93 #include <net/if_arp.h>
94 #include <net/ethernet.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_types.h>
98 #include <net/ifq_var.h>
99 
100 #include <netproto/802_11/ieee80211_var.h>
101 #include <netproto/802_11/ieee80211_ioctl.h>
102 #include <netproto/802_11/ieee80211_radiotap.h>
103 #include <netproto/802_11/if_wavelan_ieee.h>
104 
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #include <netinet/if_ether.h>
110 
111 #include <net/bpf.h>
112 
113 #include <dev/netif/wi/if_wireg.h>
114 #include <dev/netif/wi/if_wivar.h>
115 
116 static void wi_start(struct ifnet *);
117 static int  wi_reset(struct wi_softc *);
118 static void wi_watchdog(struct ifnet *);
119 static int  wi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
120 static int  wi_media_change(struct ifnet *);
121 static void wi_media_status(struct ifnet *, struct ifmediareq *);
122 
123 static void wi_rx_intr(struct wi_softc *);
124 static void wi_tx_intr(struct wi_softc *);
125 static void wi_tx_ex_intr(struct wi_softc *);
126 static void wi_info_intr(struct wi_softc *);
127 
128 static int  wi_get_cfg(struct ifnet *, u_long, caddr_t, struct ucred *);
129 static int  wi_set_cfg(struct ifnet *, u_long, caddr_t);
130 static int  wi_write_txrate(struct wi_softc *);
131 static int  wi_write_wep(struct wi_softc *);
132 static int  wi_write_multi(struct wi_softc *);
133 static int  wi_alloc_fid(struct wi_softc *, int, int *);
134 static void wi_read_nicid(struct wi_softc *);
135 static int  wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
136 
137 static int  wi_cmd(struct wi_softc *, int, int, int, int);
138 static int  wi_seek_bap(struct wi_softc *, int, int);
139 static int  wi_read_bap(struct wi_softc *, int, int, void *, int);
140 static int  wi_write_bap(struct wi_softc *, int, int, void *, int);
141 static int  wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
142 static int  wi_read_rid(struct wi_softc *, int, void *, int *);
143 static int  wi_write_rid(struct wi_softc *, int, void *, int);
144 
145 static int  wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
146 
147 static int  wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
148 static void wi_scan_result(struct wi_softc *, int, int);
149 
150 static void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
151 
152 static int wi_get_debug(struct wi_softc *, struct wi_req *);
153 static int wi_set_debug(struct wi_softc *, struct wi_req *);
154 
155 /* support to download firmware for symbol CF card */
156 static int wi_symbol_write_firm(struct wi_softc *, const void *, int,
157 		const void *, int);
158 static int wi_symbol_set_hcr(struct wi_softc *, int);
159 #ifdef DEVICE_POLLING
160 static void wi_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
161 #endif
162 
163 static __inline int
164 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
165 {
166 
167 	val = htole16(val);
168 	return wi_write_rid(sc, rid, &val, sizeof(val));
169 }
170 
171 SYSCTL_NODE(_hw, OID_AUTO, wi, CTLFLAG_RD, 0, "Wireless driver parameters");
172 
173 static	struct timeval lasttxerror;	/* time of last tx error msg */
174 static	int curtxeps;			/* current tx error msgs/sec */
175 static	int wi_txerate = 0;		/* tx error rate: max msgs/sec */
176 SYSCTL_INT(_hw_wi, OID_AUTO, txerate, CTLFLAG_RW, &wi_txerate,
177 	    0, "max tx error msgs/sec; 0 to disable msgs");
178 
179 #define	WI_DEBUG
180 #ifdef WI_DEBUG
181 static	int wi_debug = 0;
182 SYSCTL_INT(_hw_wi, OID_AUTO, debug, CTLFLAG_RW, &wi_debug,
183 	    0, "control debugging printfs");
184 
185 #define	DPRINTF(X)	if (wi_debug) if_printf X
186 #define	DPRINTF2(X)	if (wi_debug > 1) if_printf X
187 #define	IFF_DUMPPKTS(_ifp) \
188 	(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
189 #else
190 #define	DPRINTF(X)
191 #define	DPRINTF2(X)
192 #define	IFF_DUMPPKTS(_ifp)	0
193 #endif
194 
195 #define WI_INTRS	(WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO)
196 
197 struct wi_card_ident wi_card_ident[] = {
198 	/* CARD_ID			CARD_NAME		FIRM_TYPE */
199 	{ WI_NIC_LUCENT_ID,		WI_NIC_LUCENT_STR,	WI_LUCENT },
200 	{ WI_NIC_SONY_ID,		WI_NIC_SONY_STR,	WI_LUCENT },
201 	{ WI_NIC_LUCENT_EMB_ID,		WI_NIC_LUCENT_EMB_STR,	WI_LUCENT },
202 	{ WI_NIC_EVB2_ID,		WI_NIC_EVB2_STR,	WI_INTERSIL },
203 	{ WI_NIC_HWB3763_ID,		WI_NIC_HWB3763_STR,	WI_INTERSIL },
204 	{ WI_NIC_HWB3163_ID,		WI_NIC_HWB3163_STR,	WI_INTERSIL },
205 	{ WI_NIC_HWB3163B_ID,		WI_NIC_HWB3163B_STR,	WI_INTERSIL },
206 	{ WI_NIC_EVB3_ID,		WI_NIC_EVB3_STR,	WI_INTERSIL },
207 	{ WI_NIC_HWB1153_ID,		WI_NIC_HWB1153_STR,	WI_INTERSIL },
208 	{ WI_NIC_P2_SST_ID,		WI_NIC_P2_SST_STR,	WI_INTERSIL },
209 	{ WI_NIC_EVB2_SST_ID,		WI_NIC_EVB2_SST_STR,	WI_INTERSIL },
210 	{ WI_NIC_3842_EVA_ID,		WI_NIC_3842_EVA_STR,	WI_INTERSIL },
211 	{ WI_NIC_3842_PCMCIA_AMD_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
212 	{ WI_NIC_3842_PCMCIA_SST_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
213 	{ WI_NIC_3842_PCMCIA_ATL_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
214 	{ WI_NIC_3842_PCMCIA_ATS_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
215 	{ WI_NIC_3842_MINI_AMD_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
216 	{ WI_NIC_3842_MINI_SST_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
217 	{ WI_NIC_3842_MINI_ATL_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
218 	{ WI_NIC_3842_MINI_ATS_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
219 	{ WI_NIC_3842_PCI_AMD_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
220 	{ WI_NIC_3842_PCI_SST_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
221 	{ WI_NIC_3842_PCI_ATS_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
222 	{ WI_NIC_3842_PCI_ATL_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
223 	{ WI_NIC_P3_PCMCIA_AMD_ID,	WI_NIC_P3_PCMCIA_STR,	WI_INTERSIL },
224 	{ WI_NIC_P3_PCMCIA_SST_ID,	WI_NIC_P3_PCMCIA_STR,	WI_INTERSIL },
225 	{ WI_NIC_P3_PCMCIA_ATL_ID,	WI_NIC_P3_PCMCIA_STR,	WI_INTERSIL },
226 	{ WI_NIC_P3_PCMCIA_ATS_ID,	WI_NIC_P3_PCMCIA_STR,	WI_INTERSIL },
227 	{ WI_NIC_P3_MINI_AMD_ID,	WI_NIC_P3_MINI_STR,	WI_INTERSIL },
228 	{ WI_NIC_P3_MINI_SST_ID,	WI_NIC_P3_MINI_STR,	WI_INTERSIL },
229 	{ WI_NIC_P3_MINI_ATL_ID,	WI_NIC_P3_MINI_STR,	WI_INTERSIL },
230 	{ WI_NIC_P3_MINI_ATS_ID,	WI_NIC_P3_MINI_STR,	WI_INTERSIL },
231 	{ 0,	NULL,	0 },
232 };
233 
234 devclass_t wi_devclass;
235 
236 int
237 wi_attach(device_t dev)
238 {
239 	struct wi_softc	*sc = device_get_softc(dev);
240 	struct ieee80211com *ic = &sc->sc_ic;
241 	struct ifnet *ifp = &ic->ic_if;
242 	int i, nrates, buflen;
243 	u_int16_t val;
244 	u_int8_t ratebuf[2 + IEEE80211_RATE_SIZE];
245 	struct ieee80211_rateset *rs;
246 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
247 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
248 	};
249 	int error;
250 
251 	ifp->if_softc = sc;
252 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
253 
254 	sc->wi_cmd_count = 500;
255 	/* Reset the NIC. */
256 	error = wi_reset(sc);
257 	if (error)
258 		goto fail;
259 
260 	/*
261 	 * Read the station address.
262 	 * And do it twice. I've seen PRISM-based cards that return
263 	 * an error when trying to read it the first time, which causes
264 	 * the probe to fail.
265 	 */
266 	buflen = IEEE80211_ADDR_LEN;
267 	error = wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen);
268 	if (error != 0) {
269 		buflen = IEEE80211_ADDR_LEN;
270 		error = wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen);
271 	}
272 	if (error) {
273 		device_printf(dev, "mac read failed %d\n", error);
274 		goto fail;
275 	}
276 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
277 		device_printf(dev, "mac read failed (all zeros)\n");
278 		error = ENXIO;
279 		goto fail;
280 	}
281 
282 	/* Read NIC identification */
283 	wi_read_nicid(sc);
284 
285 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
286 	ifp->if_ioctl = wi_ioctl;
287 	ifp->if_start = wi_start;
288 	ifp->if_watchdog = wi_watchdog;
289 	ifp->if_init = wi_init;
290 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
291 	ifq_set_ready(&ifp->if_snd);
292 #ifdef DEVICE_POLLING
293 	ifp->if_poll = wi_poll;
294 #endif
295 	ifp->if_capenable = ifp->if_capabilities;
296 
297 	ic->ic_phytype = IEEE80211_T_DS;
298 	ic->ic_opmode = IEEE80211_M_STA;
299 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_AHDEMO;
300 	ic->ic_state = IEEE80211_S_INIT;
301 
302 	/*
303 	 * Query the card for available channels and setup the
304 	 * channel table.  We assume these are all 11b channels.
305 	 */
306 	buflen = sizeof(val);
307 	if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &val, &buflen) != 0)
308 		val = htole16(0x1fff);	/* assume 1-11 */
309 	KASSERT(val != 0, ("wi_attach: no available channels listed!"));
310 
311 	val <<= 1;			/* shift for base 1 indices */
312 	for (i = 1; i < 16; i++) {
313 		if (isset((u_int8_t*)&val, i)) {
314 			ic->ic_channels[i].ic_freq =
315 				ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
316 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
317 		}
318 	}
319 
320 	/*
321 	 * Read the default channel from the NIC. This may vary
322 	 * depending on the country where the NIC was purchased, so
323 	 * we can't hard-code a default and expect it to work for
324 	 * everyone.
325 	 *
326 	 * If no channel is specified, let the 802.11 code select.
327 	 */
328 	buflen = sizeof(val);
329 	if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0) {
330 		val = le16toh(val);
331 		KASSERT(val < IEEE80211_CHAN_MAX &&
332 			ic->ic_channels[val].ic_flags != 0,
333 			("wi_attach: invalid own channel %u!", val));
334 		ic->ic_ibss_chan = &ic->ic_channels[val];
335 	} else {
336 		device_printf(dev,
337 			"WI_RID_OWN_CHNL failed, using first channel!\n");
338 		ic->ic_ibss_chan = &ic->ic_channels[0];
339 	}
340 
341 	/*
342 	 * Set flags based on firmware version.
343 	 */
344 	switch (sc->sc_firmware_type) {
345 	case WI_LUCENT:
346 		sc->sc_ntxbuf = 1;
347 		sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
348 #ifdef WI_HERMES_AUTOINC_WAR
349 		/* XXX: not confirmed, but never seen for recent firmware */
350 		if (sc->sc_sta_firmware_ver <  40000) {
351 			sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
352 		}
353 #endif
354 		if (sc->sc_sta_firmware_ver >= 60000)
355 			sc->sc_flags |= WI_FLAGS_HAS_MOR;
356 		if (sc->sc_sta_firmware_ver >= 60006) {
357 			ic->ic_caps |= IEEE80211_C_IBSS;
358 			ic->ic_caps |= IEEE80211_C_MONITOR;
359 		}
360 		sc->sc_ibss_port = htole16(1);
361 
362 		sc->sc_min_rssi = WI_LUCENT_MIN_RSSI;
363 		sc->sc_max_rssi = WI_LUCENT_MAX_RSSI;
364 		sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
365 		break;
366 
367 	case WI_INTERSIL:
368 		sc->sc_ntxbuf = WI_NTXBUF;
369 		sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
370 		sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
371 		sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
372 		/*
373 		 * Old firmware are slow, so give peace a chance.
374 		 */
375 		if (sc->sc_sta_firmware_ver < 10000)
376 			sc->wi_cmd_count = 5000;
377 		if (sc->sc_sta_firmware_ver > 10101)
378 			sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
379 		if (sc->sc_sta_firmware_ver >= 800) {
380 			ic->ic_caps |= IEEE80211_C_IBSS;
381 			ic->ic_caps |= IEEE80211_C_MONITOR;
382 		}
383 		/*
384 		 * version 0.8.3 and newer are the only ones that are known
385 		 * to currently work.  Earlier versions can be made to work,
386 		 * at least according to the Linux driver.
387 		 */
388 		if (sc->sc_sta_firmware_ver >= 803)
389 			ic->ic_caps |= IEEE80211_C_HOSTAP;
390 		sc->sc_ibss_port = htole16(0);
391 
392 		sc->sc_min_rssi = WI_PRISM_MIN_RSSI;
393 		sc->sc_max_rssi = WI_PRISM_MAX_RSSI;
394 		sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
395 		break;
396 
397 	case WI_SYMBOL:
398 		sc->sc_ntxbuf = 1;
399 		sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
400 		if (sc->sc_sta_firmware_ver >= 25000)
401 			ic->ic_caps |= IEEE80211_C_IBSS;
402 		sc->sc_ibss_port = htole16(4);
403 
404 		sc->sc_min_rssi = WI_PRISM_MIN_RSSI;
405 		sc->sc_max_rssi = WI_PRISM_MAX_RSSI;
406 		sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
407 		break;
408 	}
409 
410 	/*
411 	 * Find out if we support WEP on this card.
