xref: /dflybsd-src/sys/dev/netif/wb/if_wb.c (revision 3cf94ecf50c1958c7b10de185222fd2816ccfff0)
1 /*
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_wb.c,v 1.26.2.6 2003/03/05 18:42:34 njl Exp $
33  * $DragonFly: src/sys/dev/netif/wb/if_wb.c,v 1.24 2005/05/31 14:11:43 joerg Exp $
34  */
35 
36 /*
37  * Winbond fast ethernet PCI NIC driver
38  *
39  * Supports various cheap network adapters based on the Winbond W89C840F
40  * fast ethernet controller chip. This includes adapters manufactured by
41  * Winbond itself and some made by Linksys.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 
48 /*
49  * The Winbond W89C840F chip is a bus master; in some ways it resembles
50  * a DEC 'tulip' chip, only not as complicated. Unfortunately, it has
51  * one major difference which is that while the registers do many of
52  * the same things as a tulip adapter, the offsets are different: where
53  * tulip registers are typically spaced 8 bytes apart, the Winbond
54  * registers are spaced 4 bytes apart. The receiver filter is also
55  * programmed differently.
56  *
57  * Like the tulip, the Winbond chip uses small descriptors containing
58  * a status word, a control word and 32-bit areas that can either be used
59  * to point to two external data blocks, or to point to a single block
60  * and another descriptor in a linked list. Descriptors can be grouped
61  * together in blocks to form fixed length rings or can be chained
62  * together in linked lists. A single packet may be spread out over
63  * several descriptors if necessary.
64  *
65  * For the receive ring, this driver uses a linked list of descriptors,
66  * each pointing to a single mbuf cluster buffer, which us large enough
67  * to hold an entire packet. The link list is looped back to created a
68  * closed ring.
69  *
70  * For transmission, the driver creates a linked list of 'super descriptors'
71  * which each contain several individual descriptors linked toghether.
72  * Each 'super descriptor' contains WB_MAXFRAGS descriptors, which we
73  * abuse as fragment pointers. This allows us to use a buffer managment
74  * scheme very similar to that used in the ThunderLAN and Etherlink XL
75  * drivers.
76  *
77  * Autonegotiation is performed using the external PHY via the MII bus.
78  * The sample boards I have all use a Davicom PHY.
79  *
80  * Note: the author of the Linux driver for the Winbond chip alludes
81  * to some sort of flaw in the chip's design that seems to mandate some
82  * drastic workaround which signigicantly impairs transmit performance.
83  * I have no idea what he's on about: transmit performance with all
84  * three of my test boards seems fine.
85  */
86 
87 #include "opt_bdg.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/queue.h>
97 
98 #include <net/if.h>
99 #include <net/ifq_var.h>
100 #include <net/if_arp.h>
101 #include <net/ethernet.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 
105 #include <net/bpf.h>
106 
107 #include <vm/vm.h>              /* for vtophys */
108 #include <vm/pmap.h>            /* for vtophys */
109 #include <machine/bus.h>
110 #include <machine/resource.h>
111 #include <sys/bus.h>
112 #include <sys/rman.h>
113 
114 #include <bus/pci/pcireg.h>
115 #include <bus/pci/pcivar.h>
116 
117 #include <dev/netif/mii_layer/mii.h>
118 #include <dev/netif/mii_layer/miivar.h>
119 
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122 
123 #define WB_USEIOSPACE
124 
125 #include "if_wbreg.h"
126 
127 /*
128  * Various supported device vendors/types and their names.
129  */
130 static struct wb_type wb_devs[] = {
131 	{ WB_VENDORID, WB_DEVICEID_840F,
132 		"Winbond W89C840F 10/100BaseTX" },
133 	{ CP_VENDORID, CP_DEVICEID_RL100,
134 		"Compex RL100-ATX 10/100baseTX" },
135 	{ 0, 0, NULL }
136 };
137 
138 static int	wb_probe(device_t);
139 static int	wb_attach(device_t);
140 static int	wb_detach(device_t);
141 
142 static void	wb_bfree(void *);
143 static int	wb_newbuf(struct wb_softc *, struct wb_chain_onefrag *,
144 			  struct mbuf *);
145 static int	wb_encap(struct wb_softc *, struct wb_chain *, struct mbuf *);
146 
147 static void	wb_rxeof(struct wb_softc *);
148 static void	wb_rxeoc(struct wb_softc *);
149 static void	wb_txeof(struct wb_softc *);
150 static void	wb_txeoc(struct wb_softc *);
151 static void	wb_intr(void *);
152 static void	wb_tick(void *);
153 static void	wb_start(struct ifnet *);
154 static int	wb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
155 static void	wb_init(void *);
156 static void	wb_stop(struct wb_softc *);
157 static void	wb_watchdog(struct ifnet *);
158 static void	wb_shutdown(device_t);
159 static int	wb_ifmedia_upd(struct ifnet *);
160 static void	wb_ifmedia_sts(struct ifnet *, struct ifmediareq *);
161 
162 static void	wb_eeprom_putbyte(struct wb_softc *, int);
163 static void	wb_eeprom_getword(struct wb_softc *, int, uint16_t *);
164 static void	wb_read_eeprom(struct wb_softc *, caddr_t, int, int);
165 static void	wb_mii_sync(struct wb_softc *);
166 static void	wb_mii_send(struct wb_softc *, uint32_t, int);
167 static int	wb_mii_readreg(struct wb_softc *, struct wb_mii_frame *);
168 static int	wb_mii_writereg(struct wb_softc *, struct wb_mii_frame *);
169 
170 static void	wb_setcfg(struct wb_softc *, uint32_t);
171 static void	wb_setmulti(struct wb_softc *);
172 static void	wb_reset(struct wb_softc *);
173 static void	wb_fixmedia(struct wb_softc *);
174 static int	wb_list_rx_init(struct wb_softc *);
175 static int	wb_list_tx_init(struct wb_softc *);
176 
177 static int	wb_miibus_readreg(device_t, int, int);
178 static int	wb_miibus_writereg(device_t, int, int, int);
179 static void	wb_miibus_statchg(device_t);
180 
181 #ifdef WB_USEIOSPACE
182 #define WB_RES			SYS_RES_IOPORT
183 #define WB_RID			WB_PCI_LOIO
184 #else
185 #define WB_RES			SYS_RES_MEMORY
186 #define WB_RID			WB_PCI_LOMEM
187 #endif
188 
189 static device_method_t wb_methods[] = {
190 	/* Device interface */
191 	DEVMETHOD(device_probe,		wb_probe),
192 	DEVMETHOD(device_attach,	wb_attach),
193 	DEVMETHOD(device_detach,	wb_detach),
194 	DEVMETHOD(device_shutdown,	wb_shutdown),
195 
196 	/* bus interface, for miibus */
197 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
198 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
199 
200 	/* MII interface */
201 	DEVMETHOD(miibus_readreg,	wb_miibus_readreg),
202 	DEVMETHOD(miibus_writereg,	wb_miibus_writereg),
203 	DEVMETHOD(miibus_statchg,	wb_miibus_statchg),
204 	{ 0, 0 }
205 };
206 
207 static DEFINE_CLASS_0(wb, wb_driver, wb_methods, sizeof(struct wb_softc));
208 static devclass_t wb_devclass;
209 
210 DECLARE_DUMMY_MODULE(if_wb);
211 DRIVER_MODULE(if_wb, pci, wb_driver, wb_devclass, 0, 0);
212 DRIVER_MODULE(miibus, wb, miibus_driver, miibus_devclass, 0, 0);
213 
214 #define WB_SETBIT(sc, reg, x)				\
215 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
216 
217 #define WB_CLRBIT(sc, reg, x)				\
218 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
219 
220 #define SIO_SET(x)					\
221 	CSR_WRITE_4(sc, WB_SIO,	CSR_READ_4(sc, WB_SIO) | (x))
222 
223 #define SIO_CLR(x)					\
224 	CSR_WRITE_4(sc, WB_SIO, CSR_READ_4(sc, WB_SIO) & ~(x))
225 
226 /*
227  * Send a read command and address to the EEPROM, check for ACK.