412 	 */
413 	buflen = sizeof(val);
414 	if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 &&
415 	    val != htole16(0))
416 		ic->ic_caps |= IEEE80211_C_WEP;
417 
418 	/* Find supported rates. */
419 	buflen = sizeof(ratebuf);
420 	rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
421 	if (wi_read_rid(sc, WI_RID_DATA_RATES, ratebuf, &buflen) == 0) {
422 		nrates = le16toh(*(u_int16_t *)ratebuf);
423 		if (nrates > IEEE80211_RATE_MAXSIZE)
424 			nrates = IEEE80211_RATE_MAXSIZE;
425 		rs->rs_nrates = 0;
426 		for (i = 0; i < nrates; i++)
427 			if (ratebuf[2+i])
428 				rs->rs_rates[rs->rs_nrates++] = ratebuf[2+i];
429 	} else {
430 		/* XXX fallback on error? */
431 		rs->rs_nrates = 0;
432 	}
433 
434 	buflen = sizeof(val);
435 	if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
436 	    wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0) {
437 		sc->sc_dbm_offset = le16toh(val);
438 	}
439 
440 	sc->sc_max_datalen = 2304;
441 	sc->sc_system_scale = 1;
442 	sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
443 	sc->sc_roaming_mode = 1;
444 
445 	sc->sc_portnum = WI_DEFAULT_PORT;
446 	sc->sc_authtype = WI_DEFAULT_AUTHTYPE;
447 
448 	bzero(sc->sc_nodename, sizeof(sc->sc_nodename));
449 	sc->sc_nodelen = sizeof(WI_DEFAULT_NODENAME) - 1;
450 	bcopy(WI_DEFAULT_NODENAME, sc->sc_nodename, sc->sc_nodelen);
451 
452 	bzero(sc->sc_net_name, sizeof(sc->sc_net_name));
453 	bcopy(WI_DEFAULT_NETNAME, sc->sc_net_name,
454 	    sizeof(WI_DEFAULT_NETNAME) - 1);
455 
456 	/*
457 	 * Call MI attach routine.
458 	 */
459 	ieee80211_ifattach(ifp);
460 	/* override state transition method */
461 	sc->sc_newstate = ic->ic_newstate;
462 	ic->ic_newstate = wi_newstate;
463 	ieee80211_media_init(ifp, wi_media_change, wi_media_status);
464 
465 	bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
466 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
467 		&sc->sc_drvbpf);
468 	/*
469 	 * Initialize constant fields.
470 	 * XXX make header lengths a multiple of 32-bits so subsequent
471 	 *     headers are properly aligned; this is a kludge to keep
472 	 *     certain applications happy.
473 	 *
474 	 * NB: the channel is setup each time we transition to the
475 	 *     RUN state to avoid filling it in for each frame.
476 	 */
477 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
478 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
479 	sc->sc_tx_th.wt_ihdr.it_present = htole32(WI_TX_RADIOTAP_PRESENT);
480 
481 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
482 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
483 	sc->sc_rx_th.wr_ihdr.it_present = htole32(WI_RX_RADIOTAP_PRESENT);
484 
485 
486 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
487 			       wi_intr, sc, &sc->wi_intrhand, NULL);
488 	if (error) {
489 		ieee80211_ifdetach(ifp);
490 		device_printf(dev, "bus_setup_intr() failed! (%d)\n", error);
491 		goto fail;
492 	}
493 
494 	return(0);
495 
496 fail:
497 	wi_free(dev);
498 	return(error);
499 }
500 
501 int
502 wi_detach(device_t dev)
503 {
504 	struct wi_softc	*sc = device_get_softc(dev);
505 	struct ifnet *ifp = &sc->sc_ic.ic_if;
506 	WI_LOCK_DECL();
507 
508 	WI_LOCK(sc);
509 
510 	/* check if device was removed */
511 	sc->wi_gone |= !bus_child_present(dev);
512 
513 	wi_stop(ifp, 0);
514 
515 	ieee80211_ifdetach(ifp);
516 	wi_free(dev);
517 	WI_UNLOCK(sc);
518 	return (0);
519 }
520 
521 void
522 wi_shutdown(device_t dev)
523 {
524 	struct wi_softc *sc = device_get_softc(dev);
525 
526 	wi_stop(&sc->sc_if, 1);
527 }
528 
529 #ifdef DEVICE_POLLING
530 
531 static void
532 wi_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
533 {
534 	struct wi_softc *sc = ifp->if_softc;
535 	uint16_t status;
536 
537 	switch(cmd) {
538 	case POLL_REGISTER:
539 		/* disable interruptds */
540 		CSR_WRITE_2(sc, WI_INT_EN, 0);
541 		break;
542 	case POLL_DEREGISTER:
543 		/* enable interrupts */
544 		CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
545 		break;
546 	default:
547 		status = CSR_READ_2(sc, WI_EVENT_STAT);
548 
549 		if (status & WI_EV_RX)
550 			wi_rx_intr(sc);
551 		if (status & WI_EV_ALLOC)
552 			wi_tx_intr(sc);
553 		if (status & WI_EV_INFO)
554 			wi_info_intr(sc);
555 
556 		if (cmd == POLL_AND_CHECK_STATUS) {
557 			if (status & WI_EV_INFO)
558 				wi_info_intr(sc);
559 		}
560 
561 		if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
562 		    (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 && !ifq_is_empty(&ifp->if_snd)) {
563 			wi_start(ifp);
564 		}
565 		break;
566 	}
567 }
568 #endif /* DEVICE_POLLING */
569 
570 void
571 wi_intr(void *arg)
572 {
573 	struct wi_softc *sc = arg;
574 	struct ifnet *ifp = &sc->sc_ic.ic_if;
575 	u_int16_t status;
576 	WI_LOCK_DECL();
577 
578 	if (sc->wi_gone || !sc->sc_enabled || (ifp->if_flags & IFF_UP) == 0) {
579 		CSR_WRITE_2(sc, WI_INT_EN, 0);
580 		CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
581 		return;
582 	}
583 
584 	WI_LOCK(sc);
585 
586 	/* Disable interrupts. */
587 	CSR_WRITE_2(sc, WI_INT_EN, 0);
588 
589 	status = CSR_READ_2(sc, WI_EVENT_STAT);
590 	if (status & WI_EV_RX)
591 		wi_rx_intr(sc);
592 	if (status & WI_EV_ALLOC)
593 		wi_tx_intr(sc);
594 	if (status & WI_EV_TX_EXC)
595 		wi_tx_ex_intr(sc);
596 	if (status & WI_EV_INFO)
597 		wi_info_intr(sc);
598 	if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
599 	    (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
600 	    !ifq_is_empty(&ifp->if_snd))
601 		wi_start(ifp);
602 
603 	/* Re-enable interrupts. */
604 	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
605 
606 	WI_UNLOCK(sc);
607 
608 	return;
609 }
610 
611 void
612 wi_init(void *arg)
613 {
614 	struct wi_softc *sc = arg;
615 	struct ifnet *ifp = &sc->sc_if;
616 	struct ieee80211com *ic = &sc->sc_ic;
617 	struct wi_joinreq join;
618 	int i;
619 	int error = 0, wasenabled;
620 	WI_LOCK_DECL();
621 
622 	WI_LOCK(sc);
623 
624 	if (sc->wi_gone) {
625 		WI_UNLOCK(sc);
626 		return;
627 	}
628 
629 	if ((wasenabled = sc->sc_enabled))
630 		wi_stop(ifp, 1);
631 	wi_reset(sc);
632 
633 	/* common 802.11 configuration */
634 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
635 	sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
636 	switch (ic->ic_opmode) {
637 	case IEEE80211_M_STA:
638 		wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
639 		break;
640 	case IEEE80211_M_IBSS:
641 		wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
642 		ic->ic_flags |= IEEE80211_F_IBSSON;
643 		break;
644 	case IEEE80211_M_AHDEMO:
645 		wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
646 		break;
647 	case IEEE80211_M_HOSTAP:
648 		/*
649 		 * For PRISM cards, override the empty SSID, because in
650 		 * HostAP mode the controller will lock up otherwise.
651 		 */
652 		if (sc->sc_firmware_type == WI_INTERSIL &&
653 		    ic->ic_des_esslen == 0) {
654 			ic->ic_des_essid[0] = ' ';
655 			ic->ic_des_esslen = 1;
656 		}
657 		wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
658 		break;
659 	case IEEE80211_M_MONITOR:
660 		if (sc->sc_firmware_type == WI_LUCENT)
661 			wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
662 		wi_cmd(sc, WI_CMD_DEBUG | (WI_TEST_MONITOR << 8), 0, 0, 0);
663 		break;
664 	}
665 
666 	/* Intersil interprets this RID as joining ESS even in IBSS mode */
667 	if (sc->sc_firmware_type == WI_LUCENT &&
668 	    (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
669 		wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
670 	else
671 		wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
672 	wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
673 	wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
674 	    ic->ic_des_esslen);
675 	wi_write_val(sc, WI_RID_OWN_CHNL,
676 		ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
677 	wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
678 
679 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
680 	wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
681 
682 	wi_write_val(sc, WI_RID_PM_ENABLED,
683 	    (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
684 
685 	/* not yet common 802.11 configuration */
686 	wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
687 	wi_write_val(sc, WI_RID_RTS_THRESH, ic->ic_rtsthreshold);
688 	if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
689 		wi_write_val(sc, WI_RID_FRAG_THRESH, ic->ic_fragthreshold);
690 
691 	/* driver specific 802.11 configuration */
692 	if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
693 		wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
694 	if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
695 		wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
696 	if (sc->sc_flags & WI_FLAGS_HAS_MOR)
697 		wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
698 	wi_write_txrate(sc);
699 	wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
700 
701 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
702 	    sc->sc_firmware_type == WI_INTERSIL) {
703 		wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
704 		wi_write_val(sc, WI_RID_BASIC_RATE, 0x03);   /* 1, 2 */
705 		wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */
706 		wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
707 	}
708 
709 	/*
710 	 * Initialize promisc mode.
711 	 *	Being in the Host-AP mode causes a great
712 	 *	deal of pain if primisc mode is set.
713 	 *	Therefore we avoid confusing the firmware
714 	 *	and always reset promisc mode in Host-AP
715 	 *	mode.  Host-AP sees all the packets anyway.
716 	 */
717 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
718 	    (ifp->if_flags & IFF_PROMISC) != 0) {
719 		wi_write_val(sc, WI_RID_PROMISC, 1);
720 	} else {
721 		wi_write_val(sc, WI_RID_PROMISC, 0);
722 	}
723 
724 	/* Configure WEP. */
725 	if (ic->ic_caps & IEEE80211_C_WEP)
726 		wi_write_wep(sc);
727 
728 	/* Set multicast filter. */
729 	wi_write_multi(sc);
730 
731 	/* Allocate fids for the card */
732 	if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
733 		sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
734 		if (sc->sc_firmware_type == WI_SYMBOL)
735 			sc->sc_buflen = 1585;	/* XXX */
736 		for (i = 0; i < sc->sc_ntxbuf; i++) {
737 			error = wi_alloc_fid(sc, sc->sc_buflen,
738 			    &sc->sc_txd[i].d_fid);
739 			if (error) {
740 				if_printf(ifp,
741 				    "tx buffer allocation failed (error %u)\n",
742 				    error);
743 				goto out;
744 			}
745 			sc->sc_txd[i].d_len = 0;
746 		}
747 	}
748 	sc->sc_txcur = sc->sc_txnext = 0;
749 
750 	/* Enable desired port */
751 	wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
752 
753 	sc->sc_enabled = 1;
754 	ifp->if_flags |= IFF_RUNNING;
755 	ifp->if_flags &= ~IFF_OACTIVE;
756 	if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
757 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
758 	    ic->ic_opmode == IEEE80211_M_HOSTAP)
759 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
760 
761 	/* Enable interrupts if not polling */
762 #ifdef DEVICE_POLLING
763 	if ((ifp->if_flags & IFF_POLLING) == 0)
764 #endif
765 		CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
766 
767 	if (!wasenabled &&
768 	    ic->ic_opmode == IEEE80211_M_HOSTAP &&
769 	    sc->sc_firmware_type == WI_INTERSIL) {
770 		/* XXX: some card need to be re-enabled for hostap */
771 		wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
772 		wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
773 	}
774 
775 	if (ic->ic_opmode == IEEE80211_M_STA &&
776 	    ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
777 	    ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
778 		memset(&join, 0, sizeof(join));
779 		if (ic->ic_flags & IEEE80211_F_DESBSSID)
780 			IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
781 		if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
782 			join.wi_chan = htole16(
783 				ieee80211_chan2ieee(ic, ic->ic_des_chan));
784 		/* Lucent firmware does not support the JOIN RID. */
785 		if (sc->sc_firmware_type != WI_LUCENT)
786 			wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
787 	}
788 
789 	WI_UNLOCK(sc);
790 	return;
791 out:
792 	if (error) {
793 		if_printf(ifp, "interface not running\n");
794 		wi_stop(ifp, 1);
795 	}
796 	WI_UNLOCK(sc);
797 	DPRINTF((ifp, "wi_init: return %d\n", error));
798 	return;
799 }
800 
801 void
802 wi_stop(struct ifnet *ifp, int disable)
803 {
804 	struct ieee80211com *ic = (struct ieee80211com *) ifp;
805 	struct wi_softc *sc = ifp->if_softc;
806 	WI_LOCK_DECL();
807 
808 	WI_LOCK(sc);
809 
810 	DELAY(100000);
811 
812 	ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
813 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
814 	if (sc->sc_enabled && !sc->wi_gone) {
815 		CSR_WRITE_2(sc, WI_INT_EN, 0);
816 		wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
817 		if (disable) {
818 #ifdef __NetBSD__
819 			if (sc->sc_disable)
820 				(*sc->sc_disable)(sc);
821 #endif
822 			sc->sc_enabled = 0;
823 		}
824 	} else if (sc->wi_gone && disable)	/* gone --> not enabled */
825 	    sc->sc_enabled = 0;
826 
827 	sc->sc_tx_timer = 0;
828 	sc->sc_scan_timer = 0;
829 	sc->sc_syn_timer = 0;
830 	sc->sc_false_syns = 0;
831 	sc->sc_naps = 0;
832 	ifp->if_timer = 0;
833 
834 	WI_UNLOCK(sc);
835 }
836 
837 static void
838 wi_start(struct ifnet *ifp)
839 {
840 	struct wi_softc	*sc = ifp->if_softc;
841 	struct ieee80211com *ic = &sc->sc_ic;
842 	struct ieee80211_node *ni;
843 	struct ieee80211_frame *wh;
844 	struct mbuf *m0;
845 	struct wi_frame frmhdr;
846 	int cur, fid, off, error;
847 	WI_LOCK_DECL();
848 
849 	WI_LOCK(sc);
850 
851 	if (sc->wi_gone) {
852 		WI_UNLOCK(sc);
853 		return;
854 	}
855 	if (sc->sc_flags & WI_FLAGS_OUTRANGE) {
856 		WI_UNLOCK(sc);
857 		return;
858 	}
859 
860 	memset(&frmhdr, 0, sizeof(frmhdr));
861 	cur = sc->sc_txnext;
862 	for (;;) {
863 		IF_POLL(&ic->ic_mgtq, m0);
864 		if (m0 != NULL) {
865 			if (sc->sc_txd[cur].d_len != 0) {
866 				ifp->if_flags |= IFF_OACTIVE;
867 				break;
868 			}
869 			IF_DEQUEUE(&ic->ic_mgtq, m0);
870 			/*
871 			 * Hack!  The referenced node pointer is in the
872 			 * rcvif field of the packet header.  This is
873 			 * placed there by ieee80211_mgmt_output because
874 			 * we need to hold the reference with the frame
875 			 * and there's no other way (other than packet
876 			 * tags which we consider too expensive to use)
877 			 * to pass it along.