228  */
229 static void
230 wb_eeprom_putbyte(struct wb_softc *sc, int addr)
231 {
232 	int d, i;
233 
234 	d = addr | WB_EECMD_READ;
235 
236 	/*
237 	 * Feed in each bit and stobe the clock.
238 	 */
239 	for (i = 0x400; i; i >>= 1) {
240 		if (d & i)
241 			SIO_SET(WB_SIO_EE_DATAIN);
242 		else
243 			SIO_CLR(WB_SIO_EE_DATAIN);
244 		DELAY(100);
245 		SIO_SET(WB_SIO_EE_CLK);
246 		DELAY(150);
247 		SIO_CLR(WB_SIO_EE_CLK);
248 		DELAY(100);
249 	}
250 }
251 
252 /*
253  * Read a word of data stored in the EEPROM at address 'addr.'
254  */
255 static void
256 wb_eeprom_getword(struct wb_softc *sc, int addr, uint16_t *dest)
257 {
258 	int i;
259 	uint16_t word = 0;
260 
261 	/* Enter EEPROM access mode. */
262 	CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
263 
264 	/*
265 	 * Send address of word we want to read.
266 	 */
267 	wb_eeprom_putbyte(sc, addr);
268 
269 	CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
270 
271 	/*
272 	 * Start reading bits from EEPROM.
273 	 */
274 	for (i = 0x8000; i; i >>= 1) {
275 		SIO_SET(WB_SIO_EE_CLK);
276 		DELAY(100);
277 		if (CSR_READ_4(sc, WB_SIO) & WB_SIO_EE_DATAOUT)
278 			word |= i;
279 		SIO_CLR(WB_SIO_EE_CLK);
280 		DELAY(100);
281 	}
282 
283 	/* Turn off EEPROM access mode. */
284 	CSR_WRITE_4(sc, WB_SIO, 0);
285 
286 	*dest = word;
287 }
288 
289 /*
290  * Read a sequence of words from the EEPROM.
291  */
292 static void
293 wb_read_eeprom(struct wb_softc *sc, caddr_t dest, int off, int cnt)
294 {
295 	int i;
296 	uint16_t word = 0, *ptr;
297 
298 	for (i = 0; i < cnt; i++) {
299 		wb_eeprom_getword(sc, off + i, &word);
300 		ptr = (uint16_t *)(dest + (i * 2));
301 		*ptr = word;
302 	}
303 }
304 
305 /*
306  * Sync the PHYs by setting data bit and strobing the clock 32 times.
307  */
308 static void
309 wb_mii_sync(struct wb_softc *sc)
310 {
311 	int i;
312 
313 	SIO_SET(WB_SIO_MII_DIR | WB_SIO_MII_DATAIN);
314 
315 	for (i = 0; i < 32; i++) {
316 		SIO_SET(WB_SIO_MII_CLK);
317 		DELAY(1);
318 		SIO_CLR(WB_SIO_MII_CLK);
319 		DELAY(1);
320 	}
321 }
322 
323 /*
324  * Clock a series of bits through the MII.
325  */
326 static void
327 wb_mii_send(struct wb_softc *sc, uint32_t bits, int cnt)
328 {
329 	int i;
330 
331 	SIO_CLR(WB_SIO_MII_CLK);
332 
333 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
334                 if (bits & i)
335 			SIO_SET(WB_SIO_MII_DATAIN);
336                 else
337 			SIO_CLR(WB_SIO_MII_DATAIN);
338 		DELAY(1);
339 		SIO_CLR(WB_SIO_MII_CLK);
340 		DELAY(1);
341 		SIO_SET(WB_SIO_MII_CLK);
342 	}
343 }
344 
345 /*
346  * Read an PHY register through the MII.
347  */
348 static int
349 wb_mii_readreg(struct wb_softc *sc, struct wb_mii_frame *frame)
350 {
351 	int ack, i, s;
352 
353 	s = splimp();
354 
355 	/*
356 	 * Set up frame for RX.
357 	 */
358 	frame->mii_stdelim = WB_MII_STARTDELIM;
359 	frame->mii_opcode = WB_MII_READOP;
360 	frame->mii_turnaround = 0;
361 	frame->mii_data = 0;
362 
363 	CSR_WRITE_4(sc, WB_SIO, 0);
364 
365 	/*
366  	 * Turn on data xmit.
367 	 */
368 	SIO_SET(WB_SIO_MII_DIR);
369 
370 	wb_mii_sync(sc);
371 
372 	/*
373 	 * Send command/address info.
374 	 */
375 	wb_mii_send(sc, frame->mii_stdelim, 2);
376 	wb_mii_send(sc, frame->mii_opcode, 2);
377 	wb_mii_send(sc, frame->mii_phyaddr, 5);
378 	wb_mii_send(sc, frame->mii_regaddr, 5);
379 
380 	/* Idle bit */
381 	SIO_CLR((WB_SIO_MII_CLK | WB_SIO_MII_DATAIN));
382 	DELAY(1);
383 	SIO_SET(WB_SIO_MII_CLK);
384 	DELAY(1);
385 
386 	/* Turn off xmit. */
387 	SIO_CLR(WB_SIO_MII_DIR);
388 	/* Check for ack */
389 	SIO_CLR(WB_SIO_MII_CLK);
390 	DELAY(1);
391 	ack = CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT;
392 	SIO_SET(WB_SIO_MII_CLK);
393 	DELAY(1);
394 	SIO_CLR(WB_SIO_MII_CLK);
395 	DELAY(1);
396 	SIO_SET(WB_SIO_MII_CLK);
397 	DELAY(1);
398 
399 	/*
400 	 * Now try reading data bits. If the ack failed, we still
401 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
402 	 */
403 	if (ack) {
404 		for(i = 0; i < 16; i++) {
405 			SIO_CLR(WB_SIO_MII_CLK);
406 			DELAY(1);
407 			SIO_SET(WB_SIO_MII_CLK);
408 			DELAY(1);
409 		}
410 		goto fail;
411 	}
412 
413 	for (i = 0x8000; i; i >>= 1) {
414 		SIO_CLR(WB_SIO_MII_CLK);
415 		DELAY(1);
416 		if (!ack) {
417 			if (CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT)
418 				frame->mii_data |= i;
419 			DELAY(1);
420 		}
421 		SIO_SET(WB_SIO_MII_CLK);
422 		DELAY(1);
423 	}
424 
425 fail:
426 
427 	SIO_CLR(WB_SIO_MII_CLK);
428 	DELAY(1);
429 	SIO_SET(WB_SIO_MII_CLK);
430 	DELAY(1);
431 
432 	splx(s);
433 
434 	if (ack)
435 		return(1);
436 	return(0);
437 }
438 
439 /*
440  * Write to a PHY register through the MII.