878 			 */
879 			ni = (struct ieee80211_node *) m0->m_pkthdr.rcvif;
880 			m0->m_pkthdr.rcvif = NULL;
881 
882 			m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
883 			    (caddr_t)&frmhdr.wi_ehdr);
884 			frmhdr.wi_ehdr.ether_type = 0;
885                         wh = mtod(m0, struct ieee80211_frame *);
886 		} else {
887 			if (ic->ic_state != IEEE80211_S_RUN)
888 				break;
889 			m0 = ifq_poll(&ifp->if_snd);
890 			if (m0 == NULL)
891 				break;
892 			if (sc->sc_txd[cur].d_len != 0) {
893 				ifp->if_flags |= IFF_OACTIVE;
894 				break;
895 			}
896 			ifq_dequeue(&ifp->if_snd, m0);
897 			ifp->if_opackets++;
898 			m_copydata(m0, 0, ETHER_HDR_LEN,
899 			    (caddr_t)&frmhdr.wi_ehdr);
900 			BPF_MTAP(ifp, m0);
901 
902 			m0 = ieee80211_encap(ifp, m0, &ni);
903 			if (m0 == NULL) {
904 				ifp->if_oerrors++;
905 				continue;
906 			}
907                         wh = mtod(m0, struct ieee80211_frame *);
908 			if (ic->ic_flags & IEEE80211_F_WEPON)
909 				wh->i_fc[1] |= IEEE80211_FC1_WEP;
910 
911 		}
912 
913 		if (ic->ic_rawbpf != NULL)
914 			bpf_mtap(ic->ic_rawbpf, m0);
915 
916 		frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX);
917 		if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
918 		    (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
919 			if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) {
920 				ifp->if_oerrors++;
921 				if (ni && ni != ic->ic_bss)
922 					ieee80211_free_node(ic, ni);
923 				continue;
924 			}
925 			frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
926 		}
927 
928 		if (sc->sc_drvbpf) {
929 			sc->sc_tx_th.wt_rate =
930 				ni->ni_rates.rs_rates[ni->ni_txrate];
931 			bpf_ptap(sc->sc_drvbpf, m0, &sc->sc_tx_th,
932 				 sc->sc_tx_th_len);
933 		}
934 
935 		m_copydata(m0, 0, sizeof(struct ieee80211_frame),
936 		    (caddr_t)&frmhdr.wi_whdr);
937 		m_adj(m0, sizeof(struct ieee80211_frame));
938 		frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
939 		if (IFF_DUMPPKTS(ifp))
940 			wi_dump_pkt(&frmhdr, NULL, -1);
941 		fid = sc->sc_txd[cur].d_fid;
942 		off = sizeof(frmhdr);
943 		error = wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0
944 		     || wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0;
945 		m_freem(m0);
946 		if (ni && ni != ic->ic_bss)
947 			ieee80211_free_node(ic, ni);
948 		if (error) {
949 			ifp->if_oerrors++;
950 			continue;
951 		}
952 		sc->sc_txd[cur].d_len = off;
953 		if (sc->sc_txcur == cur) {
954 			if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
955 				if_printf(ifp, "xmit failed\n");
956 				sc->sc_txd[cur].d_len = 0;
957 				continue;
958 			}
959 			sc->sc_tx_timer = 5;
960 			ifp->if_timer = 1;
961 		}
962 		sc->sc_txnext = cur = (cur + 1) % sc->sc_ntxbuf;
963 	}
964 
965 	WI_UNLOCK(sc);
966 }
967 
968 static int
969 wi_reset(struct wi_softc *sc)
970 {
971 	struct ieee80211com *ic = &sc->sc_ic;
972 	struct ifnet *ifp = &ic->ic_if;
973 #define WI_INIT_TRIES 3
974 	int i;
975 	int error = 0;
976 	int tries;
977 
978 	/* Symbol firmware cannot be initialized more than once */
979 	if (sc->sc_firmware_type == WI_SYMBOL && sc->sc_reset)
980 		return (0);
981 	if (sc->sc_firmware_type == WI_SYMBOL)
982 		tries = 1;
983 	else
984 		tries = WI_INIT_TRIES;
985 
986 	for (i = 0; i < tries; i++) {
987 		if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
988 			break;
989 		DELAY(WI_DELAY * 1000);
990 	}
991 	sc->sc_reset = 1;
992 
993 	if (i == tries) {
994 		if_printf(ifp, "init failed\n");
995 		return (error);
996 	}
997 
998 	CSR_WRITE_2(sc, WI_INT_EN, 0);
999 	CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF);
1000 
1001 	/* Calibrate timer. */
1002 	wi_write_val(sc, WI_RID_TICK_TIME, 8);
1003 
1004 	return (0);
1005 #undef WI_INIT_TRIES
1006 }
1007 
1008 static void
1009 wi_watchdog(struct ifnet *ifp)
1010 {
1011 	struct wi_softc	*sc = ifp->if_softc;
1012 
1013 	ifp->if_timer = 0;
1014 	if (!sc->sc_enabled)
1015 		return;
1016 
1017 	if (sc->sc_tx_timer) {
1018 		if (--sc->sc_tx_timer == 0) {
1019 			if_printf(ifp, "device timeout\n");
1020 			ifp->if_oerrors++;
1021 			wi_init(ifp->if_softc);
1022 			return;
1023 		}
1024 		ifp->if_timer = 1;
1025 	}
1026 
1027 	if (sc->sc_scan_timer) {
1028 		if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
1029 		    sc->sc_firmware_type == WI_INTERSIL) {
1030 			DPRINTF((ifp, "wi_watchdog: inquire scan\n"));
1031 			wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1032 		}
1033 		if (sc->sc_scan_timer)
1034 			ifp->if_timer = 1;
1035 	}
1036 
1037 	if (sc->sc_syn_timer) {
1038 		if (--sc->sc_syn_timer == 0) {
1039 			struct ieee80211com *ic = (struct ieee80211com *) ifp;
1040 			DPRINTF2((ifp, "wi_watchdog: %d false syns\n",
1041 			    sc->sc_false_syns));
1042 			sc->sc_false_syns = 0;
1043 			ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1044 			sc->sc_syn_timer = 5;
1045 		}
1046 		ifp->if_timer = 1;
1047 	}
1048 
1049 	/* TODO: rate control */
1050 	ieee80211_watchdog(ifp);
1051 }
1052 
1053 static int
1054 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1055 {
1056 	struct wi_softc *sc = ifp->if_softc;
1057 	struct ieee80211com *ic = &sc->sc_ic;
1058 	struct ifreq *ifr = (struct ifreq *)data;
1059 	struct ieee80211req *ireq;
1060 	u_int8_t nodename[IEEE80211_NWID_LEN];
1061 	int error = 0;
1062 	struct wi_req wreq;
1063 	WI_LOCK_DECL();
1064 
1065 	WI_LOCK(sc);
1066 
1067 	if (sc->wi_gone) {
1068 		error = ENODEV;
1069 		goto out;
1070 	}
1071 
1072 	switch (cmd) {
1073 	case SIOCSIFFLAGS:
1074 		/*
1075 		 * Can't do promisc and hostap at the same time.  If all that's
1076 		 * changing is the promisc flag, try to short-circuit a call to
1077 		 * wi_init() by just setting PROMISC in the hardware.
1078 		 */
1079 		if (ifp->if_flags & IFF_UP) {
1080 			if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1081 			    ifp->if_flags & IFF_RUNNING) {
1082 				if (ifp->if_flags & IFF_PROMISC &&
1083 				    !(sc->sc_if_flags & IFF_PROMISC)) {
1084 					wi_write_val(sc, WI_RID_PROMISC, 1);
1085 				} else if (!(ifp->if_flags & IFF_PROMISC) &&
1086 				    sc->sc_if_flags & IFF_PROMISC) {
1087 					wi_write_val(sc, WI_RID_PROMISC, 0);
1088 				} else {
1089 					wi_init(sc);
1090 				}
1091 			} else {
1092 				wi_init(sc);
1093 			}
1094 		} else {
1095 			if (ifp->if_flags & IFF_RUNNING) {
1096 				wi_stop(ifp, 1);
1097 			}
1098 			sc->wi_gone = 0;
1099 		}
1100 		sc->sc_if_flags = ifp->if_flags;
1101 		error = 0;
1102 		break;
1103 	case SIOCADDMULTI:
1104 	case SIOCDELMULTI:
1105 		error = wi_write_multi(sc);
1106 		break;
1107 	case SIOCGIFGENERIC:
1108 		error = wi_get_cfg(ifp, cmd, data, cr);
1109 		break;
1110 	case SIOCSIFGENERIC:
1111 		error = suser_cred(cr, NULL_CRED_OKAY);
1112 		if (error)
1113 			break;
1114 		error = wi_set_cfg(ifp, cmd, data);
1115 		break;
1116 	case SIOCGPRISM2DEBUG:
1117 		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1118 		if (error)
1119 			break;
1120 		if (!(ifp->if_flags & IFF_RUNNING) ||
1121 		    sc->sc_firmware_type == WI_LUCENT) {
1122 			error = EIO;
1123 			break;
1124 		}
1125 		error = wi_get_debug(sc, &wreq);
1126 		if (error == 0)
1127 			error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
1128 		break;
1129 	case SIOCSPRISM2DEBUG:
1130 		if ((error = suser_cred(cr, NULL_CRED_OKAY)))
1131 			goto out;
1132 		error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1133 		if (error)
1134 			break;
1135 		error = wi_set_debug(sc, &wreq);
1136 		break;
1137 	case SIOCG80211:
1138 		ireq = (struct ieee80211req *) data;
1139 		switch (ireq->i_type) {
1140 		case IEEE80211_IOC_STATIONNAME:
1141 			ireq->i_len = sc->sc_nodelen + 1;
1142 			error = copyout(sc->sc_nodename, ireq->i_data,
1143 					ireq->i_len);
1144 			break;
1145 		default:
1146 			error = ieee80211_ioctl(ifp, cmd, data, cr);
1147 			break;
1148 		}
1149 		break;
1150 	case SIOCS80211:
1151 		error = suser_cred(cr, NULL_CRED_OKAY);
1152 		if (error)
1153 			break;
1154 		ireq = (struct ieee80211req *) data;
1155 		switch (ireq->i_type) {
1156 		case IEEE80211_IOC_STATIONNAME:
1157 			if (ireq->i_val != 0 ||
1158 			    ireq->i_len > IEEE80211_NWID_LEN) {
1159 				error = EINVAL;
1160 				break;
1161 			}
1162 			memset(nodename, 0, IEEE80211_NWID_LEN);
1163 			error = copyin(ireq->i_data, nodename, ireq->i_len);
1164 			if (error)
1165 				break;
1166 			if (sc->sc_enabled) {
1167 				error = wi_write_ssid(sc, WI_RID_NODENAME,
1168 					nodename, ireq->i_len);
1169 				if (error)
1170 					break;
1171 			}
1172 			memcpy(sc->sc_nodename, nodename, IEEE80211_NWID_LEN);
1173 			sc->sc_nodelen = ireq->i_len;
1174 			break;
1175 		default:
1176 			error = ieee80211_ioctl(ifp, cmd, data, cr);
1177 			break;
1178 		}
1179 		break;
1180 	case SIOCSIFCAP:
1181 		if (ifp->if_flags & IFF_RUNNING)
1182 			wi_init(sc);
1183 		break;
1184 	default:
1185 		error = ieee80211_ioctl(ifp, cmd, data, cr);
1186 		break;
1187 	}
1188 	if (error == ENETRESET) {
1189 		if (sc->sc_enabled)
1190 			wi_init(sc);	/* XXX no error return */
1191 		error = 0;
1192 	}
1193 out:
1194 	WI_UNLOCK(sc);
1195 
1196 	return (error);
1197 }
1198 
1199 static int
1200 wi_media_change(struct ifnet *ifp)
1201 {
1202 	struct wi_softc *sc = ifp->if_softc;
1203 	int error;
1204 
1205 	error = ieee80211_media_change(ifp);
1206 	if (error == ENETRESET) {
1207 		if (sc->sc_enabled)
1208 			wi_init(sc);	/* XXX no error return */
1209 		error = 0;
1210 	}
1211 	return error;
1212 }
1213 
1214 static void
1215 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1216 {
1217 	struct wi_softc *sc = ifp->if_softc;
1218 	struct ieee80211com *ic = &sc->sc_ic;
1219 	u_int16_t val;
1220 	int rate, len;
1221 
1222 	if (sc->wi_gone || !sc->sc_enabled) {
1223 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1224 		imr->ifm_status = 0;
1225 		return;
1226 	}
1227 
1228 	imr->ifm_status = IFM_AVALID;
1229 	imr->ifm_active = IFM_IEEE80211;
1230 	if (ic->ic_state == IEEE80211_S_RUN &&
1231 	    (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1232 		imr->ifm_status |= IFM_ACTIVE;
1233 	len = sizeof(val);
1234 	if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0)
1235 		rate = 0;
1236 	else {
1237 		/* convert to 802.11 rate */
1238 		rate = val * 2;
1239 		if (sc->sc_firmware_type == WI_LUCENT) {
1240 			if (rate == 4 * 2)
1241 				rate = 11;	/* 5.5Mbps */
1242 			else if (rate == 5 * 2)
1243 				rate = 22;	/* 11Mbps */
1244 		} else {
1245 			if (rate == 4*2)
1246 				rate = 11;	/* 5.5Mbps */
1247 			else if (rate == 8*2)
1248 				rate = 22;	/* 11Mbps */
1249 		}
1250 	}
1251 	imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1252 	switch (ic->ic_opmode) {
1253 	case IEEE80211_M_STA:
1254 		break;
1255 	case IEEE80211_M_IBSS:
1256 		imr->ifm_active |= IFM_IEEE80211_ADHOC;
1257 		break;
1258 	case IEEE80211_M_AHDEMO:
1259 		imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1260 		break;
1261 	case IEEE80211_M_HOSTAP:
1262 		imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1263 		break;
1264 	case IEEE80211_M_MONITOR:
1265 		imr->ifm_active |= IFM_IEEE80211_MONITOR;
1266 		break;
1267 	}
1268 }
1269 
1270 static void
1271 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1272 {
1273 	struct ieee80211com *ic = &sc->sc_ic;
1274 	struct ieee80211_node *ni = ic->ic_bss;
1275 	struct ifnet *ifp = &ic->ic_if;
1276 
1277 	if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1278 		return;
1279 
1280 	DPRINTF((ifp, "wi_sync_bssid: bssid %6D -> %6D ?\n", ni->ni_bssid, ":",
1281 	    new_bssid, ":"));
1282 
1283 	/* In promiscuous mode, the BSSID field is not a reliable
1284 	 * indicator of the firmware's BSSID. Damp spurious
1285 	 * change-of-BSSID indications.