441  */
442 static int
443 wb_mii_writereg(struct wb_softc *sc, struct wb_mii_frame *frame)
444 {
445 	int s;
446 
447 	s = splimp();
448 	/*
449 	 * Set up frame for TX.
450 	 */
451 
452 	frame->mii_stdelim = WB_MII_STARTDELIM;
453 	frame->mii_opcode = WB_MII_WRITEOP;
454 	frame->mii_turnaround = WB_MII_TURNAROUND;
455 
456 	/*
457  	 * Turn on data output.
458 	 */
459 	SIO_SET(WB_SIO_MII_DIR);
460 
461 	wb_mii_sync(sc);
462 
463 	wb_mii_send(sc, frame->mii_stdelim, 2);
464 	wb_mii_send(sc, frame->mii_opcode, 2);
465 	wb_mii_send(sc, frame->mii_phyaddr, 5);
466 	wb_mii_send(sc, frame->mii_regaddr, 5);
467 	wb_mii_send(sc, frame->mii_turnaround, 2);
468 	wb_mii_send(sc, frame->mii_data, 16);
469 
470 	/* Idle bit. */
471 	SIO_SET(WB_SIO_MII_CLK);
472 	DELAY(1);
473 	SIO_CLR(WB_SIO_MII_CLK);
474 	DELAY(1);
475 
476 	/*
477 	 * Turn off xmit.
478 	 */
479 	SIO_CLR(WB_SIO_MII_DIR);
480 
481 	splx(s);
482 
483 	return(0);
484 }
485 
486 static int
487 wb_miibus_readreg(device_t dev, int phy, int reg)
488 {
489 	struct wb_softc *sc = device_get_softc(dev);
490 	struct wb_mii_frame frame;
491 
492 	bzero(&frame, sizeof(frame));
493 
494 	frame.mii_phyaddr = phy;
495 	frame.mii_regaddr = reg;
496 	wb_mii_readreg(sc, &frame);
497 
498 	return(frame.mii_data);
499 }
500 
501 static int
502 wb_miibus_writereg(device_t dev, int phy, int reg, int data)
503 {
504 	struct wb_softc *sc = device_get_softc(dev);
505 	struct wb_mii_frame frame;
506 
507 	bzero(&frame, sizeof(frame));
508 
509 	frame.mii_phyaddr = phy;
510 	frame.mii_regaddr = reg;
511 	frame.mii_data = data;
512 
513 	wb_mii_writereg(sc, &frame);
514 
515 	return(0);
516 }
517 
518 static void
519 wb_miibus_statchg(device_t dev)
520 {
521 	struct wb_softc *sc = device_get_softc(dev);
522 	struct mii_data *mii;
523 
524 	mii = device_get_softc(sc->wb_miibus);
525 	wb_setcfg(sc, mii->mii_media_active);
526 }
527 
528 /*
529  * Program the 64-bit multicast hash filter.
530  */
531 static void
532 wb_setmulti(struct wb_softc *sc)
533 {
534 	struct ifnet *ifp = &sc->arpcom.ac_if;
535 	int h = 0, mcnt = 0;
536 	uint32_t hashes[2] = { 0, 0 };
537 	struct ifmultiaddr *ifma;
538 	uint32_t rxfilt;
539 
540 	rxfilt = CSR_READ_4(sc, WB_NETCFG);
541 
542 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
543 		rxfilt |= WB_NETCFG_RX_MULTI;
544 		CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
545 		CSR_WRITE_4(sc, WB_MAR0, 0xFFFFFFFF);
546 		CSR_WRITE_4(sc, WB_MAR1, 0xFFFFFFFF);
547 		return;
548 	}
549 
550 	/* first, zot all the existing hash bits */
551 	CSR_WRITE_4(sc, WB_MAR0, 0);
552 	CSR_WRITE_4(sc, WB_MAR1, 0);
553 
554 	/* now program new ones */
555 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
556 		if (ifma->ifma_addr->sa_family != AF_LINK)
557 			continue;
558 		h = ~ether_crc32_be(LLADDR((struct sockaddr_dl *)
559 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
560 		if (h < 32)
561 			hashes[0] |= (1 << h);
562 		else
563 			hashes[1] |= (1 << (h - 32));
564 		mcnt++;
565 	}
566 
567 	if (mcnt)
568 		rxfilt |= WB_NETCFG_RX_MULTI;
569 	else
570 		rxfilt &= ~WB_NETCFG_RX_MULTI;
571 
572 	CSR_WRITE_4(sc, WB_MAR0, hashes[0]);
573 	CSR_WRITE_4(sc, WB_MAR1, hashes[1]);
574 	CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
575 }
576 
577 /*
578  * The Winbond manual states that in order to fiddle with the
579  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
580  * first have to put the transmit and/or receive logic in the idle state.
581  */
582 static void
583 wb_setcfg(struct wb_softc *sc, uint32_t media)
584 {
585 	int i, restart = 0;
586 
587 	if (CSR_READ_4(sc, WB_NETCFG) & (WB_NETCFG_TX_ON | WB_NETCFG_RX_ON)) {
588 		restart = 1;
589 		WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_TX_ON | WB_NETCFG_RX_ON));
590 
591 		for (i = 0; i < WB_TIMEOUT; i++) {
592 			DELAY(10);
593 			if ((CSR_READ_4(sc, WB_ISR) & WB_ISR_TX_IDLE) &&
594 				(CSR_READ_4(sc, WB_ISR) & WB_ISR_RX_IDLE))
595 				break;
596 		}
597 
598 		if (i == WB_TIMEOUT)
599 			printf("wb%d: failed to force tx and "
600 				"rx to idle state\n", sc->wb_unit);
601 	}
602 
603 	if (IFM_SUBTYPE(media) == IFM_10_T)
604 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
605 	else
606 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
607 
608 	if ((media & IFM_GMASK) == IFM_FDX)
609 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
610 	else
611 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
612 
613 	if (restart)
614 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON | WB_NETCFG_RX_ON);
615 }
616 
617 static void
618 wb_reset(struct wb_softc *sc)
619 {
620 	int i;
621 	struct mii_data *mii;
622 
623 	CSR_WRITE_4(sc, WB_NETCFG, 0);
624 	CSR_WRITE_4(sc, WB_BUSCTL, 0);
625 	CSR_WRITE_4(sc, WB_TXADDR, 0);
626 	CSR_WRITE_4(sc, WB_RXADDR, 0);
627 
628 	WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
629 	WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
630 
631 	for (i = 0; i < WB_TIMEOUT; i++) {
632 		DELAY(10);
633 		if ((CSR_READ_4(sc, WB_BUSCTL) & WB_BUSCTL_RESET) == 0)
634 			break;
635 	}
636 	if (i == WB_TIMEOUT)
637 		printf("wb%d: reset never completed!\n", sc->wb_unit);
638 
639 	/* Wait a little while for the chip to get its brains in order. */
640 	DELAY(1000);
641 
642 	if (sc->wb_miibus == NULL)
643 		return;
644 
645 	mii = device_get_softc(sc->wb_miibus);
646 	if (mii == NULL)
647 		return;
648 
649         if (mii->mii_instance) {
650 		struct mii_softc *miisc;
651 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
652                         mii_phy_reset(miisc);
653         }
654 }
655 
656 static void
657 wb_fixmedia(struct wb_softc *sc)
658 {
659 	struct mii_data *mii;
660 	uint32_t media;
661 
662 	if (sc->wb_miibus == NULL)
663 		return;
664 
665 	mii = device_get_softc(sc->wb_miibus);
666 
667 	mii_pollstat(mii);
668 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
669 		media = mii->mii_media_active & ~IFM_10_T;
670 		media |= IFM_100_TX;
671 	} else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
672 		media = mii->mii_media_active & ~IFM_100_TX;
673 		media |= IFM_10_T;
674 	} else
675 		return;
676 
677 	ifmedia_set(&mii->mii_media, media);
678 }
679 
680 /*
681  * Probe for a Winbond chip. Check the PCI vendor and device
682  * IDs against our list and return a device name if we find a match.