1286 	 */
1287 	if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1288 	    sc->sc_false_syns >= WI_MAX_FALSE_SYNS)
1289 		return;
1290 
1291 	ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1292 }
1293 
1294 static void
1295 wi_rx_monitor(struct wi_softc *sc, int fid)
1296 {
1297 	struct ieee80211com *ic = &sc->sc_ic;
1298 	struct ifnet *ifp = &ic->ic_if;
1299 	struct wi_frame *rx_frame;
1300 	struct mbuf *m;
1301 	int datlen, hdrlen;
1302 
1303 	/* first allocate mbuf for packet storage */
1304 	m = m_getcl(MB_DONTWAIT, MT_DATA, 0);
1305 	if (m == NULL) {
1306 		ifp->if_ierrors++;
1307 		return;
1308 	}
1309 
1310 	m->m_pkthdr.rcvif = ifp;
1311 
1312 	/* now read wi_frame first so we know how much data to read */
1313 	if (wi_read_bap(sc, fid, 0, mtod(m, caddr_t), sizeof(*rx_frame))) {
1314 		ifp->if_ierrors++;
1315 		goto done;
1316 	}
1317 
1318 	rx_frame = mtod(m, struct wi_frame *);
1319 
1320 	switch ((rx_frame->wi_status & WI_STAT_MAC_PORT) >> 8) {
1321 	case 7:
1322 		switch (rx_frame->wi_whdr.i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1323 		case IEEE80211_FC0_TYPE_DATA:
1324 			hdrlen = WI_DATA_HDRLEN;
1325 			datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
1326 			break;
1327 		case IEEE80211_FC0_TYPE_MGT:
1328 			hdrlen = WI_MGMT_HDRLEN;
1329 			datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
1330 			break;
1331 		case IEEE80211_FC0_TYPE_CTL:
1332 			/*
1333 			 * prism2 cards don't pass control packets
1334 			 * down properly or consistently, so we'll only
1335 			 * pass down the header.
1336 			 */
1337 			hdrlen = WI_CTL_HDRLEN;
1338 			datlen = 0;
1339 			break;
1340 		default:
1341 			if_printf(ifp, "received packet of unknown type "
1342 				"on port 7\n");
1343 			ifp->if_ierrors++;
1344 			goto done;
1345 		}
1346 		break;
1347 	case 0:
1348 		hdrlen = WI_DATA_HDRLEN;
1349 		datlen = rx_frame->wi_dat_len + WI_FCS_LEN;
1350 		break;
1351 	default:
1352 		if_printf(ifp, "received packet on invalid "
1353 		    "port (wi_status=0x%x)\n", rx_frame->wi_status);
1354 		ifp->if_ierrors++;
1355 		goto done;
1356 	}
1357 
1358 	if (hdrlen + datlen + 2 > MCLBYTES) {
1359 		if_printf(ifp, "oversized packet received "
1360 		    "(wi_dat_len=%d, wi_status=0x%x)\n",
1361 		    datlen, rx_frame->wi_status);
1362 		ifp->if_ierrors++;
1363 		goto done;
1364 	}
1365 
1366 	if (wi_read_bap(sc, fid, hdrlen, mtod(m, caddr_t) + hdrlen,
1367 	    datlen + 2) == 0) {
1368 		m->m_pkthdr.len = m->m_len = hdrlen + datlen;
1369 		ifp->if_ipackets++;
1370 		BPF_MTAP(ifp, m);	/* Handle BPF listeners. */
1371 	} else
1372 		ifp->if_ierrors++;
1373 done:
1374 	m_freem(m);
1375 }
1376 
1377 static void
1378 wi_rx_intr(struct wi_softc *sc)
1379 {
1380 	struct ieee80211com *ic = &sc->sc_ic;
1381 	struct ifnet *ifp = &ic->ic_if;
1382 	struct wi_frame frmhdr;
1383 	struct mbuf *m;
1384 	struct ieee80211_frame *wh;
1385 	struct ieee80211_node *ni;
1386 	int fid, len, off, rssi;
1387 	u_int8_t dir;
1388 	u_int16_t status;
1389 	u_int32_t rstamp;
1390 
1391 	fid = CSR_READ_2(sc, WI_RX_FID);
1392 
1393 	if (sc->wi_debug.wi_monitor) {
1394 		/*
1395 		 * If we are in monitor mode just
1396 		 * read the data from the device.
1397 		 */
1398 		wi_rx_monitor(sc, fid);
1399 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1400 		return;
1401 	}
1402 
1403 	/* First read in the frame header */
1404 	if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1405 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1406 		ifp->if_ierrors++;
1407 		DPRINTF((ifp, "wi_rx_intr: read fid %x failed\n", fid));
1408 		return;
1409 	}
1410 
1411 	if (IFF_DUMPPKTS(ifp))
1412 		wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1413 
1414 	/*
1415 	 * Drop undecryptable or packets with receive errors here
1416 	 */
1417 	status = le16toh(frmhdr.wi_status);
1418 	if (status & WI_STAT_ERRSTAT) {
1419 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1420 		ifp->if_ierrors++;
1421 		DPRINTF((ifp, "wi_rx_intr: fid %x error status %x\n",
1422 			 fid, status));
1423 		return;
1424 	}
1425 	rssi = frmhdr.wi_rx_signal;
1426 	rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1427 	    le16toh(frmhdr.wi_rx_tstamp1);
1428 
1429 	len = le16toh(frmhdr.wi_dat_len);
1430 	off = ALIGN(sizeof(struct ieee80211_frame));
1431 
1432 	/*
1433 	 * Sometimes the PRISM2.x returns bogusly large frames. Except
1434 	 * in monitor mode, just throw them away.
1435 	 */
1436 	if (off + len > MCLBYTES) {
1437 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1438 			CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1439 			ifp->if_ierrors++;
1440 			DPRINTF((ifp, "wi_rx_intr: oversized packet\n"));
1441 			return;
1442 		} else
1443 			len = 0;
1444 	}
1445 
1446 	m = m_getl(off + len, MB_DONTWAIT, MT_DATA, M_PKTHDR, NULL);
1447 	if (m == NULL) {
1448 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1449 		ifp->if_ierrors++;
1450 		DPRINTF((ifp, "wi_rx_intr: m_getl failed\n"));
1451 		return;
1452 	}
1453 
1454 	m->m_data += off - sizeof(struct ieee80211_frame);
1455 	memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1456 	wi_read_bap(sc, fid, sizeof(frmhdr),
1457 	    m->m_data + sizeof(struct ieee80211_frame), len);
1458 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1459 	m->m_pkthdr.rcvif = ifp;
1460 
1461 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
1462 
1463 	if (sc->sc_drvbpf) {
1464 		/* XXX replace divide by table */
1465 		sc->sc_rx_th.wr_rate = frmhdr.wi_rx_rate / 5;
1466 		sc->sc_rx_th.wr_antsignal = frmhdr.wi_rx_signal;
1467 		sc->sc_rx_th.wr_antnoise = frmhdr.wi_rx_silence;
1468 		sc->sc_rx_th.wr_flags = 0;
1469 		if (frmhdr.wi_status & WI_STAT_PCF)
1470 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1471 		bpf_ptap(sc->sc_drvbpf, m, &sc->sc_rx_th, sc->sc_rx_th_len);
1472 	}
1473 
1474 	wh = mtod(m, struct ieee80211_frame *);
1475 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1476 		/*
1477 		 * WEP is decrypted by hardware. Clear WEP bit
1478 		 * header for ieee80211_input().
1479 		 */
1480 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1481 	}
1482 
1483 	/* synchronize driver's BSSID with firmware's BSSID */
1484 	dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1485 	if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1486 		wi_sync_bssid(sc, wh->i_addr3);
1487 
1488 	/*
1489 	 * Locate the node for sender, track state, and
1490 	 * then pass this node (referenced) up to the 802.11
1491 	 * layer for its use.  We are required to pass
1492 	 * something so we fallback to ic_bss when this frame
1493 	 * is from an unknown sender.
1494 	 */
1495 	if (ic->ic_opmode != IEEE80211_M_STA) {
1496 		ni = ieee80211_find_node(ic, wh->i_addr2);
1497 		if (ni == NULL)
1498 			ni = ieee80211_ref_node(ic->ic_bss);
1499 	} else
1500 		ni = ieee80211_ref_node(ic->ic_bss);
1501 	/*
1502 	 * Send frame up for processing.
1503 	 */
1504 	ieee80211_input(ifp, m, ni, rssi, rstamp);
1505 	/*
1506 	 * The frame may have caused the node to be marked for
1507 	 * reclamation (e.g. in response to a DEAUTH message)
1508 	 * so use free_node here instead of unref_node.
1509 	 */
1510 	if (ni == ic->ic_bss)
1511 		ieee80211_unref_node(&ni);
1512 	else
1513 		ieee80211_free_node(ic, ni);
1514 }
1515 
1516 static void
1517 wi_tx_ex_intr(struct wi_softc *sc)
1518 {
1519 	struct ieee80211com *ic = &sc->sc_ic;
1520 	struct ifnet *ifp = &ic->ic_if;
1521 	struct wi_frame frmhdr;
1522 	int fid;
1523 
1524 	fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1525 	/* Read in the frame header */
1526 	if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) == 0) {
1527 		u_int16_t status = le16toh(frmhdr.wi_status);
1528 
1529 		/*
1530 		 * Spontaneous station disconnects appear as xmit
1531 		 * errors.  Don't announce them and/or count them
1532 		 * as an output error.
1533 		 */
1534 		if ((status & WI_TXSTAT_DISCONNECT) == 0) {
1535 			if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1536 				if_printf(ifp, "tx failed");
1537 				if (status & WI_TXSTAT_RET_ERR)
1538 					printf(", retry limit exceeded");
1539 				if (status & WI_TXSTAT_AGED_ERR)
1540 					printf(", max transmit lifetime exceeded");
1541 				if (status & WI_TXSTAT_DISCONNECT)
1542 					printf(", port disconnected");
1543 				if (status & WI_TXSTAT_FORM_ERR)
1544 					printf(", invalid format (data len %u src %6D)",
1545 						le16toh(frmhdr.wi_dat_len),
1546 						frmhdr.wi_ehdr.ether_shost, ":");
1547 				if (status & ~0xf)
1548 					printf(", status=0x%x", status);
1549 				printf("\n");
1550 			}
1551 			ifp->if_oerrors++;
1552 		} else {
1553 			DPRINTF((ifp, "port disconnected\n"));
1554 			ifp->if_collisions++;	/* XXX */
1555 		}
1556 	} else
1557 		DPRINTF((ifp, "wi_tx_ex_intr: read fid %x failed\n", fid));
1558 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
1559 }
1560 
1561 static void
1562 wi_tx_intr(struct wi_softc *sc)
1563 {
1564 	struct ieee80211com *ic = &sc->sc_ic;
1565 	struct ifnet *ifp = &ic->ic_if;
1566 	int fid, cur;
1567 
1568 	if (sc->wi_gone)
1569 		return;
1570 
1571 	fid = CSR_READ_2(sc, WI_ALLOC_FID);
1572 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
1573 
1574 	cur = sc->sc_txcur;
1575 	if (sc->sc_txd[cur].d_fid != fid) {
1576 		if_printf(ifp, "bad alloc %x != %x, cur %d nxt %d\n",
1577 		    fid, sc->sc_txd[cur].d_fid, cur, sc->sc_txnext);
1578 		return;
1579 	}
1580 	sc->sc_tx_timer = 0;
1581 	sc->sc_txd[cur].d_len = 0;
1582 	sc->sc_txcur = cur = (cur + 1) % sc->sc_ntxbuf;
1583 	if (sc->sc_txd[cur].d_len == 0)
1584 		ifp->if_flags &= ~IFF_OACTIVE;
1585 	else {
1586 		if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid,
1587 		    0, 0)) {
1588 			if_printf(ifp, "xmit failed\n");
1589 			sc->sc_txd[cur].d_len = 0;
1590 		} else {
1591 			sc->sc_tx_timer = 5;
1592 			ifp->if_timer = 1;
1593 		}
1594 	}
1595 }
1596 
1597 static void
1598 wi_info_intr(struct wi_softc *sc)
1599 {
1600 	struct ieee80211com *ic = &sc->sc_ic;
1601 	struct ifnet *ifp = &ic->ic_if;
1602 	int i, fid, len, off;
1603 	u_int16_t ltbuf[2];
1604 	u_int16_t stat;
1605 	u_int32_t *ptr;
1606 
1607 	fid = CSR_READ_2(sc, WI_INFO_FID);
1608 	wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1609 
1610 	switch (le16toh(ltbuf[1])) {
1611 
1612 	case WI_INFO_LINK_STAT:
1613 		wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1614 		DPRINTF((ifp, "wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1615 		switch (le16toh(stat)) {
1616 		case WI_INFO_LINK_STAT_CONNECTED:
1617 			sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1618 			if (ic->ic_state == IEEE80211_S_RUN &&
1619 			    ic->ic_opmode != IEEE80211_M_IBSS)
1620 				break;
1621 			/* FALLTHROUGH */
1622 		case WI_INFO_LINK_STAT_AP_CHG:
1623 			ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1624 			break;
1625 		case WI_INFO_LINK_STAT_AP_INR:
1626 			sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1627 			break;
1628 		case WI_INFO_LINK_STAT_AP_OOR:
1629 			if (sc->sc_firmware_type == WI_SYMBOL &&
1630 			    sc->sc_scan_timer > 0) {
1631 				if (wi_cmd(sc, WI_CMD_INQUIRE,
1632 				    WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1633 					sc->sc_scan_timer = 0;
1634 				break;
1635 			}
1636 			if (ic->ic_opmode == IEEE80211_M_STA)
1637 				sc->sc_flags |= WI_FLAGS_OUTRANGE;
1638 			break;
1639 		case WI_INFO_LINK_STAT_DISCONNECTED:
1640 		case WI_INFO_LINK_STAT_ASSOC_FAILED:
1641 			if (ic->ic_opmode == IEEE80211_M_STA)
1642 				ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1643 			break;
1644 		}
1645 		break;
1646 
1647 	case WI_INFO_COUNTERS:
1648 		/* some card versions have a larger stats structure */
1649 		len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1650 		ptr = (u_int32_t *)&sc->sc_stats;
1651 		off = sizeof(ltbuf);
1652 		for (i = 0; i < len; i++, off += 2, ptr++) {
1653 			wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1654 #ifdef WI_HERMES_STATS_WAR
1655 			if (stat & 0xf000)
1656 				stat = ~stat;
1657 #endif
1658 			*ptr += stat;
1659 		}
1660 		ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1661 		    sc->sc_stats.wi_tx_multi_retries +
1662 		    sc->sc_stats.wi_tx_retry_limit;
1663 		break;
1664 
1665 	case WI_INFO_SCAN_RESULTS:
1666 	case WI_INFO_HOST_SCAN_RESULTS:
1667 		wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1668 		break;
1669 
1670 	default:
1671 		DPRINTF((ifp, "wi_info_intr: got fid %x type %x len %d\n", fid,
1672 		    le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1673 		break;
1674 	}
1675 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
1676 }
1677 
1678 static int
1679 wi_write_multi(struct wi_softc *sc)
1680 {
1681 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1682 	int n;
1683 	struct ifmultiaddr *ifma;
1684 	struct wi_mcast mlist;
1685 
1686 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1687 allmulti:
1688 		memset(&mlist, 0, sizeof(mlist));
1689 		return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1690 		    sizeof(mlist));
1691 	}
1692 
1693 	n = 0;
1694 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1695 		if (ifma->ifma_addr->sa_family != AF_LINK)
1696 			continue;
1697 		if (n >= 16)
1698 			goto allmulti;
1699 		IEEE80211_ADDR_COPY(&mlist.wi_mcast[n],
1700 		    (LLADDR((struct sockaddr_dl *)ifma->ifma_addr)));
1701 		n++;
1702 	}
1703 	return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1704 	    IEEE80211_ADDR_LEN * n);
1705 }
1706 
1707 static void
1708 wi_read_nicid(struct wi_softc *sc)
1709 {
1710 	struct wi_card_ident *id;
1711 	char *p;
1712 	int len;
1713 	u_int16_t ver[4];
1714 
1715 	/* getting chip identity */
1716 	memset(ver, 0, sizeof(ver));
1717 	len = sizeof(ver);
1718 	wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
1719 	if_printf(&sc->sc_ic.ic_if, "using ");
1720 
1721 	sc->sc_firmware_type = WI_NOTYPE;
1722 	for (id = wi_card_ident; id->card_name != NULL; id++) {
1723 		if (le16toh(ver[0]) == id->card_id) {
1724 			printf("%s", id->card_name);
1725 			sc->sc_firmware_type = id->firm_type;
1726 			break;
1727 		}
1728 	}
1729 	if (sc->sc_firmware_type == WI_NOTYPE) {
1730 		if (le16toh(ver[0]) & 0x8000) {
1731 			printf("Unknown PRISM2 chip");
1732 			sc->sc_firmware_type = WI_INTERSIL;
1733 		} else {
1734 			printf("Unknown Lucent chip");
1735 			sc->sc_firmware_type = WI_LUCENT;
1736 		}
1737 	}
1738 
1739 	/* get primary firmware version (Only Prism chips) */
1740 	if (sc->sc_firmware_type != WI_LUCENT) {
1741 		memset(ver, 0, sizeof(ver));
1742 		len = sizeof(ver);
1743 		wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
1744 		sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
1745 		    le16toh(ver[3]) * 100 + le16toh(ver[1]);
1746 	}
1747 
1748 	/* get station firmware version */
1749 	memset(ver, 0, sizeof(ver));
1750 	len = sizeof(ver);
1751 	wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
1752 	sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
1753 	    le16toh(ver[3]) * 100 + le16toh(ver[1]);
1754 	if (sc->sc_firmware_type == WI_INTERSIL &&
1755 	    (sc->sc_sta_firmware_ver == 10102 ||
1756 	     sc->sc_sta_firmware_ver == 20102)) {
1757 		char ident[12];
1758 		memset(ident, 0, sizeof(ident));
1759 		len = sizeof(ident);
1760 		/* value should be the format like "V2.00-11" */
1761 		if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
1762 		    *(p = (char *)ident) >= 'A' &&
1763 		    p[2] == '.' && p[5] == '-' && p[8] == '\0') {
1764 			sc->sc_firmware_type = WI_SYMBOL;
1765 			sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
1766 			    (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
1767 			    (p[6] - '0') * 10 + (p[7] - '0');
1768 		}
1769 	}
1770 	printf("\n");
1771 	if_printf(&sc->sc_ic.ic_if, "%s Firmware: ",
1772 	     sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
1773 	    (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
1774 	if (sc->sc_firmware_type != WI_LUCENT)	/* XXX */
1775 		printf("Primary (%u.%u.%u), ",
1776 		    sc->sc_pri_firmware_ver / 10000,
1777 		    (sc->sc_pri_firmware_ver % 10000) / 100,
1778 		    sc->sc_pri_firmware_ver % 100);
1779 	printf("Station (%u.%u.%u)\n",
1780 	    sc->sc_sta_firmware_ver / 10000,
1781 	    (sc->sc_sta_firmware_ver % 10000) / 100,
1782 	    sc->sc_sta_firmware_ver % 100);
1783 }
1784 
1785 static int
1786 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
1787 {
1788 	struct wi_ssid ssid;
1789 
1790 	if (buflen > IEEE80211_NWID_LEN)
1791 		return ENOBUFS;
1792 	memset(&ssid, 0, sizeof(ssid));
1793 	ssid.wi_len = htole16(buflen);
1794 	memcpy(ssid.wi_ssid, buf, buflen);
1795 	return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
1796 }
1797 
1798 static int
1799 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1800 {
1801 	struct wi_softc *sc = ifp->if_softc;
1802 	struct ieee80211com *ic = &sc->sc_ic;
1803 	struct ifreq *ifr = (struct ifreq *)data;
1804 	struct wi_req wreq;
1805 	struct wi_scan_res *res;
1806 	size_t reslen;
1807 	int len, n, error, mif, val, off, i;
1808 
1809 	error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
1810 	if (error)
1811 		return error;
1812 	len = (wreq.wi_len - 1) * 2;
1813 	if (len < sizeof(u_int16_t))
1814 		return ENOSPC;
1815 	if (len > sizeof(wreq.wi_val))
1816 		len = sizeof(wreq.wi_val);
1817 
1818 	switch (wreq.wi_type) {
1819 
1820 	case WI_RID_IFACE_STATS:
1821 		memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
1822 		if (len < sizeof(sc->sc_stats))
1823 			error = ENOSPC;
1824 		else
1825 			len = sizeof(sc->sc_stats);
1826 		break;
1827 
1828 	case WI_RID_ENCRYPTION:
1829 	case WI_RID_TX_CRYPT_KEY:
1830 	case WI_RID_DEFLT_CRYPT_KEYS:
1831 	case WI_RID_TX_RATE:
1832 		return ieee80211_cfgget(ifp, cmd, data, cr);
1833 
1834 	case WI_RID_MICROWAVE_OVEN:
1835 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
1836 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1837 			    &len);
1838 			break;
1839 		}
1840 		wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
1841 		len = sizeof(u_int16_t);
1842 		break;
1843 
1844 	case WI_RID_DBM_ADJUST:
1845 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
1846 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1847 			    &len);
1848 			break;
1849 		}
1850 		wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
1851 		len = sizeof(u_int16_t);
1852 		break;
1853 
1854 	case WI_RID_ROAMING_MODE:
1855 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
1856 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1857 			    &len);
1858 			break;
1859 		}
1860 		wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
1861 		len = sizeof(u_int16_t);
1862 		break;
1863 
1864 	case WI_RID_SYSTEM_SCALE:
1865 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
1866 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1867 			    &len);
1868 			break;
1869 		}
1870 		wreq.wi_val[0] = htole16(sc->sc_system_scale);
1871 		len = sizeof(u_int16_t);
1872 		break;
1873 
1874 	case WI_RID_FRAG_THRESH:
1875 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
1876 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1877 			    &len);
1878 			break;
1879 		}
1880 		wreq.wi_val[0] = htole16(ic->ic_fragthreshold);
1881 		len = sizeof(u_int16_t);
1882 		break;
1883 
1884 	case WI_RID_READ_APS:
1885 		if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1886 			return ieee80211_cfgget(ifp, cmd, data, cr);
1887 		if (sc->sc_scan_timer > 0) {
1888 			error = EINPROGRESS;
1889 			break;
1890 		}
1891 		n = sc->sc_naps;
1892 		if (len < sizeof(n)) {
1893 			error = ENOSPC;
1894 			break;
1895 		}
1896 		if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
1897 			n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
1898 		len = sizeof(n) + sizeof(struct wi_apinfo) * n;
1899 		memcpy(wreq.wi_val, &n, sizeof(n));
1900 		memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps,
1901 		    sizeof(struct wi_apinfo) * n);
1902 		break;
1903 
1904 	case WI_RID_PRISM2:
1905 		wreq.wi_val[0] = sc->sc_firmware_type != WI_LUCENT;
1906 		len = sizeof(u_int16_t);
1907 		break;
1908 
1909 	case WI_RID_MIF:
1910 		mif = wreq.wi_val[0];
1911 		error = wi_cmd(sc, WI_CMD_READMIF, mif, 0, 0);
1912 		val = CSR_READ_2(sc, WI_RESP0);
1913 		wreq.wi_val[0] = val;
1914 		len = sizeof(u_int16_t);
1915 		break;
1916 
1917 	case WI_RID_ZERO_CACHE:
1918 	case WI_RID_PROCFRAME:		/* ignore for compatibility */
1919 		/* XXX ??? */
1920 		break;
1921 
1922 	case WI_RID_READ_CACHE:
1923 		return ieee80211_cfgget(ifp, cmd, data, cr);
1924 
1925 	case WI_RID_SCAN_RES:		/* compatibility interface */
1926 		if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1927 			return ieee80211_cfgget(ifp, cmd, data, cr);
1928 		if (sc->sc_scan_timer > 0) {
1929 			error = EINPROGRESS;
1930 			break;
1931 		}
1932 		n = sc->sc_naps;
1933 		if (sc->sc_firmware_type == WI_LUCENT) {
1934 			off = 0;
1935 			reslen = WI_WAVELAN_RES_SIZE;
1936 		} else {
1937 			off = sizeof(struct wi_scan_p2_hdr);
1938 			reslen = WI_PRISM2_RES_SIZE;
1939 		}
1940 		if (len < off + reslen * n)
1941 			n = (len - off) / reslen;
1942 		len = off + reslen * n;
1943 		if (off != 0) {
1944 			struct wi_scan_p2_hdr *p2 = (struct wi_scan_p2_hdr *)wreq.wi_val;
1945 			/*
1946 			 * Prepend Prism-specific header.