683  */
684 static int wb_probe(device_t dev)
685 {
686 	struct wb_type *t;
687 	uint16_t vendor, product;
688 
689 	vendor = pci_get_vendor(dev);
690 	product = pci_get_device(dev);
691 
692 	for (t = wb_devs; t->wb_name != NULL; t++) {
693 		if (vendor == t->wb_vid && product == t->wb_did) {
694 			device_set_desc(dev, t->wb_name);
695 			return(0);
696 		}
697 	}
698 
699 	return(ENXIO);
700 }
701 
702 /*
703  * Attach the interface. Allocate softc structures, do ifmedia
704  * setup and ethernet/BPF attach.
705  */
706 static int
707 wb_attach(device_t dev)
708 {
709 	u_char eaddr[ETHER_ADDR_LEN];
710 	uint32_t command;
711 	struct wb_softc *sc;
712 	struct ifnet *ifp;
713 	int error = 0, rid, s, unit;
714 
715 	s = splimp();
716 
717 	sc = device_get_softc(dev);
718 	unit = device_get_unit(dev);
719 	callout_init(&sc->wb_stat_timer);
720 
721 	/*
722 	 * Handle power management nonsense.
723 	 */
724 
725 	command = pci_read_config(dev, WB_PCI_CAPID, 4) & 0x000000FF;
726 	if (command == 0x01) {
727 
728 		command = pci_read_config(dev, WB_PCI_PWRMGMTCTRL, 4);
729 		if (command & WB_PSTATE_MASK) {
730 			uint32_t iobase, membase, irq;
731 
732 			/* Save important PCI config data. */
733 			iobase = pci_read_config(dev, WB_PCI_LOIO, 4);
734 			membase = pci_read_config(dev, WB_PCI_LOMEM, 4);
735 			irq = pci_read_config(dev, WB_PCI_INTLINE, 4);
736 
737 			/* Reset the power state. */
738 			printf("wb%d: chip is in D%d power mode "
739 			"-- setting to D0\n", unit, command & WB_PSTATE_MASK);
740 			command &= 0xFFFFFFFC;
741 			pci_write_config(dev, WB_PCI_PWRMGMTCTRL, command, 4);
742 
743 			/* Restore PCI config data. */
744 			pci_write_config(dev, WB_PCI_LOIO, iobase, 4);
745 			pci_write_config(dev, WB_PCI_LOMEM, membase, 4);
746 			pci_write_config(dev, WB_PCI_INTLINE, irq, 4);
747 		}
748 	}
749 
750 	/*
751 	 * Map control/status registers.
752 	 */
753 	command = pci_read_config(dev, PCIR_COMMAND, 4);
754 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
755 	pci_write_config(dev, PCIR_COMMAND, command, 4);
756 	command = pci_read_config(dev, PCIR_COMMAND, 4);
757 
758 #ifdef WB_USEIOSPACE
759 	if ((command & PCIM_CMD_PORTEN) == 0) {
760 		printf("wb%d: failed to enable I/O ports!\n", unit);
761 		error = ENXIO;
762 		goto fail;
763 	}
764 #else
765 	if ((command & PCIM_CMD_MEMEN) == 0) {
766 		printf("wb%d: failed to enable memory mapping!\n", unit);
767 		error = ENXIO;
768 		goto fail;
769 	}
770 #endif
771 
772 	rid = WB_RID;
773 	sc->wb_res = bus_alloc_resource_any(dev, WB_RES, &rid, RF_ACTIVE);
774 
775 	if (sc->wb_res == NULL) {
776 		printf("wb%d: couldn't map ports/memory\n", unit);
777 		error = ENXIO;
778 		goto fail;
779 	}
780 
781 	sc->wb_btag = rman_get_bustag(sc->wb_res);
782 	sc->wb_bhandle = rman_get_bushandle(sc->wb_res);
783 
784 	/* Allocate interrupt */
785 	rid = 0;
786 	sc->wb_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
787 	    RF_SHAREABLE | RF_ACTIVE);
788 
789 	if (sc->wb_irq == NULL) {
790 		printf("wb%d: couldn't map interrupt\n", unit);
791 		bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
792 		error = ENXIO;
793 		goto fail;
794 	}
795 
796 	error = bus_setup_intr(dev, sc->wb_irq, INTR_TYPE_NET,
797 			       wb_intr, sc, &sc->wb_intrhand, NULL);
798 
799 	if (error) {
800 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
801 		bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
802 		printf("wb%d: couldn't set up irq\n", unit);
803 		goto fail;
804 	}
805 
806 	/* Save the cache line size. */
807 	sc->wb_cachesize = pci_read_config(dev, WB_PCI_CACHELEN, 4) & 0xFF;
808 
809 	/* Reset the adapter. */
810 	wb_reset(sc);
811 
812 	/*
813 	 * Get station address from the EEPROM.
814 	 */
815 	wb_read_eeprom(sc, (caddr_t)&eaddr, 0, 3);
816 
817 	sc->wb_unit = unit;
818 
819 	sc->wb_ldata = contigmalloc(sizeof(struct wb_list_data) + 8, M_DEVBUF,
820 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
821 
822 	if (sc->wb_ldata == NULL) {
823 		printf("wb%d: no memory for list buffers!\n", unit);
824 		bus_teardown_intr(dev, sc->wb_irq, sc->wb_intrhand);
825 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
826 		bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
827 		error = ENXIO;
828 		goto fail;
829 	}
830 
831 	bzero(sc->wb_ldata, sizeof(struct wb_list_data));
832 
833 	ifp = &sc->arpcom.ac_if;
834 	ifp->if_softc = sc;
835 	if_initname(ifp, "wb", unit);
836 	ifp->if_mtu = ETHERMTU;
837 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
838 	ifp->if_ioctl = wb_ioctl;
839 	ifp->if_start = wb_start;
840 	ifp->if_watchdog = wb_watchdog;
841 	ifp->if_init = wb_init;
842 	ifp->if_baudrate = 10000000;
843 	ifq_set_maxlen(&ifp->if_snd, WB_TX_LIST_CNT - 1);
844 	ifq_set_ready(&ifp->if_snd);
845 
846 	/*
847 	 * Do MII setup.
848 	 */
849 	if (mii_phy_probe(dev, &sc->wb_miibus,
850 	    wb_ifmedia_upd, wb_ifmedia_sts)) {
851 		contigfree(sc->wb_ldata_ptr, sizeof(struct wb_list_data) + 8,
852 		    M_DEVBUF);
853 		bus_teardown_intr(dev, sc->wb_irq, sc->wb_intrhand);
854 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
855 		bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
856 		error = ENXIO;
857 		goto fail;
858 	}
859 
860 	/*
861 	 * Call MI attach routine.
862 	 */
863 	ether_ifattach(ifp, eaddr);
864 
865 fail:
866 	if (error)
867 		device_delete_child(dev, sc->wb_miibus);
868 	splx(s);
869 
870 	return(error);
871 }
872 
873 static int
874 wb_detach(device_t dev)
875 {
876 	struct wb_softc *sc = device_get_softc(dev);
877 	struct ifnet *ifp = &sc->arpcom.ac_if;
878 	int s;
879 
880 	s = splimp();
881 
882 	wb_stop(sc);
883 	ether_ifdetach(ifp);
884 
885 	/* Delete any miibus and phy devices attached to this interface */
886 	bus_generic_detach(dev);
887 	device_delete_child(dev, sc->wb_miibus);
888 
889 	bus_teardown_intr(dev, sc->wb_irq, sc->wb_intrhand);
890 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->wb_irq);
891 	bus_release_resource(dev, WB_RES, WB_RID, sc->wb_res);
892 
893 	contigfree(sc->wb_ldata_ptr, sizeof(struct wb_list_data) + 8,
894 	    M_DEVBUF);
895 
896 	splx(s);
897 
898 	return(0);
899 }
900 
901 /*
902  * Initialize the transmit descriptors.
903  */
904 static int
905 wb_list_tx_init(struct wb_softc *sc)
906 {
907 	struct wb_chain_data *cd;
908 	struct wb_list_data *ld;
909 	int i, nexti;
910 
911 	cd = &sc->wb_cdata;
912 	ld = sc->wb_ldata;
913 
914 	for (i = 0; i < WB_TX_LIST_CNT; i++) {
915 		nexti = (i == WB_TX_LIST_CNT - 1) ? 0 : i + 1;
916 		cd->wb_tx_chain[i].wb_ptr = &ld->wb_tx_list[i];
917 		cd->wb_tx_chain[i].wb_nextdesc = &cd->wb_tx_chain[nexti];
918 	}
919 
920 	cd->wb_tx_free = &cd->wb_tx_chain[0];
921 	cd->wb_tx_tail = cd->wb_tx_head = NULL;
922 
923 	return(0);
924 }
925 
926 /*
927  * Initialize the RX descriptors and allocate mbufs for them. Note that
928  * we arrange the descriptors in a closed ring, so that the last descriptor
929  * points back to the first.
930  */
931 static int
932 wb_list_rx_init(struct wb_softc *sc)
933 {
934 	struct wb_chain_data *cd;
935 	struct wb_list_data *ld;
936 	int i, nexti;
937 
938 	cd = &sc->wb_cdata;
939 	ld = sc->wb_ldata;
940 
941 	for (i = 0; i < WB_RX_LIST_CNT; i++) {
942 		cd->wb_rx_chain[i].wb_ptr = &ld->wb_rx_list[i];
943 		cd->wb_rx_chain[i].wb_buf = &ld->wb_rxbufs[i];
944 		if (wb_newbuf(sc, &cd->wb_rx_chain[i], NULL) == ENOBUFS)
945 			return(ENOBUFS);
946 		nexti = (WB_RX_LIST_CNT - 1) ? 0 : i + 1;
947 		cd->wb_rx_chain[i].wb_nextdesc = &cd->wb_rx_chain[nexti];
948 		ld->wb_rx_list[i].wb_next =  vtophys(&ld->wb_rx_list[nexti]);
949 	}
950 
951 	cd->wb_rx_head = &cd->wb_rx_chain[0];
952 
953 	return(0);
954 }
955 
956 static void
957 wb_bfree(void *arg)
958 {
959 }
960 
961 /*
962  * Initialize an RX descriptor and attach an MBUF cluster.
963  */
964 static int
965 wb_newbuf(struct wb_softc *sc, struct wb_chain_onefrag *c, struct mbuf *m)
966 {
967 	struct mbuf *m_new = NULL;
968 
969 	if (m == NULL) {
970 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
971 		if (m_new == NULL)
972 			return(ENOBUFS);
973 
974 		m_new->m_data = m_new->m_ext.ext_buf = c->wb_buf;
975 		m_new->m_flags |= M_EXT;
976 		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
977 		    m_new->m_len = WB_BUFBYTES;
978 		m_new->m_ext.ext_free = wb_bfree;
979 		m_new->m_ext.ext_ref = wb_bfree;
980 	} else {
981 		m_new = m;
982 		m_new->m_len = m_new->m_pkthdr.len = WB_BUFBYTES;
983 		m_new->m_data = m_new->m_ext.ext_buf;
984 	}
985 
986 	m_adj(m_new, sizeof(uint64_t));
987 
988 	c->wb_mbuf = m_new;
989 	c->wb_ptr->wb_data = vtophys(mtod(m_new, caddr_t));
990 	c->wb_ptr->wb_ctl = WB_RXCTL_RLINK | 1536;
991 	c->wb_ptr->wb_status = WB_RXSTAT;
992 
993 	return(0);
994 }
995 
996 /*
997  * A frame has been uploaded: pass the resulting mbuf chain up to
998  * the higher level protocols.
999  */
1000 static void
1001 wb_rxeof(struct wb_softc *sc)
1002 {
1003         struct ifnet *ifp = &sc->arpcom.ac_if;
1004         struct mbuf *m, *m0;
1005 	struct wb_chain_onefrag *cur_rx;
1006 	int total_len = 0;
1007 	uint32_t rxstat;
1008 
1009 	for (;;) {
1010 		rxstat = sc->wb_cdata.wb_rx_head->wb_ptr->wb_status;
1011 		if ((rxstat & WB_RXSTAT_OWN) == 0)
1012 			break;
1013 
1014 		cur_rx = sc->wb_cdata.wb_rx_head;
1015 		sc->wb_cdata.wb_rx_head = cur_rx->wb_nextdesc;
1016 
1017 		m = cur_rx->wb_mbuf;
1018 
1019 		if ((rxstat & WB_RXSTAT_MIIERR) ||
1020 		    (WB_RXBYTES(cur_rx->wb_ptr->wb_status) < WB_MIN_FRAMELEN) ||
1021 		    (WB_RXBYTES(cur_rx->wb_ptr->wb_status) > 1536) ||
1022 		    (rxstat & WB_RXSTAT_LASTFRAG) == 0||
1023 		    (rxstat & WB_RXSTAT_RXCMP) == 0) {
1024 			ifp->if_ierrors++;
1025 			wb_newbuf(sc, cur_rx, m);
1026 			printf("wb%x: receiver babbling: possible chip "
1027 				"bug, forcing reset\n", sc->wb_unit);
1028 			wb_fixmedia(sc);
1029 			wb_reset(sc);
1030 			wb_init(sc);
1031 			return;
1032 		}
1033 
1034 		if (rxstat & WB_RXSTAT_RXERR) {
1035 			ifp->if_ierrors++;
1036 			wb_newbuf(sc, cur_rx, m);
1037 			break;
1038 		}
1039 
1040 		/* No errors; receive the packet. */
1041 		total_len = WB_RXBYTES(cur_rx->wb_ptr->wb_status);
1042 
1043 		/*
1044 		 * XXX The Winbond chip includes the CRC with every
1045 		 * received frame, and there's no way to turn this
1046 		 * behavior off (at least, I can't find anything in
1047 	 	 * the manual that explains how to do it) so we have
1048 		 * to trim off the CRC manually.