1947 			 */
1948 			if (len < sizeof(struct wi_scan_p2_hdr)) {
1949 				error = ENOSPC;
1950 				break;
1951 			}
1952 			p2 = (struct wi_scan_p2_hdr *)wreq.wi_val;
1953 			p2->wi_rsvd = 0;
1954 			p2->wi_reason = n;	/* XXX */
1955 		}
1956 		for (i = 0; i < n; i++, off += reslen) {
1957 			const struct wi_apinfo *ap = &sc->sc_aps[i];
1958 
1959 			res = (struct wi_scan_res *)((char *)wreq.wi_val + off);
1960 			res->wi_chan = ap->channel;
1961 			res->wi_noise = ap->noise;
1962 			res->wi_signal = ap->signal;
1963 			IEEE80211_ADDR_COPY(res->wi_bssid, ap->bssid);
1964 			res->wi_interval = ap->interval;
1965 			res->wi_capinfo = ap->capinfo;
1966 			res->wi_ssid_len = ap->namelen;
1967 			memcpy(res->wi_ssid, ap->name,
1968 				IEEE80211_NWID_LEN);
1969 			if (sc->sc_firmware_type != WI_LUCENT) {
1970 				/* XXX not saved from Prism cards */
1971 				memset(res->wi_srates, 0,
1972 					sizeof(res->wi_srates));
1973 				res->wi_rate = ap->rate;
1974 				res->wi_rsvd = 0;
1975 			}
1976 		}
1977 		break;
1978 
1979 	default:
1980 		if (sc->sc_enabled) {
1981 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
1982 			    &len);
1983 			break;
1984 		}
1985 		switch (wreq.wi_type) {
1986 		case WI_RID_MAX_DATALEN:
1987 			wreq.wi_val[0] = htole16(sc->sc_max_datalen);
1988 			len = sizeof(u_int16_t);
1989 			break;
1990 		case WI_RID_RTS_THRESH:
1991 			wreq.wi_val[0] = htole16(ic->ic_rtsthreshold);
1992 			len = sizeof(u_int16_t);
1993 			break;
1994 		case WI_RID_CNFAUTHMODE:
1995 			wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
1996 			len = sizeof(u_int16_t);
1997 			break;
1998 		case WI_RID_NODENAME:
1999 			if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
2000 				error = ENOSPC;
2001 				break;
2002 			}
2003 			len = sc->sc_nodelen + sizeof(u_int16_t);
2004 			wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
2005 			memcpy(&wreq.wi_val[1], sc->sc_nodename,
2006 			    sc->sc_nodelen);
2007 			break;
2008 		default:
2009 			return ieee80211_cfgget(ifp, cmd, data, cr);
2010 		}
2011 		break;
2012 	}
2013 	if (error)
2014 		return error;
2015 	wreq.wi_len = (len + 1) / 2 + 1;
2016 	return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
2017 }
2018 
2019 static int
2020 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data)
2021 {
2022 	struct wi_softc *sc = ifp->if_softc;
2023 	struct ieee80211com *ic = &sc->sc_ic;
2024 	struct ifreq *ifr = (struct ifreq *)data;
2025 	struct wi_req wreq;
2026 	struct mbuf *m;
2027 	int i, len, error, mif, val;
2028 	struct ieee80211_rateset *rs;
2029 
2030 	error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2031 	if (error)
2032 		return error;
2033 	len = wreq.wi_len ? (wreq.wi_len - 1) * 2 : 0;
2034 	switch (wreq.wi_type) {
2035 	case WI_RID_DBM_ADJUST:
2036 		return ENODEV;
2037 
2038 	case WI_RID_NODENAME:
2039 		if (le16toh(wreq.wi_val[0]) * 2 > len ||
2040 		    le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
2041 			error = ENOSPC;
2042 			break;
2043 		}
2044 		if (sc->sc_enabled) {
2045 			error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2046 			    len);
2047 			if (error)
2048 				break;
2049 		}
2050 		sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
2051 		memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
2052 		break;
2053 
2054 	case WI_RID_MICROWAVE_OVEN:
2055 	case WI_RID_ROAMING_MODE:
2056 	case WI_RID_SYSTEM_SCALE:
2057 	case WI_RID_FRAG_THRESH:
2058 		if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
2059 		    (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
2060 			break;
2061 		if (wreq.wi_type == WI_RID_ROAMING_MODE &&
2062 		    (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
2063 			break;
2064 		if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
2065 		    (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
2066 			break;
2067 		if (wreq.wi_type == WI_RID_FRAG_THRESH &&
2068 		    (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
2069 			break;
2070 		/* FALLTHROUGH */
2071 	case WI_RID_RTS_THRESH:
2072 	case WI_RID_CNFAUTHMODE:
2073 	case WI_RID_MAX_DATALEN:
2074 		if (sc->sc_enabled) {
2075 			error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2076 			    sizeof(u_int16_t));
2077 			if (error)
2078 				break;
2079 		}
2080 		switch (wreq.wi_type) {
2081 		case WI_RID_FRAG_THRESH:
2082 			ic->ic_fragthreshold = le16toh(wreq.wi_val[0]);
2083 			break;
2084 		case WI_RID_RTS_THRESH:
2085 			ic->ic_rtsthreshold = le16toh(wreq.wi_val[0]);
2086 			break;
2087 		case WI_RID_MICROWAVE_OVEN:
2088 			sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
2089 			break;
2090 		case WI_RID_ROAMING_MODE:
2091 			sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
2092 			break;
2093 		case WI_RID_SYSTEM_SCALE:
2094 			sc->sc_system_scale = le16toh(wreq.wi_val[0]);
2095 			break;
2096 		case WI_RID_CNFAUTHMODE:
2097 			sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
2098 			break;
2099 		case WI_RID_MAX_DATALEN:
2100 			sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
2101 			break;
2102 		}
2103 		break;
2104 
2105 	case WI_RID_TX_RATE:
2106 		switch (le16toh(wreq.wi_val[0])) {
2107 		case 3:
2108 			ic->ic_fixed_rate = -1;
2109 			break;
2110 		default:
2111 			rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2112 			for (i = 0; i < rs->rs_nrates; i++) {
2113 				if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
2114 				    / 2 == le16toh(wreq.wi_val[0]))
2115 					break;
2116 			}
2117 			if (i == rs->rs_nrates)
2118 				return EINVAL;
2119 			ic->ic_fixed_rate = i;
2120 		}
2121 		if (sc->sc_enabled)
2122 			error = wi_write_txrate(sc);
2123 		break;
2124 
2125 	case WI_RID_SCAN_APS:
2126 		if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2127 			error = wi_scan_ap(sc, 0x3fff, 0x000f);
2128 		break;
2129 
2130 	case WI_RID_SCAN_REQ:		/* compatibility interface */
2131 		if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2132 			error = wi_scan_ap(sc, wreq.wi_val[0], wreq.wi_val[1]);
2133 		break;
2134 
2135 	case WI_RID_MGMT_XMIT:
2136 		if (!sc->sc_enabled) {
2137 			error = ENETDOWN;
2138 			break;
2139 		}
2140 		if (ic->ic_mgtq.ifq_len > 5) {
2141 			error = EAGAIN;
2142 			break;
2143 		}
2144 		/* XXX wi_len looks in u_int8_t, not in u_int16_t */
2145 		m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
2146 		if (m == NULL) {
2147 			error = ENOMEM;
2148 			break;
2149 		}
2150 		IF_ENQUEUE(&ic->ic_mgtq, m);
2151 		break;
2152 
2153 	case WI_RID_MIF:
2154 		mif = wreq.wi_val[0];
2155 		val = wreq.wi_val[1];
2156 		error = wi_cmd(sc, WI_CMD_WRITEMIF, mif, val, 0);
2157 		break;
2158 
2159 	case WI_RID_PROCFRAME:		/* ignore for compatibility */
2160 		break;
2161 
2162 	case WI_RID_OWN_SSID:
2163 		if (le16toh(wreq.wi_val[0]) * 2 > len ||
2164 		    le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN) {
2165 			error = ENOSPC;
2166 			break;
2167 		}
2168 		memset(ic->ic_des_essid, 0, IEEE80211_NWID_LEN);
2169 		ic->ic_des_esslen = le16toh(wreq.wi_val[0]) * 2;
2170 		memcpy(ic->ic_des_essid, &wreq.wi_val[1], ic->ic_des_esslen);
2171 		error = ENETRESET;
2172 		break;
2173 
2174 	default:
2175 		if (sc->sc_enabled) {
2176 			error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2177 			    len);
2178 			if (error)
2179 				break;
2180 		}
2181 		error = ieee80211_cfgset(ifp, cmd, data);
2182 		break;
2183 	}
2184 	return error;
2185 }
2186 
2187 static int
2188 wi_write_txrate(struct wi_softc *sc)
2189 {
2190 	struct ieee80211com *ic = &sc->sc_ic;
2191 	int i;
2192 	u_int16_t rate;
2193 
2194 	if (ic->ic_fixed_rate < 0)
2195 		rate = 0;	/* auto */
2196 	else
2197 		rate = (ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[ic->ic_fixed_rate] &
2198 		    IEEE80211_RATE_VAL) / 2;
2199 
2200 	/* rate: 0, 1, 2, 5, 11 */
2201 
2202 	switch (sc->sc_firmware_type) {
2203 	case WI_LUCENT:
2204 		switch (rate) {
2205 		case 0:			/* auto == 11mbps auto */
2206 			rate = 3;
2207 			break;
2208 		/* case 1, 2 map to 1, 2*/
2209 		case 5:			/* 5.5Mbps -> 4 */
2210 			rate = 4;
2211 			break;
2212 		case 11:		/* 11mbps -> 5 */
2213 			rate = 5;
2214 			break;
2215 		default:
2216 			break;
2217 		}
2218 		break;
2219 	default:
2220 		/* Choose a bit according to this table.
2221 		 *
2222 		 * bit | data rate
2223 		 * ----+-------------------
2224 		 * 0   | 1Mbps
2225 		 * 1   | 2Mbps
2226 		 * 2   | 5.5Mbps
2227 		 * 3   | 11Mbps
2228 		 */
2229 		for (i = 8; i > 0; i >>= 1) {
2230 			if (rate >= i)
2231 				break;
2232 		}
2233 		if (i == 0)
2234 			rate = 0xf;	/* auto */
2235 		else
2236 			rate = i;
2237 		break;
2238 	}
2239 	return wi_write_val(sc, WI_RID_TX_RATE, rate);
2240 }
2241 
2242 static int
2243 wi_write_wep(struct wi_softc *sc)
2244 {
2245 	struct ieee80211com *ic = &sc->sc_ic;
2246 	int error = 0;
2247 	int i, keylen;
2248 	u_int16_t val;
2249 	struct wi_key wkey[IEEE80211_WEP_NKID];
2250 
2251 	switch (sc->sc_firmware_type) {
2252 	case WI_LUCENT:
2253 		val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0;
2254 		error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2255 		if (error)
2256 			break;
2257 		error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey);
2258 		if (error)
2259 			break;
2260 		memset(wkey, 0, sizeof(wkey));
2261 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2262 			keylen = ic->ic_nw_keys[i].wk_len;
2263 			wkey[i].wi_keylen = htole16(keylen);
2264 			memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2265 			    keylen);
2266 		}
2267 		error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2268 		    wkey, sizeof(wkey));
2269 		break;
2270 
2271 	case WI_INTERSIL:
2272 	case WI_SYMBOL:
2273 		if (ic->ic_flags & IEEE80211_F_WEPON) {
2274 			/*
2275 			 * ONLY HWB3163 EVAL-CARD Firmware version
2276 			 * less than 0.8 variant2
2277 			 *
2278 			 *   If promiscuous mode disable, Prism2 chip
2279 			 *  does not work with WEP .
2280 			 * It is under investigation for details.
2281 			 * (ichiro@netbsd.org)
2282 			 */
2283 			if (sc->sc_firmware_type == WI_INTERSIL &&
2284 			    sc->sc_sta_firmware_ver < 802 ) {
2285 				/* firm ver < 0.8 variant 2 */
2286 				wi_write_val(sc, WI_RID_PROMISC, 1);
2287 			}
2288 			wi_write_val(sc, WI_RID_CNFAUTHMODE,
2289 			    sc->sc_cnfauthmode);
2290 			val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED;
2291 			/*
2292 			 * Encryption firmware has a bug for HostAP mode.
2293 			 */
2294 			if (sc->sc_firmware_type == WI_INTERSIL &&
2295 			    ic->ic_opmode == IEEE80211_M_HOSTAP)
2296 				val |= HOST_ENCRYPT;
2297 		} else {
2298 			wi_write_val(sc, WI_RID_CNFAUTHMODE,
2299 			    IEEE80211_AUTH_OPEN);
2300 			val = HOST_ENCRYPT | HOST_DECRYPT;
2301 		}
2302 		error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2303 		if (error)
2304 			break;
2305 		error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2306 		    ic->ic_wep_txkey);
2307 		if (error)
2308 			break;
2309 		/*
2310 		 * It seems that the firmware accept 104bit key only if
2311 		 * all the keys have 104bit length.  We get the length of
2312 		 * the transmit key and use it for all other keys.
2313 		 * Perhaps we should use software WEP for such situation.
2314 		 */
2315 		keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len;
2316 		if (keylen > IEEE80211_WEP_KEYLEN)
2317 			keylen = 13;	/* 104bit keys */
2318 		else
2319 			keylen = IEEE80211_WEP_KEYLEN;
2320 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2321 			error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2322 			    ic->ic_nw_keys[i].wk_key, keylen);
2323 			if (error)
2324 				break;
2325 		}
2326 		break;
2327 	}
2328 	return error;
2329 }
2330 
2331 static int
2332 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2333 {
2334 	int			i, s = 0;
2335 	static volatile int count  = 0;
2336 
2337 	if (sc->wi_gone)
2338 		return (ENODEV);
2339 
2340 	if (count > 0)
2341 		panic("Hey partner, hold on there!");
2342 	count++;
2343 
2344 	/* wait for the busy bit to clear */
2345 	for (i = sc->wi_cmd_count; i > 0; i--) {	/* 500ms */
2346 		if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
2347 			break;
2348 		DELAY(1*1000);	/* 1ms */
2349 	}
2350 	if (i == 0) {
2351 		if_printf(&sc->sc_ic.ic_if, "wi_cmd: busy bit won't clear.\n" );
2352 		sc->wi_gone = 1;
2353 		count--;
2354 		return(ETIMEDOUT);
2355 	}
2356 
2357 	CSR_WRITE_2(sc, WI_PARAM0, val0);
2358 	CSR_WRITE_2(sc, WI_PARAM1, val1);
2359 	CSR_WRITE_2(sc, WI_PARAM2, val2);
2360 	CSR_WRITE_2(sc, WI_COMMAND, cmd);
2361 
2362 	if (cmd == WI_CMD_INI) {
2363 		/* XXX: should sleep here. */
2364 		DELAY(100*1000);		/* 100ms delay for init */
2365 	}
2366 	for (i = 0; i < WI_TIMEOUT; i++) {
2367 		/*
2368 		 * Wait for 'command complete' bit to be
2369 		 * set in the event status register.