1049 		 */
1050 		total_len -= ETHER_CRC_LEN;
1051 
1052 		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1053 		     total_len + ETHER_ALIGN, 0, ifp, NULL);
1054 		wb_newbuf(sc, cur_rx, m);
1055 		if (m0 == NULL) {
1056 			ifp->if_ierrors++;
1057 			break;
1058 		}
1059 		m_adj(m0, ETHER_ALIGN);
1060 		m = m0;
1061 
1062 		ifp->if_ipackets++;
1063 		(*ifp->if_input)(ifp, m);
1064 	}
1065 }
1066 
1067 static void
1068 wb_rxeoc(struct wb_softc *sc)
1069 {
1070 	wb_rxeof(sc);
1071 
1072 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1073 	CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
1074 	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1075 	if (CSR_READ_4(sc, WB_ISR) & WB_RXSTATE_SUSPEND)
1076 		CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
1077 }
1078 
1079 /*
1080  * A frame was downloaded to the chip. It's safe for us to clean up
1081  * the list buffers.
1082  */
1083 static void
1084 wb_txeof(struct wb_softc *sc)
1085 {
1086 	struct ifnet *ifp = &sc->arpcom.ac_if;
1087 	struct wb_chain *cur_tx;
1088 
1089 	/* Clear the timeout timer. */
1090 	ifp->if_timer = 0;
1091 
1092 	if (sc->wb_cdata.wb_tx_head == NULL)
1093 		return;
1094 
1095 	/*
1096 	 * Go through our tx list and free mbufs for those
1097 	 * frames that have been transmitted.
1098 	 */
1099 	while(sc->wb_cdata.wb_tx_head->wb_mbuf != NULL) {
1100 		uint32_t txstat;
1101 
1102 		cur_tx = sc->wb_cdata.wb_tx_head;
1103 		txstat = WB_TXSTATUS(cur_tx);
1104 
1105 		if ((txstat & WB_TXSTAT_OWN) || txstat == WB_UNSENT)
1106 			break;
1107 
1108 		if (txstat & WB_TXSTAT_TXERR) {
1109 			ifp->if_oerrors++;
1110 			if (txstat & WB_TXSTAT_ABORT)
1111 				ifp->if_collisions++;
1112 			if (txstat & WB_TXSTAT_LATECOLL)
1113 				ifp->if_collisions++;
1114 		}
1115 
1116 		ifp->if_collisions += (txstat & WB_TXSTAT_COLLCNT) >> 3;
1117 
1118 		ifp->if_opackets++;
1119 		m_freem(cur_tx->wb_mbuf);
1120 		cur_tx->wb_mbuf = NULL;
1121 
1122 		if (sc->wb_cdata.wb_tx_head == sc->wb_cdata.wb_tx_tail) {
1123 			sc->wb_cdata.wb_tx_head = NULL;
1124 			sc->wb_cdata.wb_tx_tail = NULL;
1125 			break;
1126 		}
1127 
1128 		sc->wb_cdata.wb_tx_head = cur_tx->wb_nextdesc;
1129 	}
1130 }
1131 
1132 /*
1133  * TX 'end of channel' interrupt handler.
1134  */
1135 static void
1136 wb_txeoc(struct wb_softc *sc)
1137 {
1138 	struct ifnet *ifp = &sc->arpcom.ac_if;
1139 
1140 	ifp->if_timer = 0;
1141 
1142 	if (sc->wb_cdata.wb_tx_head == NULL) {
1143 		ifp->if_flags &= ~IFF_OACTIVE;
1144 		sc->wb_cdata.wb_tx_tail = NULL;
1145 	} else if (WB_TXOWN(sc->wb_cdata.wb_tx_head) == WB_UNSENT) {
1146 		WB_TXOWN(sc->wb_cdata.wb_tx_head) = WB_TXSTAT_OWN;
1147 		ifp->if_timer = 5;
1148 		CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1149 	}
1150 }
1151 
1152 static void
1153 wb_intr(void *arg)
1154 {
1155 	struct wb_softc *sc = arg;
1156 	struct ifnet *ifp = &sc->arpcom.ac_if;
1157 	uint32_t status;
1158 
1159 	if ((ifp->if_flags & IFF_UP) == 0)
1160 		return;
1161 
1162 	/* Disable interrupts. */
1163 	CSR_WRITE_4(sc, WB_IMR, 0x00000000);
1164 
1165 	for (;;) {
1166 		status = CSR_READ_4(sc, WB_ISR);
1167 		if (status)
1168 			CSR_WRITE_4(sc, WB_ISR, status);
1169 
1170 		if ((status & WB_INTRS) == 0)
1171 			break;
1172 
1173 		if ((status & WB_ISR_RX_NOBUF) || (status & WB_ISR_RX_ERR)) {
1174 			ifp->if_ierrors++;
1175 			wb_reset(sc);
1176 			if (status & WB_ISR_RX_ERR)
1177 				wb_fixmedia(sc);
1178 			wb_init(sc);
1179 			continue;
1180 		}
1181 
1182 		if (status & WB_ISR_RX_OK)
1183 			wb_rxeof(sc);
1184 
1185 		if (status & WB_ISR_RX_IDLE)
1186 			wb_rxeoc(sc);
1187 
1188 		if (status & WB_ISR_TX_OK)
1189 			wb_txeof(sc);
1190 
1191 		if (status & WB_ISR_TX_NOBUF)
1192 			wb_txeoc(sc);
1193 
1194 		if (status & WB_ISR_TX_IDLE) {
1195 			wb_txeof(sc);
1196 			if (sc->wb_cdata.wb_tx_head != NULL) {
1197 				WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1198 				CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1199 			}
1200 		}
1201 
1202 		if (status & WB_ISR_TX_UNDERRUN) {
1203 			ifp->if_oerrors++;
1204 			wb_txeof(sc);
1205 			WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1206 			/* Jack up TX threshold */
1207 			sc->wb_txthresh += WB_TXTHRESH_CHUNK;
1208 			WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
1209 			WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
1210 			WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1211 		}
1212 
1213 		if (status & WB_ISR_BUS_ERR) {
1214 			wb_reset(sc);
1215 			wb_init(sc);
1216 		}
1217 	}
1218 
1219 	/* Re-enable interrupts. */
1220 	CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
1221 
1222 	if (!ifq_is_empty(&ifp->if_snd))
1223 		wb_start(ifp);
1224 }
1225 
1226 static void
1227 wb_tick(void *xsc)
1228 {
1229 	struct wb_softc *sc = xsc;
1230 	struct mii_data *mii = device_get_softc(sc->wb_miibus);
1231 	int s;
1232 
1233 	s = splimp();
1234 
1235 	mii_tick(mii);
1236 
1237 	callout_reset(&sc->wb_stat_timer, hz, wb_tick, sc);
1238 
1239 	splx(s);
1240 }
1241 
1242 /*
1243  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1244  * pointers to the fragment pointers.
1245  */
1246 static int
1247 wb_encap(struct wb_softc *sc, struct wb_chain *c, struct mbuf *m_head)
1248 {
1249 	struct wb_desc *f = NULL;
1250 	struct mbuf *m;
1251 	int frag, total_len;
1252 
1253 	/*
1254  	 * Start packing the mbufs in this chain into
1255 	 * the fragment pointers. Stop when we run out
1256  	 * of fragments or hit the end of the mbuf chain.
1257 	 */
1258 	total_len = 0;
1259 
1260 	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1261 		if (m->m_len != 0) {
1262 			if (frag == WB_MAXFRAGS)
1263 				break;
1264 			total_len += m->m_len;
1265 			f = &c->wb_ptr->wb_frag[frag];
1266 			f->wb_ctl = WB_TXCTL_TLINK | m->m_len;
1267 			if (frag == 0) {
1268 				f->wb_ctl |= WB_TXCTL_FIRSTFRAG;
1269 				f->wb_status = 0;
1270 			} else {
1271 				f->wb_status = WB_TXSTAT_OWN;
1272 			}
1273 			f->wb_next = vtophys(&c->wb_ptr->wb_frag[frag + 1]);
1274 			f->wb_data = vtophys(mtod(m, vm_offset_t));
1275 			frag++;
1276 		}
1277 	}
1278 
1279 	/*
1280 	 * Handle special case: we used up all 16 fragments,
1281 	 * but we have more mbufs left in the chain. Copy the
1282 	 * data into an mbuf cluster. Note that we don't
1283 	 * bother clearing the values in the other fragment
1284 	 * pointers/counters; it wouldn't gain us anything,
1285 	 * and would waste cycles.
1286 	 */
1287 	if (m != NULL) {
1288 		struct mbuf *m_new = NULL;
1289 
1290 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1291 		if (m_new == NULL)
1292 			return(1);
1293 		if (m_head->m_pkthdr.len > MHLEN) {
1294 			MCLGET(m_new, MB_DONTWAIT);
1295 			if ((m_new->m_flags & M_EXT) == 0) {
1296 				m_freem(m_new);
1297 				return(1);
1298 			}
1299 		}
1300 		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1301 		    mtod(m_new, caddr_t));
1302 		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1303 		m_freem(m_head);
1304 		m_head = m_new;
1305 		f = &c->wb_ptr->wb_frag[0];
1306 		f->wb_status = 0;
1307 		f->wb_data = vtophys(mtod(m_new, caddr_t));
1308 		f->wb_ctl = total_len = m_new->m_len;
1309 		f->wb_ctl |= WB_TXCTL_TLINK|WB_TXCTL_FIRSTFRAG;
1310 		frag = 1;
1311 	}
1312 
1313 	if (total_len < WB_MIN_FRAMELEN) {
1314 		f = &c->wb_ptr->wb_frag[frag];
1315 		f->wb_ctl = WB_MIN_FRAMELEN - total_len;
1316 		f->wb_data = vtophys(&sc->wb_cdata.wb_pad);
1317 		f->wb_ctl |= WB_TXCTL_TLINK;
1318 		f->wb_status = WB_TXSTAT_OWN;
1319 		frag++;
1320 	}
1321 
1322 	c->wb_mbuf = m_head;
1323 	c->wb_lastdesc = frag - 1;
1324 	WB_TXCTL(c) |= WB_TXCTL_LASTFRAG;
1325 	WB_TXNEXT(c) = vtophys(&c->wb_nextdesc->wb_ptr->wb_frag[0]);
1326 
1327 	return(0);
1328 }
1329 
1330 /*
1331  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1332  * to the mbuf data regions directly in the transmit lists. We also save a
1333  * copy of the pointers since the transmit list fragment pointers are
1334  * physical addresses.
1335  */
1336 static void
1337 wb_start(struct ifnet *ifp)
1338 {
1339 	struct wb_softc *sc = ifp->if_softc;
1340 	struct mbuf *m_head = NULL;
1341 	struct wb_chain *cur_tx = NULL, *start_tx;
1342 
1343 	/*
1344 	 * Check for an available queue slot. If there are none,
1345 	 * punt.
1346 	 */
1347 	if (sc->wb_cdata.wb_tx_free->wb_mbuf != NULL) {
1348 		ifp->if_flags |= IFF_OACTIVE;
1349 		return;
1350 	}
1351 
1352 	start_tx = sc->wb_cdata.wb_tx_free;
1353 
1354 	while (sc->wb_cdata.wb_tx_free->wb_mbuf == NULL) {
1355 		m_head = ifq_dequeue(&ifp->if_snd);
1356 		if (m_head == NULL)
1357 			break;
1358 
1359 		/* Pick a descriptor off the free list. */
1360 		cur_tx = sc->wb_cdata.wb_tx_free;
1361 		sc->wb_cdata.wb_tx_free = cur_tx->wb_nextdesc;
1362 
1363 		/* Pack the data into the descriptor. */
1364 		wb_encap(sc, cur_tx, m_head);
1365 
1366 		if (cur_tx != start_tx)
1367 			WB_TXOWN(cur_tx) = WB_TXSTAT_OWN;
1368 
1369 		BPF_MTAP(ifp, cur_tx->wb_mbuf);
1370 	}
1371 
1372 	/*
1373 	 * If there are no packets queued, bail.
1374 	 */
1375 	if (cur_tx == NULL)
1376 		return;
1377 
1378 	/*
1379 	 * Place the request for the upload interrupt
1380 	 * in the last descriptor in the chain. This way, if
1381 	 * we're chaining several packets at once, we'll only
1382 	 * get an interupt once for the whole chain rather than
1383 	 * once for each packet.
1384 	 */
1385 	WB_TXCTL(cur_tx) |= WB_TXCTL_FINT;
1386 	cur_tx->wb_ptr->wb_frag[0].wb_ctl |= WB_TXCTL_FINT;
1387 	sc->wb_cdata.wb_tx_tail = cur_tx;
1388 
1389 	if (sc->wb_cdata.wb_tx_head == NULL) {
1390 		sc->wb_cdata.wb_tx_head = start_tx;
1391 		WB_TXOWN(start_tx) = WB_TXSTAT_OWN;
1392 		CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1393 	} else {
1394 		/*
1395 		 * We need to distinguish between the case where
1396 		 * the own bit is clear because the chip cleared it
1397 		 * and where the own bit is clear because we haven't
1398 		 * set it yet. The magic value WB_UNSET is just some
1399 		 * ramdomly chosen number which doesn't have the own
1400 	 	 * bit set. When we actually transmit the frame, the
1401 		 * status word will have _only_ the own bit set, so
1402 		 * the txeoc handler will be able to tell if it needs
1403 		 * to initiate another transmission to flush out pending
1404 		 * frames.
1405 		 */
1406 		WB_TXOWN(start_tx) = WB_UNSENT;
1407 	}
1408 
1409 	/*
1410 	 * Set a timeout in case the chip goes out to lunch.
1411 	 */
1412 	ifp->if_timer = 5;
1413 }
1414 
1415 static void
1416 wb_init(void *xsc)
1417 {
1418 	struct wb_softc *sc = xsc;
1419 	struct ifnet *ifp = &sc->arpcom.ac_if;
1420 	int s, i;
1421 	struct mii_data *mii;
1422 
1423 	s = splimp();
1424 
1425 	mii = device_get_softc(sc->wb_miibus);
1426 
1427 	/*
1428 	 * Cancel pending I/O and free all RX/TX buffers.
1429 	 */
1430 	wb_stop(sc);
1431 	wb_reset(sc);
1432 
1433 	sc->wb_txthresh = WB_TXTHRESH_INIT;
1434 
1435 	/*
1436 	 * Set cache alignment and burst length.