2370 		 */
2371 		s = CSR_READ_2(sc, WI_EVENT_STAT);
2372 		if (s & WI_EV_CMD) {
2373 			/* Ack the event and read result code. */
2374 			s = CSR_READ_2(sc, WI_STATUS);
2375 			CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2376 			if (s & WI_STAT_CMD_RESULT) {
2377 				count--;
2378 				return(EIO);
2379 			}
2380 			break;
2381 		}
2382 		DELAY(WI_DELAY);
2383 	}
2384 
2385 	count--;
2386 	if (i == WI_TIMEOUT) {
2387 		if_printf(&sc->sc_ic.ic_if,
2388 		    "timeout in wi_cmd 0x%04x; event status 0x%04x\n", cmd, s);
2389 		if (s == 0xffff)
2390 			sc->wi_gone = 1;
2391 		return(ETIMEDOUT);
2392 	}
2393 	return (0);
2394 }
2395 
2396 static int
2397 wi_seek_bap(struct wi_softc *sc, int id, int off)
2398 {
2399 	int i, status;
2400 
2401 	CSR_WRITE_2(sc, WI_SEL0, id);
2402 	CSR_WRITE_2(sc, WI_OFF0, off);
2403 
2404 	for (i = 0; ; i++) {
2405 		status = CSR_READ_2(sc, WI_OFF0);
2406 		if ((status & WI_OFF_BUSY) == 0)
2407 			break;
2408 		if (i == WI_TIMEOUT) {
2409 			if_printf(&sc->sc_ic.ic_if,
2410 				  "timeout in wi_seek to %x/%x\n", id, off);
2411 			sc->sc_bap_off = WI_OFF_ERR;	/* invalidate */
2412 			if (status == 0xffff)
2413 				sc->wi_gone = 1;
2414 			return ETIMEDOUT;
2415 		}
2416 		DELAY(1);
2417 	}
2418 	if (status & WI_OFF_ERR) {
2419 		if_printf(&sc->sc_ic.ic_if, "failed in wi_seek to %x/%x\n",
2420 			  id, off);
2421 		sc->sc_bap_off = WI_OFF_ERR;	/* invalidate */
2422 		return EIO;
2423 	}
2424 	sc->sc_bap_id = id;
2425 	sc->sc_bap_off = off;
2426 	return 0;
2427 }
2428 
2429 static int
2430 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2431 {
2432 	u_int16_t *ptr;
2433 	int i, error, cnt;
2434 
2435 	if (buflen == 0)
2436 		return 0;
2437 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2438 		if ((error = wi_seek_bap(sc, id, off)) != 0)
2439 			return error;
2440 	}
2441 	cnt = (buflen + 1) / 2;
2442 	ptr = (u_int16_t *)buf;
2443 	for (i = 0; i < cnt; i++)
2444 		*ptr++ = CSR_READ_2(sc, WI_DATA0);
2445 	sc->sc_bap_off += cnt * 2;
2446 	return 0;
2447 }
2448 
2449 static int
2450 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2451 {
2452 	u_int16_t *ptr;
2453 	int i, error, cnt;
2454 
2455 	if (buflen == 0)
2456 		return 0;
2457 
2458 #ifdef WI_HERMES_AUTOINC_WAR
2459   again:
2460 #endif
2461 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2462 		if ((error = wi_seek_bap(sc, id, off)) != 0)
2463 			return error;
2464 	}
2465 	cnt = (buflen + 1) / 2;
2466 	ptr = (u_int16_t *)buf;
2467 	for (i = 0; i < cnt; i++)
2468 		CSR_WRITE_2(sc, WI_DATA0, ptr[i]);
2469 	sc->sc_bap_off += cnt * 2;
2470 
2471 #ifdef WI_HERMES_AUTOINC_WAR
2472 	/*
2473 	 * According to the comments in the HCF Light code, there is a bug
2474 	 * in the Hermes (or possibly in certain Hermes firmware revisions)
2475 	 * where the chip's internal autoincrement counter gets thrown off
2476 	 * during data writes:  the autoincrement is missed, causing one
2477 	 * data word to be overwritten and subsequent words to be written to
2478 	 * the wrong memory locations. The end result is that we could end
2479 	 * up transmitting bogus frames without realizing it. The workaround
2480 	 * for this is to write a couple of extra guard words after the end
2481 	 * of the transfer, then attempt to read then back. If we fail to
2482 	 * locate the guard words where we expect them, we preform the
2483 	 * transfer over again.
2484 	 */
2485 	if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2486 		CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2487 		CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2488 		wi_seek_bap(sc, id, sc->sc_bap_off);
2489 		sc->sc_bap_off = WI_OFF_ERR;	/* invalidate */
2490 		if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2491 		    CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2492 			if_printf(&sc->sc_ic.ic_if,
2493 				  "detect auto increment bug, try again\n");
2494 			goto again;
2495 		}
2496 	}
2497 #endif
2498 	return 0;
2499 }
2500 
2501 static int
2502 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2503 {
2504 	int error, len;
2505 	struct mbuf *m;
2506 
2507 	for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2508 		if (m->m_len == 0)
2509 			continue;
2510 
2511 		len = min(m->m_len, totlen);
2512 
2513 		if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2514 			m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf);
2515 			return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf,
2516 			    totlen);
2517 		}
2518 
2519 		if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2520 			return error;
2521 
2522 		off += m->m_len;
2523 		totlen -= len;
2524 	}
2525 	return 0;
2526 }
2527 
2528 static int
2529 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2530 {
2531 	int i;
2532 
2533 	if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2534 		if_printf(&sc->sc_ic.ic_if,
2535 			  "failed to allocate %d bytes on NIC\n", len);
2536 		return ENOMEM;
2537 	}
2538 
2539 	for (i = 0; i < WI_TIMEOUT; i++) {
2540 		if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2541 			break;
2542 		if (i == WI_TIMEOUT) {
2543 			if_printf(&sc->sc_ic.ic_if, "timeout in alloc\n");
2544 			return ETIMEDOUT;
2545 		}
2546 		DELAY(1);
2547 	}
2548 	*idp = CSR_READ_2(sc, WI_ALLOC_FID);
2549 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2550 	return 0;
2551 }
2552 
2553 static int
2554 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2555 {
2556 	int error, len;
2557 	u_int16_t ltbuf[2];
2558 
2559 	/* Tell the NIC to enter record read mode. */
2560 	error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2561 	if (error)
2562 		return error;
2563 
2564 	error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2565 	if (error)
2566 		return error;
2567 
2568 	if (le16toh(ltbuf[1]) != rid) {
2569 		if_printf(&sc->sc_ic.ic_if,
2570 			  "record read mismatch, rid=%x, got=%x\n",
2571 			  rid, le16toh(ltbuf[1]));
2572 		return EIO;
2573 	}
2574 	len = (le16toh(ltbuf[0]) - 1) * 2;	 /* already got rid */
2575 	if (*buflenp < len) {
2576 		if_printf(&sc->sc_ic.ic_if, "record buffer is too small, "
2577 			  "rid=%x, size=%d, len=%d\n", rid, *buflenp, len);
2578 		return ENOSPC;
2579 	}
2580 	*buflenp = len;
2581 	return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2582 }
2583 
2584 static int
2585 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2586 {
2587 	int error;
2588 	u_int16_t ltbuf[2];
2589 
2590 	ltbuf[0] = htole16((buflen + 1) / 2 + 1);	 /* includes rid */
2591 	ltbuf[1] = htole16(rid);
2592 
2593 	error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2594 	if (error)
2595 		return error;
2596 	error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2597 	if (error)
2598 		return error;
2599 
2600 	return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
2601 }
2602 
2603 static int
2604 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2605 {
2606 	struct ifnet *ifp = &ic->ic_if;
2607 	struct wi_softc *sc = ifp->if_softc;
2608 	struct ieee80211_node *ni = ic->ic_bss;
2609 	int buflen;
2610 	u_int16_t val;
2611 	struct wi_ssid ssid;
2612 	u_int8_t old_bssid[IEEE80211_ADDR_LEN];
2613 
2614 	DPRINTF((ifp, "%s: %s -> %s\n", __func__,
2615 		ieee80211_state_name[ic->ic_state],
2616 		ieee80211_state_name[nstate]));
2617 
2618 	switch (nstate) {
2619 	case IEEE80211_S_INIT:
2620 		ic->ic_flags &= ~IEEE80211_F_SIBSS;
2621 		sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2622 		return (*sc->sc_newstate)(ic, nstate, arg);
2623 
2624 	case IEEE80211_S_RUN:
2625 		sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
2626 		buflen = IEEE80211_ADDR_LEN;
2627 		wi_read_rid(sc, WI_RID_CURRENT_BSSID, ni->ni_bssid, &buflen);
2628 		IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid);
2629 		buflen = sizeof(val);
2630 		wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen);
2631 		/* XXX validate channel */
2632 		ni->ni_chan = &ic->ic_channels[le16toh(val)];
2633 		sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
2634 			htole16(ni->ni_chan->ic_freq);
2635 		sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
2636 			htole16(ni->ni_chan->ic_flags);
2637 
2638 		if (IEEE80211_ADDR_EQ(old_bssid, ni->ni_bssid))
2639 			sc->sc_false_syns++;
2640 		else
2641 			sc->sc_false_syns = 0;
2642 
2643 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2644 			ni->ni_esslen = ic->ic_des_esslen;
2645 			memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
2646 			ni->ni_rates = ic->ic_sup_rates[IEEE80211_MODE_11B];
2647 			ni->ni_intval = ic->ic_lintval;
2648 			ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
2649 			if (ic->ic_flags & IEEE80211_F_WEPON)
2650 				ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
2651 		} else {
2652 			/* XXX check return value */
2653 			buflen = sizeof(ssid);
2654 			wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen);
2655 			ni->ni_esslen = le16toh(ssid.wi_len);
2656 			if (ni->ni_esslen > IEEE80211_NWID_LEN)
2657 				ni->ni_esslen = IEEE80211_NWID_LEN;	/*XXX*/
2658 			memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
2659 		}
2660 		break;
2661 
2662 	case IEEE80211_S_SCAN:
2663 	case IEEE80211_S_AUTH:
2664 	case IEEE80211_S_ASSOC:
2665 		break;
2666 	}
2667 
2668 	ic->ic_state = nstate;		/* NB: skip normal ieee80211 handling */
2669 	return 0;
2670 }
2671 
2672 static int
2673 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
2674 {
2675 	int error = 0;
2676 	u_int16_t val[2];
2677 
2678 	if (!sc->sc_enabled)
2679 		return ENXIO;
2680 	switch (sc->sc_firmware_type) {
2681 	case WI_LUCENT:
2682 		(void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
2683 		break;
2684 	case WI_INTERSIL:
2685 		val[0] = chanmask;	/* channel */
2686 		val[1] = txrate;	/* tx rate */
2687 		error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
2688 		break;
2689 	case WI_SYMBOL:
2690 		/*
2691 		 * XXX only supported on 3.x ?
2692 		 */
2693 		val[0] = BSCAN_BCAST | BSCAN_ONETIME;
2694 		error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
2695 		    val, sizeof(val[0]));
2696 		break;
2697 	}
2698 	if (error == 0) {
2699 		sc->sc_scan_timer = WI_SCAN_WAIT;
2700 		sc->sc_ic.ic_if.if_timer = 1;
2701 		DPRINTF((&sc->sc_ic.ic_if, "wi_scan_ap: start scanning, "
2702 			"chamask 0x%x txrate 0x%x\n", chanmask, txrate));
2703 	}
2704 	return error;
2705 }
2706 
2707 static void
2708 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
2709 {
2710 #define	N(a)	(sizeof (a) / sizeof (a[0]))
2711 	int i, naps, off, szbuf;
2712 	struct wi_scan_header ws_hdr;	/* Prism2 header */
2713 	struct wi_scan_data_p2 ws_dat;	/* Prism2 scantable*/
2714 	struct wi_apinfo *ap;
2715 
2716 	off = sizeof(u_int16_t) * 2;
2717 	memset(&ws_hdr, 0, sizeof(ws_hdr));
2718 	switch (sc->sc_firmware_type) {
2719 	case WI_INTERSIL:
2720 		wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
2721 		off += sizeof(ws_hdr);
2722 		szbuf = sizeof(struct wi_scan_data_p2);
2723 		break;
2724 	case WI_SYMBOL:
2725 		szbuf = sizeof(struct wi_scan_data_p2) + 6;
2726 		break;
2727 	case WI_LUCENT:
2728 		szbuf = sizeof(struct wi_scan_data);
2729 		break;
2730 	default:
2731 		if_printf(&sc->sc_ic.ic_if,
2732 			  "wi_scan_result: unknown firmware type %u\n",
2733 			  sc->sc_firmware_type);
2734 		naps = 0;
2735 		goto done;
2736 	}
2737 	naps = (cnt * 2 + 2 - off) / szbuf;
2738 	if (naps > N(sc->sc_aps))
2739 		naps = N(sc->sc_aps);
2740 	sc->sc_naps = naps;
2741 	/* Read Data */
2742 	ap = sc->sc_aps;
2743 	memset(&ws_dat, 0, sizeof(ws_dat));
2744 	for (i = 0; i < naps; i++, ap++) {
2745 		wi_read_bap(sc, fid, off, &ws_dat,
2746 		    (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
2747 		DPRINTF2((&sc->sc_ic.ic_if,
2748 			  "wi_scan_result: #%d: off %d bssid %6D\n",
2749 			  i, off, ws_dat.wi_bssid, ":"));
2750 		off += szbuf;
2751 		ap->scanreason = le16toh(ws_hdr.wi_reason);
2752 		memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
2753 		ap->channel = le16toh(ws_dat.wi_chid);