1437 	 */
1438 #ifdef foo
1439 	CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_CONFIG);
1440 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
1441 	WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
1442 #endif
1443 
1444 	CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_MUSTBEONE | WB_BUSCTL_ARBITRATION);
1445 	WB_SETBIT(sc, WB_BUSCTL, WB_BURSTLEN_16LONG);
1446 	switch(sc->wb_cachesize) {
1447 	case 32:
1448 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_32LONG);
1449 		break;
1450 	case 16:
1451 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_16LONG);
1452 		break;
1453 	case 8:
1454 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_8LONG);
1455 		break;
1456 	case 0:
1457 	default:
1458 		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_NONE);
1459 		break;
1460 	}
1461 
1462 	/* This doesn't tend to work too well at 100Mbps. */
1463 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_EARLY_ON);
1464 
1465 	/* Init our MAC address */
1466 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1467 		CSR_WRITE_1(sc, WB_NODE0 + i, sc->arpcom.ac_enaddr[i]);
1468 
1469 	/* Init circular RX list. */
1470 	if (wb_list_rx_init(sc) == ENOBUFS) {
1471 		printf("wb%d: initialization failed: no "
1472 			"memory for rx buffers\n", sc->wb_unit);
1473 		wb_stop(sc);
1474 		splx(s);
1475 		return;
1476 	}
1477 
1478 	/* Init TX descriptors. */
1479 	wb_list_tx_init(sc);
1480 
1481 	/* If we want promiscuous mode, set the allframes bit. */
1482 	if (ifp->if_flags & IFF_PROMISC)
1483 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
1484 	else
1485 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
1486 
1487 	/*
1488 	 * Set capture broadcast bit to capture broadcast frames.
1489 	 */
1490 	if (ifp->if_flags & IFF_BROADCAST)
1491 		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
1492 	else
1493 		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
1494 
1495 	/*
1496 	 * Program the multicast filter, if necessary.
1497 	 */
1498 	wb_setmulti(sc);
1499 
1500 	/*
1501 	 * Load the address of the RX list.
1502 	 */
1503 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1504 	CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
1505 
1506 	/*
1507 	 * Enable interrupts.
1508 	 */
1509 	CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
1510 	CSR_WRITE_4(sc, WB_ISR, 0xFFFFFFFF);
1511 
1512 	/* Enable receiver and transmitter. */
1513 	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1514 	CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
1515 
1516 	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1517 	CSR_WRITE_4(sc, WB_TXADDR, vtophys(&sc->wb_ldata->wb_tx_list[0]));
1518 	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1519 
1520 	mii_mediachg(mii);
1521 
1522 	ifp->if_flags |= IFF_RUNNING;
1523 	ifp->if_flags &= ~IFF_OACTIVE;
1524 
1525 	splx(s);
1526 
1527 	callout_reset(&sc->wb_stat_timer, hz, wb_tick, sc);
1528 }
1529 
1530 /*
1531  * Set media options.
1532  */
1533 static int
1534 wb_ifmedia_upd(struct ifnet *ifp)
1535 {
1536 	struct wb_softc *sc = ifp->if_softc;
1537 
1538 	if (ifp->if_flags & IFF_UP)
1539 		wb_init(sc);
1540 
1541 	return(0);
1542 }
1543 
1544 /*
1545  * Report current media status.
1546  */
1547 static void
1548 wb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1549 {
1550 	struct wb_softc *sc = ifp->if_softc;
1551 	struct mii_data *mii = device_get_softc(sc->wb_miibus);
1552 
1553 	mii_pollstat(mii);
1554 	ifmr->ifm_active = mii->mii_media_active;
1555 	ifmr->ifm_status = mii->mii_media_status;
1556 }
1557 
1558 static int
1559 wb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1560 {
1561 	struct wb_softc *sc = ifp->if_softc;
1562 	struct mii_data *mii;
1563 	struct ifreq *ifr = (struct ifreq *) data;
1564 	int error = 0, s;
1565 
1566 	s = splimp();
1567 
1568 	switch(command) {
1569 	case SIOCSIFFLAGS:
1570 		if (ifp->if_flags & IFF_UP)
1571 			wb_init(sc);
1572 		else if (ifp->if_flags & IFF_RUNNING)
1573 			wb_stop(sc);
1574 		error = 0;
1575 		break;
1576 	case SIOCADDMULTI:
1577 	case SIOCDELMULTI:
1578 		wb_setmulti(sc);
1579 		error = 0;
1580 		break;
1581 	case SIOCGIFMEDIA:
1582 	case SIOCSIFMEDIA:
1583 		mii = device_get_softc(sc->wb_miibus);
1584 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1585 		break;
1586 	default:
1587 		error = ether_ioctl(ifp, command, data);
1588 		break;
1589 	}
1590 
1591 	splx(s);
1592 
1593 	return(error);
1594 }
1595 
1596 static void
1597 wb_watchdog(struct ifnet *ifp)
1598 {
1599 	struct wb_softc *sc = ifp->if_softc;
1600 
1601 	ifp->if_oerrors++;
1602 	printf("wb%d: watchdog timeout\n", sc->wb_unit);
1603 #ifdef foo
1604 	if ((wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) == 0)
1605 		printf("wb%d: no carrier - transceiver cable problem?\n",
1606 								sc->wb_unit);
1607 #endif
1608 	wb_stop(sc);
1609 	wb_reset(sc);
1610 	wb_init(sc);
1611 
1612 	if (!ifq_is_empty(&ifp->if_snd))
1613 		wb_start(ifp);
1614 }
1615 
1616 /*
1617  * Stop the adapter and free any mbufs allocated to the
1618  * RX and TX lists.
1619  */
1620 static void
1621 wb_stop(struct wb_softc *sc)
1622 {
1623 	struct ifnet *ifp = &sc->arpcom.ac_if;
1624 	int i;
1625 
1626 	ifp->if_timer = 0;
1627 
1628 	callout_stop(&sc->wb_stat_timer);
1629 
1630 	WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_RX_ON | WB_NETCFG_TX_ON));
1631 	CSR_WRITE_4(sc, WB_IMR, 0x00000000);
1632 	CSR_WRITE_4(sc, WB_TXADDR, 0x00000000);
1633 	CSR_WRITE_4(sc, WB_RXADDR, 0x00000000);
1634 
1635 	/*
1636 	 * Free data in the RX lists.
1637 	 */
1638 	for (i = 0; i < WB_RX_LIST_CNT; i++) {
1639 		if (sc->wb_cdata.wb_rx_chain[i].wb_mbuf != NULL) {
1640 			m_freem(sc->wb_cdata.wb_rx_chain[i].wb_mbuf);
1641 			sc->wb_cdata.wb_rx_chain[i].wb_mbuf = NULL;
1642 		}
1643 	}
1644 	bzero(&sc->wb_ldata->wb_rx_list, sizeof(sc->wb_ldata->wb_rx_list));
1645 
1646 	/*
1647 	 * Free the TX list buffers.
1648 	 */
1649 	for (i = 0; i < WB_TX_LIST_CNT; i++) {
1650 		if (sc->wb_cdata.wb_tx_chain[i].wb_mbuf != NULL) {
1651 			m_freem(sc->wb_cdata.wb_tx_chain[i].wb_mbuf);
1652 			sc->wb_cdata.wb_tx_chain[i].wb_mbuf = NULL;
1653 		}
1654 	}
1655 
1656 	bzero(&sc->wb_ldata->wb_tx_list, sizeof(sc->wb_ldata->wb_tx_list));
1657 
1658 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1659 }
1660 
1661 /*
1662  * Stop all chip I/O so that the kernel's probe routines don't
1663  * get confused by errant DMAs when rebooting.
1664  */
1665 static void
1666 wb_shutdown(device_t dev)
1667 {
1668 	struct wb_softc *sc = device_get_softc(dev);
1669 
1670 	wb_stop(sc);
1671 }
1672