2754 		ap->signal  = le16toh(ws_dat.wi_signal);
2755 		ap->noise   = le16toh(ws_dat.wi_noise);
2756 		ap->quality = ap->signal - ap->noise;
2757 		ap->capinfo = le16toh(ws_dat.wi_capinfo);
2758 		ap->interval = le16toh(ws_dat.wi_interval);
2759 		ap->rate    = le16toh(ws_dat.wi_rate);
2760 		ap->namelen = le16toh(ws_dat.wi_namelen);
2761 		if (ap->namelen > sizeof(ap->name))
2762 			ap->namelen = sizeof(ap->name);
2763 		memcpy(ap->name, ws_dat.wi_name, ap->namelen);
2764 	}
2765 done:
2766 	/* Done scanning */
2767 	sc->sc_scan_timer = 0;
2768 	DPRINTF((&sc->sc_ic.ic_if, "wi_scan_result: scan complete: ap %d\n",
2769 		 naps));
2770 #undef N
2771 }
2772 
2773 static void
2774 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
2775 {
2776 	ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
2777 	    ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL : -1, rssi);
2778 	printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
2779 		le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
2780 		le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
2781 	printf(" rx_signal %u rx_rate %u rx_flow %u\n",
2782 		wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
2783 	printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
2784 		wh->wi_tx_rtry, wh->wi_tx_rate,
2785 		le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
2786 	printf(" ehdr dst %6D src %6D type 0x%x\n",
2787 		wh->wi_ehdr.ether_dhost, ":", wh->wi_ehdr.ether_shost, ":",
2788 		wh->wi_ehdr.ether_type);
2789 }
2790 
2791 int
2792 wi_alloc(device_t dev, int rid)
2793 {
2794 	struct wi_softc	*sc = device_get_softc(dev);
2795 
2796 	if (sc->wi_bus_type != WI_BUS_PCI_NATIVE) {
2797 		sc->iobase_rid = rid;
2798 		sc->iobase = bus_alloc_resource(dev, SYS_RES_IOPORT,
2799 		    &sc->iobase_rid, 0, ~0, (1 << 6),
2800 		    rman_make_alignment_flags(1 << 6) | RF_ACTIVE);
2801 		if (!sc->iobase) {
2802 			device_printf(dev, "No I/O space?!\n");
2803 			return (ENXIO);
2804 		}
2805 
2806 		sc->wi_io_addr = rman_get_start(sc->iobase);
2807 		sc->wi_btag = rman_get_bustag(sc->iobase);
2808 		sc->wi_bhandle = rman_get_bushandle(sc->iobase);
2809 	} else {
2810 		sc->mem_rid = rid;
2811 		sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2812 		    &sc->mem_rid, RF_ACTIVE);
2813 
2814 		if (!sc->mem) {
2815 			device_printf(dev, "No Mem space on prism2.5?\n");
2816 			return (ENXIO);
2817 		}
2818 
2819 		sc->wi_btag = rman_get_bustag(sc->mem);
2820 		sc->wi_bhandle = rman_get_bushandle(sc->mem);
2821 	}
2822 
2823 
2824 	sc->irq_rid = 0;
2825 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
2826 	    RF_ACTIVE |
2827 	    ((sc->wi_bus_type == WI_BUS_PCCARD) ? 0 : RF_SHAREABLE));
2828 
2829 	if (!sc->irq) {
2830 		wi_free(dev);
2831 		device_printf(dev, "No irq?!\n");
2832 		return (ENXIO);
2833 	}
2834 
2835 	return (0);
2836 }
2837 
2838 void
2839 wi_free(device_t dev)
2840 {
2841 	struct wi_softc	*sc = device_get_softc(dev);
2842 
2843 	if (sc->wi_intrhand != NULL) {
2844 		bus_teardown_intr(dev, sc->irq, sc->wi_intrhand);
2845 		sc->wi_intrhand = NULL;
2846 	}
2847 	if (sc->iobase != NULL) {
2848 		bus_release_resource(dev, SYS_RES_IOPORT, sc->iobase_rid, sc->iobase);
2849 		sc->iobase = NULL;
2850 	}
2851 	if (sc->irq != NULL) {
2852 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
2853 		sc->irq = NULL;
2854 	}
2855 	if (sc->mem != NULL) {
2856 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
2857 		sc->mem = NULL;
2858 	}
2859 }
2860 
2861 static int
2862 wi_get_debug(struct wi_softc *sc, struct wi_req *wreq)
2863 {
2864 	int error = 0;
2865 
2866 	wreq->wi_len = 1;
2867 
2868 	switch (wreq->wi_type) {
2869 	case WI_DEBUG_SLEEP:
2870 		wreq->wi_len++;
2871 		wreq->wi_val[0] = sc->wi_debug.wi_sleep;
2872 		break;
2873 	case WI_DEBUG_DELAYSUPP:
2874 		wreq->wi_len++;
2875 		wreq->wi_val[0] = sc->wi_debug.wi_delaysupp;
2876 		break;
2877 	case WI_DEBUG_TXSUPP:
2878 		wreq->wi_len++;
2879 		wreq->wi_val[0] = sc->wi_debug.wi_txsupp;
2880 		break;
2881 	case WI_DEBUG_MONITOR:
2882 		wreq->wi_len++;
2883 		wreq->wi_val[0] = sc->wi_debug.wi_monitor;
2884 		break;
2885 	case WI_DEBUG_LEDTEST:
2886 		wreq->wi_len += 3;
2887 		wreq->wi_val[0] = sc->wi_debug.wi_ledtest;
2888 		wreq->wi_val[1] = sc->wi_debug.wi_ledtest_param0;
2889 		wreq->wi_val[2] = sc->wi_debug.wi_ledtest_param1;
2890 		break;
2891 	case WI_DEBUG_CONTTX:
2892 		wreq->wi_len += 2;
2893 		wreq->wi_val[0] = sc->wi_debug.wi_conttx;
2894 		wreq->wi_val[1] = sc->wi_debug.wi_conttx_param0;
2895 		break;
2896 	case WI_DEBUG_CONTRX:
2897 		wreq->wi_len++;
2898 		wreq->wi_val[0] = sc->wi_debug.wi_contrx;
2899 		break;
2900 	case WI_DEBUG_SIGSTATE:
2901 		wreq->wi_len += 2;
2902 		wreq->wi_val[0] = sc->wi_debug.wi_sigstate;
2903 		wreq->wi_val[1] = sc->wi_debug.wi_sigstate_param0;
2904 		break;
2905 	case WI_DEBUG_CONFBITS:
2906 		wreq->wi_len += 2;
2907 		wreq->wi_val[0] = sc->wi_debug.wi_confbits;
2908 		wreq->wi_val[1] = sc->wi_debug.wi_confbits_param0;
2909 		break;
2910 	default:
2911 		error = EIO;
2912 		break;
2913 	}
2914 
2915 	return (error);
2916 }
2917 
2918 static int
2919 wi_set_debug(struct wi_softc *sc, struct wi_req *wreq)
2920 {
2921 	int error = 0;
2922 	u_int16_t		cmd, param0 = 0, param1 = 0;
2923 
2924 	switch (wreq->wi_type) {
2925 	case WI_DEBUG_RESET:
2926 	case WI_DEBUG_INIT:
2927 	case WI_DEBUG_CALENABLE:
2928 		break;
2929 	case WI_DEBUG_SLEEP:
2930 		sc->wi_debug.wi_sleep = 1;
2931 		break;
2932 	case WI_DEBUG_WAKE:
2933 		sc->wi_debug.wi_sleep = 0;
2934 		break;
2935 	case WI_DEBUG_CHAN:
2936 		param0 = wreq->wi_val[0];
2937 		break;
2938 	case WI_DEBUG_DELAYSUPP:
2939 		sc->wi_debug.wi_delaysupp = 1;
2940 		break;
2941 	case WI_DEBUG_TXSUPP:
2942 		sc->wi_debug.wi_txsupp = 1;
2943 		break;
2944 	case WI_DEBUG_MONITOR:
2945 		sc->wi_debug.wi_monitor = 1;
2946 		break;
2947 	case WI_DEBUG_LEDTEST:
2948 		param0 = wreq->wi_val[0];
2949 		param1 = wreq->wi_val[1];
2950 		sc->wi_debug.wi_ledtest = 1;
2951 		sc->wi_debug.wi_ledtest_param0 = param0;
2952 		sc->wi_debug.wi_ledtest_param1 = param1;
2953 		break;
2954 	case WI_DEBUG_CONTTX:
2955 		param0 = wreq->wi_val[0];
2956 		sc->wi_debug.wi_conttx = 1;
2957 		sc->wi_debug.wi_conttx_param0 = param0;
2958 		break;
2959 	case WI_DEBUG_STOPTEST:
2960 		sc->wi_debug.wi_delaysupp = 0;
2961 		sc->wi_debug.wi_txsupp = 0;
2962 		sc->wi_debug.wi_monitor = 0;
2963 		sc->wi_debug.wi_ledtest = 0;
2964 		sc->wi_debug.wi_ledtest_param0 = 0;
2965 		sc->wi_debug.wi_ledtest_param1 = 0;
2966 		sc->wi_debug.wi_conttx = 0;
2967 		sc->wi_debug.wi_conttx_param0 = 0;
2968 		sc->wi_debug.wi_contrx = 0;
2969 		sc->wi_debug.wi_sigstate = 0;
2970 		sc->wi_debug.wi_sigstate_param0 = 0;
2971 		break;
2972 	case WI_DEBUG_CONTRX:
2973 		sc->wi_debug.wi_contrx = 1;
2974 		break;
2975 	case WI_DEBUG_SIGSTATE:
2976 		param0 = wreq->wi_val[0];
2977 		sc->wi_debug.wi_sigstate = 1;
2978 		sc->wi_debug.wi_sigstate_param0 = param0;
2979 		break;
2980 	case WI_DEBUG_CONFBITS:
2981 		param0 = wreq->wi_val[0];
2982 		param1 = wreq->wi_val[1];
2983 		sc->wi_debug.wi_confbits = param0;
2984 		sc->wi_debug.wi_confbits_param0 = param1;
2985 		break;
2986 	default:
2987 		error = EIO;
2988 		break;
2989 	}
2990 
2991 	if (error)
2992 		return (error);
2993 
2994 	cmd = WI_CMD_DEBUG | (wreq->wi_type << 8);
2995 	error = wi_cmd(sc, cmd, param0, param1, 0);
2996 
2997 	return (error);
2998 }
2999 
3000 /*
3001  * Special routines to download firmware for Symbol CF card.
3002  * XXX: This should be modified generic into any PRISM-2 based card.
3003  */
3004 
3005 #define	WI_SBCF_PDIADDR		0x3100
3006 
3007 /* unaligned load little endian */
3008 #define	GETLE32(p)	((p)[0] | ((p)[1]<<8) | ((p)[2]<<16) | ((p)[3]<<24))
3009 #define	GETLE16(p)	((p)[0] | ((p)[1]<<8))
3010 
3011 int
3012 wi_symbol_load_firm(struct wi_softc *sc, const void *primsym, int primlen,
3013     const void *secsym, int seclen)
3014 {
3015 	uint8_t ebuf[256];
3016 	int i;
3017 
3018 	/* load primary code and run it */
3019 	wi_symbol_set_hcr(sc, WI_HCR_EEHOLD);
3020 	if (wi_symbol_write_firm(sc, primsym, primlen, NULL, 0))
3021 		return EIO;
3022 	wi_symbol_set_hcr(sc, WI_HCR_RUN);
3023 	for (i = 0; ; i++) {
3024 		if (i == 10)
3025 			return ETIMEDOUT;
3026 		tsleep(sc, 0, "wiinit", 1);
3027 		if (CSR_READ_2(sc, WI_CNTL) == WI_CNTL_AUX_ENA_STAT)
3028 			break;
3029 		/* write the magic key value to unlock aux port */
3030 		CSR_WRITE_2(sc, WI_PARAM0, WI_AUX_KEY0);
3031 		CSR_WRITE_2(sc, WI_PARAM1, WI_AUX_KEY1);
3032 		CSR_WRITE_2(sc, WI_PARAM2, WI_AUX_KEY2);
3033 		CSR_WRITE_2(sc, WI_CNTL, WI_CNTL_AUX_ENA_CNTL);
3034 	}
3035 
3036 	/* issue read EEPROM command: XXX copied from wi_cmd() */
3037 	CSR_WRITE_2(sc, WI_PARAM0, 0);
3038 	CSR_WRITE_2(sc, WI_PARAM1, 0);
3039 	CSR_WRITE_2(sc, WI_PARAM2, 0);
3040 	CSR_WRITE_2(sc, WI_COMMAND, WI_CMD_READEE);
3041         for (i = 0; i < WI_TIMEOUT; i++) {
3042                 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
3043                         break;
3044                 DELAY(1);
3045         }
3046         CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
3047 
3048 	CSR_WRITE_2(sc, WI_AUX_PAGE, WI_SBCF_PDIADDR / WI_AUX_PGSZ);
3049 	CSR_WRITE_2(sc, WI_AUX_OFFSET, WI_SBCF_PDIADDR % WI_AUX_PGSZ);
3050 	CSR_READ_MULTI_STREAM_2(sc, WI_AUX_DATA,
3051 	    (uint16_t *)ebuf, sizeof(ebuf) / 2);
3052 	if (GETLE16(ebuf) > sizeof(ebuf))
3053 		return EIO;
3054 	if (wi_symbol_write_firm(sc, secsym, seclen, ebuf + 4, GETLE16(ebuf)))
3055 		return EIO;
3056 	return 0;
3057 }
3058 
3059 static int
3060 wi_symbol_write_firm(struct wi_softc *sc, const void *buf, int buflen,
3061     const void *ebuf, int ebuflen)
3062 {
3063 	const uint8_t *p, *ep, *q, *eq;
3064 	char *tp;
3065 	uint32_t addr, id, eid;
3066 	int i, len, elen, nblk, pdrlen;
3067 
3068 	/*
3069 	 * Parse the header of the firmware image.
3070 	 */
3071 	p = buf;
3072 	ep = p + buflen;
3073 	while (p < ep && *p++ != ' ');	/* FILE: */
3074 	while (p < ep && *p++ != ' ');	/* filename */
3075 	while (p < ep && *p++ != ' ');	/* type of the firmware */
3076 	nblk = strtoul(p, &tp, 10);
3077 	p = tp;
3078 	pdrlen = strtoul(p + 1, &tp, 10);
3079 	p = tp;
3080 	while (p < ep && *p++ != 0x1a);	/* skip rest of header */
3081 
3082 	/*
3083 	 * Block records: address[4], length[2], data[length];
3084 	 */
3085 	for (i = 0; i < nblk; i++) {
3086 		addr = GETLE32(p);	p += 4;
3087 		len  = GETLE16(p);	p += 2;
3088 		CSR_WRITE_2(sc, WI_AUX_PAGE, addr / WI_AUX_PGSZ);
3089 		CSR_WRITE_2(sc, WI_AUX_OFFSET, addr % WI_AUX_PGSZ);
3090 		CSR_WRITE_MULTI_STREAM_2(sc, WI_AUX_DATA,
3091 		    (const uint16_t *)p, len / 2);
3092 		p += len;
3093 	}
3094 
3095 	/*
3096 	 * PDR: id[4], address[4], length[4];
3097 	 */
3098 	for (i = 0; i < pdrlen; ) {
3099 		id   = GETLE32(p);	p += 4; i += 4;
3100 		addr = GETLE32(p);	p += 4; i += 4;
3101 		len  = GETLE32(p);	p += 4; i += 4;
3102 		/* replace PDR entry with the values from EEPROM, if any */
3103 		for (q = ebuf, eq = q + ebuflen; q < eq; q += elen * 2) {
3104 			elen = GETLE16(q);	q += 2;
3105 			eid  = GETLE16(q);	q += 2;
3106 			elen--;		/* elen includes eid */
3107 			if (eid == 0)
3108 				break;
3109 			if (eid != id)
3110 				continue;
3111 			CSR_WRITE_2(sc, WI_AUX_PAGE, addr / WI_AUX_PGSZ);
3112 			CSR_WRITE_2(sc, WI_AUX_OFFSET, addr % WI_AUX_PGSZ);
3113 			CSR_WRITE_MULTI_STREAM_2(sc, WI_AUX_DATA,
3114 			    (const uint16_t *)q, len / 2);
3115 			break;
3116 		}
3117 	}
3118 	return 0;
3119 }
3120 
3121 static int
3122 wi_symbol_set_hcr(struct wi_softc *sc, int mode)
3123 {
3124 	uint16_t hcr;
3125 
3126 	CSR_WRITE_2(sc, WI_COR, WI_COR_RESET);
3127 	tsleep(sc, 0, "wiinit", 1);
3128 	hcr = CSR_READ_2(sc, WI_HCR);
3129 	hcr = (hcr & WI_HCR_4WIRE) | (mode & ~WI_HCR_4WIRE);
3130 	CSR_WRITE_2(sc, WI_HCR, hcr);
3131 	tsleep(sc, 0, "wiinit", 1);
3132 	CSR_WRITE_2(sc, WI_COR, WI_COR_IOMODE);
3133 	tsleep(sc, 0, "wiinit", 1);
3134 	return 0;
3135 }
3136